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Chance constraints are an important modeling tool in stochastic optimization, providing probabilistic guarantees that a
solution “succeeds” in satisfying a given constraint. Although they control the probability of “success,” they provide no
control whatsoever in the event of a “failure.” That is, they do not distinguish between a slight overshoot or undershoot of
the bounds and more catastrophic violation. In short, they do not capture the magnitude of violation of the bounds. This
paper addresses precisely this topic, focusing on linear constraints and ellipsoidal (Gaussian-like) uncertainties. We show
that the problem of requiring different probabilistic guarantees at each level of constraint violation can be reformulated
as a semi-infinite optimization problem. We provide conditions that guarantee polynomial-time solvability of the resulting
semi-infinite formulation. We show further that this resulting problem is what has been called a comprehensive robust
optimization problem in the literature. As a byproduct, we provide tight probabilistic bounds for comprehensive robust
optimization. Thus, analogously to the connection between chance constraints and robust optimization, we provide a broader
connection between probabilistic envelope constraints and comprehensive robust optimization.
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1. Introduction
An important paradigm for handling stochastic parameter
uncertainty in optimization, is the so-called chance con-
straint paradigm. Here, a deterministic constraint is relaxed
and required to hold with at least some specified probabil-
ity. Thus, given a constraint f 4x1Är5, where x denotes the
decision variable and Är the stochastic uncertainty (we add
the superscript r to emphasize �r is a random variable),
one solves

�4f 4x1Är5¾ �5¾ p1 (1)

for some value p ∈ 40115 and target �. Chance constraints
date at least as far back as, e.g., Charnes and Cooper
1959, and since then there has been considerable work,
e.g., Miller and Wagner (1965), Prékopa (1970), Delage
and Mannor (2010), and many others; we refer the reader
to the textbook Prékopa (1995) and reference therein for a
thorough review.

The chance constraint formulation in (1) guarantees that
the given constraint will be satisfied with probability p.
With the remaining 41 − p5 probability, the constraint is
violated, and no control whatsoever is provided on the

degree of violation. In many important practical applica-
tions, the decision maker may not be indifferent to the
degree of constraint violation (cf. Payne et al. 1980, 1981;
Chen and Sim 2009). The example par excellence is port-
folio optimization. Here, the decision maker may enforce a
chance constraint that with a certain confidence the portfo-
lio achieves a target value. Yet the behavior when that target
is not met is arguably equally important, as the investor is
also interested in knowing and perhaps bounding how bad
the return can be, in case the portfolio fails to achieve the
targeted return. Neglecting the magnitude of constraint vio-
lation is particularly problematic when the uncertain param-
eter follows a heavy-tail distribution, as is often the case in
financial applications.

One natural remedy to this shortcoming of chance con-
straints is to enforce different levels of probabilistic guar-
antees. Thus our investor might require the portfolio return
to achieve target �1 with probability at least 50%, target
�2 with probability at least 90%, and �3 with probability
at least 99%, hence providing a variety of hedging guaran-
tees for when the primary target, �1, is not achieved. This
multiple-chance-constraint idea can be easily generalized to
any finite number (say N ) of levels of protection, resulting
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to a set of N chance constraints. However, the computa-
tional effort of solving such a problem increases (and in
fact does so super linearly) as N increases. The failure
of this naïve implementation is not an indictment of the
idea. What is missing is capturing structure between multi-
ple chance constraints at different levels of protection. We
tackle precisely this problem.

In this paper we propose what we call the probabilistic
envelope constraint framework that generalizes chance con-
straints. Instead of requiring probabilistic guarantees for a
single or even a finite number of target values (i.e., con-
straint violation), as in the multiple-chance-constraint setup,
we enforce chance constraints at all levels of potential vio-
lation. Thus, the single chance constraint in (1) becomes the
following infinite set of chance constraints:

�4f 4x1Är5¾ �− s5¾04s51 ∀ s ¾ 01

where 04s5 is a given nondecreasing function of s. Thus,
we guarantee that the entire tail behavior is bounded by an
envelope function.

Although the probabilistic envelope constraint frame-
work can be general, all technical results derived in this
paper focus on the following specialized setup. Detailed
and precise definitions can be found in subsequent sections.

Condition 1 (General Setup).
• The function f 4 · 5 is linear and �r is additive, i.e., the

constraint has a form

�64a+Är5>x¾ b− s7¾04s51 ∀ s ¾ 00

• The random variable Är has an ellipsoidal distribu-
tion (e.g., Gaussian); alternatively, the distribution of Är is
unknown, and only its mean and variance are known.

Unlike the naïve multiple-chance-constraint formulation,
we show that optimization under probabilistic envelope
constraints is often computational friendly. This is because
the (infinite) collection of chance constraints expressed can
be dealt with directly. Indeed, we show that under Con-
dition 1, the envelope constraint can be converted into
an easier to analyze deterministic semi-infinite program.
We then give further conditions under which the resulting
semi-infinite program can be solved in polynomial time.
One sufficient condition (in addition to Condition 1) for
tractability is as follows:

Condition 2 (Tractability).
• The variable Är has a log-concave distribution.
• The function 04s5= 1 −� exp4−g4s55 for an increas-

ing, concave g4 · 5.

Thus, under these conditions, even though the compu-
tational cost of the multiple-chance-constraint formulation
increases super linearly with the number of levels of pro-
tection, the continuum limit results in a tractable problem.

Converting the probabilistic envelope program into a
semi-infinite deterministic program provides an interesting

link between problems with stochastic models of uncer-
tainty and deterministic problems with set-based uncer-
tainty. The latter class of problems have attracted much
attention in the last decade under the banner of robust
optimization (e.g., Ben-Tal and Nemirovski 1998, 1999,
2000; El Ghaoui et al. 1998; Bertsimas and Sim 2004, Ben-
Tal et al. 2009; Bertsimas et al. 2011). In particular, we
show that probabilistic envelope constraints can be trans-
formed into semi-infinite constraints that in turn can be
rewritten as a comprehensive robust optimization problem
(Ben-Tal et al. 2006, Ben-Tal et al. 2010). As we describe
in further detail below, comprehensive robustness is an
extension of robust optimization that provides different lev-
els of deterministic protection against different magnitudes
of uncertainty. Thus, as a by-product of this connection,
we present a probabilistic interpretation of comprehensive
robust optimization.

Readers familiar with stochastic programming literature
may recognize that the probabilistic chance constraint for-
mulation is closely related to the stochastic dominance con-
straints (Dentcheva and Ruszczyński 2003, 2004a, b); see
Chapter 4 of Shapiro et al. (2009) and reference therein
for more details. A stochastic dominance constraint refers
to a constraint of the form X �4k5 Y , where X and Y are
random variables and �4k5 stands for kth order stochas-
tic dominance. Indeed, a probabilistic chance constraint
can be formulated as a first-order stochastic dominance
constraint. However, most of the literature in optimization
with stochastic dominance constraints focuses on the sec-
ond (or higher) order constraints case, a case that preserves
convexity and is more amenable to analysis.

It is worth pointing out that the probabilistic envelope
program enforces the desired probabilistic requirements in
the design stage. This is in contrast to the post-analysis
approach (e.g., Paschalidis and Kang 2005), where one
obtains a solution using alternative methods such as robust
optimization or standard chance constraints, and then ana-
lyzes the tail probability of the constraint violation for the
obtained solution. Recently, there has been some work on
robust optimization that takes into account the probabilis-
tic requirements on the solution, e.g., (Chen et al. 2007,
2008; Bertsimas and Brown 2009). These papers construct
uncertainty sets such that the obtained solution is guaran-
teed to satisfy certain probabilistic requirements. In general,
this approach seems to lead to sufficient but not neces-
sary conditions for the desired probabilistic requirements.
In contrast, we begin with the desired probabilistic enve-
lope constraint and subsequently show its equivalence to
the semi-infinite deterministic formulation.

Finally, we comment on an alternative approach to cap-
ture constraints about the magnitude of the losses or gains:
building stochastic optimization problems using risk mea-
sures. Considerable work has been done in pursuing this
avenue, particularly for portfolio optimization (see, e.g.,
Artzner et al. 1999, Delbaen 2002, Novosyolov 2002,
Ruszczyński and Shapiro 2006, Rockafellar and Uryasev
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2000, Lüthi and Doege 2005, Föllmer and Schied 2002,
El Ghaoui et al. 2003, Brown and Sim 2009, Ben-Tal et al.
2010). Most of the work along this line of research is
based on optimizing over a utility function or a mean risk
functional. This allows for the modeling of refined risk
preferences, beyond what simple chance constraints offer.
However, they do not directly offer protection in the form
of probability guarantees against losses exceeding some
prespecified level. Moreover, the decision maker has to
articulate his or her utility function or determine the param-
eter of the risk functional. This can be subjective and unin-
tuitive. In contrast, the probability of constraint violation,
or more generally of not meeting a target, is more intuitive
and often easy for the decision maker to set. Indeed, exten-
sive empirical study shows that in daily decision making,
risk is primarily considered by decision makers as failure
to meet a prespecified target (e.g., Lanzillotti 1958; Simon
1959; Mao 1970; Payne et al. 1980, 1981).

