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Conditional Value-at-Risk and AverageValue-at-Risk: Estimation and AsymptotisSo Yeon Chun*Shool of Industrial and Systems Engineering, Georgia Institute of Tehnology, shun�isye.gateh.eduAlexander ShapiroyShool of Industrial and Systems Engineering, Georgia Institute of Tehnology, ashapiro�isye.gateh.eduStan UryasevDepartment of Industrial and Systems Engineering, University of Florida, uryasev�u.eduWe disuss linear regression approahes to onditional Value-at-Risk and Average Value-at-Risk (Condi-tional Value-at-Risk, Expeted Shortfall) risk measures. Two estimation proedures are onsidered for eahonditional risk measure, one is diret and the other is based on residual analysis of the standard leastsquares method. Large sample statistial inferene of the estimators obtained is derived. Furthermore, �nitesample properties of the proposed estimators are investigated and ompared with theoretial derivations inan extensive Monte Carlo study. Empirial results on the real-data (di�erent �nanial asset lasses) are alsoprovided to illustrate the performane of the estimators.Key words : Value-at-Risk, Average Value-at-Risk, Conditional Value-at-Risk, Expeted Shortfall, linearregression, least squares residual, quantile regression, onditional risk measures, statistial inferene
1. IntrodutionIn �nanial industry, sell-side analysts periodially publish the reommendation of underlying seu-rities with target pries. (i.e., Goldman Sah's Convition Buy List). Those reommendations reetspei� eonomi onditions and inuene investors' deisions and thus prie movements. However,this type of analysis does not provide risk measures assoiated with underlying ompanies. Wesee the similar phenomena in the buy-side analysis as well. Eah analyst or team overs di�erentsetors (e.g., Airlines VS Semi-ondutors) and they typially make separate reommendations forthe portfolio managers without assoiated risk measures. However, risk measures of overing om-panies are one of the most important fators to make investment deisions. Our methods in this�Researh of this author was partly supported by the NSF award DMS-0914785.yResearh of this author was partly supported by the NSF award DMS-0914785 and ONR award N000140811104.1



2paper provide eÆient ways to estimate risk measures for a single asset at given market onditions.These information ould be useful for investors and portfolio managers to ompare prospetiveseurities and pik the best. For example, when portfolio managers expet the rude oil prie hike(due to ination or geo-politial onits), they ould selet seurities less sensitive to oil priemovement in the airline industry.Let (
;F) be a measurable spae equipped with probability measure P . A measurable funtionY : 
! R is alled a random variable. With a random variable Y , we assoiate a number �(Y )to whih we refer as risk measure. We assume that \smaller is better", i.e., between two possiblerealizations of random data we prefer the one with smaller value of �(�). The term \risk measure"is somewhat unfortunate sine it an be onfused with the probability measure. Moreover, in appli-ations one often tries to reah a ompromise between minimizing the expetation (i.e., minimizingon average) and ontrolling the assoiated risk. Thus, some authors use the term \mean-risk mea-sure", or \aeptability funtional" (e.g. Pug and R�omish 2007). For historial reasons, we usehere the \risk measure" terminology. Formally risk measure is a funtion � : Y ! R de�ned on anappropriate spae Y of random variables. For example, in some appliations it is natural to usethe spae Y =Lp(
;F ; P ), with p2 [1;1), of random variables having �nite p-th order moments.It was suggested in Artzner et al. (1999) that a \good" risk measure should have the followingproperties (axioms), and suh risk measures were alled oherent.(A1) M onotoniity: If Y;Y 0 2Y and Y � Y 0, then �(Y )� �(Y 0).(A2) Convexity: �(tY +(1� t)Y 0)� t�(Y )+ (1� t)�(Y 0)for all Y;Y 0 2Y and all t2 [0;1℄.(A3) T ranslation Equivariane: If a2 R and Y 2Y, then �(Y + a) = �(Y )+ a.(A4) Positive Homogeneity: If t� 0 and Y 2Y, then �(tY ) = t�(Y ).The notation Y � Y 0 means that Y (!)� Y 0(!) for a.e. ! 2
.An important example of risk measures is the Value-at-Risk measureV�R�(Y ) = infft : FY (t)� �g; (1)



3where � 2 (0;1) and FY (t) = Pr(Y � t) is the umulative distribution funtion (df) of Y , i.e.,V�R�(Y ) = F�1Y (�) is the left side �-quantile of the distribution of Y . This risk measure satis�esaxioms (A1),(A3) and (A4), but not (A2), and hene is not oherent. Another important exampleis the so-alled Average Value-at-Risk measure, whih an be de�ned asAV�R�(Y ) = inft2R�t+(1��)�1E [Y � t℄+	 (2)(f., Rokafellar and Uryasev 2002), or equivalentlyAV�R�(Y ) = 11�� Z 1� V�R� (Y )d�: (3)Note that AV�R�(Y ) is �nite i� E [Y ℄+ <1. Therefore, for the AV�R� risk measure it is natural touse the spae Y = L1(
;F ; P ) of random variables having �nite �rst order moment. The AverageValue-at-Risk measure is also alled the Conditional Value-at-Risk or Expeted Shortfall measure.(Sine we disuss here \onditional" variants of risk measures, we use the Average Value-at-Riskrather than Conditional Value-at-Risk terminology.)The Value-at-Risk and Average Value-at-Risk measures are widely used to measure and man-age risk in the �nanial industry (e.g., see Jorion 2003, DuÆe and Singleton 2003, for the �nan-ial bakground and various appliations). Note that in the above two examples, risk mea-sures are funtions of the distribution of Y . Suh risk measures are alled law invariant. Lawinvariant risk measures have been studied extensively in the �nanial risk management litera-ture (e.g., Aerbi and Tashe 2002, Frey and MNeil 2002, Saillet 2004a, Chen and Tang 2005,Zhu and Fukushima 2009, Jakson and Perraudin 2000, Berkowitz et al. 2002, Bluhm et al. 2002,and referene therein).Now let us onsider a situation where there exists information omposed of eonomi and marketvariables X1; :::;Xk whih an be onsidered as a set of preditors for a variable of interest Y . Inthat ase one an be interested in estimation of a risk measure of Y onditional on observed valuesof preditors X1; :::;Xk. For example, suppose we want to measure (predit) the risk of a singleasset given spei� eonomi onditions represented by market index and interest rate. Then, for a



