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1. Introduction

The steady increase of electricity from intermittent sources
of renewable energy poses challenges for the electrical grid.
A key component of a more flexible, smarter grid is the
ability to store electricity and thereby to decouple electric-
ity generation from electricity consumption. The most com-
mon large-scale storage technology for electricity is hydro
storage. A hydro storage power plant either stores the natu-
ral flow of water or pumps water into an elevated reservoir
to be able to release the water and produce electricity when
it is needed. Hydro storage systems thereby offer the ability
to buffer the intermittent supply of electricity from renew-
able power sources such as wind, solar, or run-of-river. The
European electricity mix, for example, consists of 15 per-
cent hydropower with a total capacity of 260 gigawatts
of which 45 gigawatts are pumped-hydro storage (Auer
2011, Zuber 2011). The growing share of renewable ener-
gies increases Europe’s demand for storage, and generating
companies are currently investing about 26 billion Euros
into new pumped-hydro storage plants with a total capacity
of 27 gigawatts (Zuber 2011).

Today, a large share of electricity is sold in wholesale
electricity markets. Most generating companies in Austria,
Germany, and Switzerland, for example, sell electricity at
the European Power Exchange (EPEX SPOT), which is one
of the largest European electricity markets. Since supply

and demand have to be synchronized in advance, EPEX
SPOT provides different types of forward markets, of which
the day-ahead market and the intraday market are the most
important markets for owners of storage plants. At the day-
ahead market, producers place supply bids and consumers
place demand bids for each hour of the following day, i.e.,
one day ahead of delivery. After the day-ahead market is
closed, the intraday market allows market participants to
clear imbalances that arise during the day up to 45 min-
utes before delivery. In case actual volumes deviate from
day-ahead or intraday bids, all remaining imbalances are
automatically cleared at the balancing market with a high
risk of additional cost. A generating company with pumped
hydro storage capacities tries to buy electricity at the mar-
ket when the price is low and sell electricity when the price
is high, while trying to mitigate the risk of positive and
negative imbalances.
Trading with a system of hydro storage plants in a whole-

sale electricity market involves many decisions as well as
a great deal of uncertainty. In particular, there exist two
major challenges to solve the problem efficiently. First,
not only are day-ahead and intraday prices uncertain, but
also the development of electricity prices over time as
well as the inflow of water into the reservoirs. Second,
a system of hydro storage plants with multiple reservoirs
requires a coordinated water release policy, since upstream
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releases influence downstream reservoir levels. In addition
to day-ahead and intraday bidding decisions, a generating
company has to decide about water releases from mul-
tiple reservoirs over time. Future decisions and states of
the system as well as their probabilities therefore have to
be considered in the decision-making process, which turns
storage operation into a complex stochastic-dynamic deci-
sion problem.

In the literature, the day-ahead bidding problem is typi-
cally modeled as a two-stage stochastic program, with bid-
ding decisions at the first stage and price realizations as
well as operational decisions at the second stage (Baíllo
et al. 2004, Fleten and Kristoffersen 2007, García-González
et al. 2007). A two-stage approach is well-suited for opti-
mizing bidding decisions in the short term but does not
anticipate future storage states and decisions. To optimize
bidding decisions over a longer planning horizon, we have
to solve a multistage stochastic programming problem. For
this class of problems, two basic solution strategies have
emerged in the literature. One strategy is to construct a sce-
nario tree to represent uncertainty and solve the problem
as one large mathematical program (Heitsch and Römisch
2003, Eichhorn et al. 2009, Hochreiter and Wozabal 2010).
This strategy can handle discrete decisions as well as
any type of exogenous stochastic process but is limited
to problems with a small number of stages. Fleten and
Kristoffersen (2008) and Matevosyan et al. (2009) propose
mixed-integer programs of hydro storage operation where
a scenario tree is used to model uncertainty over a weekly
planning horizon. A comparison of solution methods for a
tree-based stochastic unit commitment problem is given in
Cerisola et al. (2009).

Another strategy is based on formulating the problem as
a dynamic program and then applying Benders’ decomposi-
tion to recursively construct the value function at each stage
around a set of sample decisions (Pereira and Pinto 1991).
This strategy, also known as stochastic dual dynamic pro-
gramming (SDDP), can handle problems with a large num-
ber of stages as long as the optimization problem at each
stage is convex and the stochastic process stagewise inde-
pendent. Most SDDP formulations of hydro storage opera-
tion only consider inflow or demand uncertainty, e.g., Flach
et al. (2010), Philpott and de Matos (2012). To the best of
our knowledge, the only SDDP formulation that also con-
siders price uncertainty is given in Gjelsvik et al. (2010).
However, the authors only model weekly price averages,
which keeps the problem tractable but also underrates the
short-term value of storage.