We remark that the term envelope constraint appeared
as early as the 1970s in the field of signal processing, see
for example Evans et al. (1977a, b) and more recently Vu
et al. (1997). Here, one seeks to design a filter such that
its response to a specified input lies within a predefined
envelope, consistent with the commonly used term enve-
lope function, and thus, at a high level, the idea of per-
forming within an envelope constraint is a common theme.
Beyond that, the motivation, setup, and technical details
are, of course, quite different.

1.1. Organization

This paper is organized as follows. In §2 we propose the
probabilistic envelope constraint framework and present
examples that motivate the formulation. In particular we
point out the inadequacy of the traditional chance constraint
setup in these settings. We then show in §3 that the prob-
abilistic envelope program is equivalent to a deterministic
semi-infinite program. This equivalence relationship has a
nice interpretation as providing tight probabilistic bounds
for comprehensive robust optimization formulations. The
computational issue of solving the probabilistic envelope
program and equivalently the comprehensive robust opti-
mization is discussed in detail in §4. We then present two
extensions of the proposed framework: in §5 we consider
the case where we must satisfy probabilistic envelope con-
straints jointly for a group of constraints. Then, in §6,
we discuss the distributionally robust approach to the prob-
abilistic envelope framework: instead of assuming the pre-
cise distribution of the uncertainty is known, we take it to
be known only approximately. This setting is particularly
relevant for problems where our only knowledge of the dis-
tribution comes from estimates formed from a finite sample
set. We report simulation results in §7, where we see the
protection at all levels offered by envelope constraints in
a portfolio optimization problem. All proofs, except a few
succinct ones, are deferred to the appendix.

1.2. Notation

We use boldface letters to denote column vectors, and row
vectors are represented using the transpose (superscript >)
of the column vectors. To distinguish between stochastic
noise as used in the probabilistic formulation, and deter-
ministic set-based uncertainty, as used in comprehensive
robust optimization, we use a superscript r for each ran-
dom variable, as we have done in the introduction. As is
standard, we use N401è5 to denote the Gaussian distribu-
tion with mean zero and covariance matrix è. To lighten
notation, given a positive definite matrix è, we write �x�è

to denote
√
x>èx. Finally, we call an optimization problem

tractable if it can be solved in polynomial time.

2. Formulation and Motivating Examples
We first propose the probabilistic envelope constraint as
a generalization of the chance constraint. For clarity,
we repeat some of the definitions given in the introduc-
tion. Given a random variable �r representing the uncer-
tain parameter, and a constraint function f 4x1Är5, a chance
constraint places a lower bound on the probability that f
reaches a certain target. That is, for a fixed � ∈ � and
p ∈ 60117, we require chance constraint

�4f 4x1Är5¾ �5¾ p0

As previously discussed, the chance constraint provides
protection against noise by bounding the probability of fail-
ing to achieve target �. It says nothing about what happens
when, with probability at most 41−p5, the target is not met.
In particular, there is no control over the magnitude of vio-
lation of the constraint. To rectify this shortcoming, we pro-
pose a constraint called a probabilistic envelope constraint,
which bounds the probability of failing to meet the target,
�, at all levels. Given a nondecreasing function 04s5, the
envelope constraint on f becomes probabilistic envelope
constraint

�4f 4x1Är5¾ �− s5¾04s53 ∀ s ¾ 00

One example of particular interest is when we require the
probability of violation of the constraint by s to decay
exponentially in s. Thus, this would give 04s5 = 1 −

� exp4−�s5. We call this an exponentially decaying proba-
bilistic envelope constraint. We pay particular attention to
such functions 04s5 in the sequel.

A chance constraint is a special case of a probabilistic
envelope constraint, which we recover by setting 04s5≡ p.
In general, a probabilistic envelope constraint can be
regarded as an infinite set of chance constraints, because
for any fixed s > 0, �4f 4x1Är5¾ �−s5¾04s5 is a chance
constraint.

We now introduce optimization with probabilistic enve-
lope constraints, which we call probabilistic envelope pro-
grams. Although the original definition is general, in this
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paper we focus on using probabilistic envelope constraints
in linear programs. Consider a linear program on x ∈�n

minimize c>x
subject to a>

i x¾ bi3 i = 11 0 0 0 1m0

We can assume without loss of generality (introducing an
additional variable, if necessary) that there is uncertainty
only in the matrix, i.e., the 8ai9. We consider an additive
model for uncertainty, where the true (unknown) parame-
ter is equal to the nominal value plus a random variable:
âi = ai + Är

i for some random noise Är
i . As with chance

constraints, the probabilistic envelope constraint we obtain
depends on how much we know about the distribution of
Är
i . We focus primarily on two cases: the setting where the

distribution �i, of the 8Är
i 9 is known only through its first

two moments, and the setting where it is known exactly
(and completely). In the setting where only the mean and
covariance are known (say 0 and è), then the probabilistic
envelope constraint becomes a minimization over all distri-
butions with that mean and variance

inf
Äri ∼401è5

�64ai +Är
i 5

>x¾ bi − s7¾0i4s53

∀ s ¾ 03 i = 11 0 0 0 1m0

If the distribution of Är
i is known exactly, the envelope

constraint becomes

�Äri ∼�i
64ai +Är

i 5
>x¾ bi − s7¾0i4s53

∀ s ¾ 03 i = 11 0 0 0 1m0

We conclude this section by presenting two motivat-
ing examples where the probabilistic envelope constraint
appears particularly useful.

2.1. Example 1: Portfolio Optimization

Consider a stylized portfolio optimization problem over
n stocks. We model the unit return of each stock as Zi +

ciZ0. Random variable Zi captures randomness due to the
ith stock, and random variable Z0 models the impact of the
market. Thus we assume that the random variables 8Zi9 are
independent across stocks, and random variable Z0 is com-
mon across all stocks. Suppose we assume we know the
distribution of these random variables, and moreover they
are normal, so that Zi ∼N4ai1�

2
i 5, and Z0 ∼N4a01�

2
0 5.

We would like our portfolio to meet a target return of T ,
with probability at least 1−�. Furthermore, we would like
the probability of missing the target T by more than s,
to decay exponentially in s. Thus we have

maximize Ɛ

[ n
∑

i=1

4Zi + ciZ05xi

]

subject to �

( n
∑

i=1

4Zi + ciZ05xi ¾ T − s

)

¾ 1 −� exp4−�s53 ∀ s ¾ 03
n
∑

i=1

xi = 13

xi ¾ 03 i = 11 0 0 0 1 n0

By definition of Z0 and Zi, this formulation is equivalent
to the following probabilistic envelope program:

maximize
n
∑

i=1

4ai + cia05xi

subject to �

( n
∑

i=1

4ai + cia0 + �r
i 5xi ¾ T − s

)

¾ 1 −� exp4−�s53 ∀ s ¾ 03
n
∑

i=1

xi = 13

xi ¾ 03 i = 11 0 0 0 1 n3

where Är ¬ 4�r
11 0 0 0 1 �

r
n5 ∼ N401è5 is a random variable,

and è is such that èii = �2
i + c2

i �
2
0 , and èij = cicj�

2
0 .

2.2. Example 2: Robust Regression

The second example we consider is linear regression. Given
a matrix A and observed vector b, the nominal problem is
to minimize �Ax−b�2. This can be rewritten as

minimize
n
∑

i=1

�2
i

subject to �bi − aix�¶ �i1 i = 11 0 0 0 1m3

�i ¾ 01 i = 11 0 0 0 1m0

In many typical examples, the linear assumption is
merely an approximation, either because of nonlinearity,
or because of noise in our measurements of the matrix A.
Let us assume that the regression matrix A is uncertain.
In particular, suppose each row in fact equals ai + Är

i , for
Gaussian noise Är

i ∼N401èi5. In the standard formulation
of regression, large fluctuations of the uncertain parame-
ter could produce very skewed fits because of the squared
loss. Thus large fluctuations could jeopardize the entire fit.
One approach to combat this is to require a relaxed fit-
ting condition, with probabilistic fitting, but controlling the
probability of “large” constraint violation. This is precisely
the setting for probabilistic envelope constraints. Using this
framework, we have the following problem for any given
fixed s∗:

minimize
n
∑

i=1

�2
i

subject to �bi − a>
i x�¶ �i1 i = 11 0 0 0 1m3

�4�bi − 4ai +Är
i 5

>x�¶ �i + s5

¾ 1 −� exp4−�s51 ∀ s ¾ s∗0 i = 11 0 0 0 1m3

�i ¾ 01 i = 11 0 0 0 1m0

(2)

Note that while the constraint �4�bi −4ai +Är
i 5

>x�¶ �i +
s5¾ 1 −� exp4−�s5 is a probabilistic envelope constraint,
due to the nonlinearity of �bi − 4ai + Är

i 5
>x�, Problem (2)

is not a probabilistic envelope program. After establishing
the basic computational complexity results for probabilis-
tic envelope programs, we revisit this problem in §5, and
show that it can be approximated by a tractable probabilis-
tic envelope program.
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3. Deterministic Reformulation of
Probabilistic Envelope Constraints

In this section we present the main result of the paper:
the probabilistic envelope problem can be reformulated as
an equivalent deterministic semi-infinite program. More-
over, we show that this reformulated problem is what is
known as a comprehensive robust optimization proposed in
Ben-Tal et al. (2006) (also called a global robust coun-
terpart in Ben-Tal et al. 2009). This formulation has been
well studied and we refer to the original papers on the
topic (Ben-Tal et al. 2006, Ben-Tal et al. 2009, 2010). Thus
the probabilistic uncertainty model is linked to the deter-
ministic set-based uncertainty model of (comprehensive)
robust optimization. This result is in the spirit of past work
that has linked (standard) chance constraints to (standard)
robust optimization (e.g., Shivaswamy et al. 2006, Delage
and Mannor 2010).

