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Abstract

The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. 

In this paper, we provide a new perspective. The key insight is to replace the statistical framework 

in the original approach with ideas from inverse optimization. This insight allows us to 

significantly expand the scope and applicability of the BL model. We provide a richer formulation 

that, unlike the original model, is flexible enough to incorporate investor information on volatility 

and market dynamics. Equally importantly, our approach allows us to move beyond the traditional 

mean-variance paradigm of the original model and construct “BL”-type estimators for more 

general notions of risk such as coherent risk measures. Computationally, we introduce and study 

two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse 

Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) 

portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and 

volatility uncertainty. Using numerical simulation and historical backtesting, we show that both 

methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more 

robust to incorrect investor views.
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1. Introduction

The Black-Litterman (BL) model is a widely used asset allocation model in the financial 

industry. Introduced in Black and Litterman (1992), the model uses an equilibrium analysis 

to estimate the returns of uncertain investments and employs a Bayesian methodology to 

“blend” these equilibrium estimates with an investor's private information, or views, about 
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the investments. Computational experience has shown that the portfolios constructed by this 

method are more stable and better diversified than those constructed from the conventional 

mean-variance approach. Consequently, the model has found much favor with practitioners. 

The U.S. investment bank Goldman Sachs regularly publishes recommendations for investor 

allocations based on the BL model and has issued reports describing the firm's experience 

using the model (Bevan and Winkelmann 1998). A host of other firms (Zephyr Analytics, 

BlackRock, Neuberger Berman, etc.) also use the BL model at the core of many of their 

investment analytics.

The model, however, does have its shortcomings. First, it is somewhat limited in the way it 

allows investors to specify private information. Namely, it only allows investors to specify 

views on asset returns, but not on their volatility or market dynamics. Secondly, and more 

restrictively, the model is predicated upon the mean-variance approach to portfolio 

allocation. A host of theoretical and empirical work suggests variance may not be a suitable 

proxy for risk. As a consequence, other risk measures such as Value At Risk (VaR) or 

Conditional Value at Risk (CVaR) have been explored. (See, for example, Artzner et al. 

(1999), Bertsimas et al. (2004), Grootveld and Hallerbach (1999), Harlow (1991), Jorion 

(1997), Rockafellar and Uryasev (2002).)

Subsequent research has tried to address these shortcomings. We mention only a few 

examples and refer the reader to Walters (2010) and the references therein for a more 

complete survey. Giacometti et al. (2007), Martellini and Ziemann (2007) and Meucci 

(2005) extend beyond the mean-variance paradigm, using “fat-tailed” distributions to model 

asset returns, coupled with VaR or CVaR, and views on the tail behavior of returns. By 

contrast, Pástor (2000) and Pástor and Stambaugh (2000) build upon the Bayesian 

interpretation of the original model, using a general pricing model as their “prior.” Finally, 

Meucci (2008) and Meucci et al. (2011) formulate a further generalization within the 

statistical framework, modeling “risk-factors” (in lieu of asset returns) by a general 

distribution and solving a minimum entropy optimization to update this distribution to one 

which incorporates a very general set of views. In most cases, this optimization is solved 

numerically, and in the case when the distribution is constrained to belong to a parametric 

family, the optimization is usually non-convex.

In this paper, we provide a new optimization-driven perspective on the BL model which 

avoids many of the statistical assumptions of previous approaches. The key insight is to 

characterize the BL estimator as the solution to a particular convex optimization problem. 

More specifically, we formulate a problem in inverse optimization – a setup where one is 

given an optimal solution to an optimization problem and seeks to characterize the cost 

function and/or other problem data. Initial research on inverse optimization focused on 

specific combinatorial optimization problems (see Heuberger (2004) for a survey). Later, 

Ahuja and Orlin (2001) provided a unified approach for linear programming problems using 

duality. Iyengar and Kang (2005) extended these ideas to conic optimization with an 

application to managing portfolio rebalancing costs.

Previous research, starting with Black and Litterman (1992), has drawn some connections 

between the BL model and what many authors call “reverse optimization.” The key idea, 
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formalized in He and Litterman (1999), is to solve the first order optimality condition of a 

Lagrangean relaxation of the Markowitz problem to derive the equilibrium returns. It may 

not be clear how to generalize this approach to other constrained asset allocation problems. 

Often, as in Herold (2005) which considers a budget-constraint and Da Silva et al. (2009) 

which consider information-ratio portfolio optimization, the authors are forced to rely on ad-

hoc arguments. Furthermore, “reverse optimization” only provides the equilibrium 

estimates. Most authors still use a statistical approach to blend in the views.

To the best of our knowledge, our work is the first to offer a rigorous inverse optimization 

interpretation of the BL model. This has several advantages. First, it allows us to completely 

characterize the set of “input data” in the Markowitz problem in equilibrium and to 

incorporate more general views, e.g., on volatility. Second, it enables us to move beyond 

mean-variance and adopt more general risk metrics by leveraging robust optimization ideas. 

Further, our approach does not rely on specific distributional assumptions on market returns; 

we construct the equilibrium estimates and blend them with views using optimization 

techniques. As such, our approach unifies several threads in the literature (Herold 2005, 

Krishnan and Mains 2010, Martellini and Ziemann 2007). It can also be potentially 

combined with the ideas in Meucci (2008), Meucci et al. (2011) of modelling risk-factors 

instead of asset returns.

We summarize the major contributions of our paper as follows:

1. By linking the BL model with inverse optimization we provide a novel formulation 

that constructs equilibrium-based estimators of the mean returns and the covariance 

matrix.

2. Our framework permits greater freedom in the type of private information and 

investor views expressible in the model. Specifically, our formulation allows 

investors to incorporate views on volatility and market dynamics. We leverage this 

freedom to create a new asset allocation procedure we call the “Mean-Variance 

Inverse Optimization” (MV-IO) approach, which uses BL-type estimators in a 

setting motivated by the arbitrage pricing theory.

3. By drawing on ideas from robust optimization, we generalize the traditional 

Markowitz portfolio problem to one which can encompass risk metrics such as 

VaR, CVaR, and generic coherent risk measures.

4. We then use inverse optimization to construct BL-type estimators in this new 

model. We illustrate the power of this method with what we call the Robust Mean 

Variance Inverse Optimization (RMV-IO) approach, which accommodates 

volatility uncertainty.

5. We provide computational evidence to show that MV-IO and RMV-IO portfolios 

often provide better risk-reward profiles and are more robust to incorrect or 

extreme views than their BL-counterparts.

The remainder of the paper is organized as follows: Section 2 briefly reviews the BL model. 

Section 3 derives the BL model from principles in inverse optimization and shows how it 

can be extended to include volatility estimation and views on volatility. Section 4 introduces 
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a more general portfolio allocation problem and constructs a BL-type estimator in this 

setting. Section 5 provides numerical results illustrating the strengths and drawbacks of 

these new estimators compared to the original estimator. Finally, Section 6 concludes and 

discusses some avenues for future research.

