General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

A PROBLEM IN OPTIMAL SEARCH AND STOP

by
Sheldon M. Ross 02
00
-1
0
0
0
2

OPERATIONS

 RESEARCH CENTER

UNIVERSITY OF CALIFORNIA • BERKELEY

A PROBLEM IN OPTIMAL SEARCH AND STOP

by
Sheldon M. Ross ${ }^{\dagger}$
Department of Industrial Engineering and Operations Research
University of California, Berkeley

This research has been supported by the U.S. Army Research OfficeDurham under Contract DA-31-124-ARO-D-331 with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.
${ }^{\dagger}$ Also supported by the Army, Navy, Air Force and NASA under Contract Nonr-225(53) (NR-042-002) with the Office of Naval Research at Stanford University.

ABSTRACT

We are told that an object is hidden in one of $m(m<\infty)$ boxes and we are given prior probabilities p_{i}^{0} that the object is in the $i^{\text {th }}$ box. A search of box $i \operatorname{costs} c_{i}$ and finds the object with probability α_{i} if the object is in the box. Also, we suppose that a reward R_{i} is earned if the object is found in the $i^{\text {th }}$ box. A s.trategy is any rule for determining when to search and if so which box. The major tesult is that an optimal strategy either searches a box with maximal value of $\alpha_{i} p_{i} / c_{i}$ or else it never searches those boxes. Also, if rewards are equal, then an optimal strategy either searches a box with maximal $\alpha_{i} p_{i} / c_{i}$ or else it stops.

```
A PROBLEM IN OPTIMAL SEARCH AND STOP
    Sheldon M. Ross
University of California, Berkeley
```


1. Introduction and Summary

The following model has been considered in the literature: We are told that an object is hidden in one of m boxes and we are given prior probabilities $p_{i}^{0} i=1,2, \ldots, m\left(\Sigma p_{i}^{0}=1\right)$ that the object is in the $i^{\text {th }}$ box. A search of box i costs $c_{i}\left(c_{i}>0\right)$, and finds the object with probability α_{i} if the object is in the box (i.e. $1-\alpha_{i}$ is the overlook probability for the $i^{\text {th }}$ box). At the beginning of each time period $t=1,2, \ldots$ a box is searched; and the process ends when the object is found.

Blackwell (see [5]) has shown that the strategy which at time t searches a box with the largest present value of $\alpha_{i} p_{i} / c_{i}$ minimizes the expected searching cost; (where p_{i} is the posterior probability at time that the object is in box i). Chew [3] and Kadane [4] have shown that if $c_{i} \equiv l$ then this strategy also maximizes the probability that the searching cost will be less than A for every $A>0$.

In this paper in order to motivare the search we suppose that a reward $R_{i} i=1, \ldots, m$ is earned if the object is found in the $i^{t h}$ box. We also suppose that the searcher may decide to stop searching at any time (for example he may feel that the rewards are not large enough to justify
the searching costs). If the searcher decides to stop before finding the object then from that point on he incurs no further costs and of course receives no reward,

In the second section of this paper we show that an optimal strategy exists and is defined by a functional equation. The optimal strategy is exhibited in a special case. The third section deals with the optimal n-stage return function. The fourth secion presents some counterexamples, and in the fifth section we present the major results. Speaking loosely we show that the optimal strategy either searches the box with maximal value of $\alpha_{i} p_{i} / s_{i}$ or else it never searches that box. Also, if rewards are equal, $R_{i} \equiv R$, then the optimal strategy either searches the box with maximal $\alpha_{i} p_{i} / c_{i}$ or else $i t$ stops. In the final section we assume that $R_{i} \equiv R$ and present a sequence of strategies converging to the optimal.

2. Optimal Strategy

A strategy is any sequence (or partial sequence) $\delta=\left(\delta_{1}, \ldots, \delta_{s}\right)$ where $\delta_{i} \varepsilon\{1,2, \ldots, m\}$ for $i=1, \ldots, s$ and $s \varepsilon\{0,1,2, \ldots \infty\}$. The policy δ instructs the searcher to search box δ_{i} at the $i^{\text {th }}$ period and to stop searching if the object hasn't been found after the $s^{\text {th }}$ search. ($s=0$ means that the searcher stops immediately and $s=\infty$ means that he doesn't stop until he finds the object).