We begin with a brief introduction of the comprehen-
sive robust optimization formulation. We then derive tight
probabilistic bounds for comprehensive robust constraints.
These results lead to our main theorems, which provide
a deterministic reformulation of the probabilistic envelope
problem.

3.1. Comprehensive Robust Constraints

Comprehensive robust optimization (e.g., Ben-Tal et al.
2006, Ben-Tal et al. 2010) aims to relax the robust opti-
mization formulation and provide different levels of protec-
tion against different levels of noise. For a linear program,
the corresponding comprehensive robust optimization for-
mulation takes the form

minimize c>x

subject to 4ai +Äi5
>x¾ bi − fi4Äi51

∀Äi ∈�n3 i = 11 0 0 0 1m1

where each fi4 · 5 is a nonnegative penalty function. Note
that this is deterministic: the constraints must be satisfied
for every Ä, as these are no longer stochastic. Comprehen-
sive robust optimization generalizes robust linear optimiza-
tion (e.g., Ben-Tal and Nemirovski 1998, 1999; Bertsimas
and Sim 2004)—indeed, if fi4 · 5 is taken to be the indicator
function of a set ìi, i.e., fi4Äi5 = 0 for Äi ∈ ìi and +�

otherwise, then the formulation above recovers the standard
robust optimization formulation

minimize c>x

subject to 4ai +Äi5
>x¾ bi1 ∀Äi ∈ìi0

The robust optimization formulation guarantees that the
constraint will not be violated for any realization of the
uncertain parameters in the set ìi, but makes no guarantees
for realizations outside that set. The comprehensive robust
optimization formulation allows us to choose different

functions fi4 · 5, in order to provide different levels of pro-
tection for different parameter realizations, as opposed to
the “all-or-nothing” view of standard robust optimization.
Thus, given the comprehensive robust formulation above,
for a large parameter deviation, the constraint 4ai +Äi5

>x¾
b only needs to be approximately satisfied, i.e., a gap of
fi4Äi5 is allowed.

3.2. Probabilistic Bounds of Comprehensive
Robust Constraints

Although robust optimization has seen remarkable success
as a tractable optimization tool for providing probabilis-
tic protection to optimization solutions (e.g., Shivaswamy
et al. 2006, Delage and Mannor 2010), there has been no
successful effort to date to develop the probabilistic side
of the story of comprehensive robust optimization. This
subsection seeks to develop such a link. More specifically
we derive tight bounds on the probability that the solution
to a comprehensive robust optimization violates a given
constraint with a magnitude of at least s.

As we discuss in §2, throughout the paper we consider
two different noise models. In the first, we assume we
only know the mean and variance of the noise and want
to bound the worst-case probability among all distributions
with that given mean and variance. In the second model,
we assume we have complete (and perfect) information
about the noise distribution. More specifically, we consider
ellipsoidal noise, i.e., noise of the form HÆr , where Ær is
a spherically symmetric random variable with mean zero
and variance I . Gaussian noise is a special case of such a
noise model. In both cases, the bounds obtained are tight in
the sense that if the comprehensive robust constraint is not
satisfied, then there exists a value of s, such that the corre-
sponding probabilistic bound at level s will be violated.

Theorem 1 (Mean-Variance Model). Let t 2 �+ 7→

601+�7 be a nondecreasing function such that t405 = 0
and limr↑+� t4r5= +�. Then the constraint

4a+Ä5>x¾ b− t4�Ä�è−151 ∀Ä ∈�n1 (3)

is equivalent to

inf
Är∼401è5

�64a+Är5>x¾ b− s7¾ 1 −
1

4t−14s552 + 1
1

∀ s ¾ 00 (4)

The infimum here is taken over all random variables Är

with mean zero and covariance matrix è, and t−14s5 ¬
sup8r � t4r5¶ s9.

Next we consider the case where the distribution of the
deviation is known. As a representative (and important)
example, we consider the Gaussian case.
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Theorem 2 (Gaussian Model). Let t 2 �+ 7→ 601+�7
be a nondecreasing function such that t405 = 0 and
limr↑+� t4r5= +�. If Är ∼N401è5, then the constraint

4a+Ä5>x¾ b− t4�Ä�è−151 ∀Ä ∈�n1 (5)

is equivalent to

�64a+Är5>x¾ b− s7¾ê4t−14s551 ∀ s ¾ 00 (6)

Here t−14s5¬ sup8r � t4r5¶ s9.

It is straightforward to extend Theorem 2 to noise that
follows an ellipsoidal distribution. Recall that such a ran-
dom variable can be represented as a spherical random vari-
able under a linear transformation, i.e., HÆr , where H is a
matrix and Ær is spherical.

Theorem 3 (Ellipsoidal Model). Let t 2 �+ 7→ 601+�7
be a nondecreasing function such that t405 = 0 and
limr↑+� t4r5 = +�. Let Ær ∈ �n be a spherical random
variable with mean zero and variance In, and H ∈ �n×n

be a full rank matrix. Let è = H>H , and let ë4 · 5 be
the cumulative distribution function of the one-dimensional
marginal of � . Then the constraint

4a+Ä5>x¾ b− t4�Ä�è−151 ∀Ä ∈�n1

is equivalent to

�64a+HÆr5>x¾ b− s7¾ë4t−14s551 ∀ s ¾ 00

3.3. Reformulation of Probabilistic Envelope
Constraints

One may notice that the probabilistic bounds in Theorem 1
are indeed probabilistic envelope constraints. This indeed
implies our main result that probabilistic envelope con-
straints can be reformulated as a deterministic semi-infinite
program—a comprehensive robust optimization problem,
thus linking two widely used models in treating uncertainty:
the deterministic uncertainty model used in (comprehen-
sive) robust optimization, and the probabilistic uncertainty
model.

As before, the first model considers a random deviation
with mean zero and variance è and the specific distribu-
tion is unknown, and the second one considers a random
variable with known distribution (e.g., Gaussian).

Theorem 4 (Mean-Variance Model). If 0 �+ 7→ 60115
is a nondecreasing function that is continuous from the
right, then the probabilistic envelope constraint

inf
Är∼401è5

�64a+Är5>x¾ b− s7¾04s51 ∀ s ¾ 01

is equivalent to the comprehensive robust constraint

4a+Ä5>x¾ b−0−1

(

�Ä�2
è−1

1 + �Ä�2
è−1

)

1 ∀Ä ∈�n1 (7)

where 0−14x5¬ inf8y ¾ 0 �04y5¾ x9.

We also obtain an equivalence of the probabilistic enve-
lope constraint to comprehensive robust optimization when
the distribution of the uncertainty is known exactly. Note
that the range of 04 · 5 is 60051 15 because the nominal
constraint a>x ¾ b implies that for any s > 0, �64a +

Är5>x¾ b − s7 is at least 005 because the random variable
is symmetric.

Theorem 5 (Gaussian Model). If 0 2 �+ 7→ 6005115 is a
nondecreasing function that is continuous from the right,
and Är ∼N401è5, then the probabilistic constraint

�64a+Är5>x¾ b− s7¾04s51 ∀ s ¾ 01

is equivalent to

4a+Ä5>x¾ b−0−14ê4�Ä�è−1551 ∀Ä ∈�n1

where 0−14x5 ¬ inf8y ¾ 0 � 04y5 ¾ x9 and ê4 · 5 is the
cumulative distribution function of N40115.

Theorem 6 (Ellipsoidal Model). Let Ær ∈�n be a spher-
ical random variable, with mean zero and variance In, and
H ∈�n×n be a full rank matrix. Let è=H>H , and denote
the cumulative distribution function of the one-dimensional
marginal of Ær by ë4 · 5, which is strictly increasing. If 0
�+ 7→ 6005115 is a nondecreasing function that is continu-
ous from the right, then the constraint

�64a+HÆr5>x¾ b− s7¾04s51 ∀ s ¾ 01

is equivalent to

4a+Ä5>x¾ b−0−14ë4�Ä�è−1551 ∀Ä ∈�n1

where 0−14x5¬ inf8y ¾ 0 �04y5¾ x9.

As an example to illustrate the reformulation, consider
the exponential decay in the motivating example: for Är ∼

N401è5 and � < 1/2,

�64a+Är5>x¾ bi − s7¾ 1 −� exp4−�s53 ∀ s ¾ 00 (8)

Thus, 04s5 = 1 − � exp4−�s5, and hence 0−14x5 =

max6−41/�5 log41 − x5 + log�/�1 07. Therefore,
0−14ê4t55 = max

[

− 41/�5 log41 − ê4t55 + log�/�1 07.
Theorem 5 asserts that Constraint (8) is equivalent to the
infinite collection of deterministic constraints

4a+Ä5>x¾ b+ min
[

1
�

log41 −ê4�Ä�è−155−
log�
�

1 0
]

1

∀Ä ∈�n1

which is further equivalent to

4a+Ä5>x¾ b+
1
�

log41 −ê4�Ä�è−155−
log�
�

1

∀Ä such that ê4�Ä�è−15¾ 1 −�0 (9)

In §4 we further show that the feasible set to Constraint (9)
has a polynomial time “separation oracle,” and hence
tractable.
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4. Computational Tractability
A question of immediate interest is the computational
tractability of the probabilistic envelope constraints. Given
the equivalence in the previous section of probabilistic
envelope constraints and comprehensive robust optimiza-
tion, we investigate the tractability of the latter. A com-
prehensive robust optimization problem is tractable exactly
when finding the most adversarial disturbance can be done
efficiently. We show that this amounts to minimizing a
function of a scalar variable, and it can be minimized effi-
ciently whenever the penalty function of the comprehen-
sive robust optimization is convex. Based on these results,
we conclude this section by showing that the exponential
decay probabilistic envelope constraint leads to a tractable
optimization problem.