In contrast to most previous approaches, the model pro-
posed in this work decomposes the multistage problem
into an intrastage and an interstage problem (Pritchard
et al. 2005). Day-ahead bidding decisions as well as
hourly reservoir operations are modeled as part of the
intrastage problem which is formulated as a stochastic
mixed-integer quadratic program with randomness in the

objective function. Decisions about reservoir contents at the
end of the day, on the other hand, are modeled as part of the
interstage problem, which is formulated as a Markov deci-
sion process (MDP). The proposed decomposition severely
reduces the complexity of the problem. Since day-ahead
prices realize simultaneously, we can view day-ahead price
vectors as realizations of intraday randomness. Day-ahead
price distributions can thus be modeled as separate random
variables conditioned on a small number of explanatory
variables, which are defined as the state of an exogenous
Markov process. This allows us to describe the dynamics
of the hourly electricity prices by a discrete state transition
process, which is represented by a probability lattice.
To solve the problem efficiently, we integrate SDDP with

ideas from approximate dynamic programming (ADP).
ADP algorithms simulate the state transition process of
an MDP and use the sampled information to approximate
the high-dimensional value function by a function of much
lower complexity (Powell 2011). An ADP algorithm to
optimize day-ahead bidding and storage decisions is also
proposed in Löhndorf and Minner (2010), but only for a
single storage unit and a single bidding decision per stage.
By contrast, the present approach allows us to model stor-
age systems with multiple units as well as hundreds of
decision variables per stage.
In the same way as SDDP, the proposed solution method

iteratively solves the decision problem using forward sim-
ulation to sample candidate decisions and backward recur-
sion to construct an approximation of the value function.
Unlike SDDP, however, the method does not require stage-
wise independence of the stochastic process, but rather
assumes that randomness follows a Markov process.
To solve the problem numerically, the solution approach

pursues a three-fold strategy to approximate the value func-
tion of the MDP. First, the continuous-state Markov pro-
cess that describes the evolution of environmental variables
over time is reduced to a probability lattice. Second, candi-
date decisions that do not improve the approximation qual-
ity by more than a given epsilon are discarded. Third, the
approach uses a relaxed version of the problem to approx-
imate the value function but evaluates the decision policy
based on the original problem formulation. To emphasize
the focus on approximation, we refer to the solution method
as approximate dual dynamic programming (ADDP).
For the problem at hand, the approximated value func-

tion is more optimistic than the true value function with
respect to the future value of water that remains in the
reservoirs at the end of the day. However, if the resulting
gap is negligible, the relaxation provides an efficient solu-
tion to a complex optimization problem.
The paper is organized as follows. In §2, we present

the model formulation of the multistage decision prob-
lem. In §3, we introduce a relaxed version of the problem,
describe the solution algorithm, prove its convergence, and
derive an error bound of the approximation. In §4, we pro-
pose an econometric electricity price model for the EPEX
SPOT market. In §5, we apply the model and the solution
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algorithm to a case study of an existing hydro storage sys-
tem in Austria. Finally, in §6, we summarize the results
and discuss possible directions for future research.

2. Model Formulation

2.1. Assumptions

We consider the stochastic unit commitment problem of
a power generating company that operates a network of
hydro storage plants and participates in a wholesale elec-
tricity market. The objective of the company is to maximize
expected profits from buying and selling electricity while
operating its hydro resources efficiently.

We assume that the company is planning storage oper-
ation over an entire year but schedules its resources on
an hourly basis. Uncertainty enters the planning problem
through stochastic natural inflows into the reservoirs as well
as through stochastic electricity prices. We assume that the
dynamics of the random variables can be separated into an
interday and an intraday process. The interday process is
characterized by a state transition model of environmental
variables, e.g., temperature, renewable power production,
fuel prices, natural inflows, as well as calendar informa-
tion, i.e., day of the year, day of the week. This process is
assumed to be a Markov chain, possibly non-homogeneous,
which is represented by a probability lattice. The intraday
process describes random hourly electricity prices which
depend on the realization of interday randomness.

In line with the case study presented in §§4 and 5, all
assumptions regarding the electricity market are made with
the EPEX SPOT market in mind. We assume that the elec-
tricity market implements a multi-settlement system with a
day-ahead, an intraday (hour-ahead), and a balancing (real-
time) market. The company makes the majority of its trades
in the day-ahead market, where it places price-dependent
supply and demand bids by submitting piecewise-linear
bidding curves for each hour of the following day. After the
day-ahead market is closed, the system operator announces
a clearing price for each hour using a uniform auction
mechanism. Day-ahead bidding therefore takes place under
price and volume uncertainty.

In case produced volumes deviate from day-ahead bids,
the company clears all foreseeable imbalances at the intra-
day market and does not deliberately use the balancing
market. We do not explicitly model the cost of balancing
in case of unplanned outages.

We assume that the generating company is a price-taker
in the day-ahead market but a price-setter in the intraday
market. Actual EPEX SPOT sales volumes in 2012 sup-
port this assumption (mean day-ahead: 28 gigawatts; mean
intraday: 1.3 gigawatts).