Throughout this paper we will use boldfaced capital letters (Σ, P, …) to indicate matrices, 

boldfaced lowercase letters to indicate vectors (x, r, …) and ordinary letters (L, t, …) to 

indicate scalars. The vector e refers to the vector of all ones, 0 is the vector of all zeroes and 

I is an identity matrix. Finally, for a matrix A, we write A ≽ 0 to indicate that A is positive 

semidefinite and A ≻ 0 to indicate that A is positive definite.

2. The Black-Litterman Model

This section reviews the original BL model to keep the paper self-contained. For a complete 

treatment see Black and Litterman (1992) or He and Litterman (1999).

Consider a market with n risky assets and one riskless asset where investors seek to 

maximize their expected return subject to a threshold level of risk. We initially define risk to 

be measured by the standard deviation of returns. In Section 4, we will generalize the notion 

of risk considerably. In other words, investors solve the Markowitz portfolio allocation 

problem

(1)

where  is the random vector of the risky asset returns,  is the vector of mean 

asset returns,  is the return on the riskless asset,  is the covariance matrix 

of asset returns,  is the fraction of wealth invested in each risky asset, and L is an 

investor specific threshold level of risk. We assume that an investor can borrow or invest at 

the risk-free rate.

The primary difficulty in solving (1) is finding a stable estimation procedure for μ and Σ. 

The BL model suggests such a procedure. At a high-level, the procedure blends two sources 

of information:

• Market Equilibrium: If all investors solve (1) for some investor-specific L, then 

there exists a value  such that the expected returns μ satisfy

(2)

Here xmkt is the percentage market capitalization of each asset. By multiplying (2) 

by xmkt, observe that δ = (μ − rfe)′xmkt/(2xmkt′ Σxmkt). In this sense, δ measures the 

risk-reward tradeoff for the market portfolio. Finally, there is some aggregate, but 

unobservable, value of L such that xmkt is a solution to (1) and 

. These conditions collectively form the 

Capital Asset Pricing Model equilibrium (CAPM). (See Sharpe (1964) for classical 
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proofs of these results. Alternatively, we will derive these equations as a special 

case of Theorem 2 in Section 4.)

• Private Information: Any particular investor may have private information, or 

views, that are not shared by other investors. The model expresses these views 

through several different portfolios p1, p2, …, pm for which the investor has some 

estimate of the corresponding mean returns q1, q2, …, qm. More compactly,

(3)

where P′ = [p1, p2, …, pm] and q′ = (q1, q2, …, qm).

Assuming that both of these sources of information are at least approximately true, the BL 

procedure posits the following statistical model:

(4)

Here , ,  and  are estimates of δ and Σ, respectively, and (∊r, ∊v) is a 

random noise vector. Although  may be estimated from historical data, δ is, itself, not 

directly observable. Even though there are various proposals in the literature, to the best of 

our knowledge there is no consensus on how to fit . Observe that the choice of  only 

affects the estimate of  and the resulting portfolio by a constant of proportionality.

By assuming (∊r, ∊v) is distributed as a multivariate normal distribution, i.e., (∊r, ∊v) ~ N(0, 
Ω) for some covariance matrix Ω, and that several other key quantities are Gaussian and 

mutually independent, Black and Litterman (1992) estimates (μ, Σ) by the Bayesian update1 

(μBL, ΣBL) where

(5)

(6)

The quantities Ω and Σ1 are unobservable and require exogenous specification. A common 

approximation used in He and Litterman (1999) is

(7)

where , i = 0, …, m represent the investor's relative confidence in each view.

1To be precise, Black and Litterman (1992) does not provide an explicit Bayesian interpretation of their result, but instead relies on 
Thiel's Mixed Estimation Theorem. We do not know who was the first to recognize the result as a Bayesian update. Subsequent 
research, however, including Litterman's own (He and Litterman 1999), usually describes the initial result in a Bayesian framework.
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As pointed out in He and Litterman (1999), the original paper Black and Litterman (1992) 

does not mention Equation (6) for ΣBL. Indeed, many references refer to Equation (5) alone 

as the BL model. However, Equation (6) and the subsequent approximations are critically 

needed to solve the allocation Problem (1). As we will see, our approach avoids such 

approximations by directly estimating the covariance matrix Σ.

Despite the number of statistical assumptions and exogenously specified parameters, this 

procedure yields stable estimates with good practical performance. We illustrate this 

procedure with an example that we will continue to develop in the sequel.

2.1. An Example: Applying the BL Procedure

In the U.S. equity market, every stock is given a Global Industrial Classification Standard 

(GICS) sector classification describing the industry to which the underlying company 

belongs. The list of ten possible classifications can be found in Table 1 with their average 

historic returns over the previous 24 months, denoted μhist, and market share, denoted xmkt, 

as of May 1, 1998.2 We also present the historical covariance between the sectors in Table 

EC.1 of the e-companion. We will use the BL procedure to construct a portfolio of these 

sectors.

First, consider using the given historical return and covariance information directly in the 

Markowitz formulation (1). The resulting portfolio, denoted xhist, is displayed in Table 1. 

(All portfolios have been scaled to sum to 100 for ease of comparison). It has large long 

positions in some assets, large short positions in others, and almost no investment in others – 

an allocation that does not match our intuition of a “well-diversified” portfolio. This 

phenomenon is common and highlights one of the difficulties in using the Markowitz 

formulation (1) in practice.

Next consider using (4) to estimate those mean returns  that are consistent with the CAPM 

equilibrium, also displayed in Table 1. We have followed He and Litterman (1999) and 

exogenously specified . This value was chosen by those authors based on their 

extensive experience with the BL model in the U.S. equity market. By construction the 

optimal portfolio corresponding to  is the market portfolio xmkt. If the investor had no other 

views, she should invest in xmkt.

Suppose, though, that the investor has the additional view that the portfolio

(8)

should yield on average a return of 1%. Under the CAPM equilibrium, the expected return 

on this portfolio is ; thus, this view represents “new” information. Using the 

update equations (5), we calculate μBL and ΣBL and the resulting new optimal portfolio xBL. 

2Historical return data in this paper was drawn from the DataStream database using Morgan Stanley Composite Indices (MSCI) sector 
indices as proxies. We chose to use MSCI sector indices because they more closely resemble the actual investment opportunities for 
investors. For each sector, the market share of the sector was proxied using the percentage of the S&P 500 composed of stocks from 
that sector. Constituent lists for the S&P and the price and market share for each constituent stock were taken from the WRDS 
database. Monthly returns for the previous 24 months were used to construct volatility and correlation estimates.
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These are shown in Table 1 above and Table EC.2 in the e-companion. We have taken 

 (corresponding to using 24 historical observations) and set τ1 = .02τ0, representing a 

belief 50 times stronger in the portfolio view than in the equilibrium estimate. In contrast to 

the portfolio generated by historical returns, the Black Litterman portfolio is considerably 

more diversified. This stability in the allocations is typical and one of the strengths of this 

procedure.

Three observations are in order:

1. The BL model distinguishes between the covariance matrix Σ, for which it assumes 

good historical estimates are available, and the mean return μ, for which it assumes 

such estimates are not available. In light of the variety of approximations like (6) 

and (7), these historical estimates may significantly affect the resulting portfolio.

2. Investor views are notoriously difficult to specify. The form (3) limits the 

applicability of the model, prohibiting, for example, views on volatility.

