
A Graph-Theoretic Approach to a Class of Integer-Programming Problems
Author(s): J. F. Desler and S. L. Hakimi
Source: Operations Research, Vol. 17, No. 6 (Nov. - Dec., 1969), pp. 1017-1033
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/168323 .
Accessed: 15/10/2011 15:55

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/168323?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

A GRAPH-THEORETIC APPROACH TO A CLASS OF

INTEGER-PROGRAMMING PROBLEMS

J. F. Desler

Shell Development Company, Houston, Texas

and

S. L. Hakimi

Northwestern University, Evanston, Illinois

(Received July 31, 1968)

This paper presents an efficient algorithm for finding a minimum-weight
generalized matching in a weighted bipartite graph. Computational evi-
dence is given that indicates that the time required to find a least-cost as-
signment of n jobs to n workers goes roughly as n2 for 1On<-50. It is
shown that this algorithm can be used to solve effectively the well known
transportation problem of integer programming where the objective func-
tion is convex-separable. Finally, the paper gives an algorithm that applies
the same concept to a graph that is not necessarily bipartite.

A GRAPH G is a collection of two types of entities, a set of m branches
B =b1, b2, ..., bm} and a set of n vertices V=Ivi, V2, **, Vn}. Associ-

ated with each branch bkEB are two distinct vertices viEV and vJEV called
the ends of bk. Such a branch bk may be represented by the unordered pair
(vi, vj), and such a pair of vertices is said to be adjacent. A branch is said
to be incident at its ends. A subgraph gCG is defined by a subset of the
branches of G, and g has the same vertices as does G. Each branch of g
has the same two ends as it has in G. By this definition of a subgraph, the
set-theoretic operations on subgraphs are meaningful. In this connection,
we define

gEDg2=(g1Ug2)-(glng2), (1)

where gi and q2 are subgraphs of the graph G. By the degree d(vi, g) of a
vertex vi of a subgraph gCG, we mean the number of branches of g that are
incident at vs. Let gi and g2 be any two subgraphs of a graph G, and let
vi be any arbitrary vertex of G. The reader can convince himself of the
following identity:

d(vi, g~fl, g2)=d(vi, gl)+d(vi, ging2)-d(vi, ging2) (2)

A graph G with vertices V and branches B will be denoted by the ordered
pair [V, B]. Given a graph G= [V, B], it is understood that a branch-

1017

1018 J. F. Desler and S. L. Hakimi

vertex incidence relation exists. A weighted graph is a graph G= [V, BI
together with a weight function w: B-*R that assigns a real number w(bi) ER
to each branch biEB. If g is a subgraph of the weighted graph G, then the
weight of g, w(g), is the sum of the weights of the branches of g. A bi-
partitell (or simple 21) graph is a graph G [V, B] in which there exist two
mutually disjoint subsets of vertices Xc v and YcV such that XUY= V
and such that each branch bkEB is incident at a vertex in X and at a vertex
in Y. Such a bipartite graph G will be denoted [(X, Y), B].

Let G=[(X, Y), B] be a weighted bipartite graph where IXj=p and
I q. Let us assume that we are given two sets of nonnegative integers
a= { al, a2, ..., aOp} and {=$, IA, **, 2 } called the degree constraints on
X and Y respectively. We say that the constraints are feasible if there
exists a subgraph g G such that d(xi, g) = ai for all xiEX and d(yj, g) = flj
for all ypeY. Such a subgraph g is called a feasible subgraph of G. If G
contains no feasible subgraphs, then the constraints are said to be infeasible.
We would like to determine whether or not the given degree constraints
a and A on X and Y are feasible. If they are, then from among all feasible
subgraphs of G we would like to find one of minimum weight.

An important application of the above problem is the least-cost assign-
ment problem. In this problem p = q, and we associate the vertices in
X = { Xl, x2, . . , Xp} with p workers and the vertices in Y= I y, yp, * *, Yr1
with p jobs. A branch bk = (xi, yj) in G signifies the willingness and ability
of the worker corresponding to vertex xieX to do the job corresponding to
vertex yjEY. The weight w(bk) of branch bk is the total cost of having
worker xi do job yj. If we set ai = f= 1 for i- 1, 2, ** *, p, then a mini-
mum-weight feasible subgraph g* CG corresponds to a least-cost assign-
ment of jobs to workers. In graph-theoretic terms the subgraph g de-
scribed above (that is, a subgraph in which every vertex has degree one)
is called a matching.

Graph-theoretic problems of finding optimal matchings and optimal
degree-constrained subgraphs have been considered by, among others,
NORMAN AND RABIN,13] BERGE,]2 and, more recently, EDMONDS 14'] AND

GOLDMAN."' Edmonds"5' gave an algorithm for finding a minimum-
weight matching in a weighted graph, and some of his work was modified
by WITZGALL AND ZAHN."] It should be pointed out that the work of
Edmonds dealt with the problem of finding optimal matchings in weighted
graphs, while our main results apply to the problem of finding optimal
degree-constrained subgraphs in a weighted bipartite graph. Each of
these problems is a special case of the problem of finding optimal degree-
constrained subgraphs in a weighted graph. In Section VI we show how
the ideas introduced in this paper apply to this more general problem.

For the case where the graph is bipartite, it can be shown that the

Graph Theory and Integer Programming 1019

problem of finding a minimum-weight feasible subgraph is equivalent to
the HITCHCOCK [8] problem of integer programming. Such problems can
be solved by the Hungarian method of KuHN 19 01 FORD AND FULKER-
SONlfll and MUNKRESx2s have given algorithms that are based on Kuhn's
idea and that can be used to solve the Hitchcock problem. In Section III
we show that our algorithm has an upper bound of n4 on the number of
operations necessary to find a least-cost assignment of n jobs to n workers.
This same upper bound is reported by Munkres['21 for his algorithm, but
his 'scan a row' or 'scan a column' are not single operations, but, rather,
require n comparisons each. In Section IV, we present a basic idea leading
to a significant improvement in the efficiency of the algorithm. We offer
computational evidence using this revised algorithm that indicates the
time required to find a least-cost assignment of n jobs to n workers goes
roughly as n2 for 10? n 50. In Section V we show that our method can
be used to solve the well known transportation problem of integer program-
ming, where the objective function is a sum of convex functions, each in
one variable. Finally, it is shown that the theoretical basis of our method
extends to the case of nonbipartite graphs.