Theorem 7. The following comprehensive robust opti-
mization problem

minimize c>x

subject to 4ai +Äi5
>x¾ bi − ti4�Äi�è−1

i
51

∀Äi ∈�n3 i = 11 0 0 0 1m0

(10)

can be solved in polynomial time if for each i, and any
� ¾ 0, the following optimization on y can be solved in
polynomial time:

minimize: ti4y5−�y1 subject to: y ∈�+0 (11)

Remark 1. Notice that when ti4 · 5 is convex, then the
function ti4y5− �y is a convex function of a scalar vari-
able y. Therefore, this function is unimodal, and in particu-
lar, can be solved in polynomial time using line search and
bisection. Similarly, if ti4 · 5 is concave, then the function
ti4y5−�y is a concave function of scalar variable y. There-
fore, the minimum is attained at one of the two extremes,
i.e., y = 0 or y ↑ �.

Remark 2. Note that en route to proving Theorem 7,
we establish that for fixed x0, the most adversarial noise,
i.e., Äi such that constraint 4ai +Äi5

>x0 ¾ bi − fi4Äi5 has a
largest violation gap, is achieved at

Ä∗

i = −y∗èix0/

√

x>
0 èix01

where y∗ is the optimal solution of

minimize ti4y5− y

√

x>
0 èix01 subject to y ∈�+0

4.1. Exponentially Decaying Probabilistic
Envelope Constraints

As an example, we next investigate explicitly the tractabil-
ity of exponentially decaying probabilistic envelope con-
straints. The next lemma shows that for an ellipsoidal
random variable with log-concave density, the resulting
penalty function of the exponential decaying probabilistic
envelope constraints is convex.

Lemma 1. Let Ær ∈�n be a spherical random variable with
mean zero and variance In, and having a log-concave den-
sity function. Denote the cumulative distribution function
of the one-dimensional marginal of � by ë4 · 5, which is
strictly increasing. If 04s5 = 1 − � exp4−�s5 for � > 0,
then 0−14ë4s55 is convex.

Proof. Note that because Ær has a log-concave density, the
density function of its one-dimensional margin is also log-
concave. This further implies that the cumulative distribu-
tion function of its marginal, ë4 · 5, is log concave (e.g.,
Boyd and Vandenberghe 2004). Furthermore, algebraic
manipulation yields that 0−14t5= max6−41/�5 log41−t5+
log�/�1 07. Thus, we have

0−14ë4s55= max
[

−
1
�

log41 −ë4s55+
log�
�

1 0
]

= max
[

−
1
�

log4ë4−s55+
log�
�

1 0
]

0

The last equality holds because Ær being spherical implies
that ë4 · 5 is symmetric. Thus, log concavity of ë4 · 5
implies that −41/�5 log4ë4−s55 is convex for any �> 0.
The lemma thus holds because maximization preserves
convexity. Q.E.D.

Theorem 8. For i = 11 0 0 0 1m, let Æri ∈ �n be a spherical
random variable with mean zero and variance In, and hav-
ing a log-concave density function. Let Hi ∈�n×n be a full
rank matrix. Let èi = H>

i Hi, and denote the cumulative
distribution function of the one-dimensional marginal of Æri
by ëi4 · 5, which is strictly increasing. Further let �i > 0
and 0 <�i ¶ 005. The following optimization problem

minimize c>x

subject to �64ai +HiÆ
r
i 5

>x¾ bi − s7

¾1−�iexp4−�is51 ∀s¾01 i=110001m3

(12)

can be solved in polynomial time.

Proof. Let 04s5 = 1 − � exp4−�s5. By Theorem 6,
we have that Problem (12) is equivalent to

minimize c>x

subject to 4ai +Äi5
>x¾ bi −0−14ë4�Äi�è−1551

∀Äi ∈�n1 i = 11 0 0 0 1m0

(13)

Note that 0−14ë4 · 55 is convex because of Lemma 1. By
Theorem 7 together with Remark 1 this implies that Prob-
lem (13), and equivalently Problem (12) can be solved in
polynomial time. Q.E.D.

Remark 3. Indeed, if 04s5 = 1 − � exp4−f 4s55 for an
increasing, concave f 4 · 5, then we have 0−14s5 = max
6f −14log� − log4ë4s555107, which is again convex. The
resulting optimization problem is therefore tractable.
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As a special case of Theorem 8, we see that the expo-
nentially decaying probabilistic envelope constraints with
Gaussian noise are tractable.

Corollary 1. For i = 11 0 0 0 1m, let Är
i ∈ �n ∼ N401èi5.

Further let �i > 0 and 0 < �i ¶ 005. The following opti-
mization problem

minimize c>x

subject to �64ai +Är
i 5

>x¾ bi − s7¾ 1 −�i exp4−�is51

∀ s ¾ 01 i = 11 0 0 0 1m

can be solved in polynomial time.

Next we investigate exponentially decaying probabilis-
tic envelope constraints for noise described by the mean-
variance model. The next theorem shows that it is
impossible for the mean-variance model to satisfy an expo-
nentially decaying probabilistic envelope for the entire tail.
Intuitively, this is due to the fact that without further
assumption on the distribution, fixing the mean and vari-
ance of a random variable only guarantees a power-law tail
decay (by, e.g., the Markov inequality). On the other hand,
it is possible to require an exponential decay on a bounded
interval for the mean-variance model. Indeed, such a for-
mulation leads to tractable problems. As before, the proof
is deferred to the appendix.

Theorem 9. There is no nonzero x that satisfies

inf
Är∼401è5

�64a+Är5>x¾ b− s7

¾ 1 −� exp4−�s51 ∀ s ¾ 00 (14)

On the other hand, for fixed s−, s+ ¾ 0, the following
constraint,

inf
Är∼401è5

�64a+Är5>x¾ b− s7

¾ 1 −� exp4−�s51 ∀ s ∈ 6s−1 s+71 (15)

leads to a tractable optimization problem.

4.2. Some Examples of “Easy” Penalty Functions

Thus far we have discussed polynomial time solvability.
However, for large-scale problems much stronger complex-
ity requirements may be needed. In this section, we list
some penalty functions ti4 · 5, such that the respective com-
prehensive robust optimization problem can be solved eas-
ily. For ease of notation and presentation, we consider the
computational issues only for comprehensive robust opti-
mization. Given the equivalence we prove above, tractabil-
ity results for the corresponding probabilistic envelope
programs is immediately implied.

The comprehensive robust optimization,

minimize c>x

subject to 4ai +Äi5
>x¾ bi − ti4�Ä�è−151

∀Äi ∈�n3 i = 11 0 0 0 1m1

(16)

can be reduced to the following optimization formulation
problem with finite number of constraints

minimize c>x

subject to a>

i x− t∗i 4�x�è5¾ b3 i = 11 0 0 0 1m1

where t∗i 4y5 = supx¾06xy − t4x57 is the conjugate function
of t4 · 5. Thus, a comprehensive robust optimization (16)
can be easily solved if constraints of the form t∗i 4x5 ¶ �
lead to “simple” optimization problems.

We remark that all conjugate functions t∗4 · 5 in Table 1
can be written as t∗4x5 = max1124s14x51 s24x55, where si =
infË∈Si

qi4�1x5 for some “simple” functions qi and poly-
tope Si. Here by simple we mean the function is a
quadratic function, or a linear function, or an indicator
function. Hence the constraint t∗i 4x5¶ � is equivalent to

q14x1Ë15¶ �3

Ë1 ∈S13

q24x1Ë25¶ �3 and

Ë2 ∈S20

Because a simple function leads to a second order cone
constraint, the resulting formulation is a second order cone
program, where medium to large-scale problems can be
solved using a standard solver in reasonable time.

5. Group Probabilistic Envelope
Constraints of Correlated Noise

In this section we extend the probabilistic envelope
constraint to the case where some random variables Är

i

are correlated across different constraints. In contrast to
independent noise where we bound individually the prob-
ability of each constraint being satisfied, in the correlated
noise case, we bound the probability that a group of con-
straints are satisfied simultaneously. To be more specific,
let Är

11 0 0 0 1Ä
r
m be random variables that follow a joint distri-

bution. Let I11 0 0 0 1Ip be (not necessarily disjoint) subsets
of 612 m7. The group probabilistic envelope constraint pro-
gram considers the following problem:

minimize c>x

subject to �6∀ i ∈It2 4ai +Är
i 5

>x¾ bi − s7¾0t4s51

∀ s ¾ 03 t = 11 0 0 0 1 p0

Although addressing general correlation seems hard, we
investigate two special cases, where we can either exactly
or approximately solve the group probabilistic envelope
constraint program.