For any strategy δ and any $P=\left(p_{1}, \ldots, p_{m}\right), p_{i} \geq 0, \Sigma_{p_{i}}=1$, let $f(p, \delta)$ be the risk (expected searching cost minus expected reward) incurred when P is the vector of prior probabilities and strategy δ is employed. Also let $f(P)=\underset{\delta}{\inf f(P, \delta)}$. Then it follows from standard arguments (see for instance [1] P. 83) that

$$
\begin{equation*}
f(P)=\min \left\{0, \min _{i=1, \ldots, m}\left\{c_{i}-\alpha_{i} p_{i} R_{i}+\left(1-\alpha_{i} p_{i}\right) f\left(T_{i} P\right)\right\}\right\} \tag{1}
\end{equation*}
$$

$$
\text { where } T_{i} P=\left(\left\langle T_{i} P\right)_{1}, \cdots,\left(T_{i} P\right)_{m}\right) \quad i=1,2, \ldots, m \text {, and where }
$$

$$
\left(T_{i} p_{j}= \begin{cases}p_{j}\left(1-\alpha_{i} p_{i}\right)^{-1} & j \neq i \tag{2}\\ \left(1-\alpha_{i}\right) p_{i}\left(1-\alpha_{i} p_{i}\right)^{-1} & j=i\end{cases}\right.
$$

Thus $\left(T_{i} P\right)_{j}$ is just the posterior probability that the object is in box j given that a search of i has not uncovered $i t$. We shall say that the process is in state P at time t if P denotes the posterior probability vector at time t.

In order to show the existence of an optimal strategy let $R=\max R_{i}$ and consider a related process (the prime process) with $c_{i}^{\prime}=c_{i}, \alpha_{i}^{\prime}=\alpha_{i}$, but with $R_{i}^{\prime}=R_{i}-R_{\text {. }}$ However for this new process we suppose that a penalty cost of R units is imposed if the searcher decides to stop searching before finding the object. Now it is easy to see that for any strategy δ which terminates (either by finding the object or by stopping) in finite expected time we have $f(P, \delta)=f^{\prime}(P, \delta)-R$, and since these are the only strategies we need consider, (any strategy which doesn't terminate in finite expected time has $f(P)=f^{\prime}(P)=\infty$) it follows that any strategy optimal for the prime process is optimal for the original one." However, the prime process is a dynamic programming process with a finite number of possible actions available at each stage and with non-positive returns at each stage (since $R_{i}^{\prime} \leq 0 \forall i$). It then follows from Strauch [6] that an optimal strategy exists and also that the optimal strategies may be characterized as those strategies which when the process is in state P chooses one of the actions which minimize the right side of (1), i.e. for such a $\delta^{*}, f\left(P, \delta^{*}\right)=f(P)$ for all P.

The importance of rigorously proving that an optimal policy exists and is determined by a functional equation cannot be overemphasized. For example in the above suppose we relax the condition that $c_{i}>0$ and let $c_{1}=0$. Then if $\alpha_{1} p_{1}>0$ it is clear that for any strategy $\delta=\left(\delta_{1}, \ldots, \delta_{s}\right) \neq$ $(1,1,1, \ldots), f\left(P,\left(1, \delta_{1}, \ldots, \delta_{s}\right)\right)<f\left(P,\left(\delta_{1}, \ldots, \delta_{s}\right)\right)$ (since a search of 1 is free) and thus the only possible optimal strategy would be

[^0]$\delta_{1}=(1,1,1, \ldots)$. However $f\left(P, \delta_{1}\right)=P_{1} R_{1}$ and it is clear that this need not be maximal. For example if $c_{1}=0, \alpha_{1}=1 / 2, p_{1}=1 / 10, R_{1}=10$ and $c_{2}=1, \alpha_{2}=1, p_{2}=9 / 10, R_{2}=10$ then $f\left(P, \delta_{1}\right)=1$ while $f(P,(1,1, \ldots, 1,2,1,1,1, \ldots))=\frac{1}{10}\left[10\left(1-(1 / 2)^{n}\right)+9(1 / 2)^{n}\right]+\frac{9}{10} \cdot 9 \uparrow \frac{91}{10}$ Also the strategy determined by the functional equation turns out to be the (non-optimal) strategy δ_{1}. (The reason that the existence proof given above breaks down is that since $c_{1}=0$ it no longer follows that all strategies $\hat{0}$ with infinite expected termination time have $f(P, \delta)=\infty)$.