4random vetor X = (X1; :::;Xk)T of relevant preditors, the onditional version of a law invariantrisk measure �, denoted �(Y jX) or �jX(Y ), is obtained by applying � to the onditional distributionof Y given X. In partiular, V�R�(Y jX) is the �-quantile of the onditional distribution of Ygiven X, and AV�R�(Y jX) = 11�� Z 1� V�R� (Y jX)d�: (4)Reently several researhers have paid attention to estimation of the onditional risk measures.For the onditional Value-at-Risk, Chernozhukov and Umantsev (2001) used a polynomial typeregression quantile model and Engle and Manganelli (2004) proposed the model whih speify theevolution of the quantile over time using a speial type of autoregressive proess. In both models,unknown parameters were estimated by minimizing the regression quantiles loss funtion. Foronditional Average Value-at-Risk, Saillet (2004b) and Cai and Wang (2008) utilized Nadaraya-Watson (NW) type nonparametri double kernel estimation while Perahi and Tanase (2008) andLeorato et al. (2010) used the semiparametri method. To the best of our knowledge, no researhaddresses the statistial inferene of parametri approah (e.g. quantile regression based proedure)for the onditional Average Value-at-Risk.In this paper, we disuss estimation proedures for onditional risk measures, spei�ally foronditional Value-at-Risk and Average Value-at-Risk measures. We assume the following linearmodel (linear regression) Y = �0+�TX + "; (5)where �0 and �= (�1; :::; �k)T are unknown parameters of the model and the error (noise) randomvariable " is assumed to be independent of random vetor X. Meaning of the model (5) is thatthere is a true (population) value ��0 ;�� of the parameters for whih (5) holds. Sometimes we willwrite this expliitly, and sometimes suppress this in the notation.Let �(�) be a law invariant risk measure satisfying axioms (A1),(A3) and (A4), and �jX(�) be itsonditional analogue. Note that beause of the independene of " and X, it follows that �jX(")=�("). Together with axiom (A4), this implies�jX(Y ) = �jX(�0+�TX + ") = �0+�TX + �jX(") = �0+�TX + �("): (6)



5Sine �0+�(") = �("+�0), we an assume that �(")= 0 by adding a onstant to the error term. Inthat ase, for the true values of the parameters, we have �jX(Y ) = ��0 +��TX. Hene, the questionis how to estimate these true values.This paper is organized as follows. In Setion 2 we review the quantile regression approah for theestimation of onditional Value-at-Risk and ompare it to another approah based on residuals ofthe least squares estimation proedure. Setion 3 desribes two di�erent estimation proedures forthe onditional Average Value-at-Risk { one is based on the mixed quantiles and the other is basedon residuals of the least squares estimation proedure whih is similar to the respetive approahfor the estimation of onditional Value-at-Risk desribed in Setion 2. Asymptoti properties ofboth estimators are provided as well. In Setion 4 we investigate the �nite sample and asymptotiproperties of the onsidered estimators. We present Monte Carlo simulation results under di�erenterror distribution assumptions. Later, we illustrate the performane of di�erent methods on thereal data (di�erent �nanial asset lasses) in Setion 5. Finally, Setion 6 gives some remarks andsuggestions for future diretions of researh.2. Estimation of Conditional Value-at-RiskSuppose that we have N observations (data points) (Yi;X i), i= 1; :::;N , whih satisfy the linearregression model (5), i.e., Yi = �0+�TXi+ "i; i= 1; :::;N: (7)We assume that: (i) Xi, i= 1; :::;N , are iid (independent identially distributed) random vetors,and write X for random vetor having the same distribution as X i, (ii) the errors "1; ::; "N are iidwith �nite seond order moments and independent of X i. We denote by �2 =Var["i℄ the ommonvariane of the error terms.Note that (7) an be written as Y =X[�0;�℄ + �; (8)where Y = (Y1; :::; YN )T is N � 1 vetor of responses, X is N � (k + 1) data matrix of preditorvariables with rows (1;XTi ), i=1; :::;N , (i.e., �rst olumn of X is olumn of ones), �= (�1; :::; �k)T



6vetor of parameters and �= ("1; ::; "N )T is N � 1 vetor of errors. By [�0;�℄ we denote (k+1)� 1vetor (�0;�T)T. It is also possible to view data pointsX i as deterministi. In that ase, we assumethat X has full olumn rank k+1.Next we review the quantile regression approah to estimation of V�R�(Y jX) and then onsideran alternative method whih is based on least squares residuals.2.1. Review of Quantile Regression Approah to Estimation of V�R�(Y jX)Let  : R ! R+ be a nonnegative valued onvex funtion. The robust regression proedureapproahes the estimation problem by solving the following optimization problem (Huber 1981)Min�0;� NXi=1  �Yi��0��TX i� ; (9)i.e., a solution (�̂0; �̂) of (9) is viewed as an estimator of (��0 ;��). The funtion  (�) is referred toas an error funtion. By the Law of Large Numbers (LLN) we have that N�1 times the objetivefuntion in (9) onverges (pointwise) w.p.1 to the funtion 	(�0;�) := E � (Y ��0��TX)�. Wealso have 	(�0;�) = E � ���0 +��TX + "��0��TX��= E [ ("� (�0���0)� (����)TX)℄ : (10)Under mild regularity onditions derivatives of 	(�0;�) an be taken inside the integral (expe-tation) and hene r�0	(�0;�) = E [r�0 ("� (�0���0)� (����)TX)℄= �E [ 0 ("� (�0���0)� (����)TX)℄ ; (11)r�	(�0;�) = E [r� ("� (�0���0)� (����)TX)℄= �E [ 0 ("� (�0���0)� (����)TX)X℄ : (12)Sine " and X are independent, we obtain that derivatives of 	(�0;�) are zeros at (��0 ;��) if thefollowing ondition holds E [ 0(")℄ = 0: (13)Sine funtion 	(�; �) is onvex, it follows that if ondition (13) holds, then 	(�; �) attains itsminimum at (��0 ;��). If the minimizer (��0 ;��) is unique, then the estimator (�̂0; �̂) onverges w.p.1