T. ALGORITHM

AN elementary path between vertices vt and vj in a graph G is a subgraph
consisting of a sequence of branches represented by (vi, vk1) (VkL, Vg* -)

(v1,_, vi), where vertices vVktvv2, * J vj are distinct, with the
possible exception of vi and vi. If viXv-, then the elementary path is
called a circuit. A directed graph is a graph, each of whose branches has
assigned to it a definite orientation. When a directed graph is given by
means of a diagram, it is common practice to place arrowheads on the
branches in order to signify the orientations. If bk is a branch of a directed
graph G= [v, B] and the arrowhead on bC points from vifV to veV (where
vt and v1 are the ends of bk), then bk may be represented by the ordered pair
(vi, v1). An elementary directed path from vertex vi to vertex vi in a directed
graph is a subgraph consisting of a sequence of branches represented by
(vi} Vkl)(Vkl, Vk2) .(VkA,- vj), where vertices vi, ves, Vk,, , v vi are
distinct, with the possible exception of vi and vp. If vi=vi, then the ele-
mentary directed path is called a directed circuit.

Let g be a subgraph of a weighted graph G= [V, B]. We define a
weighted graph Gig by assigning new weights to the branches of G. Since
G and Gig have the same structure (that is, they have the same branches,
vertices, and branch-vertex incidence relations), there should be no con-
fusion if we say that a subgraph of G is a subgraph of GJg and vice versa.
Let w() and w(* 1g) be the weight functions (their domains being the set
of all subgraphs) for G and Gig, respectively. If h is any subgraph, then

1020 J. F. Desler and S. L. Hakimi

we define
w(hfg) ==w(hng) -w(hng). (3)

Since a single branch is a subgraph, the weighted Gig is well defined. We
have w(btig) =w(bi) if bieg and w(b~ig) = -w(bi) if biEg. Let hi and h2
be any two subgraphs of G. The reader can convince himself of the follow-
ing elementary property:

w(hEh2) = w(hi) +w(h2ihj). (4)

If G= [(X, Y), B] is a weighted bipartite graph and g G, then we define
a weighted directed graph Gig by placing orientations on the branches of
Gig as follows: (1) if bk is a branch of g, then bk in Gig is directed from
X to Y, and (2) otherwise bk is directed from Y to X.

Let G= [(X, Y), B] be a given weighted bipartite graph, where X=
{XI, x2, . . ., Xp} and Y= {Y1, Y2, * * *, y}. Let a = {cal, a2, * * *, ahp} and A=
f10, /2, * I, 1q} be given degree constraints on X and Y respectively. Let

g be a subgraph of G. We define two sets of vertices with respect to g:

U(g) ={xjEXid(xi, g) <ai}U{yj1EYd(yj, g) <3j},

0(g) = {xjEXd(xi, g) >ai} UL{yjEYd(yj, g) > #3j}.

Clearly, g is a feasible subgraph if and only if U(g) =4) and 0(g) =4. The
sets U(g) and 0(g) are, respectively, called the set of under-exposed vertices
and the set of over-exposed vertices with respect to g. We would like either
to find a minimum-weight feasible subgraph g* 5G or to determine that
the constraints are infeasible. The following conditions are necessary,
but not sufficient, for the feasibility of the constraints:

(1) d(x, G)?:a for all xiEX,
(2) d(yj, G)?(3j for allyjEY,
(3) t_ at-i=~~

Throughout the remainder of this paper we will assume that these condi-
tions are satisfied. The algorithm given below will produce the desired
subgraph g*, if the constraints are feasible, and will determine that the
constraints are infeasible otherwise.

ALGORITHM

Step 1. Let go be a subgraph of G consisting of fj least-weight branches incident
at yj for j = 1, 2, 3, * * *, q. (Therefore go is a minimum-weight subgraph of G that
satisfies d(yj, go) =flj for all yjEY.)

Step 2. Let gi be the subgraph of G obtained after i ?0 cycles of the algorithm.
(We start with i = 0.) If O(g) = cb, then g= g*, and the algorithm is terminated.
Otherwise, choose x8,EO(gj), and go to Step 3.

Step 3. Find the least-weight elementary directed path in Gjgi that begins at x8,

Graph Theory and Integer Programming 1021

and ends at a vertex of U(gi). If no such path exists, terminate the algorithm, for
the constraints are infeasible. Otherwise, let pi denote the path found, and go to
Step 4.

Step 4. gi+1 =gi ?pi. Return to Step 2.

In the next section, we prove that the steps in the algorithm are mean-
ingful and that they do not constitute any computational difficulty. When
the algorithm is allowed to run until it is terminated, either the desired
subgraph is obtained or it is determined that no feasible subgraph exists.
Before that, however, we give a simple example to demonstrate the steps
involved in the algorithm.

I 1.0 X -1.0 I 1.0 xi t~py1 x, * y1 x1 y1

2.0 5 2.0 1.5 2. 1.
33.0 2.0 3.0

5

X2 ,,> Y2 X2 Y2 X2 Y2

2.0 5 2.0 -1.5 2.0 1.