Now consider the class Λ of strategies $\delta=\left(\delta_{1}, \ldots, \delta_{s}\right)$ for which $s=\infty$. Any policy $\delta \varepsilon \Lambda$ which finds the object with probability 1 will have: $f(P, \delta)=E_{\delta} L-\sum_{i} p_{i} R_{i}$ where L is the searching cost incurred; any $\delta \varepsilon \Lambda$. which has positive probability of never finding the object has $f(P, \delta)=\infty$. Thus among the class of policies which never stop searching until the object is found the one with minimal expected searching cost is best. Thus by Blackwell's result the strategy δ_{∞} which when in state P searches the box (or one of the boxes) with the maximal value of $\alpha_{i} p_{i} / c_{i}$ is optimal among the policies in Λ.

Lemma 2.1: If $\alpha_{i} p_{i} R_{i}>c_{i}$ for some \boldsymbol{i} then no optimal strategy stops searching at $P=\left(p_{1}, \ldots, p_{m}\right) . \quad$ If $\alpha_{i} p_{i} R_{i} \geq c_{i}$ for some i then there is an optimal strategy which doesn't stop at P.

Proof: From (1) we have that

$$
\begin{aligned}
f(p) & \leq c_{i}-\alpha_{i} p_{i} R_{i}+\left(1-\alpha_{i} p_{i}\right) f\left(T_{i} p\right) \\
& <0+\left(1-\alpha_{i} p_{i}\right) f\left(T_{i} p\right) \\
& \leq 0
\end{aligned}
$$

and so $f(P)<0$ and thus no optimal policy stops at P. If $\alpha_{i} p_{i} R_{i} \geq c_{i}$ then $f_{i}(P) \equiv c_{i} \alpha_{i} p_{i} R_{i}+\left(1-\alpha_{i} p_{i}\right) f\left(T_{i} p\right) \leq 0$. Now if $f(P)=0$ then $f(P)=f_{i}(P)$ and so searching i is optimal; if $f(P)<0$ then stopping is not optimal.
Q.E.D.

Theorem 2.2: If $\sum_{i=1}^{m} c_{i} / \alpha_{i} R_{i} \leq 1$ then δ_{∞} is optimal, i.e. $f\left(P, \delta_{\infty}\right)=f(P)$ for all P.

Proof: For any P, if $\max \left(\alpha_{i} P_{i} R_{i}-c_{i}\right) \geq 0$ then there exists an optimal strategy which doesn't stop at P. So a necessary condition for every optimal strategy to stop at P is for

$$
\begin{aligned}
& \alpha_{i} p_{i} R_{i}<c_{i} \quad \text { for all } i \\
\Rightarrow & p_{i}<c_{i} / \alpha_{i} R_{i} \quad \text { for all } i \\
\Rightarrow & 1<\Sigma c_{i} / \alpha_{i} R_{i}
\end{aligned}
$$

So if $\Sigma c_{i} / \alpha_{i} R_{i} \leq 1$ then for every P there is an optimal strategy which doesn't stop at P. Thus an optimal strategy exists in Λ which implies that δ_{∞} is optimal.
Q.E.D.

3. The Optimal Return $f(P)$

Theorem 3.1: $f(P)$ is a concave function of P.

Proof: Let $f_{i}(\delta)$ be the conditional risk given that the object is in i and strategy δ is employed, $i=1, \ldots, m$. Then $f(p, \delta)=\sum_{i} f_{i}(\delta)$. Now let $P=\lambda P^{1}+(1-\lambda) P^{2}$, then

$$
\begin{aligned}
f(P) & =\inf _{\delta} f(P, \delta) \\
& =\inf _{\delta} f\left(\lambda p^{\prime}+(1-\lambda) p^{2}, \delta\right) \\
& =\inf _{\delta} \sum_{i}\left(\lambda p^{\prime}+(1-\lambda) p^{2}\right)_{i} f_{i}(\delta) \\
& \geq \lambda \inf _{\delta} \sum_{i} p_{i}^{\prime} f_{i}(\delta)+(1-\lambda) \inf _{\delta} \sum_{i} p_{i}^{2} f_{i}(\delta) \\
& =\lambda f\left(P^{\prime}\right)+(1-\lambda) f\left(p^{2}\right)
\end{aligned}
$$

Q.E.D.

Ccrollary 3.2: The optimal stop region $S \equiv\{P: f(P)=0\}$ is convex.
Proof: Suppose $P=\lambda P^{1}+(1-\lambda) P^{2}$ and $f\left(P^{1}\right)=f\left(P^{2}\right)=0$. Then $f(P) \leq 0$ by (1) and $f(P) \geq 0$ by the above.
Q.E.D.