7to the population value (��0 ;��) as N !1, i.e., (�̂0; �̂) is a onsistent estimator of (��0 ;��) (f.Huber 1981). That is, (13) is the basi ondition for onsisteny of (�̂0; �̂).For example if  (t) := t2, i.e., (9) is the least squares method, then ondition (13) means thatE ["℄ = 0. As another example for some � 2 (0;1) let (Reall that [t℄+ =maxf0; tg.) (t) := �[t℄+ +(1��)[�t℄+; (14)i.e., (9) is the quantile regression method. In that ase 0(t)=��� 1 if t < 0;� if t > 0: (15)(Note that here the error funtion  (t) is not di�erentiable at t = 0 and its derivative  0(t) isdisontinuous at t= 0. Nevertheless all arguments an go through provided that the error term hasa ontinuous distribution.) ConsequentlyE [ 0(")℄ = (�� 1)F"(0)+�(1�F"(0))= ��F"(0); (16)and hene ondition (13) holds i� F"(0) = �, or equivalently F�1" (�) = 0 provided this quantile isunique. In that ase the estimator (�̂0; �̂) is onsistent if the population value ��0 is normalizedsuh that V�R�(") = 0. That is, for this error funtion, �̂0 + �̂Tx is a onsistent estimator of theonditional Value-at-Risk V�R�(Y jx) of Y given X =x.It is also possible to derive asymptotis of the estimator (�̂0; �̂). We assume in the remainder ofthis setion that ondition (13) holds. Then under mild regularity onditions N 1=2 h�̂0���0 ; �̂���ionverges in distribution to normal with zero mean vetor and ovariane matrix ��2�2
�1, where
 := � 1 �T� � � ; � := E [X ℄; � := E �XXT�, �2 := E [ 0(")2℄; �2 := E [ 0 (")2℄ and � := �2E[ ("+t)℄�t2 ��t=0,provided this derivative exists (f., Shapiro 1989).For example in ase of least squares, where  (t) := t2, we have that ��2�2 = �2, where �2 :=Var["i℄. In ase of quantile regression, where  (�) is given in (14), we have (f. Koenker 2005) that��2�2 = !2, where !2 := �(1��)[f" (F�1" (�))℄2 ; (17)



8provided the df F"(�) has nonzero density f"(�) = F 0"(�) at F�1" (�) (reall that it is assumed herethat F�1" (�) = 0). Thus, the asymptoti variane of the orresponding quantile regression estimatoris (f., Koenker 2005) N�1!2[1;xT℄
�1[1;xT℄T: (18)Remark 1. Note that by LLN we have that N�1PNi=1X i and N�1PNi=1XiXTi onverge w.p.1as N !1 to the vetor � and matrix �, respetively, and that ����T is the ovariane matrixof X. In ase of deterministi X i, we simply de�ne vetor � and matrix � as the respetivelimits of N�1PNi=1X i and N�1PNi=1X iXTi , assuming that suh limits exist. It follows then thatN�1XTX!
.2.2. Least Squares Residual Based Estimator of V�R�(YjX)Let ~�0 and ~� be the least squares estimators of the respetive parameters of the linear model(7). Reall that these estimators are given by [ ~�0; ~�℄ = (XTX)�1XTY , and vetor of residuals e :=Y �X[ ~�0; ~�℄ is given by e= (IN �H)Y = (IN �H)�;where IN is the N �N identity matrix and H = X(XTX)�1XT is the so-alled hat matrix. Notethat trae(H) = k+1 and we have that"i� ei = [1;XTi ℄(XTX)�1XT�; i=1; :::;N: (19)If we knew errors "1; ::; "N , we ould estimate �(") by the orresponding sample estimate. How-ever, the true values of the errors are unknown; therefore, we replae them by the residuals om-puted by the least squares method. In ase of � :=V�R�, this gives the estimate[V�R�(e) := F̂�1e (�) = e(dN�e) (20)of V�R�("), where e(1) � ::: � e(N) are order statistis (i.e., numbers e1; :::; eN arranged in theinreasing order), F̂e(�) =N�1PNi=1 I[ei;1)(�) is the empirial df assoiated with e1; :::; eN , IA(�) is



9the indiator funtion of set A and dae denotes the smallest integer � a. The estimate (7) an beompared with the sample quantile[V�R�(") := F̂�1" (�) = "(dN�e) (21)of the errors "1; ::; "N .Residual based estimator for V�R�(YjX)We refer to ~�0+xT~�+[V�R�(e) as the residual based estimator of V�R�(Y jx). Suppose thatthe set of population �-quantiles is a singleton. Then the residual based estimator ~�0+xT~�+[V�R�(e) is a onsistent estimator of V�R�(Y jx). Also, under the ondition (13) and mildregularity onditions, asymptoti variane of the residual based estimator an be approximatedby N�1 �!2 +�2[1;xT℄
�1[1;xT℄T� ; (22)where !2 is given in (17).For the derivation of above asymptotis, see Appendix A.3. Estimation of Conditional Average Value-at-RiskThe following simple arguments (due to Gneiting 2009) explain why an analogue of quantile regres-sion for estimation of AV�R� does not exist. In order to onstrut suh an estimator we would needto �nd a funtion h(y; �) of y 2 R and � 2 R, onvex in �, suh that the minimizer of EF [h(Y; �)℄will be equal to AV�R�(F ), i.e., AV�R�(F )= argmin� EF [h(Y; �)℄. Here F denotes the probabilitydistribution of Y and we sometimes write AV�R�(F ) instead of AV�R�(Y ). Reall that AV�R�has the property that AV�R�(Y + a) = AV�R�(Y )+ a for any a 2 R. It follows that the funtionh(y; �) should be of the form h(y; �) =  (y � �) for some onvex funtion  : R ! R. Considerfuntion 	(t) =  0(t). The funtion 	(�) is monotonially nondereasing, probably disontinuous,and AV�R�(F ) should be a solution of the equationEF [	(Y � �)℄ = 0: (23)



10Now let us onsider the following probability distributions F1 := �Æa + 12(1� �)(Æb + Æd), F2 :=�Æ+(1��)Æ(b+d)=2 and12(F1+F2) = 12�Æa+ 14(1��)Æb+ 12�Æ+ 14(1��)Æd+ 12(1��)Æ(b+d)=2;where Æx denotes measure of mass one at x, �2 ( 12 ;1) and a < b< < d are suh that  < 12(b+ d).It is straightforward to alulate that AV�R�(F1) = AV�R�(F2) = 12(b+ d). This implies that ifAV�R�(F ) is indeed a solution of (23), then AV�R�� 12(F1+F2)� should be also 12(b+d). However,sine �2 ( 12 ;1),AV�R�� 12(F1+F2)�= 14�b+2�(1��)�1+2d�> 14(b+2+2d)> 14(2b+ +2d)> 12(b+ d):There are some alternatives for the Average Value-at-Risk, whih we will disuss below. Onealternative is based on mixed quantile and the other one is based on least squares residuals.3.1. Mixed Quantile Approah to Estimation of AV�R�(YjX)Let �j 2 (0;1) and �j > 0, j = 1; :::; r, be suh that Prj=1 �j = 1, and �j (t) := �j [t℄++(1��j)[�t℄+; j = 1; :::; r:Result of the following theorem is due to Rokafellar et al. (2008). Sine its proof is short andinformative we give it for the sake of ompleteness.Theorem 1. Let S(X) := argmin2R E(X�), where X is a random variable (having �nite �rst ordermoment) and E(X) = inf�2Rr E nPrj=1  �j (X� �j) :Prj=1 �j�j = 0o : (24)Suppose that the minimizer S(X) is unique. ThenS(X) = rXj=1 �jV�R�j (X): (25)Proof Let us onsider the problemMin;� E hPrj=1  �j (X� � �j)i s:t: Prj=1 �j�j = 0: (26)