3. Finally, the above derivation is firmly based upon the mean-variance approach to 

portfolio allocation; it essentially assumes that, in equilibrium, a typical investor 

solves the Markowitz problem. In reality, however, a typical investor may be 

subject to no-shorting, budget or margin constraints. She may also measure risk in 

terms of Value at Risk (VaR) or Conditional Value at Risk (CVaR). It is not 

immediately clear how to modify the above methodology in these cases.

3. Reinterpreting the Black-Litterman Model through Inverse Optimization

In this section, we provide a novel derivation of Equation (5). The key insight is to use 

inverse optimization to characterize the BL estimate as the solution to a particular convex 

optimization problem thereby eliminating the need for a statistical model. We will then 

show how to use this alternative formulation to address some of the above criticisms.

We begin by defining an inverse optimization problem. Consider the problem defined by

(9)

where f(x; ζ) is some objective function depending on the decision variables  and 

some data . In general, the feasible region  may also depend on the data ζ. 

Usually, we assume that the data parameters ζ are known, and we seek an optimal solution 

x* to (9). We call this process the forward problem. In inverse optimization, we are given a 

solution x* and seek a value of ζ such that . In the case where 

there may be multiple such ζ, it is desirable to characterize the full set of ζ which will make 

the given solution optimal.

As an example, consider the Markowitz portfolio allocation problem (1). The data ζ 

correspond to (μ, Σ, rf, L). In the forward problem, we assume these data are known, and we 

seek an optimal portfolio x*. In the inverse problem, we are given a candidate portfolio x* 

Bertsimas et al. Page 7

Oper Res. Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and seek (μ, Σ, rf, L) which make this portfolio optimal. We now characterize the set of such 

data.

PROPOSITION 1. Consider the Markowitz problem (1), and assume we are given a candidate 

portfolio x*. In addition, suppose that it is known a priori that Σ ≽ 0 and L > 0. Then, (μ, Σ, 

rf, L) solve the inverse problem for (1) if and only if there exists a δ such that:

(10)

Proof. For any fixed values of the data with Σ ≽ 0, L > 0, the forward problem is convex 

and satisfies a Slater Condition. Thus, it is necessary and sufficient that any optimal solution 

x satisfy the Karush-Kuhn-Tucker (KKT) conditions (Bertsekas 1999). The KKT conditions 

are precisely the equations (10) with x* replaced by x and the constraints Σ ≽ 0 and L > 0 

omitted. (We have rewritten the constraint  as x′Σx ≤ L2 for convenience.)

Now consider the inverse problem. We have already established it is both necessary and 

sufficient for x* to satisfy the system (10) to be optimal. If we now interpret x* as given and 

view the remaining parameters as unknown, it follows that any solution to the inverse 

problem must satisfy this system of equations with x*.

Since Σ is a covariance matrix, the assumption Σ ≽ 0 is natural. On the other hand, it is 

possible that L = 0, but this case is somewhat degenerate. Intuitively, it corresponds to a 

situation where an investor will tolerate no risk. It is possible to show that the system (10) is 

still necessary and sufficient in this case. We provide the details in the e-companion.

Using the CAPM and the above proposition we know that there exists an aggregate value of 

L such that (μ, Σ, rf, L) satisfy system (10) with x* replaced by xmkt. Observe further that if 

Σ, δ are replaced by the estimates , , respectively, in (10), we retrieve the equilibrium 

estimates (4). More importantly, as stated, (10) treats μ and Σ on the same footing; it gives 

conditions which they must both satisfy in equilibrium. We summarize these observations in 

the following theorem.

THEOREM 1. Suppose all investors solve (1) for some investor specific value L. Then there must 

exist values of μ, , such that

(11)

Proof. Apply our previous comments and make the change of variables  in (10).

System (11) is a system of Linear Matrix Inequalities (LMIs). LMIs are tractable both 

theoretically and practically. Optimization problems over LMIs are often representable as 

semidefinite optimization problems for which commercial and open source software is 

available.
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We now proceed to consider the role of private information. We will first consider private 

information in the form of (3) by adding these constraints to the above system. The resulting 

system is still an LMI, but it may be infeasible. Consequently, we seek the smallest 

perturbation such that the system is feasible. This yields the following optimization problem.

(12)

where ∥ · ∥ denotes any norm. In contrast to the BL framework, the above optimization 

problem simultaneously determines μ and , thereby eliminating the need for 

approximations like (7).

For many common norms, (12) can be recast as a semidefinite optimization problem. We 

show this reformulation for a weighted ℓ2 norm – the case of weighted ℓ1 and weighted ℓ∞ 

norms are similar – and, most importantly, prove that this formulation generalizes the BL 

result.

PROPOSITION 2. Consider the problem (12) under the weighted ℓ2 norm , where 

Ω≻0.

(a) Problem (12) can be written as the semidefinite optimization problem

(13)

(b) If we further fix  then an optimal solution to (12) is given by (5), i.e.,

(14)

Proof.

(a) Notice that when t ≥ 0, we can use Schur-Complements (Boyd and 

Vandenberghe 2004) to write

The semidefinite programming formulation then follows immediately from the 

definition of u.

(b) When we fix  at the historical estimates, Problem (12) can be rewritten using 

Equation (4) as an unconstrained optimization problem:
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Since Ω≻0, we can rewrite this as

This last optimization is of the form . The solution is well-

known to be y = (A′A)−1A′b. Applying this formula above yields the result.

We conclude this section with some remarks about our approach:

First, since Equations (14) and (5) are identical, a consequence of Proposition 2 b is that the 

inverse optimization framework generalizes the BL model.

Second, unlike the original BL approach, it is straightforward to adapt the previous method 

to incorporate additional constraints on the forward problem. From a modeling point of 

view, we may believe a typical investor does not solve Problem (1), but rather is additionally 

constrained by a budget, no-shorting or margin constraint. Extending our approach to such 

cases is a simple recipe: First, argue that in equilibrium xmkt is an optimal solution to the 

forward problem. Then, solve the corresponding inverse problem. Finally, replace (11) with 

the solution to the inverse problem.

For example, in the case when the investor has a budget constraint on the risky assets (e′x = 

1), following the above procedure yields the optimization problem

(15)

If we fix  at its historical estimate, this approach provides an alternative derivation of the 

results in Herold (2005). Moreover, the results in Section 4 can also be seen as an 

application of this procedure in the case where the forward problem captures a more general 

notion of risk. (See Proposition 6 and Theorem 2 in Section 4.3).

Finally, an important advantage of the inverse optimization perspective is the ability to 

incorporate a greater variety of investor views. One can introduce any linear or semidefinite 

constraint on the entries of μ and  without affecting the tractability of the (13). Practically, 

this makes it possible to model a rich variety of views that are unavailable in the traditional 

approach. For example, in liquid options markets, an investor may have information on the 

volatility σ of a basket of assets b. She may then impose the constraint .