Let

(3) $\left.\quad f_{i}(P)=\min \left\{0, \min _{i} c_{i}-\alpha_{i} p_{i} R_{i}\right\}\right\}$
$f_{n}(P)=\min \left\{0, \min _{i}\left\{\varepsilon_{i}-\alpha_{i} p_{i} R_{i}+\left(1-\alpha_{i} p_{i}\right) f_{n-1}\left(T_{i} p\right)\right\}\right\} \quad n>1$

Thus $f_{n}(P)$ is just the minimal risk incurred if the searcher is allowed at most n cearches. Clearly $f_{n}(P) \geq f_{n+1}(P) \geq p(P)$ for all n, all P, and it
seems reasonable that $f_{n}(P) \notin f(P)$ as $n \uparrow \infty$. This is shown in the following.

Letting $c=\min _{i} c_{i}, \quad D=\max _{i}\left(R_{i}-c_{i}\right)$
Theorem 3.3: $f_{n}(P)-f(P) \leq \frac{D^{2}}{n c}$ all n, all P.
Proof: Let δ^{*} be an optimal strategy, let T be the random number of times δ^{*} searches before terminating, and let δ_{n}^{*} be δ^{*} terminated at n, i.e. $\delta_{n}^{*}=\left(\delta_{1}^{*} \ldots \delta_{5 \wedge n}^{*}\right)$. Then
(4) $f(P)=f\left(P, \delta^{*}\right)=E_{\delta^{*}}[x \mid T \leq n] P_{i}[T \leq n]+E_{\delta^{*}}[x \mid T>n] P_{r}[T>n]$ and
(5) $\left.f_{n}(P) \leq f\left(P, \delta_{n}^{*}\right)=E_{\delta^{*}}[X|T| n] P_{r} T \leq n\right]+E_{\delta_{n}^{*}}[X \mid T>n] P_{r}[T>n]$
where X denotes the total cost incurred (and everything is understced to be conditional on the prior probability vector P). Thus
(6) $\quad f_{n}(P)-f(P) \leq\left[E_{\delta_{n}^{*}}[X \mid T>n]-E_{\delta^{*}}[X \mid T>n]\right] P_{r}[T>n]$

$$
\leq D P_{r}[T>n]
$$

To get a bound on $P_{r}[T>n]$ we use (4) to get
(7) $0 \geq f(P) \geq-D P_{r}[T \leq n]+(-D+n c) P_{r}[T>n]$

$$
=-D+n c P_{r}[T>n]
$$

or
(8) $P_{r}[T>n] \leq D / n c$

Corollary 3.4: If $\alpha_{i} R_{i}<c_{i}$ for all $i=1,2, \ldots, m$ then $f(P) \equiv 0$, i.e. the policy which never searches is optimal.

Proof: It follows from (3) that $f_{1}(P) \equiv 0$, and by induction that $f_{n}(P) \equiv 0$ for all n, and thus by the above $f(P) \equiv 0$. Q.E.D. The above Corollary may also be proven directly by letting e^{i} be the m-vector of all zeroes except for a one in the $i^{\text {th }}$ spot. If $\alpha_{i} R_{i}<c_{i}$ for all i then by (1) it follows that $f\left(e^{i}\right)=0, i=1, \ldots, m$; and thus by concavity $f(P) \equiv 0$.

4. Counter-Examples

Consider the following three conjectures:

1. If $c_{1}>R_{1}$ then an optimal strategy will never search box 1 .
2. If an optimal strategy doesn't stop at P then it searches a box with maximal $\alpha_{i} p_{i} / c_{i}$.
3. If m is the number of boxes then an m-stage look ahead strategy is optimal; where an m-stage look ahead strategy is defined as any strategy which stops at P if $f_{m}(P)=0$, and searches the $i^{\text {th }}$ box at P if $f_{m}(P)=c_{i}-\alpha_{i} P_{i} R_{i}+\left(1-\alpha_{i} p_{i}\right) f_{m-1}\left(T_{i} P\right)$.

We shall now give examples showing that each of these conjectures need not hold.

Example 1:

$$
\begin{array}{ll}
\alpha_{1}=1 & \alpha_{2}=1 \\
P_{1}=3 / 4 & P_{2}=1 / 4 \\
c_{1}=5 & c_{2}=10 \\
R_{1}=0 & R_{2}=210
\end{array}
$$

If the searcher first searches 2 and then acts optimally his risk is $10-\frac{1}{4} 210=-170 / 4$; while if he first searches 1 and then acts optimally his risk is $5-\frac{1}{4} 200=-45<-170 / 4$. Thus the optimal strategy starts by searching 1.