11By making hange of variables �j = + �j , j = 1; :::; r, we an write this problem in the formMin;� E hPrj=1  �j (X� �j)i s:t: Prj=1 �j�j = : (27)We have that V�R�j (X) is a minimizer of E � �j (X� �j)�, and hene (25) follows provided it isunique. �We an view the right hand side of (25) as a disretization of the integral 11�� R 1� V�R� (Y )d� ifwe set �= (1��)=r and take�j = (1��)�1�; �j = �+(j� 0:5)�; j =1; :::; r: (28)For this hoie of �j , �j , and by formula (3), we have thatAV�R�(X)� S(X): (29)Consider now the problem Min�0;� E(Y ��0��TX): (30)By the de�nition (24) of E(�), we an write this problem in the following equivalent formMin� ;�0;� E hPrj=1  �j (Y ��0��TX � �j)i s:t: Prj=1 �j�j = 0: (31)The so-alled Sample Average Approximation (SAA) of this problem isMin� ;�0;� 1N NXi=1 rXj=1  �j (Yi��0��TX i� �j) s:t: rXj=1 �j�j = 0: (32)The above problem (32) an be formulated as a linear programming problem.Mixed quantile estimator for AV�R�(YjX)We refer to ��0 + ��Tx as the mixed quantile estimator of AV�R�(Y jx) where (�� ; ��0; ��) is anoptimal solution of problem (32).Asymptotis of the mixed quantile estimators are disussed in Appendix B.The estimator ��0+ ��Tx an be justi�ed by the following arguments. We have that an optimalsolution (�� ; ��0; ��) of problem (32) onverges w.p.1 as N !1 to the optimal solution (� ?; �?0 ;�?)



12of problem (31), provided (31) has unique optimal solution. Beause of the linear model (5), wean write problem (31) asMin� ;�0;� E hPrj=1 �j ("+��0 ��0+(����)TX � �j)i s:t: Prj=1 �j�j =0; (33)where ��0 and �� are population values of the parameters. Similar to (26)-(27), by making hangeof variables �j = �0+ �j , j = 1; :::; r, we an write problem (33) in the following equivalent formMin�;�0;� E hPrj=1  �j ("+��0 � �j +(����)TX)i s:t: Prj=1 �j�j = �0: (34)It follows that if rXj=1 �jV�R�j (")= 0; (35)then (�?0 ;�?) = (��0 ;��). That is, ��0+ ��Tx is a onsistent estimator of Prj=1 �jV�R�j (Y jx). Con-sequently for �j and �j given in (28), we an use ��0+ ��Tx as an approximation of AV�R�(Y jx).3.2. Least Squares Residual Based Estimator of AV�R�(Y jX)Consider � :=AV�R� risk measure. Its residual based estimator an be developed in a straightfor-ward way. That is, onsider\AV�R�(e) = inft2Rnt+ 1(1��)N PNi=1[ei� t℄+o=[V�R�(e)+ 1(1��)N PNi=1 hei�[V�R�(e)i+= e(dN�e)+ 1(1��)N PNi=dN�e+1 �e(i)� e(dN�e)� : (36)Residual based estimator for AV�R�(Y jx)We refer to ~�0+xT~�+\AV�R�(e) as the residual based estimator of AV�R�(Y jx). This estimatoris onsistent and its asymptoti variane is given byN�1 �2+�2[1;xT℄
�1[1;xT℄T� ; (37)where 2 = (1��)�2Var�["�V�R�(")℄+�, 
 := � 1 �T� � � ; � := E [X ℄ and � := E �XXT�.The above asymptotis are disussed in Appendix C.



13Figure 1 Normal Q-Q plot for di�erent error distributions
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() N(0,1) vs. LN(0,1)Remark 2. It should be remembered that the above approximate varianes are asymptoti results.Suppose for the moment thatN < (1��)�1. Then dN�e=N and hene[V�R�(") =maxf"1; :::; "Ng.Consequently �"i�[V�R�(")�+= 0 for all i= 1; :::;N , and hene\AV�R�(")=[V�R�(")=maxf"1; :::; "Ng:In that ase the above asymptotis are inappropriate. In order for these asymptotis to be reason-able, N should be signi�antly bigger than (1��)�1.4. Simulation StudyTo illustrate the performane of the onsidered estimators, we perform the Monte Carlo simulationswhere errors (innovations) in linear model (7) are generated from following di�erent distributions;(1) Standard Normal (denoted as N(0;1)), (2) Student's t distribution with 3 degrees of freedom(denoted as t(3)), (3) Skewed Contaminated Normal where standard normal is ontaminated with20% N(1;9) errors (denoted as CN(1;9)), (4) Log-Normal with parameter 0 and 1 (denoted asLN(0;1)). Note that error distributions (2)-(4) are heavy-tailed in ontrast to the normal errors asshown in Figure 1. In fat, �nanial innovations often follow heavy-tailed distributions.We onsider�= 0:9;0:95;0:99, sample size N = 500;1000;2000 and R= 500 repliations for eah sample size.