5.1. Identical Noise

The first case we investigate is where identical noise Är
t

affects each constraint within a group It . Then, the group
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Table 1. Piecewise-defined functions and their conjugates.

Original function Conjugate function

ti4x5=







0 x¶ c1

�4x− c5 x > c0
t∗i 4y5=







cy y ¶ �1

+� y > �0

= max4I�1 cy5

ti4x5=







�x x¶ c1

+� x > c0
t∗i 4y5=







0 y ¶ �1

c4y−�5 y > �0

= max401 c4y−�55

ti4x5=



















0 x¶ c11

�4x− c15 c1 < x¶ c21

+� x > c20

t∗i 4y5=







c1y y ¶ �1

c24y−�5+�c1 y > �0

= max4c1y1 c2y+�4c1 − c255

ti4x5=







0 x¶ c1

�4x− c52 x > c0
t∗i 4y5= y2/4�+ cy.

ti4x5=







�x2 x¶ c1

+� x > c0
t∗i 4y5=







y2/4� y ¶ 2�c1

cy−�c2 y > 2�c0
= inf

�¾0
44y−�52/4�+ c�5

ti4x5=



















0 x¶ c11

�4x− c15
2 c1 < x¶ c21

+� x > c20

t∗i 4y5=







y2/4�+ yc1 y ¶ 2�4c2 − c151

c2y−�4c2 − c15
2 y > 2�4c2 − c150

= max
(

c1y1 inf
�11�2¾0

[

4y+�1 −�25
2

4�
+ c1y+ 4c2 − c15�2

])

probabilistic envelope constrained program reduces to the
following:

minimize c>x

subject to �6∀ i ∈It2 4ai +Är
t 5

>x¾ bi − s7

¾0t4s51 ∀ s ¾ 03 t = 11 0 0 0 1 p0

(17)

Theorem 10. Problem (17) is equivalent to

minimize c>x

subject to �64ai +Är
t 5

>x¾ bi − s7¾0t4s51

∀ s ¾ 03 ∀ i ∈It3 t = 11 0 0 0 1 p0

Theorem 10 follows from the following lemma.

Lemma 2. Fix x, ai, and ci and let Är be a random vari-
able, then

�4∀ i ∈I2 4ai +Är5>x¾ ci5= inf
i∈I

�44ai +Är5>x¾ ci50

Proof. Note that

�4∀ i ∈I2 4ai +Är5>x¾ ci5=�
(

inf
i∈I

64ai+Är5>x−ci7¾0
)

=�
(

Är>x¾ sup
i∈I

6ci − a>

i x7
)

= inf
i∈I

�44ai +Är5>x¾ ci51

where in the last equality we use the fact that ai, ci, and x
are fixed. Q.E.D.

Theorem 10 states that in the identical noise case, we can
decompose a group probabilistic envelope constraint into
individual probabilistic envelope constraints. Thus, Theo-
rems 4 to 6 immediately imply the following corollaries.

Corollary 2 (Mean-Variance Model). For t =

11 0 0 0 1 p, if 0t2 �
+ 7→ 60115 is nondecreasing and continu-

ous from the right, then the following problem,

minimize c>x

subject to inf
Ärt ∼401èt5

�6∀ i ∈It2 4ai +Är
t 5

>x¾ bi − s7

¾0t4s51 ∀ s ¾ 03 t = 11 0 0 0 1 p1

is equivalent to

minimize c>x

subject to 4ai +Ä5>x¾ bi −0−1
t

(

�Ä�2
è−1
t

1 + �Ä�2
è−1
t

)

1

∀Ä ∈�n3 ∀ i ∈It3 t = 11 0 0 0 1 p1

where 0−1
t 4x5¬ inf8y ¾ 0 �0t4y5¾ x9.
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Corollary 3 (Gaussian Model). For t = 11 0 0 0 1 p, if
0t2 �

+ 7→ 60115 is nondecreasing and continuous from the
right, and Är

t ∼N401è5t , then the following problem,

minimize c>x

subject to �6∀ i ∈It2 4ai +Är
t 5

>x¾ bi − s7¾0t4s51

∀ s ¾ 03 t = 11 0 0 0 1 p1

is equivalent to

minimize c>x

subject to 4ai +Ä5>x¾ bi −0−1
t 4ê4�Ä�è−1

t
551

∀Ä ∈�n3 ∀ i ∈It3 t = 11 0 0 0 1 p1

where 0−1
t 4x5¬ inf8y ¾ 0 �0t4y5¾ x9.

5.2. Two-Sided Condition

The second case we investigate is the “two-sided condi-
tion,” i.e., the nominal constraint has the form

b− c¶ a>x¶ b+ c0

This constraint is motivated by the linear regression setup,
where we observe a set of input-output pairs 4bi1ai5 for i =
11 0 0 0 1m and seek a solution x such that bi ≈ a>

i x for all i.
The probabilistic envelope constraints for the two-sided

condition thus have the form

�4b− s ¶ 4a+Är5>x¶ b+ s5¾04s53 ∀ s ¾ 00 (18)

Although Constraint (18) seems to be hard to solve exactly,
we can approximate it with the following comprehensive
robust constraint

Ä>x¾−0−1624ê4�Ä�è−15− 1/2571 ∀Ä ∈�n1

under the condition that Är ∼ N401è5, and that 04s5 > 0
only when s � c. The latter condition essentially means
that the decision maker is only concerned with bounding
the probability of “large” deviations when noise exists.

This approximation is justified by the following theo-
rem. Note that by definition, it is easy to see that 0−1 is
continuous from the left. Hence, Theorem 11 implies that
when � ↓ 0, then the inner set and the outer set converge
to the feasible set of (19). That is, the approximation is
asymptotically exact.

Theorem 11. Let Är ∼ N401è5. Suppose 02 �+ 7→ 60115
is a nondecreasing function that is continuous from the
right. Let s∗ = min8s � 04s5 > 09, and let � = c/s∗. Then
the feasible set of

�4b− s ¶ 4a+ �5>x¶ b+ s5¾04s53 ∀ s ¾ 01

b− c¶ a>x¶ b+ c
(19)

is bounded from the inside by that of

Ä>x¾−0−1642 − �54ê4�Ä�è−15− 1/2571 ∀Ä ∈�n1

b− c¶ a>x¶ b+ c3
(20)

and bounded from the outside by that of

Ä>x¾−0−1624ê4�Ä�è−15− 1/2571 ∀Ä ∈�n1

b− c¶ a>x¶ b+ c0
(21)

As before, 0−14x5¬ inf8y ¾ 0 �04y5¾ x9.

Remark 4. A close inspection of the proof of Theorem 11
shows that it only depends on the fact that the density
function of the marginal of the distribution is decreasing
in 601+�5. Thus, it is straightforward to generalize Theo-
rem 11 to the ellipsoidal random variable case.

As an example of the approximation, recall the linear
regression with probabilistic envelope constraint (2):

minimize
n
∑

i=1

�2
i

subject to �bi − a>
i x�¶ �i1 i = 11 0 0 0 1m3

�4�bi − 4ai +Är
i 5

>x �¶ �i + s5

¾1−�exp4−�s51 ∀s¾s∗0 i=110001m3

�i ¾ 01 i = 11 0 0 0 1m0

This can thus be approximated by the following program
(the algebraic details are deferred to the appendix), which
can be solved in polynomial time because of our results
in §4:

minimize
∑n

i=1 �
2
i

subject to �bi − a>
i x�¶ �i1 i = 11 0 0 0 1m3

Ä>
i x¾ 1

�
log42ê4−�Äi�è−155−

log�
�
3

∀�Äi�è−1 ¾ê−1

(

1 −
� exp4−�s∗5

2

)

3

i = 11 0 0 0 1m3

�i ¾ 01 i = 11 0 0 0 1m0

6. Approximate Partial Distributional
Information

In the previous sections we assume that either perfect
information of the distribution, or at least the mean and
variance of the noise, is available (i.e., explicitly given).
In this section, we consider a more practical setup, where
any probabilistic information of the noise is approximate.
This setting is most relevant in the sample-driven regime,
i.e., the setting where our only knowledge of the noise
distribution comes through a finite set of observed noise
samples. Given these, we must estimate the distribution
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(or alternatively the mean and the variance) of the noise. In
such a case, it is not realistic to hope for a precise estimate
of the distribution parameters (or mean/variance). Instead,
we adapt the approach proposed in Delage and Ye (2010)
where an interval estimate of mean and variance (or respec-
tive parameters of the Gaussian distribution) are given, and
provide worst-case (with respect to mean/variance or dis-
tribution parameters) probabilistic bounds.

Theorem 12. Suppose the random variable �r has
unknown mean c̃ and variance è̃, such that c̃i ∈ 6−�i1+�i7
and è̃�è∗. Define T 2 �n 7→�n as

T 4Ä5i =























0 if − �i ¶ �i ¶ �i3

�i − �i if �i > �i3

�i + �i if �i <−�i0

Then the constraint

4a+Ä5>x¾ b− t4�T 4Ä5�4è∗5−151 ∀Ä ∈�n1 (22)

is equivalent to

inf
c2 ci∈6−�i1 �i71è�è∗

inf
Är∼4c1è5

�64a+Är5>x¾ b− s7

¾ 1 −
1

4t−14s552 + 1
1 ∀ s ¾ 00

Using a similar argument, we can derive a probabilistic
bound when the parameters of the Gaussian random vari-
able are not precisely known.