Moreover, we assume that expected day-ahead prices
equal expected intraday prices. Price data from 2011 and
2012 also support this assumption, with the mean day-
ahead price being E46.90 and the volume weighted mean
intraday price being E47.21 with mean low and high
prices of E37.39 and E57.52, respectively. This implies that

although the storage operator is aware of the price effect on
the intraday market, she cannot exert market power since
the price always turns against the operator in expectation,
i.e., the expected intraday price is higher than the realized
day-ahead price when electricity is being bought and lower
when it is being sold. Introducing a price response more-
over reflects the propensity of the company to trade day-
ahead without introducing additional bias. In this setup, the
company has little incentive to trade in the intraday market,
so we assume that the company makes all intraday trading
decisions at once when day-ahead prices are known.
The topology of the network of hydro storage plants

is convergent, so that each reservoir may have multiple
inflows but only a single outflow and is associated with
a single turbine and possibly a pump. These assumptions
could easily be relaxed and are made to keep the notation
simple. Moreover, connected reservoirs are close so that
there are no significant delays regarding the flow of water
from one reservoir to another. We assume that head effects
can be ignored so that the power conversion function only
depends on water release per time unit but not on reser-
voir levels. The natural inflow of water into a reservoir is
state-dependent and remains constant throughout the day.

2.2. Markov Decision Process

We model the interday decision process of storage oper-
ation as a finite-horizon Markov decision process (MDP)
with decision epoch of one day. Denote t as the time index
for a day of the year. Randomness is separated into a pro-
cess of environmental variables 4St5

T
t=1 and a process of

hourly intraday electricity prices 4Pt5
T
t=1. We assume that

the state of the MDP 4St5
T
t=1 influences the electricity prices

and that the distributions Pt ó St are known and such that
St+1 ó St is independent of Pt ó St .
The objective of the generating company is to maxi-

mize its discounted expected profits for a given environ-
mental state St 2S t and initial storage states RtÉ1 2R in
stage t 2 811 0 0 0 1T 9, with S t being the set of environmen-
tal states in t and R being the set of all possible reservoir
states. Denote ⇣4St+1 ó St5 as the state transition proba-
bility of the Markov process. Let è = 8è11 0 0 0 1èT 9 be a
decision policy that encompasses all operational decision
variables, i.e., all bidding and dispatch decisions, subject to
the state-dependent feasible set Át4St1RtÉ15 (see §2.3), and
define C4St1RtÉ11èt5 as the random intraday profit (contri-
bution) and É as discount factor. Note that, given the state
of the MDP, the intraday profit is a random variable, since
it depends on the random prices Pt ó St . For R0 and VT+1
fixed, the value of being in state St with initial reservoir
states RtÉ1 is given by the optimality equations

Vt4St1RtÉ15

= max
èt2Át4St 1RtÉ15

⇢
⇧


C4St1RtÉ11èt5+É

X

St+12S t+1

⇣4St+1 ó St5

·Vt+14St+11Rt4èt55

��
1 (1)
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for St 2 S t , RtÉ1 2R and t = 11 0 0 0 1T . Since èt assigns
a decision to every realization of intraday randomness,
it results in random reservoir states Rt4èt5. An optimal
decision policy maximizes the sum of expected intraday
profits and expected future profits. Future profits depend
on the random state transition from St to St+1 as well as
the (random) final reservoir state Rt = Rt4èt5 in t which
is the initial reservoir state in t + 1. For notational conve-
nience, we suppress the dependence of Rt on èt and Át on
St1 RtÉ1 where no confusion can arise.

In line with Powell (2011), let us reformulate (1) using
the post-decision state. Denote V̄t as value function around
the post-decision state, which gives us the value of being
in state St at the end of the day after realization of Rt but
before a random transition to the next state. For a fixed
function V̄T , the post-decision value function is

V̄t4St1Rt5=
X

St+12S t+1

⇣4St+1 óSt5 Vt+14St+11Rt5

= X

St+12S t+1

⇣4St+1 óSt5 max
èt+12Át+1

8⇧6C4St+11Rt1èt+15

+ÉV̄t+14St+11Rt+1579 (2)

for St 2S t , Rt 2R and t = 11 0 0 0 1T É 1. This formulation
of the optimality equations is equivalent to (1) but provides
us with a computational advantage, because the expectation
operator associated with the state transition is now out-
side the maximization problem. For now, let us assume that
V̄t4St1Rt5 is known. In §3, we will show how to recursively
build an approximation of the post-decision value function.

2.3. Stochastic Programming Formulation

For a given post-decision value function, the intraday
problem can be formulated as a stochastic program with
recourse, with the objective to maximize the expected profit
for a given state St and initial reservoir state RtÉ1. Although
all variables and random parameters of the intraday prob-
lem depend on St , we suppress this dependence to stream-
line the presentation. Furthermore, most parameters and
decision variables depend on an hour h and a scenario s.
We indicate this by adding the corresponding subscripts.

2.3.1. First-Stage Decision: Day-Ahead Bidding.
The first stage of the stochastic program involves fixing
price-dependent bidding curves (see Figure 1). For each
hour h 2 H = 811 0 0 0 1249 of the following day, the gen-
erating company submits I price-volume pairs 4êhi1Xhi5,
with êhi < êh1 i+1 and Xhi ∂ Xh1 i+1 for i < I . A linear
interpolation of these pairs yields a monotone increasing,
piecewise-linear function that maps price realizations to
day-ahead sales volumes. However, choosing prices and
volumes simultaneously yields a nonconvex decision prob-
lem. In line with Fleten and Kristoffersen (2007), we there-
fore fix the price points in advance and decide only the day
ahead volumes for each price (in megawatt hours).