14Figure 2 Conditional VaR and AVaR: True vs. Estimated (Errors�CN(1;9), �=0:95, N = 1000)
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(b) Conditional AVaRConditional Value-at-Risk (VaR) and Average Value-at-Risk (AVaR) are estimated and omparedwith true (theoretial) values at given 500 test points xk (k= 1;2; : : : ;500), whih are equally spaedbetween -2 and 2 for eah repliation. Estimators obtained from di�erent methods are omputed;quantile based estimator (referred to as \QVaR") and residual based estimator (referred to as\RVaR") for the onditional VaR (as desribed in Setion 2), mixed quantile estimator (referredto as \QAVaR") vs. residual based estimator (referred to as \RAVaR") for the onditional AVaR(as desribed in Setion 3).Figure 2 displays an example of estimation results where solid line is true (theoretial)VaR (AVaR), dash-irle line is QVaR (QAVaR), and dash-ross line is RVaR (RAVaR) giventest points xk. In this example, errors follow CN(1;9), � = 0:95 and N = 1000. In Fig-ure 2-(a), RVaR estimates are loser to true VaR values as Mean Absolute Error (MAE)on�rms (MAE(QVaR)=0.4771 vs. MAE(RVaR)=0.2145). Performane of both estimators areworse for AVaR, yet RAVaR estimates are still loser to true AVaR values than QAVaR(MAE(QAVaR)=0.6336 vs. MAE(RAVaR)=0.2466) as shown in Figure 2-(b).To ompare estimators under di�erent error distributions, MAE (averaged over all test points)and variane of MAE (in parenthesis) aross 500 repliations are obtained shown in Table 1.



15Table 1 MAE for di�erent error distributions �=0:95;N = 1000 (averaged over all test points)Error QVaR RVaR QAVaR RAVaRN(0;1) 0.0762 0.0575 0.0990 0.0674(0.0037) (0.0020) (0.0058) (0.0026)t(3) 0.1758 0.1290 0.4255 0.3232(0.0188) (0.0095) (0.0808) (0.0623)CN(1;9) 0.3006 0.1955 0.3844 0.2311(0.0563) (0.0225) (0.0882) (0.0316)LN(0;1) 0.3905 0.2670 0.8957 0.6432(0.0959) (0.0430) (0.3896) (0.2481)Regardless of the error distributions, RVaR (RAVaR) works better than QVaR (QAVaR); MAEand the variane of MAE are smaller. As we an expet, both estimators perform better for theonditional VaR than AVaR.Figure 3 presents box-plots for both estimators (QAVaR and RAVaR) given x = 1:006 aross500 repliations. Findings are similar to the one from Table 1; there are some evidene to suggestthat RAVaR has smaller MAE than QAVaR. Also, RAVaR is more stable than QAVaR (MAE ofQAVaR is more spread). Note that both estimators work better for normal distributions than otherheavy-tailed distributions. We ould observe the similar pattern for onditional VaR.Table 2 illustrates sample size e�et on MAE of estimators. As expeted, both estimators performbetter as sample size inreases. MAE of RVaR (RAVaR) is still smaller than that of QVaR (QAVaR)aross all sample sizes.Next, we obtain asymptoti varianes (derived in Setion 2 and Setion 3) and ompare thatwith empirial (�nite sample) varianes of both estimators. Figure 4 reports asymptoti and �nitesample eÆienies of both estimators for the onditional VaR where R = 500, and error followsN(0;1) (results are similar for other error distributions). In Figure 4-(a), we see that asymptotivariane of RVaR (dash-dot line) is smaller than that of QVaR (solid line) exept at xk near0. In fat, asymptoti variane is a�eted by how far xk is away from 0 (whih is the mean ofexplanatory variable in the simulation); when xk is further from the mean, the di�erene betweenasymptoti varianes of both estimators is bigger. Figure 4-(b) provides empirial variane of bothestimators aross 500 repliations. Empirial variane of RVaR is (equal or) smaller than that of



16Figure 3 MAE for onditional AVaR given x= 1:006 under di�erent error distributions (�= 0:95, N = 1000)
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Estimator − Error DistributionTable 2 MAE for di�erent sample size N with �= 0:95 (averaged over all test points)Error Estimator N =500 N =1000 N = 2000N(0;1) QVaR 0.1129 0.0762 0.0569RVaR 0.0849 0.0575 0.0418QAVaR 0.1390 0.0990 0.0737RAVaR 0.0992 0.0674 0.0498t(3) QVaR 0.2420 0.1758 0.1277RVaR 0.1785 0.1290 0.0942QAVaR 0.5385 0.4255 0.3207RAVaR 0.4517 0.3232 0.2085CN(1;9) QVaR 0.4322 0.3006 0.2180RVaR 0.2928 0.1955 0.1447QAVaR 0.5471 0.3844 0.2658RAVaR 0.3373 0.2311 0.1636LN(0;1) QVaR 0.5814 0.3905 0.2959RVaR 0.4095 0.2670 0.1975QAVaR 1.1986 0.8957 0.7275RAVaR 0.9503 0.6432 0.4754QVaR at all xk. Figure 4-() and Figure 4-(d) ompare asymptoti varianes to empirial varianesof both estimators. It is lear that asymptoti varianes are to provide a good approximation to



17Figure 4 Conditional VaR: asymptoti and empirial variane (Error�N(0;1), �= 0:95, N = 1000, R= 500)
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(b) Empirial variane
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() QVaR: Asymptoti vs. Empirial −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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(d) RVaR: Asymptoti vs. Empirialthe empirial ones for both estimators.Figure 5 illustrates asymptoti and empirial varianes of both estimators for AVaR. Insightsobtained from the results are similar to the VaR ase. However, Figure 5-() indiates that empirialvarianes of QAVaR are larger than asymptoti varianes, espeially when xk is far from the mean.For this ase, asymptoti eÆieny of QAVaR may not very informative on its behavior in �nitesample. Results are similar for other error distributions exept t(3). When the error follows t(3),asymptoti (empirial) varianes of QAVaR are smaller than that of RAVaR exept when xk islose to the boundary (as shown in Figure 6).



18Figure 5 Conditional AVaR: asymptoti and empirial variane (Error�N(0;1), �= 0:95, N =1000, R= 500)
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(b) Empirial variane
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() QAVaR: Asymptoti vs. Empirial −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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(d) RAVaR: Asymptoti vs. EmpirialTo further investigate the �nite sample eÆienies and robustness of both estimators ompared tothe asymptoti ones, we provide empirial overage probabilities (CP) of a two-sided 95% (nominal)on�dene interval (CI) in Table 3 (di�erene between CP and 0.95 is given in parentheses).For eah repliation, the empirial on�dene interval is alulated from the sample version ofasymptoti variane (when applied to the values of an observed sample of a given size). Then, forgiven xk, the proportion of the 500 repliations where the obtained on�dene interval ontainsthe true (theoretial) value is alulated, and these proportions are averaged aross all test points.For N(0;1) and CN(1;9) error distributions, the resulting CP of RVaR (RAVaR) is very lose



19Figure 6 Conditional AVaR: asymptoti and empirial variane (Error� t(3), �= 0:95, N = 1000, R= 500)
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(b) Empirial variane
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() QAVaR: Asymptoti vs. Empirial −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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(d) RAVaR: Asymptoti vs. Empirialto 0.95 while empirial CI for QVaR (QAVaR) under-overs (resulting CP is smaller than 0.95).For t(3) and LN(0;1) error distributions, CP of RVaR (RAVaR) drops, yet maintains somewhatadequate CP whih is a lot better than CP of QVaR (QAVaR). CI of QAVaR under-overs seriously(resulting CP is about 0.7) and this indiates QAVaR proedure may be very unstable and needsrather wider CI than other estimators to overome its sensitivity. Note that RVaR (RAVaR) ismore onservative than QVaR (QVaR) regardless of the error distributions.We ould draw similar onlusions for other sample sizes and � values. That is, RVaR (RAVaR)performs better and provides stable results than QVaR (QAVaR) under di�erent error distributions.