Theorem 13. The constraint

4a+Ä5>x¾ b− t4�T 4Ä5�4è∗5−151 ∀Ä ∈�n1

is equivalent to

inf
c2 ci∈6−�i1 �i71è�è∗

Pr�r∼N4c1è564a+Är5>x¾ b− s7

¾ê4t−14s551 ∀ s ¾ 00

Theorems 12 and 13 imply the following corollaries that
show that one can use the comprehensive robust optimiza-
tion paradigm to enforce probabilistic requirements.

Corollary 4. If 0 2 �+ 7→ 60115 is a nondecreasing func-
tion that is continuous from the right, then the probabilistic
constraint

inf
c2 ci∈6−�i1 �i73è�è∗

inf
Är∼401è5

�64a+Är5>x¾ b− s7

¾04s51 ∀ s ¾ 01

is equivalent to

4a+Ä5>x¾ b−0−1

(

�T 4Ä5�2
4è∗5−1

1 + �T 4Ä5�2
4è∗5−1

)

1 ∀Ä ∈�n1

where 0−14x5¬ inf8y ¾ 0 �04y5¾ x9.

Corollary 5. If 0 �+ 7→ 6005115 is a nondecreasing
function that is continuous from the right, then the proba-
bilistic constraint

inf
c2 ci∈6−�i1 �i73è�è∗

PrÄr∼N401è564a+Är5>x¾ b− s7¾04s51

∀ s ¾ 01

is equivalent to

4a+ �5>x¾ b−0−14ê4�T 4Ä5�4è∗5−1551 ∀Ä ∈�n1

where 0−14x5¬ inf8y ¾ 0 �04y5¾ x9.

Before concluding this section, we remark that the con-
fidence interval of the mean 6−�i1 �i7 can be easily esti-
mated from i.i.d. samples using, for example, Hoeffding’s
bound. To derive the confidence interval of the variance
from empirical observations, (i.e., è∗), we refer the readers
to Lemma 3 of Delage and Ye (2010).

7. Simulations
In this section we illustrate the proposed approach using a
synthetic portfolio optimization example in the spirit of the
motivating example discussed in §2.1. We consider allocat-
ing an investment among 11 assets: 10 stocks and a fixed
deposit. The return of the fixed deposit is fixed as one, and
the return of stock i follows the equation

ri =Zi +Z01

where we set Zi ∼ N41 + 0001i1 40003i525. Therefore, the
larger the mean return of a stock, the larger the return’s vari-
ance. Thus, stock 10 is the most risky stock, and stock 1 is
the most conservative except for the fixed deposit. In addi-
tion, the market effect is set as Z0 ∼ N401 40001525. Our
goal is to maximize the expected return subject to the expo-
nentially decaying probabilistic envelope 1 − � exp4−�s5.
Setting T = 1 and � = 002 requires a guarantee of no losses
with at least 80% probability. We choose four values of
�= 25, 50, 100, and 200, giving different rates of decay for
the probability the constraint is violated at level s for each s.
Figure 1 shows the resulting portfolio allocations. Not sur-
prisingly, larger � corresponds to a more risk-averse attitude
toward large constraint violation (i.e., significant loss), and
consequently, the resulting portfolio is more conservative
and tends to invest more heavily in the fixed deposit. We
also observe that all portfolio allocations are well diversi-
fied, each investing a nonnegligible fraction in at least eight
out of the 11 assets. Table 2 reports the mean return of these
portfolios. We also compute the probability that each port-
folio suffers a given level of loss, as shown in Figure 2.
As expected, each portfolio satisfies its respective envelope
constraint. Moreover, as an indication that the construction
is not conservative, we observe that portfolio allocations
designed with less conservative constraints violate the more
conservative envelope constraints.
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Figure 1. The portfolio allocations for different decay rates �= 25, 50, 100, and 200 of the envelope constraints.
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� = 25 � = 50

� = 200� = 100
fixed deposit

8. Conclusion
Standard chance constraints ignore the magnitude of con-
straint violation altogether, controlling only the probabil-
ity of violation. In many applications, including many
finance applications, controlling this magnitude of viola-
tion can be paramount. We proposed a new class of prob-
abilistic constraints we call probabilistic envelope con-
straints, which bound the probability that a constraint
is violated by a certain gap s for all values of s ¾ 0.
We investigated linear programs with probabilistic enve-
lope constraints under Gaussian uncertainties and their
generalization, log-concave uncertainties, and show that
this problem is equivalent to a semi-infinite program,
known as comprehensive robust optimization in the lit-
erature. As a by-product, we provided tight probabilistic
bounds on comprehensive robust optimization. We further
considered the tractability of probabilistic envelope con-
straints, and showed that under mild technical conditions

Table 2. Mean return of the allocations for different
decay rates � = 25, 50, 100, and 200 of the
envelope constraints.

�= 25 �= 50 �= 100 �= 200

Mean return 1.0640 1.0428 1.0220 1.0110

Figure 2. Probability that a portfolio suffers a given
loss.

0 1 2 3 4 5 6 7 8 9 10
10–9
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10–7
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10–2

10–1

100

Magnitude of capital loss (%)

P
ro

ba
bi

lit
y

� = 25
� = 25
� = 50
� = 50
� = 100
� = 100
� = 200
� = 200

Note. The dashed lines are probabilistic envelope constraints imposed,
and the solid lines are the true probabilities of resulting portfolios suffer
a given amount of loss.

the resulting optimization problem can be solved in poly-
nomial time. Extensions to the correlated uncertainty case
and the approximate distribution-based case were also
provided.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Xu, Caramanis, and Mannor: Probabilistic Envelope Constraints
694 Operations Research 60(3), pp. 682–699, © 2012 INFORMS

Appendix A. Proofs of Results in §3

This appendix is devoted to establishing results in §3. Our main
goal is to prove Theorems 4 to 6. This is done in two steps: we
first prove Theorems 1 to 3, thus establishing tight probabilistic
bounds for comprehensive robust optimization. We then show that
these bounds imply Theorems 4 to 6.

A.1. Proof of Theorem 1 to Theorem 3

Proof of Theorem 1. We first show that for any fixed c ∈�,
d > 0, the following two inequalities are equivalent:

sup
Är∼401è5

�64a+Är5>x¶ c7¶ 1
d2 + 1

(A1)

a>x¾ c+d�x�è1 (A2)

i.e., if x satisfies one inequality, then it also satisfies the other one.
To see that, by Marshall and Olkin (1960), we have

sup
Är∼401è5

�64a+Är5>x¶ c7= 41 +�25−11

where

�= inf
n�n>x¶c−a>x

√

n>è−1n=















a>x− c

�x�è
if a>x− c¾ 03

0 otherwise0

Thus, if x satisfies Inequality (A2), then a>x− c¾ d�x�è, which
implies that � ¾ d, and hence 41 + �25−1 ¶ 41 + d25−1, which
implies Inequality (A1) holds. Conversely, if x does not satisfy
Inequality (A2), then a>x− c < d�x�è, which implies a< d, and
hence Inequality (A1) does not hold. Therefore, Inequalities (A1)
and (A2) are equivalent.

Note that (A2) is equivalent to

4a+Ä5>x¾ c3 ∀�Ä�è−1 ¶ d0 (A3)

Hence for any c ∈�, d > 0, Inequalities (A1) and (A3) are equiv-
alent.

We next show that Inequality (4) is equivalent to

inf
Är∼401è5

�64a+Är5>x¾ b− t4r57

¾ 1 −
1

r2 + 1
1 ∀ r ¾ 00 (A4)

If Inequality (4) does not hold, then there exists s∗ and � > 0
small enough, such that

inf
�r∼401è5

�64a+Är5>x¾ b− s∗7 < 1 −
1

4t−14s∗5− �52 + 1
0

Let r∗ = t−14s∗5− �, by definition t4r∗5¶ s∗, hence

inf
Är∼401è5

�64a+Är5>x¾ b− t4r∗57

¶ inf
Är∼401è5

�64a+Är5>x¾ b− s∗7 < 1 −
1

4r∗52 + 1
1

hence Inequality (A4) does not hold.

On the other hand, if Inequality (A4) does not hold, then there
exists r∗ such that

inf
Är∼401è5

�64a+Är5>x¾ b− t4r∗57 < 1 −
1

4r∗52 + 1
0

Let s∗ = t4r∗5, then t−14s∗5¾ r∗. We have

inf
Är∼401è5

�64a+Är5>x¾ b− s∗7 < 1 −
1

4r∗52 + 1

¶ 1 −
1

4t−14s∗552 + 1
1

hence Inequality (4) does not hold. Thus, we conclude that (4)
and (A4) are equivalent.

Finally, by the equivalence of (A1) and (A2), Constraint (A4)
is equivalent to

4a+Ä5>x¾ b− t4r53 ∀�Ä�è−1 ¶ r1 ∀ r ¾ 00

Because ti4 · 5 is nondecreasing, this is further equivalent to (3).
Q.E.D.

Notice that the first building block of the proof is the equiv-
alence relationship of a worst-case chance constraint (A1) (with
only the first and second moment information), and a determinis-
tic constraint (A1). We remark that in a recent paper, Zymler et al.
(2011) has extended this equivalence relationship to the nonlinear
case. It would be interesting to see whether this makes it possi-
ble to analyze probabilistic envelope constraints for the nonlinear
optimization problem.