Figure 1. Bidding curve with four breakpoints and four
price scenarios per segment.

Bidding curve

Price scenarios

ph

Xh2

Xh3

Xh4

Xh1

Denote ps 2 ✓24, s 2 S = 811 0 0 0 1K9 as the finite
set of realizations of the price process Pt ó St and psh

as a day-ahead price realization in hour h. We assume
⇣4Pt = ps ó St5= 1/K, so that each price scenario has equal
probability. The realized day-ahead sales volume xd

sh in sce-
nario s depends on the bidding curve as well as the realized
day-ahead prices,

xd
sh=

8
>>>>>>>>>><

>>>>>>>>>>:

Xh1

if psh<êh1 8s2S 1h2H1

Xh1 iÉ1+
XhiÉXh1 iÉ1

êhiÉêh1 iÉ1
4pshÉêh1 iÉ15

if êh1 iÉ1∂psh<êhi1 1<i∂ I 8s2S 1h2H1

XhI if pshæêhI 8s2S 1h2H 0

(3)

Depending on the sign of the bid, each sales volume rep-
resents either an offer (Xhi æ 0) or a purchase (Xhi < 0)
of electricity (in megawatt hours). To additionally enforce
monotonicity, we include the following constraint:

Xh1 iÉ1 ∂Xhi 8h 2H1 i 2 821 0 0 0 1 I90 (4)

Instead of spreading the price breakpoints êhi evenly over
the price domain, we assign each line segment approxi-
mately the same number of price scenarios. More specifi-
cally, we compute the breakpoints by first partitioning the
set of sorted prices into I + 1 subsets, and then calculate
êhi as the mean of the adjacent prices that are not of the
same subset, i.e.,

êhi =
p0
g4i5É11h +p0

g4i5h

2
1

g4i5=
�

iK

I + 1
+ 1

⌫
8h 2H1 i 2I1

(5)
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with p0
g4i5h as the day-ahead prices sorted in ascending

order. The resulting bidding curve is smoother in areas
where the probability mass is high and coarser where the
probability mass is low. Note that the number of scenarios
K has to satisfy K æ 2I + 2 to ensure nonanticipativity of
the bids.

2.3.2. Second-Stage Decision: Short-Term Unit Com-
mitment. Short-term operational decisions are modeled
at the second stage of the stochastic program. At this stage,
day-ahead sales volumes have realized and the generat-
ing company uses either storage capacities or the intraday
market to close its positions. In line with other authors
(e.g., Fleten and Kristoffersen 2007, García-González et al.
2007), we model the unit commitment problem as a mixed-
integer program.

Denote J = 811 0 0 0 1 J 9 as the set of reservoirs, csjh as
charge into reservoir j , and dsjh as discharge from reser-
voir j (in metric tons). The topology of the reservoir net-
work is defined by matrix A= 4Ajk5 2 8É110119J⇥J , with
Ajk = 1 if water can be released from j into k and Akj =É1
if water can be pumped from k into j . The hourly natural
inflow of water into reservoir j is given by INtj on day t.
In contrast to electricity prices, natural inflows are assumed
to be deterministic given the state of the MDP and constant
in all hours of a day. Denote rsjh as the reservoir state with
rsj0 = RtÉ11 j and osjh as the overflow (or spill). Then, the
storage state at the end of hour h is given by the following
balance equation:

rsjh = rsj1hÉ1 Édsjh + csjh É osjh +
X

k2J 2Akj=1

4dskh + oskh5

É X

k2J 2Ajk=É1

cskh + INtj 8 s 2S 1 j 2 J 1 h 2H 0 (6)

The generating company must balance realized day-ahead
and intraday bids with power generation and consumption.
Denote xb

sh as the amount of power (in megawatt hours)
sold or purchased at the intraday market in hour h and
scenario s. All open positions are closed if

xd
sh + xb

sh =
X

j2J
4á+

j dsjh ÉáÉ
j csjh5 8 s 2S 1 h 2H1 (7)

with á+
j and áÉ

j as constant power conversion factors (in
megawatts per metric ton of water) that relate flow volume
to power quantity.

Charge and discharge decisions are constrained by min-
imum and maximum capacities of pumps and turbines.
Denote 6LBR

j 1UB
R
j 7 as the allowed reservoir content range j

(in metric tons), 6LB+
j 1UB

+
j 7 as power limits of the jth tur-

bine, and 6LBÉ
j 1UB

É
j 7 as power limits of the jth pump

(in megawatts). Then,

LBR
j ∂ rsjh ∂UBR

j 8 s 2S 1 j 2 J 1 h 2H1 (8)

z+sjhLB
+
j ∂ á+

j dsjh ∂ z+sjhUB
+
j 8 s 2S 1 j 2 J 1 h 2H1 (9)

zÉsjhLB
É
j ∂ áÉ

j csjh ∂ zÉsjhUB
É
j 8 s 2S 1 j 2 J 1 h 2H1 (10)

with binary variables, z+sjh and zÉsjh, to model the on/off sta-
tus of turbines and pumps, respectively.