Example 2:

$$
\begin{array}{ll}
\alpha_{1}=1 & \alpha_{2}=1 \\
p_{1}=3 / 4 & p_{2}=1 / 4 \\
c_{1}=10 & c_{2}=10 \\
R_{1}=0 & R_{2}=210
\end{array}
$$

If the searcher first searches 1 then his minimal risk is $10=\frac{1}{4} 200=-40$; while if he first searches 2 his minimal risk is $10-\frac{1}{4} 210<-40$. Thus the optimal strategy starts by searching 2. However $\alpha_{1} p_{1} / c_{1}=\frac{3}{40}>\frac{1}{40}=$ $\alpha_{2} p_{2} / c_{2}$.

Example 3:

$$
\begin{array}{ll}
\alpha_{1}=1 & \alpha_{2}=.65 \\
P_{1}=.4 & p_{2}=.6 \\
c_{1}=50 & c_{2}=50 \\
R_{1}=100 & R_{2}=100
\end{array}
$$

It can be checked directly that $f_{2}(.4, .6)=0$ and so the two-stage look ahead strategy stops. However

$$
f_{3}(.4, .6)=.4(-50)+.6[100-(.65) 100+.35(50-100(.65))]<0
$$

and so the two-stage look ahead strategy is not optimal.

Thus none of the conjectures need be true. We will later show, however, that in a special case ($R_{i} \equiv R$) conjectures 1 and 2 are in fact true.

5. Main Theorems

For any strategy δ let (i, j, δ) be the strategy which first searches i then j and then follows strategy δ.

We shall need the following

Lemma 5.1: For any strategy δ such that $f(P, \delta)<\infty$

$$
\begin{aligned}
& \begin{aligned}
f(P,(i, j, \delta)) & >f(P,(j, i, \delta)) \\
& <
\end{aligned} \\
& \text { iff } \quad \alpha_{i} p_{i} / c_{i} \leq \alpha_{j} p_{j} / c_{j} \\
& \text { Proof: } f\left(P_{,}(i, j, \delta)\right)=c_{i}-\alpha_{i} p_{i} R_{i}+\left(i-\alpha_{i} p_{i}\right)\left[c_{j}-R_{j} \frac{\alpha_{j} p_{j}}{1-\alpha_{i} p_{i}}+\left(1-\alpha_{j} p_{j}\right) f\left(T_{j} T_{i} P_{i, \delta)}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { now since } T_{j} T_{i} P=T_{i} T_{j} P \text { it follows that } \\
& f(P,(i, j, \delta))-f(p,(j, i, \delta))=\alpha_{j} p_{j} c_{i}-\alpha_{i} p_{i} c_{j} \\
& \text { Q.E.D. }
\end{aligned}
$$

Notation: For any policy $\delta=\left(\delta_{1}, \ldots, \delta_{s}\right)$ and $t \leq s$, let
$P_{\delta, t}=T_{\delta_{t}} T_{\delta_{t-1}} \cdots T_{\delta_{1}} P$.
Thus $\underset{\delta, t}{ }$ is just the posterior probability vector given that δ is employed and the item has not been found after t searches.

Theorem 5.2: If $\alpha_{i} p_{i}^{0} / c_{i}=\max _{j} \alpha_{j} p_{j}^{0} / c_{j}$ then
(a) If $\alpha_{i} p_{i}^{0} R_{i} \geq c_{i}$ then there is an optimal strategy δ^{*} having $\delta_{1}^{*}=\boldsymbol{i}$.
(b) If there does not exist an optimal strategy with $\delta_{1}^{*}=\mathbf{i}$ then no optimal strategy ever searches i.

Proof: (a) We first show that there is an optinal strategy δ^{*} having $\delta_{k}^{*}=i$ for some $k \leq s$. For suppose that no optimal strategy ever searched i; then for any optimal strategy $\delta^{*},\left(\begin{array}{c}\rho_{\delta^{*}, t}^{0}\end{array}\right) i \geq p_{i}^{0}$ for all t and so by Lemma 2.1 the optimal strategy need not stop. But then δ_{∞} is optimal and so there would be an optimal strategy with $\delta_{1}^{*}=i$. Thus there is an optimal strategy δ^{*} which searches i. Let k be the first time δ^{*} searches i. If
$k \neq 1$ then since $\left(\begin{array}{c}p_{\delta^{*}, k-2}^{0}\end{array}\right) j=\left\{\begin{array}{ll}c p_{i}^{0} & j=i \\ c_{j} p_{j}^{0} & i \neq i\end{array} \quad\right.$ where $c_{j} \leq c$
it follows that $\alpha_{i}\left(\mathrm{p}_{\delta^{*}, k-2}^{0}\right) i_{i} / c_{i}=\max \alpha_{j}\left(p_{\delta^{*}, k-2}^{0}\right)_{j} / c_{j}$; and so by Lemma ${ }_{\text {, }}$ 5.1 there is an optimal strategy with $\delta_{k-1}^{*}=1$. By induction we see that there is an optimal strategy with $\delta_{1}^{*}=i$.
(b) We have shown by the above that if an optimal strategy δ^{*} has $\delta_{k}^{*}=i$ for some k then there is an optimal strategy with $\delta_{1}^{*}=i$.
Q.E.D.