Proof of Theorem 2. For fixed k¾ 1/2 and constant l, the fol-
lowing constraints are equivalent:

�4x>Är
i ¾ l5¾ k

⇐⇒ l¶ê−14k54x>èx51/2

⇐⇒ l¶ x>Ä1 ∀�Ä�è−1 ¶ê−14k50

(A5)

Next we show that (6) is equivalent to

�4Är>x¾ 4b− a>x5− t4r55¾ê4r51 ∀ r ¾ 01 (A6)

If (6) does not hold, then there exists s∗ ¾ 0 and � > 0 small
enough such that

�64a+Är5>x¾ b− s∗5 <ê4t−14s∗5− �50

Let r∗ = t−14s∗5− �, then by definition t4r∗5¶ s∗. Hence

�64a+Är5>x¾b−t4r∗55¶�64a+Är5>x¾b−s∗5<ê4r∗51

i.e., Inequality (A6) does not hold.
On the other hand, suppose Inequality (A6) does not hold.

Thus, there exists r∗ such that

�4Är>x¾ 4b− a>x5− t4r∗55 <ê4r∗50

Let s∗ = t4r∗5. By definition t−14s∗5¾ r∗. Thus

�4Är>x¾ 4b− a>x5− s∗5 <ê4r∗5¶ê4t−14s∗551

i.e., (6) does not hold. Hence we conclude that (6) and (A6) are
equivalent.

By (A5), Constraint (A6) is equivalent to ∀� ¾ 0,

4a+Är5>x¾ b− t4�51 ∀�Ä�è−1 ¶ê−14ê4�55= �0

Because t4 · 5 is nondecreasing, this is equivalent to (5). Q.E.D.

The proof of Theorem 3 is identical to the proof of Theorem 2,
and hence omitted.
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A.2. Proof of Theorem 4 to Theorem 6

We first prove Theorem 4, the mean-variance model.

Proof of Theorem 4. Because lims→+� 04s5 may not converge
to one, we need to pay special attention to the case where inf8y ¾
0 �04y5¾ x9= �. To this end, let

3= 8s � ∃y ¾ 02 04y5¾ s90

Note that 04 · 5 is nondecreasing and continuous from the right,
we have for x ∈3,

0−14x5= min8y ¾ 0 �04y5¾ x90

And 0−14x5 = +� for x 6∈ 3. To simplify notation, let g4x5 ¬
x2/41 + x25 and v4x5 ¬ 0−14g4x55. Note that g4x5 is a strictly
increasing function in �+ onto 60115, hence g−14y5 is uniquely
defined for any y ∈ 60115. By definition we have when g4x5 ∈3,

v4x5=0−14g4x55= inf8y ¾ 0 �04y5¾ g4x59

= inf8y ¾ 0 � g−1404y55¾ x9

= min8y ¾ 0 � g−1404y55¾ x93

and v4x5= +� when g4x5 6∈3.
Note that Constraint (7) can be rewritten as

4a+Ä5>x¾ b− v4�Ä�è−151 ∀Ä ∈�n1

which by Theorem 1 is equivalent to

inf
Är∼401è5

�64a+Är5>x¾b−s7¾g4v−14s551 ∀s¾01 (A7)

where v−14s5= sup8x � v4x5¶ s9.
Furthermore, we have the following:

v−14s5= sup8x � v4x5¶ s9

= max4sup8x � g4x5 ∈31 v4x5¶ s91

sup8x�g4x5 6∈31 v4x5¶ s950

Note that g4x5 6∈ 3 implies v4x5 = +�, hence 8x � g4x5 6∈

31 v4x5¶ s9= �, i.e., the second term equals −�. The first term
equals

sup8x � min8y ¾ 0 � g−1404y55¾ x9¶ s9

= sup8x � ∃y ∈ 601 s72 g−1404y55¾ x9

= sup8x � g−1404s55¾ x9

= g−1404s550

Thus, we have that

v−14s5= g−1404s550

Substitute it into (A7) and note that g4g−14z55 = z we conclude
that Constraint (7) is equivalent to

inf
Är∼401è5

�64a+Är5>x¾ b− s7¾04s51 ∀ s ¾ 01

which establishes the theorem. Q.E.D.

If we let g4x5¬ê4x5 (respectively, ë4x5), then the proof of
Theorem 5 (and of Theorem 6) are identical to the proof of The-
orem 4. Hence we omit the details.

Appendix B. Proofs of Results in §4

In this appendix we provide proofs to Theorems 7 and 9.

Proof of Theorem 7. Note that Problem (10) is a minimization
of a linear objective over a convex set (denoted by C), because
there are infinitely many linear constraints. Grötschel et al. (1988)
shows that a sufficient condition for such a problem to be solved
in polynomial time is the existence of a polynomial-time separa-
tion oracle of C, which is a subroutine such that given a candidate
solution x, in polynomial time it either correctly reports that x ∈C
or outputs an h and � such that h>x<�, whereas for any z ∈C,
h>z¾ �.

Thus, to complete the proof, we show the existence of a separa-
tion oracle. Note that it suffices to show that for each i = 11 0 0 0 1m,
the following convex set has a separation oracle:

Ci ¬ 8x � 4ai +Äi5
>x¾ bi − ti4�Äi�è−1

i
51 ∀Äi ∈�n90

Fix a candidate solution x0. We have

min
Äi∈�n

6Ä>

i x0 + ti4�Äi�è−1
i
57= min

y¾0
min

�Äi�è−1 =y
6Ä>

i x0 +ti4�Äi�è−1
i
57

= min
y¾0

[

−y

√

x>
0 èix0 + ti4y5

]

1

where the last equality is achieved at Äi = −yèix0/
√

x>
0 èix0.

Therefore, x0 ∈Ci if and only if

min
y¾0

[

−y

√

x>
0 èix0 + ti4y5

]

¾ bi − a>

i x00

In addition, if x0 6∈ C, then take Ä∗
i = −y∗èix0/

√

x>
0 èix0, where

y∗ = arg min6−y
√

x>
0 èix0 + ti4�57, we have that

Ä∗>

i x0 + ti4�Ä
∗

i �è−1
i
5 < bi − a>

i x01

whereas for any z ∈Ci, we have

Ä∗>

i z+ ti4�Ä
∗

i �è−1
i
5¾ bi − a>

i z0

That is, the following hyperplane separates x0 and Ci,

4Ä∗

i + ai5
>x = bi − ti4�Ä

∗

i �è−1
i
50

Thus, because in polynomial time we can solve

minimize ti4y5−�y1 subject to y ∈�+3

we have a polynomial-time separation oracle, which implies that
Problem (10) is tractable. Q.E.D.

Proof of Theorem 9. We establish the first claim. Because
04s5 = 1 − � exp4−�s5, we have 0−14t5 = max6−41/�5 log41 −

t5+ log�/�107. Thus, the penalty function is

t4s5¬0−1

(

s2

1 + s2

)

= max
[

1
�

log41 + s25+
log�
�

1 0
]

0

It is easy to check, 41/�5 log41+s25+ log�/� is convex on 60117,
and concave on 611�5.
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Let C be the feasible set of Constraint (14), then by Theorem 4
we have

C¬ 8x � 4a+Ä5>x¾ b− t4�Ä�è−151 ∀Ä ∈�n90

From the proof of Theorem 7, a candidate solution x0 ∈C if and
only if

min
y¾0

[

−y

√

x>
0 èx0 + t4y5

]

¾ bi − a>x00

Note that è is full rank and positive semidefinite, which implies
that

√

x>
0 èx0 > 0 for any nonzero x0. Hence, substituting t4s5 =

41/�5 log41 + s25+ log�/� we have that for any nonzero x0,

lim
y→+�

[

−y

√

x>
0 èx0 + t4y5

]

= −�1

which establishes the first claim.
We turn to establish the second claim. To apply Theorem 4

requires a probabilistic envelope function on �+ instead of
6s−1 s+7. Therefore, we let

0̂4s5¬























0 if s < s−3

1 −� exp4−�s5 if s− ¶ s ¶ s+3

1 −� exp4−�s+5 if s > s+3

which is nondecreasing and continuous from the right. In addition,
observe that Constraint (15) is equivalent to

inf
Är∼401è5

�64a+Är5>x¾ b− s7¾ 0̂4s51 ∀ s ¾ 00

By definition, we have that

0̂−14x5= inf8y ¾ 0 � 0̂4y5¾ x9

=























































0 if x = 03

s− if 0 < x < 1 −� exp4−�s−53

max
[

−
1
�

log41 − x5+
log�
�

1 0
]

if 1 −� exp4−�s−5¶ x¶ 1 −� exp4−�s+53

+� if 1 −� exp4−�s+5 < x0

Note that when x ¾ 1 − � exp4−�s−5, we have −41/�5 log41 −

x5+ log�/�¾ s− ¾ 0. This leads to

t̂4s5= 0̂−1

(

s2

1 + s2

)

=























































































0 if s = 03

s− if 0 < s <

√

1
� exp4−�s−5

− 13

1
�

log41 + s25+
log�
�

if

√

1
�exp4−�s−5

−1¶s¶
√

1
�exp4−�s+5

−13

+� if

√

1
� exp4−�s+5

− 1 ¶ s0

Theorem 7 asserts that Constraint (15) leads to a tractable opti-
mization problem if for any � ¾ 0, minimize:s¾06t̂4s5 − �s7 is
tractable. By the definition of t̂4s5, it thus suffices to show that
the following is tractable:

minimize
1
�

log41 + s25+
log�
�

−�s

subject to

√

1
� exp4−�s−5

− 1

¶ s ¶
√

1
� exp4−�s+5

− 10

(B1)

Recall that 41/�5 log41 + s25 + log�/� is convex on 60117 and
concave on 611+�5. Thus, because of convexity, by line search
in polynomial time we can solve the scalar-variable optimization
problem

minimize
1
�

log41 + s25+
log�
�

−�s

subject to

√

1
� exp4−�s−5

− 1 ¶ s ¶
√

1
� exp4−�s+5

− 1

0 ¶ s ¶ 10

Because of concavity, we can solve (by checking the two extreme
points of the feasible set)

minimize
1
�

log41 + s25+
log�
�

−�s

subject to

√

1
� exp4−�s−5

− 1 ¶ s ¶
√

1
� exp4−�s+5

− 1

s ¾ 10

Hence in polynomial time we can solve (B1), which implies the
second claim. Q.E.D.