2.3.3. Objective Function. The objective of the gen-
erating company is to maximize its expected intraday prof-
its through efficient bidding and storage operation while
considering the expected future value of storage as defined
by the post-decision value function. Following Pereira and
Pinto (1991), we model the post-decision value vs as a con-
cave, piecewise-linear function of the final reservoir states
rsj24 at the end of the day. Note that rsj24 is a realization of
the jth element of Rt in (1) and (2). For a given state St , the
post-decision value function is defined as the minimum of
a set of hyperplanes N = 811 0 0 0 1N 9 with intercepts an4St5
and slopes bnj4St5 so that the future value of storage is
given by

vs =min
n2N

⇢
an4St5+

X

j2J
bnj4St5rsj24

�
8 s 2S 0 (11)

If we add vs to the objective function of a maximization
problem, we can reformulate (11) by the following set of
linear constraints,

vs ∂ an4St5+
X

j2J
bnj4St5rsj24 8n 2N 1 s 2S 0 (12)

Denote psh É Çxb
sh as the expected intraday price, with

Çæ 0 as the slope of the price-response function. For a
given state St and an initial reservoir state RtÉ1, we formu-
late the optimization problem as the following stochastic
mixed-integer quadratic program:

Vt4St1RtÉ15

=max
1
K

KX

s=1

24X

h=1

44pshx
d
sh + 4psh ÉÇxb

sh5x
b
sh5+Évs51

s.t. 4351 4451 4651 4751 4851 4951 41051 41253

Xhi 2✓ 8h 2H1 i 2 811 0 0 0 1 I93

xd
sh1 x

b
sh 2✓ 8 s 2S 1 h 2H3

rsjh1 csjh1dsjh1 osjhæ0 8s2S 1 j 2J 1h2H3

z+sjh1 z
É
sjh 2 80119 8 s 2S 1 j 2 J 1 h 2H3

vs 2✓ 8 s 2S 0

(13)

3. Solution Methods

To obtain the hyperplanes required in (11) or (12), we inte-
grate stochastic dual dynamic programming (SDDP) with
ideas from approximate dynamic programming (ADP). The
method referred to as approximate dual dynamic program-
ming (ADDP) constructs a polyhedral approximation of the
post-decision value function defined in §2.2 by sampling
the state transitions of the Markov decision process.

3.1. Approximate Value Function

To be able to construct a polyhedral approximation of the
post-decision value function, we relax certain requirements
of the original model formulation.
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Definition 1 (Relaxed Problem). Define the relaxed
problem as the linear relaxation of the stochastic mixed-
integer quadratic program in (13) with Ç = 0, and denote
V 0
t 4St1RtÉ15 as its optimal objective value and V̄ 0

tÉ1 as the
corresponding post-decision value function.

By modeling the post-decision value function as the min-
imum of a set of linear functions (12), we tacitly assume
that the true function admits a tight concave approximation.
While we cannot make this assertion for the post-decision
value function associated with the original model formula-
tion, we can show that concavity holds for the post-decision
value function of the relaxed problem.

Proposition 1. The objective value V 0
t 4St1RtÉ15 as well as

the post-decision value V̄ 0
t 4St1Rt5 are both concave in the

reservoir levels.

Proof. With the binary variables relaxed to z+sjh, z
É
sjh 2 60117

and Ç= 0, the maximization problem in (13) is an ordinary
linear program. From the theory of linear programming we
know that a problem of this type is jointly concave in the
right-hand sides of its constraints, e.g., by Proposition 2.22
in Rockafellar and Wets (1998). The vector Rt enters the
right-hand side of Equation (6). Therefore, V 0

t 4St1RtÉ15
is concave in RtÉ1. Denote V 0

T 4ST 1RTÉ15 as the objective
value of the relaxed problem in the final stage and V̄ 0

T as an
arbitrary piecewise-linear function which is assumed to be
concave in RT . Since V 0

T 4ST 1RTÉ15 is concave in RTÉ1, the
expected value

P
ST 2S ⇣4ST ó STÉ15V

0
T 4ST 1RTÉ15 is concave

in RTÉ1. Hence, V̄ 0
TÉ14STÉ11RTÉ15 is concave in RTÉ1. Con-

cavity of V̄ 0
t 4St1Rt5 for t = 11 0 0 0 1T É 2 follows by back-

ward induction. É
With Ç= 0 in the relaxed problem, we assume that the

generating company is price-taker in both markets, day-
ahead and intraday. Without an intraday price response,
however, the risk-neutral company has no incentive to trade
in the day-ahead market as long as we assume that the
mean intraday price is identical to the realized day-ahead
price. Instead, the company could move all its trades to
the intraday market. In that case, the relaxed version of
the stochastic program can be decomposed into K linear
programs, which is supported by the following proposition.

Proposition 2. Without a price response, i.e., Ç = 0,
the relaxed problem is the sample average of K linear

programs.