y30 X3 Y3, X3 Y3 X3 Y3

~~~~~1 5 1 .5 l50.5 
X4 ,,,,>Y4 X4 , Y4 X4 Y4 

-.0.i5 I05 -05 
X5 y5 x5 yY X5A 

0.5 0.5 0.5 

a b c 
Fig. I. A simple demonstration of the steps involved in the algorithm. 

Example. Consider the weighted bipartite graph shown in Fig. la. Assuming 
a= = 1 for i = 1, 2, 3, 4, 5 and applying Step 1, we obtain the subgraph go that 
is shown to consist of the darkened branches in Fig. la. Clearly O(go) = {Ix I and 
U(go) = {ax4. The graph Gigo is shown in Fig. lb, and the darkened branches of 
this graph correspond to the least-weight directed path from xi =x,, to X4. Step 4 
yield the subgraph g, indicated by the darkened branches in Fig. le. 0(g1) =4. 
Thus, returning to Step 2, we have that g* =gi. 

1I. PROOF OF CONVERGENCE OF THE ALGORITHM 

LET G= [V, B] be a graph. A subgraph eSG is called an Euler graph"13' 
if every vertex of e has even degree. We say that e is an alternating Euler 
subgraph with respect to gCG if d(vi, eng) = d(vi, eng) for all viEV. An 
alternating Euler subgraph e is an Euler graph, since d(vi, e) d(vi, eng) + 
d(vi, enf) =2d(vi, eng) for all viEV. We say that paG is a go-alternating 
path from vi to vj if 

(1) d(v, pfno) =d(vk, plg) for all Vke[V-{vi, vj], 
(2) d(v ,pfno)=d(vipfng)-1, and 

Ac3)rq .~~ eno) = d7rv . engy + l 



1022 J. F. Desler and S. L. Hakimi 

An alternating Euler subgraph eCG= [V, B] with respect to gcG is said to 
be an alternating circuit with respect to g if the only alternating Euler sub- 
graph strictly contained in e is the null subgraph. If a circuit cOG is an 
alternating circuit with respect to g, then the branches of c alternate be- 
tween being in g and in g. That is, if branch (vi, vj) is in cng, then the 
other branch of c incident at vs is in U. Conversely, if (vi, vi) CAng, then 
the other branch of c incident at vi is in g. The alternating path was intro- 
duced by PETERSEN[141 and is used by both Berge 2' and Ore.[1] A gg- 
alternating path pC5G is said to be an elementary gg-alternating path if the 
only alternating Euler subgraph with respect to g strictly contained in p 
is the null subgraph. 

Let g be a subgraph of a bipartite graph G= [(X, Y), B]. If cOG is an 
alternating circuit with respect to g, then c is a circuit of G, and if p CG is 
an elementary gg-alternating path from xiEX to xjEX, then p is an ele- 
mentary path of G. Furthermore, there is a one-to-one correspondence 
between elementary directed paths in Gjg that begin and end at distinct 
vertices of X and elementary gg-alternating paths that begin in X. 

Now we briefly outline what we must prove. We must prove that 
when the algorithm is allowed to run until it is terminated, either the de- 
sired subgraph is obtained or it is determined that no feasible subgraph 
exists. Steps 1 and 4 of the algorithm require no proof. In Step 2 we 
must prove that if O(gi) =1, then gi is a minimum-weight feasible subgraph 
of G. In Step 3 we must show that O(gi) if implies that U(gi) 4T, 
and we must show that we can find the least-weight directed path pi in 
Gjgi. We must prove that, if the algorithm is terminated in Step 3, then 
the constraints are infeasible. Finally, we must prove that the algorithm 
is finite. 

Let g be a subgraph of G=[(X, Y), B] and let a={aI l, a2, . . . 
I ap} and 

= 01i, 2, .. 
Iq} be the degree constraints on X and Y, respectively. We 

define the index of over-exposure, 0(g), as follows. 

0(g)= Exeo(g)flx [d(xi, g)-a]i+E?jfo(w)ny [d(yj, g)-0j]. (5) 

LEMMA 1. Let gi be the subgraph of G= [(X, Y), B] obtained after i>O 
cycles of the algorithm. Then d(yj, gi) =/j for all yjEY, and 6(gi) =0(gii)- 
1. 

Proof. gi=gi-,(Dpi-1, where pi-, is an elementary gi-igi-i-alternating 
path from xs,_,O(gij) to xtj_1EU(gi_-). The lemma follows directly 
from (2), from the definition of an alternating path, and from the fact that 
d(yj, go) =3j for all yjAY. 

A direct consequence of Lemma 1 is that O(gi)cX and U(gi)CX. 
LEMMA 2. Let gi be the subgraph of G=[(X, Y), B] obtained after i>O 
cycles of the algorithm. Then O(gq) At implies that U(gj) Atb. 



Graph Theory and Integer Programming 1023 

Proof. This lemma follows directly from our assumption that 
Ek-1a C ik:; #j, from the fact that EkZ1 d(xk, gi) = Ej-l d(yj, gi), 
and from Lemma 1. 
THEOREM 1. Let C= [V, B] be a weighted graph, and let g G be any sub- 
graph of G. There exists a subgraph hCG such that d(vt, h) =d(v g) for al 
vieV and such that w(h) <w(g) if and only if there exists an alternating Euler 
subgraph eCG with respect to g such that w(e g) <0. 

Proof. Let e CG be an alternating Euler subgraph with respect to g 
such that w(e/g) <0. By (2), d(vi, gEDe) = d(vi, g) for all vid7. By (4), 
w(g(De)=w(g)+w(e/g). Therefore w(gGDe)<w(g). Conversely, let 
h C be a subgraph such that di(vi, h) = d(v , g) for all vieV and such that 
w(h)<w(g). In (2) let gi=g and g2=gE~h. Therefore, d(v ,flnrgEh])= 
d(vi, gn[gEAh]) for all viW, so that gEDh is an alternating Euler subgraph 
with respect to g. By (4), w(gGh/g) =w(h)-w(g) <0. 
THEOREM 2. Let G= [V3 B] be a weighted graph, and let g be a subgraph of 
G such that no alternating Euler subgraph of G with respect to g has negative 
weight in GCg. Let p be a gag-alternating path from vieV to vjeV that has least 
weight in GCg. Then no alternating Euler subgraph of G with respect to 
gEp has negative weight in GI(g eDp). 

Proof. Let IVI=n, and let IB/=m. Add a vertex v.+, to G, add a 