Appendix C. Proof of Results in §5
In this appendix we prove Theorem 11. We start with a simple
lemma.

Lemma 3. Let c2 > 0 and � = �c1�/c2 < 1, then

41 − �/256ê4c25−ê4−c257¶ê4c1 + c25−ê4c1 − c25

¶ê4c25−ê4−c250

Proof. Note that by symmetry of the density function of Gaus-
sian random variable, we have that

ê4c1 + c25−ê4c1 − c25=ê4−c1 + c25−ê4−c1 − c250

Thus, without loss of generality we assume that c1 ¾ 0. By defi-
nition of the cumulative distribution function, we have that

ê4c25−ê4−c25− 6ê4c1 + c25−ê4c1 − c257

=

∫ c1−c2

−c2

1
√

2�
exp4−x2/25dx

−

∫ c1+c2

c2

1
√

2�
exp4−x2/25dx

¾ c1
1

√
2�

exp4−c2
2/25− c1

1
√

2�
exp4−c2

2/25= 01
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where the inequality holds because of the fact that the probability
density function (pdf) of a Gaussian random variable is decreasing
when positive, and increasing when negative. Hence, we proved
the right-hand side of the lemma.

Again using the monotonicity of the pdf of Gaussian distribu-
tion, we have

ê4c1 − c25−ê4−c25=

∫ c1−c2

−c2

1
√

2�
exp4−x2/25dx

¶ c1

c2

∫ 0

−c2

1
√

2�
exp4−x2/25dx

=
�4ê4c25−ê4−c255

2
0

Thus,

ê4c1 + c25−ê4c1 − c25

¾ê4c25−ê4c1 − c25

=ê4c25−ê4−c25− 6ê4c1 − c25−ê4−c257

¾ 41 − �/254ê4c25−ê4−c2551

which establishes the left-hand side of the lemma. Q.E.D.

Now we turn to prove Theorem 11.

Proof of Theorem 11. Let 0̂4s5= 404s5+ 15/2, which is also
nondecreasing and continuous from the right then we have

0−1624ê4�Ä�è−15− 1/257= 0̂−16ê4�Ä�è−1571

which by Theorem 5 implies that Constraint (21) is equivalent to

�6Är>x¾−s5¾ 0̂4s5= 404s5+ 15/23 ∀ s ¾ 03

b− c¶ a>x¶ b+ c0

Because Är ∼N401è5, Constraint (21) is thus equivalent to

ê

(

s
√
x>èx

)

¾04s5/2 + 1/23 ∀ s ¾ 03

b− c¶ a>x¶ b+ c0

(C1)

Similarly, Constraint (20) is equivalent to

ê

(

s
√
x>èx

)

¾04s5/42 − �5+ 1/23 ∀ s ¾ 03

b− c¶ a>x¶ b+ c0

(C2)

Fix a x and a s > 0, then

�4b− s ¶ 4a+Är5>x¶ b+ s5

=�4b− a>x− s ¶ Är>x¶ b− a>x+ s5

=�4b− a>x− s ¶ z¶ b− a>x+ s51

where z is a random variable follows N401
√
x>èx5. Let ẑ ∼

N40115, then the right-hand side equals

�44b− a>x− s5/
√

x>èx¶ ẑ¶ 4b− a>x+ s5/
√

x>èx5

=ê44b− a>x+ s5/
√

x>èx5

−ê44b− a>x− s5/
√

x>èx50

Note that for x satisfying that �b− ax�¶ c, we have that

41 − �/25
(

2ê
(

s
√
x>èx

)

− 1
)

4a5

¶ê44b−a>x+s5/
√

x>èx5−ê44b−a>x−s5/
√

x>èx5

4b5

¶ 2ê
(

s
√
x>èx

)

− 10

From (a), if ê4s/4
√
x>èx55¾04s5/42 − �5+ 1/2, then

ê44b− a>x+ s5/
√

x>èx5

−ê44b− a>x− s5/
√

x>èx5¾04s50

This implies that Constraint (C2), and equivalently Con-
straint (20), bounds the original constraint from the inside. Sim-
ilarly, (b) implies that Constraint (21) bounds the original con-
straint from the outside. Q.E.D.

Appendix D. Approximation of the Robust Linear
Regression Problem
In this appendix we provide the detailed derivation of the approxi-
mation of the robust linear regression. Recall that as we discussed
in §5.2, when min8s �04s5 > 09 is large, the constraint

�4�bi − 4ai +Är
i 5

>x �¶ �i + s5¾04s51 ∀ s ¾ 01

can be approximated by

Ä>x¾−0−1624ê4�Äi�è−15− 1/2573 ∀Äi ∈�n0 (D1)

Notice that in Problem (2), we have

04s5=







0 if s < s∗3

1 −� exp4−�s5 if s ¾ s∗0

Thus, by definition we have

0−14s5

=



























0 if x = 03

s∗ if 0 < x < 1 −� exp4−�s∗53

−
1
�

log41 − x5+
log�
�

if 1 −� exp4−�s∗5¶ x0

Therefore, Constraint (D1) is equivalent to
4a5 Ä>x¾ 0 if 24ê4�Äi�è−15− 1/25= 03

4b5 Ä>x¾−s∗

if 0 < 24ê4�Äi�è−15− 1/25 < 1 −� exp4−�s∗53

4c5 Ä>x¾ 1
�

log41 − 24ê4�Äi�è−15− 1/255−
log�
�

if 1 −� exp4−�s∗5¶ 24ê4�Äi�è−15− 1/250

Note that Constraint (a) is superfluous, and Constraint (b) is
implied by

Ä>x¾ 1
�

log41 − 24ê4�Äi�è−15− 1/255−
log�
�

if 1 −� exp4−�s∗5= 24ê4�Äi�è−15− 1/250

Thus, Constraint (D1) reduced to (c), which can be further sim-
plified to

Ä>

i x¾
1
�

log42ê4−�Äi�è−155−
log�
�

3

∀�Äi�è−1 ¾ê−1

(

1 −
� exp4−�s∗5

2

)

1

which leads to the approximation formulation.
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Appendix E. Proofs of Results in §6

In this appendix we prove Theorem 12.

Proof of Theorem 12. Fix x and s and let c∗ be such that c∗
i =

− sign4xi5�i. We note that

inf
c2 ci∈6−�i1 �i 71è�è∗

inf
Är∼4c1è5

�64a+Är5>x¾ b− s7

= inf
Är∼4c∗1è∗5

�64a+Är5>x¾ b− s7

= inf
Är

′
∼401è∗5

�

[

4a+Är ′

5>x¾ b− s +

n
∑

i=1

�i�xi�

]

0

Thus, Constraint (23) is equivalent to

inf
Är

′
∼401è∗5

�64a+Är ′

5>x¾ b− s +

n
∑

i=1

�i�xi�7

¾ 1 −
1

(

t−14s5
)2

+ 1
1 ∀ s ¾ 00

By Theorem 1, this is equivalent to

4a+ �5>x¾ b− t4���4è∗5−15+

n
∑

i=1

�i�xi�1 ∀Ä ∈�n0 (E1)

Therefore, it suffices to show that (22) and (E1) are equivalent to
establish the theorem. We prove this by showing that if x violates
one constraint, then it must violate the other.

Suppose x violates (E1), i.e., for some Ä′ the following holds

4a+Ä′5>x< b− t4�Ä′
�4è∗5−15+

n
∑

i=1

�i�xi�0

Let Ä be such that �i = �′
i − �i sign4xi5, then we have

4a+Ä5>x = 4a+Ä′5>x−

n
∑

i=1

�i�xi�< b− t4�Ä′
�4è∗5−15

¶ b− t4�T 4Ä5�4è∗5−151

where the last inequality follows from the definition of T 4 · 5.
Thus, x violates Constraint (22).

Conversely, suppose now that x violates Constraint (22), i.e.,
for some Ä′ the following holds

4a+ �′5>x< b− t4�T 4Ä′5�4è∗5−150

We have

4a+ T 4Ä′55>x< b− t4�T 4Ä′5�4è∗5−15+ 4T 4Ä′5−Ä′5>x

¶ b− t4�T 4Ä′5�4è∗5−15+

n
∑

i=1

�i�xi�1

where the last inequality follows from the definition of T 4 · 5.
Letting � = T 4Ä′5, x violates (E1), which completes the proof.
Q.E.D.
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