Proof. For each feasible decision 4xb
sh1x

d
sh5= 4x̄b1 x̄d5, the

decision 4xb
sh1x

d
sh5 = 4x̄b + x̄d105 is feasible with respect

to (7), 8 s 2S 1h 2 H . With Ç= 0, the marginal prices of
xd
sh and xb

sh in (13) are identical and the decisions 4x̄b1 x̄d5
and 4x̄b + x̄d105 have the same objective values. Hence,
there exists an optimal decision, where Xhi = 0 8h 2
H1 i 2I . The nonanticipativity constraints (3) can then be
dropped, and the relaxed problem can be decomposed, such
that

V 0
t 4St1RtÉ15=

1
K

KX

s=1

V 0
ts4St1RtÉ151

where V 0
ts4St1RtÉ15 is defined as V 0

t 4St1Rt5 for a single sce-
nario s 2S . É
The objective value associated with the relaxed prob-

lem is an upper bound of the optimal objective value, i.e.,
V 0
t 4St1RtÉ15 æ Vt4St1RtÉ15. An operational policy, where

the generating company does not bid in the day-ahead mar-
ket, however, is of little practical use. Nevertheless, as long
as the difference between upper bound and optimum is
reasonably small, we can use the optimal solution of the
relaxed problem to construct an approximation of the post-
decision value function. We then use this function inside
the original problem formulation to compute near-optimal
intraday decisions. As we will see in §5.2, the difference
is small for the actual problem considered in this work.
Let us briefly outline how a polyhedral approximation of

the post-decision value function can be constructed. Since
V 0
t 4St1 ·5 is the optimal objective value of a linear program,

the post-decision value function of the relaxed problem can
be described by a concave, piecewise-linear function, i.e.,
by a polyhedral function. We can construct an approxima-
tion ˆ̄V 0

tÉ14StÉ11R5 of the post-decision value function by
first defining a set of sample reservoir states, 8R̂11 0 0 0 1 R̂N 9,
with R̂n 2R, and then deriving the corresponding hyper-
planes going through

4R̂111 0 0 0 1 R̂1J 1V
0
t 4St1 R̂1551 0 0 0 1 4R̂N11 0 0 0 1 R̂NJ 1V

0
t 4St1 R̂N 55

8St 2S t0

To obtain the hyperplanes, let °RVt4St1Rt5 be the set of
super-gradients of the function Rt 7! V 0

t 4St1Rt5. From this
set, we select a super-gradient, b4St5 2 °RV

0
t 4St1 R̂5, which

is the slope of the supporting hyperplane of V 0
t 4St1 ·5 going

through 4R̂11 0 0 0 1 R̂J 1V
0
t 4St1 R̂55. The hyperplane is given

by the linear function

H4St1R3 R̂i5= a4St5+ b4St5
>R1

a4St5= V 04St1 R̂5É
X

j2J
bj4St5R̂ij1

(14)

with a4St5 2✓ as the intercept and b4St5 2✓J as the vector
of slopes. Since we are dealing with linear programs, the
slopes can be obtained from the dual variables ã associated
with constraints (6) for h= 1,

bj4St5=
X

s2S
ãsj10 (15)

The resulting approximate post-decision value function is
then given by

ˆ̄V 0
tÉ14StÉ11R5=min

⇢ X

St2S t

⇣4St óStÉ154an4St5

+bn4St5
>4RÉR̂n551n=110001N

�
1 (16)

where the hyperplane going through R̂n is the weighted sum
of all hyperplanes H4St1R3 R̂n5 over all successor states.
For a given set of sample reservoir states at each stage, a
polyhedral approximation of the post-decision value func-
tion can be easily constructed by solving the dynamic pro-
gram using backward recursion.
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Figure 2. Approximate dual dynamic programming for
Markov decision processes.

Input arguments: Initial states S1 and R0, initial value function 4 ˆ̄V 0
t 5

T
t=1

Do for n= 1121 0 0 0 1N
Forward Pass
(1) Do for t = 1121 0 0 0 1T É 1

(1.1) Sample ps from Pt ó St

(1.2) Solve R̂nt Ñ argmaxèt 8C4St1RtÉ11èt5+É ˆ̄V 0
t 4St1Rt4èt559

for the single scenario ps

(1.3) Sample St+1 Ñ SM 4St5

Backward Pass
(2) Do for t = T 1T É 11 0 0 0 12

(2.1) Do for all St 2S t

(2.1.1) Do for m 2Mt [ 8n9

(2.1.1.1) Get hyperplane
4am4St51bm4St55ÑHmt4St1R3 R̂mtÉ15 2

°RV
0
t 4St1 R̂mtÉ15

(2.2) If 9St 2S t 2 óV̂ 0
t 4St1 R̂ntÉ15ÉV 0

t 4St1 R̂ntÉ15ó> ò then
Mt ÑMt [ 8n9

(2.3) Do for all StÉ1 2S tÉ1

(2.3.1) ˆ̄V 0
tÉ14StÉ11R5Ñmin8

P
St2S t

P 4St ó StÉ154am4St5+
bm4St5

>4RÉ R̂mt551m 2Mt9

Return post-decision value functions ˆ̄V 0
t 4t = 11 0 0 0 1T É 15

3.2. Approximate Dual Dynamic Programming

Although the number of supporting hyperplanes of V 0
t 4St1 ·5

is finite, computing all hyperplanes is prohibitive for larger
problems. Like SDDP, the ADDP algorithm therefore uses
Monte Carlo simulation to define a set of sample reservoir
states, thereby finding those hyperplanes that are necessary
to obtain an optimal decision policy.