20 Table 3 Coverage probability with �= 0:95;N =1000 (averaged over all test points)Error QVaR RVaR QAVaR RAVaRN(0;1) 0.9167 0.9551 0.8442 0.9552(0.0333) (-0.0051) (0.1058) (-0.0052)t(3) 0.9044 0.9269 0.7088 0.9080(0.0456) (0.0231) (0.2412) (0.0420)CN(1;9) 0.9262 0.9428 0.8824 0.9548(0.0238) (0.0072) (0.0676) (-0.0048)LN(0;1) 0.9185 0.9276 0.6930 0.9185(0.0315) (0.0224) (0.2570) (0.0315)5. Illustrative Empirial ExamplesIn this setion, we demonstrate onsidered methods to estimate onditional VaR and AVaR withreal data; di�erent �nanial asset lasses. Let us �rst present an example of Credit Default Swap(CDS). CDS is the most popular redit derivative in the rapidly growing redit markets (SeeFithRatings 2006, for a detailed survey of the redit derivatives market). CDS ontrat providesinsurane against a default by a partiular ompany, a pool of ompanies, or sovereign entity. Therate of payments made per year by the buyer is known as the CDS spread (in basis points). Wefous on the risk of CDS trading (long or short position) rather than on the use of a CDS to hedgeredit risk. The CDS dataset obtained from Bloomberg onsists of 1006 daily observations fromJanuary 2007 to January 2011. Let the dependent variable Y be daily perent hange, (Y (t+1)�Y (t))=Y (t)�100, of Bank of Ameria Corp (NYSE:BAC) 5-year CDS spread, explanatory variablesX1 be daily return of BAC stok prie, and X2 be daily perent hange of generi 5-year investmentgrade CDX spread (CDX.IG). We use the term \perent hange" rather than return beause thereturn of CDS ontrat is not same as the return of CDS spread (e.g., see O'Kane and Turnbull2003, for an overview of CDS valuation models). Residuals obtained from this dataset are heavy-tailed distributed (similar to Figure 1-(b)).Figure 7 shows estimated onditional VaR (RVaR) of BAC CDS spread perent hange (resultof QVaR is similar). Sine one an take either short or long position, we present both tail risk withall values of � whih ranges from 0.01 to 0.99; �< 0:5 orresponds to the left tail (short position)



21Figure 7 Estimated onditional VaR (RVaR) for BAC CDS spread perent hange for �= 0:01; : : : ;0:99

and right tail (long position), otherwise. It is lear that RVaR of ertain dates are muh higher(lower) than normal level due to the di�erent daily eonomi onditions reeted by BAC stokprie and CDX spread. This indiates the spei� (daily) eonomi onditions should be takenaount for the aurate estimation of risk, and therefore emphasize the importane of onditionalrisk measures. Note that given a spei� date, estimated RVaR urve along the di�erent � valuesis asymmetri sine the distribution of CDS spread perent hange is not symmetri.To ompare the predition performane of both estimators, we foreast 603 one-day-ahead(tomorrow's) VaR (AVaR) given the urrent (today's) value of explanatory variables using a rollingwindow of the previous 403 days. Figure 8 presents foreasting results of QVaR and RVaR with�= 0:05 on 603 out-of-sample. Both estimators show similar behaviors, but RVaR seems little morestable. Following ideas in MNeil and Frey (2000) and Leorato et al. (2010), \violation event" issaid to our whenever observed CDS spread perent hange falls below the predited VaR (wean �nd a few violation events from Figure 8). Also, the foreast error of AVaR is de�ned as thedi�erene between the observed CDS spread perent hange and the predited AVaR under the



22Figure 8 Risk predition of BAC CDS: QVaR and RVaR (�=0.05)
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violation event. By de�nition, the violation event probability should be lose to � and the foreasterror should be lose to zero. Table 4 presents the predition performane (violation event prob-ability for VaR, mean and MAE of foreast error for AVaR in parenthesis) of both estimators for�= 0:01 and 0:05. In-sample statistis show that both estimators �t the data well; the violationevent probabilities are very lose to � and foreast errors are very small. Out-of-sample perfor-manes of both estimators are very similar for �= 0:01, even though the foreast errors inreasea little ompared to in-sample ases. For � = 0:05, RVaR (RAVaR) seems perform better; eventprobabilities are loser to 0.05 and foreast errors are smaller.Next, we apply onsidered methods to one of the US equities; International Business MahinesCorp (NYSE). The dataset ontains 1722 daily observation from Deember 2005 to Deember2010. Let the dependent variable Y be the daily log return, 100*log(Y(t+1)/Y(t)), of IBM stokprie, explanatory variables X1 be the log return of S&P 500 index, and X2 be the lagged logreturn. Similar to CDS example, we foreast 638 one-day-ahead (tomorrow's) VaR (AVaR) giventhe urrent (today's) value of explanatory variables using a rolling window of the previous 639