As a more interesting example, suppose the investor believes that asset returns follow a 

factor model. Factor models are common in the financial literature and are related to the 
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arbitrage pricing theory. In factor models, the first few eigenvalues of Σ dominate the rest of 

the spectrum and represent macro-economic conditions that are slow-changing. (See Connor 

and Korajczyk (1995) for further discussion.) The other eigenvalues are assumed to be 

small, random noise. The investor might then estimate  by imposing the constraints

(16)

where α ∈ (0, 1), λi is the ith largest eigenvalue of , vi is its corresponding eigenvector, 

and k is a small number like 2 or 3. The first of these constraints ensure that the macro-

economic factors constitute a large part of the spectrum and the second ensures that they are 

slow-changing. We will refer to Problem (13) with the additional constraints (16) as the 

Mean-Variance Inverse Optimization (MV-IO) approach.

Although the constraints (16) do not affect the computational tractability of (13), they do 

represent a sophisticated view on market dynamics; future returns are well-approximated 

through a small number of macro-economic factors. In what follows, we determine the 

factors numerically via the historical spectrum. One could instead combine our approach 

with the results from Fama and French (1993) where the authors seek to identify the factors 

via economic principles.

3.1. An Example: Applying Inverse Optimization to the Markowitz Framework

Using the same data and investor's view from our previous example, we illustrate the inverse 

optimization approach. First, suppose we solve problem (13) under the additional constraint 

that . The corresponding estimate of the returns, denoted by μ1, and the optimal 

portfolio, denoted by x1, are shown in Table 1.3 As proved in Proposition 2, μ1 equals the 

BL estimate μBL. However, there is a slight difference between the BL portfolio xBL and x1. 

This can be attributed to the approximation (6) used in the BL procedure. Under the inverse 

optimization procedure we present in this example, the updated covariance estimate is 

identical to the historical estimate, not ΣBL.

A second, more interesting example is the MV-IO approach. The first three eigenvalues of 

the historical covariance matrix (see e-companion) account for almost 87 % of its spectrum. 

This suggests a factor model may be an appropriate approximation. Solving (13) under the 

additional constraints (16) yields the estimate μMV and portfolio xMV in Table 1 and 

covariance estimate  in Table EC.3 of the e-companion.4 For an investor who only 

believes that the major market factors are likely to remain constant in the future and that 

returns will be close to a CAPM equilibrium, this portfolio more closely accords with her 

views.

3To solve problem (13) and all other optimization problems in this paper, we use CVX, a package for specifying and solving convex 
optimization problems (Grant and Boyd 2010).
4We have set k = 3, ∊ = 10−8 and α equal to 87% in line with the historical value. Furthermore, when the solution  is nearly 

singular, here and in the remainder, we calculate xMV using the pseudo-inverse of  with a tolerance of 5 × 10−4.
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4. Beyond Mean-Variance Portfolio Allocation

The models of the previous section assume that investors measure risk in terms of standard 

deviation. Alternative measures of risk have been suggested including Value at Risk (VaR), 

Conditional Value at Risk (CVaR), and more generic coherent risk measures. Many 

practitioners believe these measures better represent investor behavior. This section is 

concerned with generalizing the previous results to a model capable of capturing some of 

these measures.

4.1. Definitions

Given a random variable Z, its Value at Risk is defined by 

 for any α ∈ (0, 1). In other words, VaRα(Z) 

is the negative of the α-quantile. One way of measuring portfolio risk would be to posit a 

distribution for r and place a limit on the α% worst case losses with respect to some 

benchmark, such as the risk free rate rf. The corresponding optimization problem has the 

form

(17)

for some value L.

Unfortunately, for an arbitrary distribution of r, the feasible region of (17) may be non-

convex. This poses computational difficulties. A popular alternative which maintains the 

convexity of the problem is to use a coherent risk measure (Artzner et al. 1999).

A function ρ of a bounded random variable Z is a coherent risk measure if it satisfies the 

following conditions:

(a) Monotonicity: If Z ≥ Y a.s., then ρ(Z) ≤ ρ(Y).

(b) Translation Invariance: If c ∈ R, then ρ(Z + c) = ρ(Z) − c.

(c) Convexity: If λ ∈ [0, 1], then ρ(λZ + (1 − λ)Y) ≤ λρ(Z) + (1 − λ)ρ(Y).

(d) Positive Homogeneity: If λ ≥ 0, then ρ(Z) = λρ(Z).

A canonical example of a coherent risk measure is CVaR defined by 

. For a generic coherent risk measure ρ, we formulate 

the portfolio optimization problem

(18)

Notice that this problem is always convex by Property (c) regardless of the choice of 

distribution of r or the coherent risk measure ρ.

We next unify these frameworks by introducing a general portfolio allocation problem.
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4.2. A General Portfolio Allocation Problem

Consider the following optimization problem:

(19)

for some set . Problem (19) is an example of a robust optimization problem. It has a 

natural interpretation; for every possible scenario  we require that the return on our 

portfolio be at least −L. The tractability of a robust optimization problem depends both on 

the structure of the problem and the form the uncertainty set . (See Ben-Tal and 

Nemirovski (2008), Bertsimas et al. (2010) for a general survey.) We will use the notation 

P(L) when we would like to make the dependence on L explicit in (19).

We next show that the problem (19) has many commonly studied problems in asset 

allocation as special cases.

PROPOSITION 3. Consider the following uncertainty sets:

(a) Problem (19) with  is equivalent to the Markowitz problem (1).

In the special case when r is distributed as a multivariate Gaussian, r ~ N(μ,Σ):

(b)
Problem (19) with  and  is equivalent to the Value at Risk 

formulation (17).

(c) Problem (19) with  is equivalent to the coherent risk measure formulation 

(18) for CVaR.

Proof. The proof of (a) can be found in (Bertsimas and Brown 2009, Natarajan et al. 2009). 

All three claims, though, follow directly from the observation that the minimum of a linear 

function over an ellipsoid admits a closed-form solution and the expectations defining VaR 

and CVaR can be computed explicitly when r is Gaussian. We omit the details.

PROPOSITION 4 (Bertsimas and Brown (2009), Natarajan et al. (2009)). For a given probability 

measure  of r and a given coherent risk measure ρ, there exists a convex set  such 

that the Problem (19) with  is equivalent to (18).

The proof of the above proposition is beyond the scope of this paper. We only mention that 

for many common risk measures and probability measures, like CVaRα over a discrete 

distribution, the corresponding set  admits a simple, tractable description.
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4.3. Characterizing Mean Returns in Equilibrium

In this section we generalize the BL framework by constructing BL-type estimates for 

Problem (19). To this end, we must first argue that xmkt is an observable, optimal solution. 

The following proposition follows directly by scaling any given solution.

PROPOSITION 5. Let x*(L) denote an optimal solution to P(L) when it exists.

(a) For any δ ≥ 0, δx*(L) is an optimal solution to P(δL).

(b) If x*(L) exists and is unique for some L > 0, then x*(L) exists and is unique for 

all L > 0.

We now assert that in equilibrium, xmkt is an optimal portfolio.

PROPOSITION 6. Assume that all investors solve P(L) for some investor specific value of L and 

that for some value of L > 0 the solution x*(L) is unique. Then, there exists an L* such that 

xmkt is an optimal solution to P(L*).