branch bm+i between v1 and v.+1, and add a branch bm?2 between vi and 
Vn+,. Let the weight of bm.+ be w(pjg) and let the weight of bm+2 be zero. 
Let G'= [VU{vn+1}, BU{bm+i, bm+2}] be the weighted graph thus defined, 
and let g'=gU{bm+i}. There are no alternating Euler subgraphs of G' 
with respect to g' that have negative weight in C'lg', for the existence of 
such a subgraph would contradict the conditions on p. By construction, 
eI=pUfbm+], bm?2} is an alternating Euler subgraph of G' with respect to 
g' and w(eIg') =O. Let g*=gI(el. By (4), w(g*)=w(g'). By Theorem 
1, there exist no alternating Euler subgraphs of G' with respect to g* that 
have negative weight in G'lg*. Removing branches cannot create new 
Euler subgraphs, and gEfp g*-{b,+2}. Therefore no alternating Euler 
subgraph of G with respect to g Gp has negative weight in Gl (g Ep). 
THEOREM 3. Let gi be the subgraph of G= [(X, Y), B] obtained after iO0 
cycles of the algorithm. If O(gj) =4 then gj=g*. 

Proof. Clearly there are no alternating Euler subgraphs of C with 
respect to go that have negative weight in GCgo. By repeated applications 
of Theorem 2, there are no alternating Euler subgraphs of C with respect 
to gi that have negative weight in Gjgj. If O(gi) =4', then gi is a feasible 
subgraph of C. By Theorem 1, gi is a least-weight feasible subgraph of G. 

Let g be a subgraph of the bipartite graph G= [(X, Y), B]. By con- 
struction, an elementary directed path pCGjg which begins at a vertex 
x8EX and ends at a vertex xteX is an elementary g#-alternating path in G 



1024 J. F. Desler and S. L. Hakimi 

from x, to xt. Conversely, an elementary go-alternating path in G from 
x, to xt is a directed path in Gig that begins at x, and ends at xt. Let gi 
be the subgraph obtained after i? 0 cycles of the algorithm. By Theorem 
2, there exist no alternating circuits in G with respect to gi that have nega- 
tive weight in Gfgq. Therefore, Gjgq contains no negative-weight directed 
circuits. Ford and Fulkerson"111 have given an efficient algorithm for 
finding least-weight directed paths in a weighted directed graph. They 
prove that the algorithm converges if the directed graph contains no nega- 
tive-weight directed circuits. Using their algorithm, we can find the least- 
weight directed paths in Gjgq, as is required in Step 3 of our algorithm. 
It should be pointed out that Gjgi (i> 1) can be obtained directly from 
Gjgi- by reversing the orientation and changing the sign of the weight of all 
branches in pi-,. 

Our algorithm is finite by Lemma 1 and by the fact that 0(go) is finite. 
It remains to be shown that if the constraints are feasible and if O(q) (g, 
then there exists a directed path in Gjgi that begins at xzicO(gi) and ends 
at a vertex of U(g,). The proof of convergence of the algorithm is com- 
pleted with the following theorem. 
THEOREM 4. Let gi be the subgraph of G= [(X, Y), B] obtained after i>O 
cycles of the algorithm, and let xz EO(gq). If the constraints are feasible, then 
there exists an elementary giqi-alternating path in G from x8j to some vertex 
of U(gq). 

Proof. Let g be a feasible subgraph of G, and consider g EDgi. Remove 
from gq gi any alternating Euler subgraphs with respect to gi, and call the 
remaining subgraph h. It follows from (2) that d(v, hngi) = d(v, hngi) 
for all vE{[XUY]-[U(gi)UO(gi)]} and that d(v, hnfi)<d(v, hngi) for all 
VEO(gq). Let pgh be an elementary gigi-alternating path that begins at 
x8j and contains a maximum number of branches. Let us denote p= 
(xs8, Yk1) (Yk1, xk2) (xk2, Yk3) .(yn, Xky). Suppose Xk.E[X-U(gi)]. 
There exists a branch (Xkn, Ykn+1) of hngi incident at Xkn, since d(Xkn, 
hngf) >d(xkn, hngi) and since (Ykn, Xkn)cEhnfi. Since h contains no 
alternating Euler subgraphs with respect to gi, d(ykn+1, p) =0. There 
exists a branch (Ykn-l? Xkn+l) of hnfi incident at Xkn+l, since d(ykn+l, 
hngi) = d(ykn+l, hOmg). Since h contains no alternating Euler subgraphs 
with respect to gi, d(xk.+1, p)=O. But then p'=pU{f(xkn Ykn+l)Y (Ykn+ly 

Xkn+l)} is an elementary gigi-alternating path contained in h, beginning at 
xsi and containing more branches than p. This contradicts the maximality 
of p. Thus Xk.CU(gi), and the proof is complete. 

III. EFFICIENCY OF THE ALGORITHM 

WE WANT to obtain an upper bound on the number of operations that 
would be required if our algorithm were used to find a minimum-weight 
degree-constrained subgraph of a bipartite graph. Let G=[(X, Y), B] 



Graph Theory and Integer Programming 1025 

be a given weighted bipartite graph, where XI =p and IYI=q, and let 
(X= {(Xl, a02, *.*.*, oip} and /= {Ali, /32, , j be given degree constraints on X 
and Y respectively. Without loss of generality we assume that p = min(p, 
q). It follows that there exists no elementary directed path in Gigs that 
contains more than 2p branches, where gi is the subgraph of G obtained 
after i >0 cycles of our algorithm. The process of labeling vertices (Ford 
and Fulkerson's algorithm), which may be used in order to find the least- 
weight directed paths in Gjgi, involves comparing vertex weights. At each 
step of their algorithm, at least one vertex receives its final label. It can be 
shown that no more than p (q-j+ 1) comparisons are required at the 2jth 
step, and no more than q(p-j) comparisons are required at the (2j+1)th 
step. The index j runs from 1 through p-i, since no directed path con- 
tains more than 2p branches. Therefore, the number of comparisons M 