23Table 4 Risk predition performane of BAC CDSIn-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 0.9950 (0.1965) (1.3118)RVaR(RAVaR) 0.01 0.9950 (-0.8630) (2.8183)QVaR(QAVaR) 0.05 4.9751 (0.2287) (2.5016)RVaR(RAVaR) 0.05 4.9751 (-0.0269) (2.8090)Out-of-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 0.8292 (1.4546) (2.4421)RVaR(RAVaR) 0.01 0.8292 (1.1052) (4.0615)QVaR(QAVaR) 0.05 3.6484 (1.3740) (3.1099)RVaR(RAVaR) 0.05 4.4776 (-0.3722) (3.3681)Table 5 Risk predition performane of IBM stokIn-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 1.0180 (-0.1305) (0.5727)RVaR(RAVaR) 0.01 0.9397 (-0.3481) (0.8926)QVaR(QAVaR) 0.05 5.0117 (0.0468) (1.0204)RVaR(RAVaR) 0.05 4.9334 (-0.0225) (1.1579)Out-of-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 2.3511 (0.6171) (1.1028)RVaR(RAVaR) 0.01 1.8809 (0.5023) (0.6827)QVaR(QAVaR) 0.05 6.7398 (0.4787) (1.3086)RVaR(RAVaR) 0.05 6.1129 (0.4778) (1.2387)days. Residuals obtained from this dataset are heavy-tailed distributed. Table 4 ompares the riskpredition performane of IBM stok return. Both estimators perform well for in-sample predi-tion. For out-of-sample predition, both estimators behave similarly for � = 0:05, but violationevent probability is larger than 0.05. For �= 0:01, RVaR (RAVaR) seems a bit better, but eventprobability exeeds 0.01.Finally, we illustrate how rude oil prie had impated the US airlines' risk as we mentionedin Setion 1. Crude oil pries had ontinued to rise sine May 2007 and peaked all time high inJuly 2008, right before the brink of the US �nanial system ollapse. We ompare the movement ofestimatedVaR for three airline stoks given rude oil prie hange; Delta Airlines, In (NYSE:DAL),Amerian Airlines, In (NYSE:AMR), and Southwest Airlines Co (NYSE:LUV). Figure 9 depitsRVaR movement with �= 0:05 from May 2007 to July 2008 (QVaR shows similar patterns). Foreasy omparison, we standardize all units relative to the starting date. As we an see, rude oil prie



24Figure 9 Airline equities: RVaR onditional on rude oil prie (�=0.05)
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had jumped 150% during this time span. On the other hand, RVaR of LUV inreased about 15%while that of AMR inreased 120% and that of DAL inreased 90% (in magnitude). In fat, di�erentairlines have di�erent strategies to hedge the risk on oil prie utuations and this in turn a�etsthe risk of airlines' stok movement. For example, Southwest Airlines is well known for hedgingrude oil pries aggressively. On the other hand, Delta Airlines does little hedge against rude oilprie, but operates a lot of international ights. Amerian Airlines does not have strong hedgingagainst rude oil prie either, and operates less international ights than Delta. Our estimationresults on�rm the �rm spei� risk regarding rude oil prie utuations.6. ConlusionsValue-at-Risk and Average Value-at-Risk (Conditional Value-at-Risk, Expeted Shortfall) arewidely used measures of �nanial risk. To estimate aurate risk measures taking into aount thespei� eonomi onditions, we onsidered two estimation proedures for eah onditional riskmeasure; one is diret (quantile based estimator) and the other is based on residual analysis of thestandard least squares method (residual based estimator). Large sample statistial inferenes of



25both estimators are derived and ompared. In addition, �nite sample properties of both estimatorsare investigated and ompared as well. Monte Carlo simulation results under di�erent error distri-butions indiate that the residual based estimator performs better and provides stable estimation;in general, MAE and asymptoti/empirial variane of residual based estimators are smaller thanthat of quantile based estimators. We also observe that asymptoti variane of estimators approx-imates the �nite sample eÆienies well for reasonable sample sizes used in pratie. However,we may need more samples to guarantee an aeptable eÆieny of the quantile based estimatorfor Average Value-at-risk ompared to other estimators. Predition performanes on the real dataexample suggest similar onlusions. In fat, residual based estimators an be alulated easily andtherefore residual based proedure ould be implemently eÆiently in pratie. In this study, weassume a stati model with independent error distributions. Extension of onsidered estimationproedures inorporating di�erent aspets of (dynami) time series models ould be an interestingtopi for the further study.Appendix A: Asymptotis of the Residual Based Estimator of V�R�(Y jX)Suppose, for the sake of simpliity, that support of the distribution of X i is bounded, i.e., Xi isbounded w.p.1. Sine N�1XTX onverges w.p.1 to 
 and by (19), we have thatj"i� eij �Op(N�1) NXj=1 "j:We an assume here that E ["i ℄ = 0, and henePNj=1 "j =Op(N 1=2). It follows that��"(dN�e)� e(dN�e)��=Op(N�1=2): (38)Suppose now that the set of population �-quantiles is a singleton. Then F̂�1" (�) onverges w.p.1to the population quantile F�1" (�) = V�R�("), and hene by (38), we have that e(dN�e) onvergesin probability to F�1" (�). That is, [V�R�(e) is a onsistent estimator of V�R�("), and hene theestimator ~�0+xT~�+[V�R�(e) is a onsistent estimator of V�R�(Y jx).Let us onsider the asymptoti eÆieny of the residual based V�R� estimator. It is



26known that ~�0 + xT~� is an unbiased estimator of the true expeted value �0 + xT� andN 1=2 h~�0���0 +xT(~����)i onverges in distribution to normal with zero mean and variane�2[1;xT℄
�1[1;xT℄T: (39)Also, N 1=2 �"(dN�e)�V�R�(")� onverges in distribution to normal with zero mean and variane!2 := �(1��)[f" (F�1" (�))℄2 ; (40)provided that distribution of " has nonzero density f"(�) at the quantile F�1" (�).Let us also estimate the asymptoti variane of the right hand side of (19). We have that Ntimes variane of the seond term in the right hand side of (19) an be approximated by�2E �[1;XTi ℄
�1[1;XTi ℄T	= �2(k+1):We also have that random vetors ( ~�0; ~�) and e are unorrelated. Therefore, if errors "i have normaldistribution, then vetors ( ~�0; ~�) and e have jointly a multivariate normal distribution and thesevetors are independent. Consequently, ~�0+xT~� and[V�R�(e) are independent. For not neessarilynormal distribution, this independene holds asymptotially and thus asymptotially ~�0+xT~� and[V�R�(e) are unorrelated.Now, we an alulate the asymptoti ovariane of the orresponding terms �"(dN�e)�V�R�(")�and �"(dN�e)� e(dN�e)� as ��2�k+1�2 . Thus, asymptoti variane of the residual based V�R� estima-tor an be approximated as N�1 �!2+�2[1;xT℄
�1[1;xT℄T� : (41)Appendix B: Asymptotis of the Mixed Quantile EstimatorIt is possible to derive asymptotis of the mixed quantile estimator. For the sake of simpliity,let us start with a sample estimate of S(X), with �j and �j , j = 1; :::; r, given in (28). That is,let X1; :::;XN be an iid sample (data) of the random variable X, and X(1) � ::: � X(N) be theorresponding order statistis. Then the orresponding sample estimate is obtained by replaing