Proof. Recall that xmkt is the percentage of total wealth invested in each asset. Let p(l) be the 

fraction of wealth held by investors who have risk preference L = l. By Proposition 5 a we 

have for each asset i = 1, …, n

Letting  and applying Proposition 5 a again yields , as 

desired.

The assumption that x*(L) is unique for some L > 0 can be relaxed in Proposition 6 at the 

expense of more notation. We omit the details.

We now proceed to use inverse optimization to characterize the set of data for which xmkt is 

optimal. For the remainder of this section we will assume  has the form

(20)

Here K is a proper cone (i.e., convex, pointed, closed and with non-empty interior) such as 

the nonnegative orthant, the second order cone or the semidefinite cone. Examples of sets 

describable by (20) are polyhedra and intersections of ellipsoids, which subsume our 

previous examples. Finally, in Natarajan et al. (2009) it is shown that under some additional 

technical conditions on r and ρ, the set  is describable by (20). In this sense, (20) is 

not a very restrictive assumption.

We now prove the main result of this section. We will write x ≥K y whenever x − y ∈ K.

THEOREM 2. Suppose (19) is feasible and has a unique optimum for some L > 0. Assume further 

that  in (20) has a strictly interior point. Then, if all investors solve (19) for some investor 

specific value of L, there must exist values p,Γ, β such that (μ, rf, L) satisfy
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(21)

where K* is the dual cone to K, i.e. K* = {y : y′x ≥ 0 ∀x ∈ K}.

Proof. We first rewrite (19) as a conic optimization problem. Note

For any x feasible in (19), the optimization problem  must be bounded for that x. 

Since the set  has a strictly feasible point, it follows that this optimization further satisfies 

a Slater condition, and, consequently, satisfies strong conic duality. Thus, its optimal value 

is equal to the optimal value of the following program: maxp {g′p : F′p = x, G′p = 0, p ∈ 

K*}. Consequently, we can rewrite the original optimization problem (19) as

(22)

By assumption, this problem has a unique optimal solution for some L > 0, and so by 

Proposition 5 b, it has a unique optimal solution for all L > 0. This implies this problem is 

bounded above and we can apply strong duality again. Its dual problem is

(23)

Finally, by Proposition (6) xmkt is an optimal solution for some value of L. The system (21) 

is a restatement of this optimality in terms of the conditions for strong conic duality. 

Namely, xmkt is primal feasible (Problem (22)), there exist dual feasible variables (Problem 

(23)), and the objective value of the primal and dual problems are equal. Note we can use 

the fact that e′xmkt = 1 to simplify these systems of equations slightly.

As in Section 3 we can also integrate investor views by adding appropriate constraints and 

solving for the minimal perturbation such that the resulting system is feasible. We illustrate 

this idea in the next section.

4.4. The Robust Mean Variance Inverse Optimization (RMV-IO) Approach

In the Markowitz formulation, an investor assumes that future volatility is determined by the 

covariance matrix Σ. An investor without good volatility information may be uncomfortable 

specifying a single matrix Σ. Rather, she might specify a small collection of volatility 

scenarios {Σ1, Σ2, …} and insist that her portfolio not incur too much risk under any 

scenario. In this way, she forms a portfolio robust to her own volatility uncertainty.
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As an example, suppose an investor believes returns are driven by a factor model and can 

estimate these market factors. She might then solve the optimization problem:

(24)

where . Note in the limit 

when k = n and ∊ = 0, Problem (24) is equivalent to Problem (1). The parameters ∊ and α 

determine the “size” of the uncertainty set. They are often referred to as the “budget” of 

uncertainty.

To form a BL-type estimator for (24), we first rewrite Problem (24) as the equivalent 

optimization Problem (19) with the uncertainty set

by using the explicit solution to minimizing a linear function over an ellipsoid. We then use 

Schur-Complements to rewrite  in the form (20). Applying Theorem 2, we conclude that 

there must exist parameters (μ, L, z, Σ, θ, γ, Bi, pi, Γi) for i = 1, …, k such that

Here we define
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It is not clear how to solve this system. In practice, an investor would likely specify some 

parameters a priori. We will specify that k = 3, that vi, and λi have been determined from 

historical analysis, ∊ = 10−5 and that α is the proportion of the spectrum taken by the first 

three eigenvalues historically. Then, this system reduces to a tractable LMI, as we now 

show.

First note z is similar to the parameter δ in the original BL framework. The case where z = 0 

is degenerate and corresponds to an instance where an average investor tolerates no risk on 

her investment and all assets yield the risk-free rate. The more realistic case is when z > 0. In 

this case, the procedure only determines μ up to proportionality since we may always scale 

μ, Σ, z by a positive constant. As in the BL framework, then, we must exogenously specify a 

value for z. Some intuition for this choice stems from the fact that z = (μ − rfe)′xmkt/L, so 

that, like δ, z resembles a kind of Sharpe ratio measuring the risk-reward tradeo of the 

market portfolio.

Note that by assumption the set  is known a-priori. Consequently, we can always take 

, guaranteeing the existence of the necessary parameters γ, γi, 

Bi, θ, pi. This suggests a method for choosing z; choose z such that Lmktz achieves a target 

return for the market portfolio. In what follows we adopt this approach, specifying the target 

return as the equilibrium return on the market portfolio in the Black-Litterman model. This 

is done primarily for ease of comparison between the two models.

Combining these observations yields the simpler condition that  where

Incorporating investor views of the form (3), we specify a “BL”-type estimate by solving the 

optimization problem

We will refer to the resulting estimator as the Robust Mean-Variance Inverse Optimization 

(RMV-IO) Approach. We continue our running example by applying the RMV-IO 

approach. The results are shown as μRob and xRob in Table 1.

Bertsimas et al. Page 17

Oper Res. Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5. Numerical Testing

As previously noted, the IO approach is more flexible than the traditional BL approach. The 

role of numerical testing, then, is not to decide which procedure “outperforms” the other, but 

rather to help identify when and how to use this additional flexibility. Our goal is not to be 

exhaustive, but rather to identify situations in which these models may be useful alternatives 

to the traditional BL model.

Our study proceeds in two steps: First we contrast the three portfolios through simulation 

using stylized examples to isolate the conflating effects of the accuracy of the portfolio 

views and the equilibrium assumptions. Second we backtest these portfolios against a set of 

historical returns.

In order to present the best “apples-to-apples” comparison we have limited ourselves to 

views on returns –the BL model does not support views on volatility– and have imposed 

factor structure on our estimate of the historical covariance matrix for the BL model.5 

Imposing factor structure on the historical estimate in the BL model helps ensure that 

observed differences can be attributed to the IO approach, not simply the use of factor 

structure.6

Before presenting the experiments, we summarize our key insights:

• Both IO portfolios demonstrate out-of-sample variance which is typically better 

than their BL counterparts. This is especially true of the RMV-IO portfolio.

• BL portfolios are more sensitive to the accuracy of the portfolio views than their IO 

counterparts. Consequently, when the views are correct, BL portfolios provide 

slightly higher returns than the IO portfolios. When views are incorrect, however, 

the BL portfolios' performance varies substantially depending on the realization of 

the market. By contrast, the performance of the IO portfolios is more consistent.