Corollary 5.3: If $\alpha_{i} p_{i}^{0} / c_{i}>\alpha_{j} p_{j}^{0} / c_{j}$ for $j \neq i$ then
(a) every optimal strategy has $\delta_{1}^{*}=i$
or
(b) no optimal strategy every searches i.

Proof: Follows in the same manner as in the previous Theorem.

Note that if the state of the process at time t is P then from that point on we can consider the process as starting anew with prior probability vector P. Thus at time t it is optimal to search the box with the largest present value of $\alpha p / c$ or else that box is never searched from that point on. We are able to prove a stronger result in the special case where all rewards are equal.

Theorem 5.4: Suppose $R_{i} \equiv R$ for all i. If $\alpha_{i} p_{i}^{0} / c_{i}=\max _{j} \alpha_{j} p_{j}^{0} / c_{j}$ then either
(a) there is an optimal strategy with $\delta_{1}^{*}=i$
or
(b) the only optimal strategy is the one which does not search, ie. $s=0$.

Proof: Let $\delta^{*}=\left(\delta_{1}^{*}, \ldots, \delta_{s}^{*}\right)$ be an optimal strategy. If δ^{*} ever searches i then we can show by successive permutations (as in Theorem 5.2) that there is an optimal strategy with $\delta_{1}^{*}=i$. If δ^{*} never searches i then $s<\infty$, for if δ^{*} didn't stop and never searched i then $i t$ would have infinite risk and so wouldn't be optimal. Suppose now that $s \neq 0$ and let $k=\delta_{s}^{*}$. Since k will be the lest search made it follows that $\alpha_{k}\left(\begin{array}{l}p^{0}{ }_{0}^{\alpha}, s-1\end{array}\right) k R \geq c_{k}$ (or else it would be better not to make the last search). But since δ^{*} never searches i it follows that $\left(\frac{\left(P_{\delta^{*}, s}^{0}\right)}{P_{i}^{0}} \geq \frac{\left(P^{0} \delta^{*}, s-1\right.}{0}\right) k$ and thus

$$
\frac{\alpha_{i}\left(p_{\delta^{*}, s}^{0}\right)}{c_{i}}=\frac{\alpha_{i} p_{i}^{0}}{c_{i}} \frac{\left(p_{\delta_{0}^{*}, s}^{0}\right)}{p_{i}^{0}} \geq \frac{\alpha_{k} p_{k}^{0}}{c_{k}} \frac{\left(p_{\delta_{0}^{*}, s-1}^{0}\right) k}{p_{k}^{0}} \geq 1 / R
$$

But then by Lemma 2.1 it would be optimal to search i at time $s+1$, and so by the above there would be an optimal strategy with $\delta_{1}^{*}=\mathbf{i}$.
Q.E.D.

In a similar manner we may prove the following

Corollary 5.5: If $R_{i} \equiv R$ and if $\alpha_{i} p_{i}^{0} / c_{i} \neq \max \alpha_{j} p_{j}^{0} / c_{j}$, then any strategy δ with $\delta_{1}=i$ is not optimal.

Proof: Let ℓ be such that $\alpha_{\ell} p_{\ell}^{0} / c_{\ell}=\max \alpha_{j} p_{j}^{0} / c_{j}$. If δ searches j at some time then by successively permuting and using Lemma 5.1 it follows that we may (strictly) improve upon δ. If δ never searches j then by the same reasoning as used in the above Theorem it follows that δ can't be optimal.
O.E.D.

Thus when all rewards are equal it is either optimal to search a box with the maximal value of $\alpha_{i} F_{i} / c_{i}$ or else $i t$ is optimal to stop.