27the true distribution F of X by its empirial estimate F̂ . Consequently, by (25), (1��)�1S(X) isestimated by (1��)�1 rXj=1 �j F̂�1(�j) = 1r rXj=1X(dN�je): (42)This an be ompared with the following estimator of AV�R�(X) based on sample version of (2):X(dN�e)+ 1(1��)N PNi=dN�e+1 �X(i)�X(dN�e)�=�1� N�dN�e(1��)N �X(dN�e)+ 1(1��)N PNi=dN�e+1X(i): (43)Assuming that N� is an integer and taking r := (1��)N , we obtain that the right hand sides of(42) and (43) are the same.Asymptoti variane of the mixed quantile estimator an be alulated as follows. Considerproblem (34). The optimal solution of that problem is �? = ��,�?j = ��0 +V�R�j (")= ��0 +F�1" (�j); j = 1; :::; r;and �?0 =Prj=1 �j�?j = ��0 . Assume that " has ontinuous distribution with df F"(�) and densityfuntion f"(�). Then onditional on X, the asymptoti ovariane matrix of the orrespondingsample estimator (��;��) of (�?; �?) is N�1H�1�H�1, where H is the Hessian matrix of seondorder partial derivatives of E hPrj=1  �j ("+��0 � �j +(����)TX)i at the point (�?; �?), and � isthe ovariane matrix of the random vetorZ := rXj=1r �j �"+��0 � �j +(����)TX� ;where the gradients are taken with respet to (�; �) at (�; �) = (�?; �?) (e.g., Shapiro 1989). Wehave rXj=1r� �j �"+��0 � �j +(����)TX�=� rXj=1  0�j �"+��0 � �j +(����)TX�!X;r�j �j �"+��0 � �j +(����)TX�=� 0�j �"+��0 � �j +(����)TX� ;with  0�j (�) is given in (15).Note that E [ 0�j (" � F�1" (�j)℄ = 0; j = 1; :::; r, (see (16)), and hene E [Z ℄ = 0. Then � =



28E �ZZT� and we an ompute � = ��E �XXT� 		T � �, where �= E �hPrj=1 0�j ("�F�1" (�j))i2�,	= [	1; :::;	r℄ with	j = E " rXi=1  0�i �"�F�1" (�i)�! 0�j �"�F�1" (�j)�X# ; j = 1; :::; r;and �ij = E h 0�i ("�F�1" (�i)) 0�j ("�F�1" (�j))i, i; j = 1; :::; r.The Hessian matrix H an be omputed as H = � E �XXT� FF T D �, where  =Prj=1 j withj = �E h 0�j ("+��0 � �?j + t)i�t ���t=0= � [�j(1�F"(F�1" (�j)� t))+ (�j � 1)F"(F�1" (�j)� t)℄�t ���t=0= �jf"(F�1" (�j))� (1��j)f"(F�1" (�j)) = f"(F�1" (�j)); j =1; :::; r;F = [F 1; :::;F r℄ with F j = jE [X℄, j = 1; :::; r, and D=diag(1; :::; r).Sine ��0 = �T��, we have that ��0 + ��Tx = [xT;�T℄[��; ��℄, and hene the asymptoti variane of��0+ ��0Tx is given by N�1[xT;�T℄H�1�H�1[x;�℄.Appendix C: Asymptotis of the Residual Based Estimator of AV�R�(Y jX)The estimator\AV�R�(e) an be ompared with the orresponding random variable whih is basedon the errors instead of residuals\AV�R�(") := inft2Rnt+ 1(1��)N PNi=1["i� t℄+o= [V�R�(")+ 1(1��)N PNi=1 h"i�[V�R�(")i+= "(dN�e)+ 1(1��)N PNi=dN�e+1 �"(i)� "(dN�e)� : (44)Note that\AV�R�(") is not an estimator sine errors "i are unobservable.By (38), we have that ���[V�R�(")�[V�R�(e)���=Op(N�1=2) (45)and it is known that \AV�R�(") onverges w.p.1 to AV�R�(") as N !1, provided that " has a�nite �rst order moment. It follows that \AV�R�(e) onverges in probability to AV�R�("), andhene ~�0+xT~�+\AV�R�(e) is a onsistent estimator of AV�R�(Y jx).Lets disuss asymptoti properties of the residual based AV�R� estimator. As it was pointedout in Appendix A, random vetors ( ~�0; ~�) and e are unorrelated, and hene asymptotially



29~�0 + xT~� and \AV�R�(e) are independent and hene unorrelated. Assuming that �-quantile ofF"(�) is unique, we have by Delta theorem\AV�R�(e) =V�R�(")+ (1��)�1N�1 NXi=1 [ei�V�R�(")℄++ op(N�1=2) (46)and \AV�R�(")=V�R�(")+ (1��)�1N�1 NXi=1 ["i�V�R�(")℄++ op(N�1=2): (47)Equation (47) leads to the following asymptoti result (f. Trindade et al. 2007, Shapiro et al. 2009,setion 6.5.1) N 1=2�\AV�R�(")�AV�R�(")� D!N (0; 2); (48)where 2 = (1��)�2Var�["�V�R�(")℄+�. Moreover, if distribution of " has nonzero density f"(�)at V�R�("), then E�\AV�R�(")��AV�R�(")=� 1��2Nf"(V�R�(")) + o(N�1): (49)From the equation (46) and (47), the asymptoti variane of �\AV�R�(")�\AV�R�(e)� an bebounded by (1��)�1N�2�2�k+1� and we an approximate the asymptoti ovariane of the or-responding terms, �\AV�R�(")�AV�R�(")� and �\AV�R�(")�\AV�R�(e)� as �(1��)�1N�2�2�k+1�2 .Thus, asymptoti variane of the residual based AV�R� estimator an be approximated asN�1 �2+�2[1;xT℄
�1[1;xT℄T� : (50)ReferenesAerbi, C., D. Tashe. 2002. On the oherene of expeted shortfall. Journal of Banking & Finane 26(7)1487{1503.Artzner, P., F. Delbaen, J.-M. Eber, D. Heath. 1999. Coherent measures of risk. Mathematial Finane 9203{228.Berkowitz, J, M Pritsker, M Gibson, H Zhou. 2002. How aurate are value-at-risk models at ommerialbanks. Journal of Finane 57 1093{1111.
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