that are required in order to find the least-weight directed path in Gig, is no 
more than 12 p(p-1)(3q-p+2). 

It is elementary to show that the initial index of over-exposure, 0(go), is 
less than N o f= a -1 #j. Therefore, in order to find a least-weight 
feasible subgraph of G= [(X, Y), B], Step 3 of our algorithm is used less than 
N times. Thus, the time required for our algorithm should be, at the very 
worst, proportional to N(12 JXJ2) (31 I -I XI) . If we apply this bound to 
the job-assignment problem where IXI= Yi =N, we see that the number of 
comparisons required by our algorithm is at worst N4. 

Munkres [12J gives an algorithm that can be used to solve the job-assign- 
ment problem; it has a theoretical upper bound of N4 to its speed. We have 
shown that our algorithm has the same theoretical upper bound. KURTZ- 
BERG""51 has shown that the computing time for Munkres' algorithm goes 
roughly as N3. The computation time for our algorithm will be discussed 
in the next section. 

IV. INCREASING THE EFFICIENCY OF OUR METHOD 

THE NUMBER of operations required for our algorithm to find a minimum- 
weight feasible subgraph of a weighted bipartite graph is strongly dependent 
on the method used for finding least-weight elementary directed paths. Our 
algorithm of Section I does not specify how to find such paths, so we are free 
to use any means at our disposal. In this section we present results that 
significantly increase the efficiency of our method. The algorithm of Ford 
and Fulkerson that can be used to find least-weight directed paths will be 
referred to as the labeling process. As a result of Theorem 5 below, we can 
make two changes in the algorithm as it was interpreted in the last section. 
First of all, we may be able to reduce the index of over-exposure by more 
than one with a single labeling. Second, subsequent labeling processes 
can be initiated at an advanced stage. 

Let G=[(X, Y), B] be a weighted bipartite graph, where IXj=p and 



1026 J. F. Desler and S. L. Hakimi 

I Yj = q, and let a= {ai, a2, * * * ap} and A= {AI, /2, , 3q} be the degree con- 
straints on X and Y respectively. 

REVISED ALGORITHM 

Step 1. Choose go as in Step 1 of the algorithm of Section I. If O(go) =1, then 
g = go, and the algorithm is terminated. Otherwise, initiate the labeling process at 
each vertex of 0(go). That is, set the weight of the label at each vertex of O(go) 
equal to zero, and set the weight of the label at each vertex of X -O(go) equal to 
infinity. Go to Step 2. 

Step 2. Let gi be the subgraph of G obtained thus far. (We start with i = 0.) 
Set the weight of the label at each vertex of Y equal to infinity. Apply the labeling 
process to G giq. Go to Step 3. 

Step 3. Set k = i. Now the vertex labels can be used to determine least-weight 
elementary directed paths from vertices in O(gi) to vertices in X-O(gq). Let 
p(xj) for xjEX - O(gi) be the elementary directed path from s(xj)EO(gq) to xj that is 
indicated by the labels. Let U(gi) = {xj,, xj2, *.., xj. J. By a slight modification 
of Theorem 4, the label on xj, must have a finite weight, or the constraints are in- 
feasible. Let gq+i =qgip(xj,). Go to Step 5 if n = 1, and go to Step 4 if n >1. 

Step 4. Do this step for m=2, 3, ..., n. If p(xjm)n[U-LT p(xj1)] =4 and 
s(xjm)EO(gi+m-), then gi+m-gi+m-i fp(xjm). Otherwise gi+m=gim-i. 

Step 5. If O(gi+n) =?, then q* =gi+n, and the algorithm is terminated. Other- 
wise do the following for each XmEX -0(gi). Let P = U Zl p(Xj1). If p(xm) nP 
4, do not change the label on xm. Otherwise, set the weight of the label at xm equal 
to infinity. Set the weight of the label at each vertex of O(gi) -O(gi+n) equal 
to infinity. Set i =k +n, and go to Step 3. 

To prove that this revised algorithm will find the desired subgraph g*, it 
is sufficient to prove the following. If pi and P2 are least-weight branch 
disjoint elementary directed paths in Glgi from zi, Z2EO(gi) to xl, X2EX- 

O(gq), then P2 is a least-weight elementary directed path in Glgi(Dp1 from 
Z2 to X2. 

Let G= [V, B] be a given weighted graph, and let U be a nonempty 
proper subset of V. We will let U= {U1, U2, *, Uk} and V- U= {vl, v2, 
..., Vn. Let g SG be a subgraph such that there are no alternating Euler 
subgraphs of G with respect to g that have negative weight in Gig. Now 
let psijG be a gg-a]ternating path from us to vj that has least weight in Gjg. 
We assume such paths exist between every uiEU and vjEV- U. If, in fact, 
there is no gg-alternating path pij from ui to vj, then w(pijlg) = oo . We say 
that vj is a gg descendant of ui with respect to U if w(pijlg) ?w(pmjjg) for 
lmro<k. A gg-alternating path p from ui to v1 that satisfies w(pfg) < 

W(pmjlg) for 1? m ? k is called a gg-descendant path from ui to vj with respect 
to U. 
THEOREM 5. Let G= [(X, Y), B] be a weighted bipartite graph, and let g5G 
be a subgraph such that no alternating Euler subgraph of G with respect to g has 



Graph Theory and Integer Programming 1027 

negative weight in Gig. Let Z be a nonempty proper subset of X. Let pi be a 
gg-descendant path from zlEZ to xlEX- Z with respect to Z, and let P2 be a gg- 
descendant path from Z2EZ to X2EX-Z with respect to Z. (The vertices zi and 
z2 need not be distinct, nor do the vertices xi and X2.) If pinp2 = 4J, then P2 is a 
g E pi, g( pi descendant path from z2 to x2 with respect to Z. 

Proof. Let n= YI , and let m= IBj. Add two vertices y.+1 and yn+2 to 