In [3] Chew considered the problem where there is no reward given for finding the object but where there is a penalty cost C incurred if the searcher stops without finding the object. He also supposed that $\alpha_{1}=0$ and $p_{1}^{0}>0$. (Thus there is positive probability that the object is in the first box but with probability one a search would overlook it.)*

[^1]He showed that if $c_{i} \equiv 1$ then the optimal strategy either searches the box with maximal $\alpha_{i} p_{i} / c_{i}$ or else stops. However, as was previously pointed out, this problem is equivalent to the one we've considered with $R_{i} \equiv C$. Thus Theorem 5.4 may be considered as an extension of Chew's result to non-constant costs and to general overlook probabilities.

6. Approximations to Optimal Strategy

In this section we suppose that $R_{i} \equiv R$, and exhibit a sequence of strategies which converge to an optimal strategy.

Let $\delta^{*}=\left(\delta_{1}^{*}, \ldots, \delta_{s}^{*}\right)$ be an optimal strategy which either when in state P stops if $f(P)=0$ or else searches a box with maximal value of $\alpha_{i} P_{i} / c_{i}$. Let T be the random number of stages δ^{*} searches before terminating, and recall that $c=\min _{i} c_{i}$. We shall need the following:

Lemma 6.1: $\quad P_{r}(T>n) \leq\left(1-\frac{c}{\sum_{i} c_{i} / \alpha_{i}}\right)^{n} \quad$ for all n

Proof:
The minimal value of $\max _{\mathbf{i}} \alpha_{i} p_{i} / c_{i}$ is achieved by that vector P having

$$
\begin{equation*}
\alpha_{1} p_{1} / c_{1}=\alpha_{2} p_{2} / c_{2}=\ldots=\alpha_{m} p_{m} / c_{m} \tag{9}
\end{equation*}
$$

and thus
(10) $\min _{p} \max _{i} \alpha_{i} p_{i} / c_{i}=\frac{1}{\sum_{i} c_{i} / \alpha_{i}}$

Now each time δ^{*} searches a box with maximal value of $\alpha_{i} p_{i} / c_{i}$. Thus each time δ^{*} searches a box (say box j) the probability $\alpha_{j} p_{j}$ the item will be found is such that

$$
\begin{equation*}
\alpha_{j} p_{j} \geq \frac{c_{j}}{\sum c_{i} / \alpha_{i}} \geq \frac{c}{\sum_{i} c_{i} / \alpha_{i}} \tag{II}
\end{equation*}
$$

Now let $\delta^{n}=\left(\delta_{1}, \ldots, \delta_{s_{n}}\right)$ be the strategy which when in state P stops if $f_{n}(p)=0$ or else searches a box with maximal value of $\alpha_{i} p_{i} / c_{i}$, i.e. $s_{n}=\min \left\{k: f_{n}\left(\begin{array}{c}p^{0} \delta^{*}, k\end{array}\right)=0\right\}$. Since $f_{n}(P)+f(P)$ it follois that $s_{n} \uparrow s$ as $n \uparrow \infty$.

Recalling that $D=\max \left(R-c_{i}\right)=R-c$ we have

Theorem 6.2: $f\left(P, \delta^{n}\right) \leq f(P)+D\left(1-c / \Sigma c_{i} / \alpha_{i}\right)^{n+s} n$ for all P, all n.

Proof: $f\left(P, \delta^{n}\right)-f(P)=-f\left(\begin{array}{c}P^{*} *, s_{n}\end{array}\right) P_{r}\left(T>s_{n}\right)$

$$
\begin{aligned}
& =\left[f_{n}\left(P_{\delta^{*}, s_{n}}\right)-f\left(P_{\delta^{*}, s_{n}}\right)\right] P_{r}\left(T>s_{n}\right) \\
& \leq D P_{r}(T>n) P_{r}\left(T>s_{n}\right)
\end{aligned}
$$

where the last inequality follows from (6). The result then follows from Lemma 6.1.
Q.E.D.