The ADDP algorithm is outlined in Figure 2. The algo-
rithm is initialized with an environmental state S1, a reser-
voir state R0, initial value functions ˆ̄V 0

t , and the sets
Mt = ô, t = 11 0 0 0 1T . Over N iterations, ADDP alter-
nates between a forward and a backward pass. During
the forward pass, the algorithm generates new states by
sampling the state transition function, SM . For a sampled
state, the algorithm solves the relaxed version of problem
(13) for a single (random) price scenario using the cur-
rent approximation of the value function, i.e., maximizing
C4St1RtÉ11èt5+É ˆ̄V 0

t 4St1Rt4èt55, and then stores the final
reservoir state that is a subset of the solution to the lin-
ear program (Step 1.2). During the backward pass, in each
stage, the algorithm loops over all environmental states and
previously stored reservoir states and computes the sup-
porting hyperplanes (Step 2.1). For each predecessor state,
we compute the weighted sum of all hyperplanes over all
successor states and then update the approximation of the
post-decision function (Step 2.3).

In conventional SDDP, the size of the set of sample
reservoir states increases by one during each iteration of
the outer loop. Some hyperplanes around the set of reser-
voir states, however, may be redundant or at least similar
to existing hyperplanes. For ADDP, we therefore propose
that hyperplanes which do not improve the approxima-
tion quality by more than ò should be omitted (Step 2.2).

Denote V̂ 0 as the approximate (pre-decision) value function
constructed from a set of hyperplanes Hmt , with m 2 Mt ,
such that

V̂ 0
t 4St1R5

=min
⇢ X

St2S t

4am4St5+ bm4St5
>4RÉ R̂mt551m 2Mt

�
0 (17)

A new hyperplane Hnt is added to Mt if

9St 2S t2 V̂ 0
t 4St1 R̂ntÉ15ÉV 0

t 4St1 R̂ntÉ15> ò0 (18)

In this way, ADDP converges to an upper bound of the
solution to the relaxed problem, since the approximate
value function in general remains an approximation and
never converges to the true value function. Note that we
also obtain an upper bound if we stop ADDP before an
optimal solution is found, as this is often done in the litera-
ture, e.g., Flach et al. (2010), Philpott and de Matos (2012).
A practical advantage of using ò > 0 instead of ò = 0 is
that omitting new hyperplanes accelerates computation of
the outer loop, which allows a larger number of states to
be sampled in the same amount of time.
Existing convergence results for SDDP algorithms

require that randomness is stagewise independent and
enters only the right-hand side of the constraints of the
linear program at each stage (Philpott and Guan 2008,
Shapiro 2011). Both assumptions are necessary if the lin-
ear program is being solved only for a subset of scenar-
ios during the backward pass. Right-hand side randomness
guarantees that the optimal dual solutions for scenarios
in the subset are also dual feasible for all other scenar-
ios, which significantly accelerates the generation of new
hyperplanes. Stagewise independence, in turn, enables shar-
ing hyperplanes among different scenarios at the previous
stage, since the post-decision value function is identical for
all scenarios. Algorithms that exploit these properties can
be found in Higle and Sen (1991) and Chen and Powell
(1999). Although in our model these assumptions are not
fulfilled, the algorithm still converges almost surely. First,
dual solutions are always feasible because the linear pro-
gram is being solved for the entire set of scenarios dur-
ing the backward pass. Second, hyperplanes are not shared
among scenarios, since we can construct a separate post-
decision value function for each scenario by using the tran-
sition matrix of the Markov process.

Proposition 3. Denote èò
as the policy obtained by

ADDP for ò> 0 and è⇤
as the optimal policy of the relaxed

problem. For a given initial reservoir level R0, the policies

obtained by ADDP for ò= 0 converge to the optimal pol-

icy in a finite number of steps. The values obtained from

following èÖ
are at most ò4T É 15 worse than the optimal

values.

Proof. We first consider the case ò = 0. It follows from
Lemma 1 in Philpott and Guan (2008) that for fixed
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St the functions

R 7! Vt4St1R5 (19)

are the pointwise maxima of finitely many linear func-
tions, i.e., are piecewise linear for all 1 ∂ t ∂ T . Note
that each possible sequence of states 4S11 0 0 0 1ST 5 has pos-
itive probability and therefore by the Borel-Cantelli lemma
occurs infinitely often in the forward pass. Since we add
a hyperplane in each iteration, the finiteness of the set of
hyperplanes implies that there exists an n̄ 2� such that no
further hyperplanes are added after iteration n̄ . We denote
the approximate value function after that state by V̂ 0

t for
1∂ t ∂ T .