G, add a branch bm+j between Yn+1 and xi, add a branch bm+2 between Yn+i 
and zi, add a branch bm+3 between yn+2 and x2, and add a branch bm+4 be- 
tween Yn+2 and Z2. Let w(bm+i) =w(pljg), w(bm+2) = 0, w(bm+3) =W(p21q) 
and w(bm+4)=O. Let G*=[(X, Y U[yn+l1 Yn+2}), BU {bm+i, bm?+2 bm+3, 
bm+4}] be the weighted bipartite graph thus defined, and let g*=gU {bm+i, 
bm+31. It can be shown that there exists no alternating Euler subgraph of 
G* with respect to g* that has negative weight in G*lg*. Let ep=piU {bm+i, 
bm+2}, and let g'= g*EDei. By construction, el is an alternating Euler sub- 
graph of G* with respect to g*, and w(ellg*) = 0. By Theorem 1, there are 
no alternating Euler subgraphs of G* with respect to g' that have negative 
weight in G*lg'. Suppose P2 is not a g'g'-descendant path in G* from z2 to 
x2 with respect to Z. Then there exists a g'g'-alternating path from Z3EZ 
to X2 such that W(p3Jg') <W(p2lgJ). If bm+lqp3, then p3 EDel is a gg-alternat- 
ing path from z3 to x2 such that W(p3Eeljg) <W(p2Jg). This is a contradic- 
tion. If bm+19p3, then p3 is a gg-alternating path from z3 to X2 such that 

W(p31g) <W(p2jg). This is a contradiction. Therefore P2 is a g'g'-descend- 
ant path in G* from Z2 to x2 with respect to Z. Therefore P2 is a g pl, 
gqDp1-descendant path in G from Z2 to X2 with respect to Z. 

The experimental data in this part was obtained by considering ran- 
domly generated, fully connected, n by n bipartite graphs. For each n and 
for each degree constraint, 20 problems were generated and solved. The 
average CDC 6400 computer times given in Table I and in Fig. 2 do not 
include the computer time required to generate the graphs, nor do these 
times include input-output times. The random numbers generated were 
integers between 0 and 999. 

From Fig. 2 we see that the computer time needed to find a minimum- 
weight feasible subgraph varies roughly as n2, a significant improvement 
over the Munkres algorithm, as reported by Kurtzberg. The numbers of 
comparisons made during the labeling process were counted for these same 
tests. A plot of n versus the number of comparisons was made[161; and the 
number of comparisons varies roughly as n2 5 for 10?< n ?50. For very 

2.5 
large n, therefore, we would expect the computer time to vary like n 

V. THE TRANSPORTATION PROBLEM 

IN THIS SECTION, we show that the transportation problem of integer pro- 
gramming can be solved through the use of our algorithm. Two versions of 



1028 J. F. Desler and S. L. Hakimi 

the transportation problem, Ti and T2, are given below. Ti is more gen- 
eral than the classical transportation problem, which is often referred to as 
the Hitchcock-Koopmans Transportation Problem.[17] Its increased gen- 
erality is due to the fact that the objective function is convex-separable 
rather than only linear as in the classical transportation problem. An ob- 
jective function z= , -n 

fj(xj), where is a convex function, is said to be 
convex-separable. [18] 

TABLE I 

CDC 6400 COMPUTER TIME (IN SECONDS) USED TO FIND AN OPTIMAL 

FEASIBLE SUBGRAPH 

All de- n=10 n=20 n=30 n=40 n=50 
gree con- 

straints . 
are equal Aver- Ex- Aver- Ex- Aver- Ex- Aver- Ex- Aver- Ex- 

to Y age tremes age tremes age tremes age tremes age tremes 

0. 020 0. 90 0 I88 0. 312 0. 566 
y = I 0.027 o . ii6 o .262 0 0 436 0 0 744 

0.040 o.I62 0.426 o.6oo I.IOO 

y = 2 0.036 
0.024 

0.I54 
o.II8 

0.350 
.278 

o0.620 
0 

0472 I.o28 
o.844 

0.046 o.i98 0.550 0.900 I*354 

-Y = 3 0,045 
0.030 

0 I50 467 
374 

o.820.578 6 0.954 

0.056 0.250 0.654 0.5 I.I24 I.914 

7 = 4 0,056 0.040 0.226 O.I64 0528 o-388 I.006 o.832 I.60g I306 
0.090 0.304 0.726 I.402 2.I04 

Y = 5 o. o6i 0.048 0.250 0.178 0 ?8 0.43 0 0.766 892 
* 306 

0o. o8o 0.298 0.776 I.150 i.6i8 2.380 

-y = 6 0.o64 0.052 0.289 0.234 0664 0.526 o 
216 0.946 2.I97 

i.620 

o.o86 0.354 o.802 I I 754 3.IIO 

There are several sets of doubly subscripted numbers or variables in the 
discussion below. In certain places it will be more convenient to represent 
these sets by the obvious associated matrix. When we consider these as 
sets, they will be represented by the lower-case letters, and when we con- 
sider these as matrices they will be represented by the corresponding upper- 
case letters. For example, if w= {wijlli~p and 1_j<qJ, then W= 
[wij] will denote the corresponding p X q matrix. 

T1. Find integers tij for 1 ? i n and 1 ? j!m that minimize h(T) = 1 
Ej~m hij(tij) (where the hij are given convex functions), subject to the con- 



Graph Theory and Integer Programming 1029 

5.00 __ 

Y =3 
Y=2 

L.00 

50 

a) 0~~~ 

E 
H-.10 

.05a 

10 20 30 40 50 60 80 100 

n 
Fig. 2. A plot showing how the computer solution time varies with n for 

y=1, 2, 3, 4. 

straints: 

(1) O~a~ i= b tij<bi for 1<i<n, 
(2) O<cj < - tij<di for 1<j<m, 

(3) O lij<tij~kij for 1<?<n and 1<j<m. 

The ai, bi, cj, di, lij and kij are given nonnegative integers. 
T2. Find nonnegative integers sij for 1 < i < p and 1 <j ? q that minimize 

f(S) = E'=- S=fi~j(sij) [where the fij are given convex functions that sat- 
isfy fij(O) = 0], subject to the constraints: 



1030 J. F. Desler and S. L. Hakimi 

(1I ) ,>-i sij= ( i for I < <p, 

(2) -'Sij=f3} for 1<j<q, 
(3) sij<Xjj for I < ip and l?<aq. 

The aj, flj, and Xjq are given nonnegative integers. 
Clearly T2 is a special case of Ti. Let Ti be given and make the follow- 

ing definitions: 
(a) p=n+l, q=m+l. 
( b) a= bi- . lij, Xiq-bi-ai and fiqO for 1 <i<n. 