In order to effectively apply the policies $\delta^{n}, n \geq 1$, we need to be able to characterize the continuation sets $A_{n} \equiv\left\{p: f_{n}(P)<0\right\}$. These sets can be constructed as follows:

$$
\begin{align*}
& A_{1}=\left\{P: G i: c_{i}-\alpha_{i} p_{i} R<0\right\} \tag{12}\\
& A_{2}=A_{1} \cup B_{2} .
\end{align*}
$$

where

$$
\begin{equation*}
B_{2}=\left\{P: G i, j: c_{i}-\alpha_{i} p_{i} R+\left(1-\alpha_{i} p_{i}\right)\left[c_{j}-\alpha_{j}\left(T_{i} P\right)_{j} R\right]<0\right\} \tag{13}
\end{equation*}
$$

Noting that $\left(T_{i} P_{j}=\left(1-\alpha_{i} \delta_{i j}\right) p_{j}\left(1-\alpha_{i} p_{i}\right)^{-1}\right.$ where $\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$ we can write

$$
\begin{equation*}
B_{2}=\left\{P: Q i, j: c_{i}-\alpha_{i} p_{i} R+c_{j}-\alpha_{j} p_{j} R-\alpha_{i} p_{i} c_{j}+\alpha_{j, i j}^{2} \delta_{j} R<0\right\} \tag{14}
\end{equation*}
$$

Similarly

$$
A_{3}=A_{2} \cup B_{3}
$$

where
(15)

$$
\begin{aligned}
B_{3}= & \left\{p: G i, j, k: c_{i}-\alpha_{i} p_{i} R+\left(1-\alpha_{i} p_{i}\right)\left[c_{j}-\alpha_{j}\left(T_{i} p\right)_{j} R+\right.\right. \\
& \left.\left.\left(1-\alpha_{j}\left(T_{i} p\right)_{j}\right)\left(c_{k}-\alpha_{k}\left(T_{j} T_{i} P\right)_{k} R\right)\right]<0\right\} \\
= & \left\{p: G i, j, k: c_{i}-\alpha_{i} p_{i} R+c_{j}-\alpha_{j} p_{j} R+c_{k}-\alpha_{k} p_{k} R\right. \\
& -\alpha_{i} p_{i} c_{j}-\left(\alpha_{i} p_{i}+\alpha_{j} p_{j}\right) c_{k}+\alpha_{j}^{2} \delta_{i j} p_{j}\left(R+c_{k}\right) \\
& \left.+\alpha_{k}^{2} p_{k} R\left(\delta_{j k}+\delta_{i k}\right)-\alpha_{k}^{3} \delta_{i k} \delta_{j k} p_{k} R<0\right\}
\end{aligned}
$$

Similarly the other $A_{n}{ }^{\prime} s=A_{n-1} \cup B_{n}$ may be obtained. Also we may let
(16) $\quad B_{1}^{\prime}=A_{1}$

$$
\begin{array}{r}
B_{2}^{\prime}=\left\{P_{i} \exists i \neq j: c_{i}-\alpha_{j} p_{i} R+c_{j}-\alpha_{j} p_{j} R-\alpha_{i} p_{i} c_{j}<0\right\} \\
B_{3}^{\prime}=\left\{P_{i} \exists i \neq j \neq k: c_{i}-\alpha_{i} p_{i} R+c_{j}-\alpha_{j} p_{j} R+c_{k}-\alpha_{k} p_{k} R\right. \\
\left.-\alpha_{i} p_{i} c_{j}-\left(\alpha_{i} p_{i}+\alpha_{j} p_{j}\right) c_{k}<0\right\}
\end{array}
$$

Then $B_{n}^{\prime} \subset B_{n}$ and we may approximate A_{n} by $\bigcup_{i=1}^{n} B_{i}^{l}$. We also note that $B_{1}^{1}=A_{1}$ and $B_{2}^{1}=A_{2}$.

REFERENCES

[1] Bellman, R., EYNAMIC PROGRAMMING, Princeton University Press, Princeton, New Jersey, (1957).
[2] Black, W., "Discrete Sequential Search," Information and Control, Vol. 8, pp. 159-162, (1965).
[3] Chew, M., Jr., "A Sequential Search Procedure," Annals of Mathematical Statistics, Vol. 38, pp. 494-502, (1967).
[4] Kadane, J., "Discrete Search and the Neyman Pearson Lemma," Journal of Mathematical Analysis and Applications.
[5] Matula, D., "A Periodic Optimal Search," American Mathematical Monthly, Vol. 71, No. 15, (1964).
[6] Strauch, R., "Negative Dynamic Programming," Annals of Mathematical Statistics, Vol. 37, pp. 871-890, (1966).

[^0]: *The above argument also shows that there is no additional generality gained in assuming that a penalty cost c is incurred when the searcher stops without finding the object, as this process would just be equivalent to the original one with rewards $R_{i}+c$ instead of R_{i}.

[^1]: *Actually Chew supposed that $\sum_{i} p_{i}^{0}<1$. However this is clearly equivalent to having $\Sigma p_{i}^{0}=1$ and having a box with an overlook probability of one.