• As a result of the first two effects, depending on the risk appetite of the investor, IO 

portfolios may provide a better risk-reward trade-off than their BL counterparts.

• Finally the magnitude of each of these effects is more evident when the view 

represents information which is distinct from the principal market factors. When 

the view represents information about the principal market factors, the methods 

perform very similarly.

5.1. Simulations

Extending our previous example, we construct portfolios using the three approaches for p 
(c.f. (8)) and with L = 12.87% (annualized), which is the expected standard deviation of the 

5Specifically, we have used the estimation method proposed in Section 9.5.1 of Tsay (2005). Namely, we truncate the spectral 
decomposition of the traditional sample covariance matrix at the third largest eigenvalue and add a diagonal matrix to this truncation 
so that the diagonal elements of our estimate and of the sample covariance matrix match. We use this sum of the truncation and 

diagonal matrix as the estimate  in the BL model.
6In fact, we have repeated all of our experiments using the full sample covariance matrix and a rank 3 estimator for the BL model and 
obtained similar results in both cases.
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market portfolio based upon historical estimates. For convenience, we have set rf = 0. All 

other parameters are as previously described.

5.1.1. Sensitivity to Accuracy of View—For simplicity, we first consider the scenario 

where future returns realize according to a distribution whose covariance matrix is identical 

to the historical covariance and whose mean value is in accordance with the CAPM 

equilibrium. In other words, the imposed view is entirely incorrect and the CAPM 

equilibrium holds entirely. The results for various values of q are shown in Table 2.

When q = 0, the additional view is nearly consistent with what is expected in equilibrium 

( ). Thus, the three portfolios are all close to the market portfolio. Differing 

estimates of the covariance matrix cause differences in the amount invested in the risky 

assets, but the Sharpe ratio is similar for the three methods.

As |q| increases, all three portfolios underperform relative to the market because the view is 

increasingly incorrect. For even moderately incorrect views, the BL portfolio has noticeably 

worse returns and Sharpe ratio than either IO approach. These results suggest the two IO 

approaches are more robust to inaccuracy in the views.

This robustness becomes more apparent as the confidence in that view increases. We 

consider fixing q = 1 and , but vary our confidence in the incorrect view τ1. The 

results are displayed in Table 3. The IO portfolios again retain better Sharpe ratios.

5.1.2. Market Perturbation—We next consider a scenario where future asset returns are 

drawn from a distribution whose covariance matrix differs from the historical covariance 

matrix by a small, random additive perturbation.7 Mean returns are then generated according 

the CAPM. This scenario is consistent with a factor model. Viewed as functions of this 

random perturbation, the portfolio's risk and return are random variables. Approximate 

densities for the portfolio return and portfolio standard deviation are shown in Figure 1. We 

have taken q = 5.

The returns of the two IO portfolios have similar densities. They are better on average and 

more concentrated around their means than the BL portfolio. The standard deviations of the 

IO portfolios are also smaller on average and have thinner tails than the BL portfolio. 

Interestingly, the returns for all three portfolios are highly correlated with the realization of 

the view portfolio. In Figure 2 we have plotted the excess returns over the market portfolio 

for each approach as a function of the accuracy of the view p′r–q. The BL portfolio 

demonstrates a stronger dependence. In scenarios where the view is more correct (i.e. p′r – q 

≈ 0), the BL approach outperforms the IO approaches. For these data, however, such 

scenarios are very rare.

7In detail, for each scenario we generate 10 random vectors uniformly from the surface of the unit sphere, say v1, …, v10. We then 

form the matrix  and apply the scaled perturbation . The choice of the constant 5 × 10−3 was based on 
the average difference in trace observed between covariance matrices in the dataset.
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To better understand this linear dependence, we compute the slope of a regression line for 

each set of returns as a function of the view realization. We provide some results in Table 

EC.4 of the e-companion. Overall, the slope is generally positive when , i.e., the view 

predicts p to perform better than it would in equilibrium, and increasing in magnitude in 

both the confidence  and the extremity . In He and Litterman (1999), the authors 

prove these assertions formally for the BL model with a single view under approximation 

(6). Our numerical study suggests similar statements hold, at least approximately, for the 

MV-IO and RMV-IO approaches, but that the dependence is more mild. This insight will 

provide strong intuition when backtesting against a historical data set.

Finally, a more complete picture of the dependence on q as can be seen in Table EC.5 in the 

e-companion where we have summarized portfolio characteristics after 10,000 simulations.

5.1.3. Sensitivity to choice of portfolio p—We next consider a different view 

portfolio

Intuitively, the difference between p and  is that p describes information distinct from the 

information in the principle market factors, while  describes information similar to the 

information in the principle market factors. More formally, the projection of p onto the 

space spanned by the first three eigenvectors of  is small while the projection of  onto the 

same space is large. Specifically,

where v1, v2, v3 are the three largest eigenvalues of . Since both IO approaches constrain 

the eigenvectors of the covariance matrix to be close to their historical values, we expect the 

extra degrees of freedom afforded to them in fitting the covariance matrix are not helpful in 

realizing this view. All three approaches must attempt to realize the view by adjusting the 

estimate of the mean return away from the CAPM equilibrium. Consequently, the portfolios 

perform similarly. We display some illustrative results in Table EC.6 of the e-companion. 

Note that the ratio of portfolio return to standard deviation is nearly identical for all 

methods.

5.2. Backtesting

We consider a dataset of Morgan Stanley Composite Index (MSCI) sector indices from June 

`92 to Dec `09 with the 3-month US Treasury bill as a proxy for the risk-free rate. For each 

month beginning with June '98, we use the previous 60 months of historical data to fit an 

empirical covariance matrix and use that month's market capitalization across the sectors to 

compute the BL, MV-IO and RMV-IO portfolios. Portfolios are constructed to have a target 
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annualized standard deviation L = 15.73%. We include the Markowitz portfolio with this 

target standard deviation in our results for comparison.

To emphasize the differences between the methods, we choose a single portfolio view over 

the entire time horizon, namely p defined by (8). Recall that for a portfolio which lives in 

the space spanned by the first three eigenvectors of the covariance matrix, the performance 

of all three methods is quite similar. The percentage of p which lives in this space ranges 

from 5%–40%. This percentage and the realized returns for this portfolio are plotted in 

Figure EC.1 of the e-companion. The average realized monthly return for p is .03 %.

5.2.1. Static Views—We first consider the performance of the portfolios when q is the 

same fixed constant each period. This is a particularly crude belief, but in some ways it is 

the best way to disassociate the performance of the methods from the system generating the 

views. We calculate the mean return and standard deviation experienced over the data set. 

We plot these metrics in the left two panels of Figures 3. To better understand the risk 

experienced within the period we also compute the maximal standard deviation achieved 

over a rolling window of 24 months, plotted in the rightmost panel of Figure 3.

The results for standard deviation and risk are quite striking. For almost all values of q, the 

IO portfolios adopt less risk than the BL portfolio. Indeed, the difference between the BL 

approach and the RMV-IO approach can be as great as 6% for overall standard deviation 

and 11% for maximal standard deviation. These results are intuitive since both IO 

approaches allow a more flexible volatility estimation, and the RMV-IO approach, in 

particular, protects against worst-case realizations of volatility. Recall that the target 

standard deviation for these portfolios was 15.73%, so that the IO portfolios more accurately 

match the target.