(c) flj = dj - lij lipj= dXd-cj and fpj = 0 for 1 ?j < m. 
(d) Xij=kij-1ij and fij(sij) = hij(sij+j)-hij(l1j) for 1 <i<n and 

1<j<m. 
(e) ep = E-= (di-cj), #,,= Ei=n bi- Ej=1 chXP )p- Ejjl d- 

and fp = 0. 
Problem T2 that we have thus defined will be denoted T2(Tl). It can 

be shown"16' that these two problems are equivalent. That is, given a 
feasible (optimal feasible) solution t= J{t~j of T1, we can find a feasible 
(optimal feasible) solution s(t) = {stj(t)} of T2(T1); and conversely, given 
a feasible (optimal feasible) solution s= {sij of T2(T1), we can find a 
feasible (optimal feasible) solution t(s) - { tij(s)) of T1. 

T2 is the form of the transportation problem that we wish to consider. 
Let G= [(X, Y), B] be the weighted bipartite graph described below. 
X= {x1, x2, *-, x,} and Y= {yi, Y2, * , yj. Let xieX and let yjeY and 
define kjj=min (aj, fj, Xqj). In G between xi and yj are branches bj ~bj, 

*, b's', and the weight w(bT ) of bT. is fij(m)-fij(m-1 ) for 1 < m _ kij. 
If ki = 0, there are no branches in G between xi and yj. Since f j is convex 
and since fij(O) =0, we have that w(blj) <w(b2j) < ... *< w(b'i) and that 

zE:m w(bh) =fij(m) for 1 m_ kij. The bipartite graph G is thus well 
defined. Let a -{a,, a2, * , aOp} and A-{Ai, /2, , ia} be the degree 
constraints on X and Y respectively, where the ao and j3 come from T2. 

We want to define a subgraph g(s) of G for each feasible solution s of T2. 
Let s = { sij} be a feasible solution of T2. Then g(s) is the subgraph of G 

consisting of branches bT- for 1 ? m ? sij, and if sij = 0, then there is no branch 
between vs and vj, for 1 ? i<p and for 1?_ j q. Then g(s) is a feasible 
subgraph of G and w[g(s)]-f(S). Conversely, let h be any feasible sub- 
graph of G. We define sij(h) to be equal to the number of branches of h 
that are incident between xi and yj. If s(h) = {sij(h)}, it follows from the 
feasibility of h that s(h) is a feasible solution of T2 and that f[S(h)] ? w(h). 

Suppose now that the constraints are feasible and that g* is the solution 
subgraph obtained through the use of our algorithm. Then f[S(g*)I < 

w(g*). Suppose s* is a feasible solution of T2 and that f(S*) <f[S(g*)]. 
Then g(s*) isa feasible subgraph of X, andw[g(s*)]<w(g*). This is a con- 



Graph Theory and Integer Programming 1031 

tradiction. Therefore s(g*) is an optimal feasible solution of T2, and we 
have shown that our algorithm can be used to solve T2. 

VI. EXTENSION TO THE NONBIPARTITE CASE 

LET H be a weighted graph (not necessarily bipartite) with vertices 
V= IVi, v2, *.*.*, V.. Let My-= y1, 72, * * *, -yn} be a given set of nonnegative 
integers called the degree constraints on V. A subgraph h of H is said to be 
feasible if d(vj, h) =yj for all vj3V. The constraints are said to be feasible 
if there exists at least one feasible subgraph of H. Otherwise the con- 
straints are infeasible. Clearly two necessary conditions for the feasibility 
of the constraints are (1) d(vj, H) _-yj for all VjeV and (2) Gal -y1=2N, 
where N is a nonnegative integer. We would like either to find a minimum- 
weight feasible subgraph h* of H or to determine that the constraints are 
infeasible. Let hCH be any subgraph of H. As in the case of bipartite 
graphs, we define: 

O(h) = {vicEVfd(vi, h) >y}, 

U(h)= {v Ivicfld(v, h) <aij}, 

0(h) = vf jO (h) [d(vi, h) -i]. 

An algorithm that solves this more general problem is now presented. 
It must be pointed out that we do not have as efficient an algorithm for 
finding the alternating paths as is necessary in Step 3. By Theorem 2, 
however, there are no alternating Euler subgraphs with respect to hi' that 
have negative weight in HW'fhi', where hX' is the subgraph of Hi' obtained 
after i cycles of the algorithm. This fact offers us some encouragement as 
we search for a method of finding alternating paths. 

ALGORITHM 

Step 1. Let ho be a subgraph of H consisting of N yj _ Hi least-weight 
branches of H. Thus ho is a minimum-weight subgraph of H which contains N 
branches. Add two vertices v, and vu. Let W be a large positive number. For 
each viEU(ho), add -y*-d(vi, ho) branches of weight W between vi and v0. For each 
vjeO(ho), add d(vj, ho) --yj branches of weight -W between vj and v.. Let this 
new graph be denoted H'. Define 'yi' =ys for all vioO(ho), and wyi'=d(vi, ho) forall 
vjEO(ho). Finally let 7,'=0 and y.'=6(ho), and let ho' be ho plus all the branches 
incident at v,. With these newly defined constraints, 7'= h"', Y2, 

'nt, 7y) 'yu'/, we have 0(ho') = {v,} and U(ho) =- Ivu}. 
Step 2. Let hi' be the subgraph of H' obtained after i cycles of the algorithm. 

(We start with i =0.) If O(hj') =4:, then hV is obtained from hi' by removing all 
branches incident at vg, and the algorithm is terminated. Otherwise go to Step 3. 

Step 3. (Search for an alternating path.) Find the hi'hz'-alternating path from 
v0 to v, that has least weight in H'jhi'. If no such path exists, terminate the algo- 



1032 J. F. Desler and S. L. Hakimi 

rithm, for the constraints are infeasible. Otherwise, let pi' denote the path found, 
and go to Step 4. 

Step 4. h$+j =hi' ep'. Return to Step 2. 

The proof of this algorithm is similar in nature to the proof of the 
algorithm in Section I. The main theorems of this proof are Theorems 1 
and 2, which have already been proved for the general case. 

It was shown in Section V that the transportation problem can be 