The results for the average return, however, are more subtle. When q = 0, the view is almost 

in accordance with equilibrium, and all three portfolios perform similarly to the Markowitz 

portfolio. One might be tempted to infer that for q < 0 the BL significantly outperforms the 

IO approaches, while for q > 0, it underperforms. This inference, though, heavily depends on 

the choice of out-of-sample window. Compare Figure 3 with Figure 4 where we have 

performed the same experiment, but only averaged over the period Dec. '99 – Dec. '09 (a 

difference of 18 months.) The average return of the BL portfolio demonstrates a very 

different dependence on q. By contrast, the average return of the IO portfolios and the 

standard deviation of all three portfolios is still quite similar.

We feel that this difference can at least partially be explained by our insights from Section 

5.1.2. Since the BL portfolio is very sensitive to the realization of the view, the portfolio 

may experience very large gains and losses. For example, suppose the view predicts p to 

perform much better than it would in equilibrium, i.e. . If the realization of the view 

is also above the market, the BL portfolio will perform well. If the realization of the view is 

below the market, the BL portfolio will perform badly. This high sensitivity can cause large 

swings in the portfolio value. Indeed, the returns on the BL portfolio from June '97 to Dec 

'99 change so dramatically as to cause the difference in Figures 3 and 4. By contrast, since 
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the IO portfolios are less sensitive to the view realization, they are more stable to the choice 

of window. Depending on the investment objectives, investors may prefer this stability.

5.2.2. Systematic Bias—The previous experiment compared the performance of the 

methodologies when views were static and (generally) incorrect. Next we consider the case 

when views are (generally) correct, while still using a realistic view generation mechanism.

To this end, we consider a scenario where the view generation mechanism has a systematic 

bias. Specifically, at each point in time, the mechanism returns the true return of the 

portfolio p in the next period, plus an offset Δq. When Δq < 0, we under predict. When Δq > 

0, we over predict. The case Δq = 0 corresponds to perfect foresight. We plot the average 

return and overall standard deviation for various values of Δq in the left two panels of Figure 

5. We also plot the maximal standard deviation achieved in a rolling 24 month window in 

the rightmost panel. Recall, the target standard deviation for these portfolios is 15.73%.

Not surprisingly, all methods significantly outperform the market portfolio when Δq is 

small. This outperformance is precisely the reason that “BL”-type estimators are very 

popular in pratice. The outperformance can be as much as 20% in annualized return. Due to 

its higher sensitivity the BL portfolio has a higher return than either IO approach when the 

views are very accurate (Δq = 0), but this difference degrades as the view becomes less 

accurate. Moreover, as one might suspect, this extra return comes at the cost of increased 

risk. The BL model generally adopts more risk than either IO approach. The difference can 

be quite substantial, as much as 6% in overall standard deviation and 11% in maximal 

standard deviation.

As in the previous example, one might be tempted to draw inferences about the behavior of 

the portfolios when Δq < 0 versus when Δq > 0, but again these inferences are highly 

dependent on the choice of out-of-sample window and portfolio p.

5.2.3. Length of Historical Window—To test the robustness of our insights, we reran 

the previous two experiments for various lengths of historical window. Generally speaking, 

the precise choice of window does not make a material difference. To illustrate, we have 

plotted the results of these experiments for a window of length 72 months in Figures EC.2 

and EC.3 of the e-companion.

6. Conclusion and Further Research

In this paper we have used techniques from inverse optimization to create a novel, richer, 

reformulation of the Black-Litterman (BL) framework. The major advantage of this 

approach is the increased flexibility for specifying views and the ability to consider more 

general notions of risk than the traditional mean-variance approach. We have exploited this 

flexibility to introduce two new BL-type estimators and their corresponding portfolios, a 

Mean-Variance Inverse Optimization (MV-IO) approach and a Robust Mean-Variance 

Inverse Optimization (RMV-IO) approach. The major distinction between the approaches is 

that the first allows investors to capitalize upon any private information they may have on 

volatility, while the second seeks to insulate investors from volatility uncertainty when they 

have no such information. Computational evidence suggests that these approaches provide 
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certain benefits over the traditional BL model, especially in scenarios where views are not 

known precisely.

These two are not the only estimators that can be constructed from the inverse optimization 

methodology. Indeed, it is possible to construct a number of different “BL”-type estimators 

under different assumptions about investor behavior and market dynamics. For example, one 

might frame an IO estimator based upon shrinkage techniques for the covariance matrix 

(following Ledoit and Wolf (2003)). Shrinkage estimators have demonstrated significant 

benefits in other areas of finance. On the other hand, leveraging the explicit formulation of 

the set  for CVaRα from Natarajan et al. (2009) or Bertsimas and Brown (2009), 

one might consider a CVaRα based estimator where the distribution of r is determined in a 

purely data-driven way. Each of these estimators will enjoy its own particular numerical 

properties.

We believe that computationally and analytically studying the properties of the inverse 

optimization based estimators, especially in conjunction with specific view generation 

mechanisms, is a fruitful and practical area for future research. Given the flexibility and 

simplicity of the method, it should be possible to leverage the inverse optimization approach 

to build robust, high-performing portfolio investment strategies.
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EC.1. The Inverse Markowitz Problem When L = 0

PROPOSITION EC.1. Consider the Markowitz problem (1) and assume we are given a feasible 

solution x*. In addition, suppose that it is known a priori that Σ ≽ 0 and L = 0. Then (μ, Σ, 

rf, 0) solve the inverse problem for (1) if and only if there exists δ such that
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Proof. The “only if” direction is immediate. Take δ = rf = 0, μ = 0, Σ = 0.

For the “if” direction, suppose now that x* satisfies the given system. Since Σ ≽ 0, we have 

that , which implies that , which in turn implies that μ = rfe. Thus, all 

assets have the same mean return. Consequently any feasible portfolio is optimal, which 

implies that x* is optimal.

EC.2. Additional Tables and Figures

Table EC.1

Estimated covariance  between sectors (basis points) as of May 1, 1998.

261.59 81.98 86.24 80.21 22.34 45.74 83.89 170.22 6.83 35.26

81.98 157.88 136.29 125.81 84.26 135.23 132.26 254.68 76.81 24.50

86.24 136.29 179.58 138.87 147.63 169.65 155.77 255.90 149.41 76.54

80.21 125.81 138.87 158.92 102.72 146.82 134.20 211.12 129.38 63.66

22.34 84.26 147.63 102.72 197.46 159.90 158.10 154.78 162.13 98.47

45.74 135.23 169.65 146.82 159.90 239.64 166.05 239.02 171.73 65.17

83.89 132.26 155.77 134.20 158.10 166.05 206.45 226.23 141.88 91.13

170.22 254.68 255.90 211.12 154.78 239.02 226.23 665.95 134.99 2.14

6.83 76.81 149.41 129.38 162.13 171.73 141.88 134.99 280.96 126.22

35.26 24.50 76.54 63.66 98.47 65.17 91.13 2.14 126.22 131.40

Table EC.2

BL estimate ΣBL of sector covariance (basis points).

272.48 85.39 89.83 83.55 23.28 47.65 87.39 177.31 7.10 36.73

85.39 164.46 141.97 131.05 87.77 140.86 137.77 265.29 80.01 25.52

89.83 141.97 187.06 144.66 153.78 176.72 162.27 266.56 155.64 79.73

83.55 131.05 144.66 165.53 107.01 152.94 139.80 219.91 134.76 66.31

23.28 87.77 153.78 107.01 205.67 166.57 164.67 161.23 168.91 102.57

47.65 140.86 176.72 152.94 166.57 249.63 172.97 248.98 178.88 67.89

87.39 137.77 162.27 139.80 164.67 172.97 215.04 235.66 147.81 94.92

177.31 265.29 266.56 219.91 161.23 248.98 235.66 693.70 140.61 2.23

7.10 80.01 155.64 134.76 168.91 178.88 147.81 140.61 292.64 131.48

36.73 25.52 79.73 66.31 102.57 67.89 94.92 2.23 131.48 136.87

Table EC.3

Estimated covariance (2δ)−1  under MV-IO (basis points).

255.79 94.47 87.51 87.40 10.59 37.38 81.88 170.03 9.23 45.24

94.47 142.69 133.07 120.61 53.24 127.85 87.20 276.84 133.20 35.52

87.51 133.07 165.14 141.25 141.60 171.38 162.44 258.92 156.39 76.11

87.40 120.61 141.25 124.54 105.48 142.91 126.78 222.71 146.05 69.35
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10.59 53.24 141.60 105.48 247.09 173.20 233.92 142.14 86.57 83.35

37.38 127.85 171.38 142.91 173.20 193.77 178.30 254.92 176.19 80.00

81.88 87.20 162.44 126.78 233.92 178.30 247.75 221.17 70.14 74.59

170.03 276.84 258.92 222.71 142.14 254.92 221.17 650.32 132.79 −7.77

9.23 133.20 156.39 146.05 86.57 176.19 70.14 132.79 342.52 148.79

45.24 35.52 76.11 69.35 83.35 80.00 74.59 −7.77 148.79 109.59

Table EC.4

Estimated sensitivity to accuracy of the view after a small perturbation.

τ1/τ0 2 0.2 0.02 0.002 0.0002 q −5 −2 −1 0 1 2 5

BL 0.07 1.11 10.82 30.86 32.06 BL −11.03 −4.63 −2.35 −0.05 2.25 4.51 10.82

MV-IO 0.40 0.44 1.61 7.97 9.66 MV-IO −1.62 −1.46 −1.40 0.23 0.57 0.83 1.61

RMV-IO 1.38 1.52 2.84 9.27 10.85 RMV-IO −2.74 −1.82 −1.50 −0.83 1.65 1.96 2.84

In the left panel we fix the view q = 5 and vary the confidence . In the right panel, we fix the confidence  and 
vary the view q.

Table EC.5

Portfolio statistics after a market perturbation 10,000 simulations on portfolio p.

q −10 −5 −2 −1 0 1 2 5 10

Return Mkt 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32

BL 3.27 3.86 4.11 4.16 4.19 4.20 4.19 4.06 3.62

MV-IO 4.26 4.28 4.29 4.29 4.32 4.29 4.27 4.23 4.11

RMV-IO 4.14 4.26 4.30 4.31 4.33 4.25 4.23 4.16 3.99

Std Dev Mkt 12.87 12.87 12.87 12.87 12.87 12.87 12.87 12.87 12.87

BL 16.52 13.99 12.90 12.76 12.75 12.89 13.15 14.52 17.24

MV-IO 13.02 13.07 13.10 13.11 13.15 13.05 13.02 12.92 12.68

RMV-IO 12.93 13.09 13.14 13.15 13.18 13.00 12.95 12.81 12.50

Sharpe Ratio Mkt 33.58 33.56 33.56 33.57 33.57 33.57 33.56 33.57 33.56

BL 19.87 27.61 31.84 32.60 32.86 32.61 31.88 27.99 21.02

MV-IO 32.70 32.74 32.75 32.76 32.86 32.84 32.82 32.73 32.41

RMV-IO 32.03 32.51 32.70 32.76 32.83 32.73 32.67 32.44 31.87

Standard errors for all quantities are smaller than the last significant digit shown.

Table EC.6

Portfolio statistics after a market perturbation 10,000 simulations on portfolio .

q −10 −5 −2 −1 0 1 2 5 10

Return Mkt 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32

BL −1.30 2.39 4.04 4.16 4.19 4.18 4.15 4.03 3.88

MV-IO −1.43 2.22 4.09 4.28 4.32 4.31 4.28 4.15 3.99

RMV-IO −1.30 1.96 3.91 4.15 4.27 4.28 4.23 4.11 3.96
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q −10 −5 −2 −1 0 1 2 5 10

Std Dev Mkt 12.87 12.87 12.87 12.87 12.87 12.87 12.87 12.87 12.87

BL 13.33 13.29 12.85 12.79 12.76 12.75 12.75 12.77 12.81

MV-IO 13.86 13.57 13.09 13.18 13.15 13.15 13.16 13.21 13.29

RMV-IO 13.89 13.54 13.11 13.09 13.09 13.20 13.24 13.31 13.39

Sharpe Ratio Mkt 33.58 33.56 33.56 33.57 33.57 33.57 33.56 33.57 33.56

BL −9.80 17.96 31.45 32.54 32.85 32.79 32.54 31.59 30.28

MV-IO −10.30 16.34 31.21 32.48 32.85 32.77 32.48 31.39 30.01

RMV-IO −9.36 14.51 29.79 31.72 32.59 32.40 31.99 30.86 29.55

Standard errors for all quantities are smaller than the last significant digit shown.

Figure EC.1. 
Degree to which p represents information present in principle market factors and the 

realization of p over the dataset.

Figure EC.2. 
Portfolio characteristics for static portfolio view (June '98 – Dec. '09).
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Figure EC.3. 
Portfolio characteristics for increasingly inaccurate views.
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Figure 1. 
Comparative performance of BL and MV-IO portfolios after a small perturbation in the 

covariance matrix.
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Figure 2. 
Dependence of portfolio return on accuracy of the view.
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Figure 3. 
Portfolio characteristics for static views (June '98 – Dec. '09).
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Figure 4. 
Portfolio characteristics for static views (Dec. '99 – Dec. '09).
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Figure 5. 
Portfolio characteristics for increasingly inaccurate views (June '98 – Dec. '09).
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Table 3

Increasing confidence in an incorrect view.

τ1/τ0 0.2 0.02 0.002 0.0002

Return BL 4.02 4.02 3.45 1.14

MV-IO 4.14 4.11 3.95 2.28

RMV-IO 4.08 4.07 3.84 2.13

Std Dev BL 12.49 12.55 14.50 17.88

MV-IO 12.86 12.78 12.36 8.78

RMV-IO 12.72 12.68 12.14 8.69

Sharpe Ratio BL 32.17 32.02 23.82 6.38

MV-IO 32.16 32.16 31.94 26.03

RMV-IO 32.11 32.09 31.66 24.55
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