solved by our algorithm of Section I. The class of problems that can be 
solved by this first algorithm is a subclass of the class of problems that can 
be solved by this latest algorithm. This larger class of integer program- 
ming problems is solved if an efficient method can be found to determine 
least-weight gg-alternating paths in a graph that contains no negative- 
weight alternating Euler subgraphs with respect to g. 

VII. CONCLUSIONS 

WE HAVE presented an algorithm that will yield a minimum-weight degree- 
constrained subgraph of a weighted bipartite graph. This algorithm, based 
entirely on the theory of graphs, can be used to solve the well known trans- 
portation problem of integer programming. On the basis of computational 
experience, this algorithm is more efficient than the algorithm of Munkres. 
The concepts introduced in the case of bipartite graphs apply to the more 
general problem of finding a minimum-weight degree-constrained subgraph 
in a weighted, not necessarily bipartite, graph. In this generalization, the 
efficiency of our algorithm is poor, because we have no efficient algorithm 
for finding alternating paths with respect to a given subgraph. The 
discovery of such an algorithm would result in a method for solving a large 
class of integer programming problems. 

Although it was not explicitly pointed out, the algorithm of Section I 
applies equally as well to the problem of finding a minimum-weight sub- 
graph g* of G= [(X, Y), B] such that d(yj, g*) =f3j for all yjEY and d(xi, 

*)-< ?ai for all xjeX. The application of the algorithm to this problem does 
not require the addition of 'slack branches' as would be suggested by our 
discussion in Section VI. 

ACKNOWLEDGMENTS 

THE AUTHORS with to thank S. G. WASILEW for his Fortran IV coding of the 
algorithm of Section IV. This work was supported by the Air Force Office 
of Scientific Research, Office of Aerospace Research, United States Air 
Force. 

REFERENCES 

1. 0. ORE, Theory of Graphs, Amer. Math. Soc. Colloquium Publication, Providence, 
R. I., 1962. 



Graph Theory and Integer Programming 1033 

2. C. BERGE, The Theory of Graphs, Methuen, London, 1962. 
3. IR. Z. NORMAN AND M. 0. RABIN, "An Algorithm for a Minimum Cover of a 

Graph," Proc. Amer. Math. Soc. 10, 315-319 (1959). 
4. J. EDMONDS, "Paths, Trees and Flowers," Can. Math. J. 17, 449-467 (1965). 
5. , "Maximum Matchings and a Polyhedron with 0-1 Vertices," J. Res. 

Nat. Bur. Stand.-B, Math. and Math. Phys. 69B, 125-130 (1965). 
6. A. J. GOLDMAN, "Optimal Matchings and Degree Constrained Subgraphs," 

J. Res. Nat. Bur. Stand.-B, Math. and Math. Phys. 68B, 27-29 (1964). 
7. C. WITZGALL AND C. T. ZAHN, JR., "Modification of Edmonds' Maximum 

Matching Algorithm," J. Res. Nat. Bur. Stand.-B, Math. and Math. Phys. 
69B, 91-98 (1965). 

8. F. L. HITCHCOCK, "The Distribution of a Product from Several Sources to 
Numerous Localities," J. Math. Phys. 20, 224-230 (1941). 

9. H. W. KUHN, "The Hungarian Method for the Assignment Problem," Naval 
Res. Log. Quart. 2, 83-97 (1955). 

10. , "Variants of the Hungarian Method for the Assignment Problem," 
Naval Res. Log. Quart. 3, 253-258 (1956). 

11. L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton Univ. 
Press, Princeton, N. J., 1962. 

12. J. MUNKRES, "Algorithms for the Assignment and Transportation Problems," 
J. SIAM 5, 32-38 (1957). 

13. S. SESHU AND M. B. REED, Linear Graphs and Electrical Networks, Addison- 
Wesley, Reading, Mass., 1961. 

14. J. PETERSEN, "Die Theorie der regularen Graphs," Acta Math. 15, 193 (1891). 
15. J. M. KURTZBERG, "On Approximation Methods for the Assignment Problem," 

JACM 9, 419-439 (1962). 
16. J. F. DESLER, "Degree Constrained Subgraphs, Covers, Codes and K-Graphs," 

Ph.D. dissertation, Northwestern University, Evanston, Illinois, 1969. 
17. G. B. DANTZIG, Linear Programming and Extensions, Princeton Univ. Press, 

Princeton, N. J., 1963. 
18. A. CHARNES AND C. E. LEMKE, "Minimization of Non-Linear Separable Convex 

Functionals," Naval Res. Log. Quart. 1, 301-312 (1954). 


	Article Contents
	p. 1017
	p. 1018
	p. 1019
	p. 1020
	p. 1021
	p. 1022
	p. 1023
	p. 1024
	p. 1025
	p. 1026
	p. 1027
	p. 1028
	p. 1029
	p. 1030
	p. 1031
	p. 1032
	p. 1033

	Issue Table of Contents
	Operations Research, Vol. 17, No. 6 (Nov. - Dec., 1969), pp. i-xiv+927-1136+xxiii-xxx
	Volume Information [pp.  1098 - 1135]
	Front Matter [pp.  i - xiv]
	Systems Analysis for Social Decisions [pp.  927 - 940]
	Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm [pp.  941 - 957]
	Production Allocation with Set-Up Penalties and Concave Material Costs [pp.  958 - 972]
	A New Method for Constrained Optimization Problems [pp.  973 - 983]
	A Problem in Optimal Search and Stop [pp.  984 - 992]
	A Probabilistic Approach to Solving Assignment Problems [pp.  993 - 1004]
	Branch-And-Bound and Approximate Solutions to the Capacitated Plant-Location Problem [pp.  1005 - 1016]
	A Graph-Theoretic Approach to a Class of Integer-Programming Problems [pp.  1017 - 1033]
	A Dynamic Programming Algorithm for Cluster Analysis [pp.  1034 - 1057]
	Some Conditions for Ergodicity and Recurrence of Markov Chains [pp.  1058 - 1061]
	On a Class of Queuing Problems and Discrete Transforms [pp.  1062 - 1076]
	A Time-Sharing Model with Many Queues [pp.  1077 - 1089]
	The Analyst's Bookshelf
	untitled [pp.  1090 - 1092]
	Books Received [pp.  1092 - 1096]
	Notes [pp.  1096 - 1097]

	Back Matter [pp.  1099 - xxx]