Suppose that the policy è̂ found by using 4V̂ 0
t 51∂t∂T is

suboptimal in period T É 1 and some 4S11 0 0 0 1ST 5, i.e.,
maxè C4ST 1RTÉ11è5+ V̄T 4ST 1RT 5< V̂ 0

T 4ST 1RTÉ15. Since
4S11 0 0 0 1ST 5 is sampled in iterations n> n̄, the value func-
tion approximation would be updated in these iterations—a
contradiction to the choice of n̄. Hence, V̂ 0

T 4ST 1RTÉ15 coin-
cides with V 0

T for all R that can be reached by è̂ and for
all ST 2 S T . The same holds for the post-decision value
function ˆ̄V 0

TÉ1. Having established the accuracy of V̄ 0
TÉ1, we

can inductively show the accuracy of all V̂ 0
t and ˆ̄V 0

t for all
St and t. Hence, the solutions obtained with V̂ 0

t coincide
with the optimal solutions of the relaxed problem.

The finite convergence property carries over to the case
ò> 0. To prove the second part of the proposition, we begin
with the last period T and note that by definition

V̂ 0
T 4ST 1RTÉ15ÉV 0

T 4ST 1RTÉ15∂ ò 8ST 2S T 1 (20)

for all states of the system RT that can be reached from R0
by following èò. This inequality also holds for the respec-
tive post-decision value functions.

Let „ ⌘ C4STÉ11RTÉ21è
⇤5É C4STÉ11RTÉ21è

ò5. Since
èò is optimal for V̂ 0

T it follows that

ˆ̄V 0
TÉ14STÉ11RTÉ11è

ò5æ ˆ̄V 0
TÉ14STÉ11RTÉ11è

⇤5+„0 (21)

Therefore, for all STÉ1 2S TÉ1,

0∂C4STÉ11RTÉ21è
⇤5+ V̄ 0

TÉ14STÉ11RTÉ14è
⇤55

ÉC4STÉ11RTÉ21è
ò5É V̄ 0

TÉ14STÉ11RTÉ14è
ò55 (22)

= „+ V̄ 0
TÉ14STÉ11RTÉ14è

⇤55É V̄ 0
TÉ14STÉ11RTÉ14è

ò55 (23)

∂„+ V̄ 0
TÉ14STÉ11RTÉ14è

⇤55

É ˆ̄V 0
TÉ14STÉ11RTÉ14è

ò55+ ò (24)

∂„+ ˆ̄V 0
TÉ14STÉ11RTÉ14è

⇤55

É ˆ̄V 0
TÉ14STÉ11RTÉ14è

ò55+ ò (25)

∂ ò1 (26)

where (24) follows from (21) and (25) from V̄ 0
TÉ1 ∂ ˆ̄V 0

TÉ1.
Since V̂ 0

TÉ1 is an ò-approximation of the function

R 7!max
èò

C4STÉ11R1è
ò5+ ˆ̄V 0

TÉ14STÉ11RTÉ14è
ò551 (27)

we have V̂ 0
TÉ14STÉ11RTÉ25∂ 2ò+V 0

TÉ14STÉ11RTÉ25. Since
the above holds for all STÉ1 2 S TÉ1, the property carries
over to the post-decision value function V̄ 0

TÉ2 and the error
bound follows by induction. É

4. Econometric Model

Consistent with our model formulation, we propose an
econometric model that separates randomness into a pro-
cess of environmental variables with daily time incre-
ments and a process of electricity prices with hourly time
increments. The objective of the econometric model is to
accurately describe the dynamics of electricity prices and
natural inflows by a small number of explanatory variables
that fit into this modeling framework.
As with every commodity, the price of electricity is

determined by supply and demand. In the short term, sup-
ply is primarily driven by seasonal variations of intermit-
tent power sources, such as wind, solar, and run-of-river,
or by power plant outages. In particular, wind and solar
power production drives down the electricity price, since
more expensive technologies are forced out of the mar-
ket. In the medium and long term, it is mainly the prices
for primary energy such as coal and gas that influence the
price for electricity. Electricity demand, on the other side,
can be largely explained by temperatures and deterministic
seasonal factors. The temperature affects electricity prices
due to higher demand for heating and cooling. To verify
this relationship, we ran a linear regression of the mean
demand for electricity per day in Austria and Germany on
the mean day temperature, the squared mean temperature,
the day length (i.e., the time from sunrise to sunset), as
well as dummy variables for national holidays in Germany
and Austria. Based on a sample of 730 observations from
2010 to 2011, the model explains 76% of the variance
in electricity demand. Accordingly, we model electricity
prices dependent on those variables that influence supply
and demand.
To meet the requirements of a finite-horizon Markov

decision process, we decompose the dynamics of the envi-
ronmental variables into a time-dependent trend and a state
transition process that has the Markov property. The state
of the Markov process on day t is defined by the week-
day (DAY), the mean day temperature (TEMP), the total
wind power generation during that day (WP), the total solar
power generation (SP), the natural inflow (IN), and the gas
price (GAS)

St = 4DAYt1TEMPt1WPt1SPt1 INt1GASt50 (28)

For a given realization of the state and a given day of the
year, we can then model the hourly conditional expectations
of the electricity prices, ⇧4p11 0 0 0 1p24 ó St5.
For model estimation, we used hourly day-ahead and

intraday spot prices from 2009 to 2011 as published by
EPEX SPOT. Hourly data on wind and solar power fore-
casts are published by E.ON, EnBW, RWE, and Vattenfall



Löhndorf, Wozabal, and Minner: ADDP for Hydro Storage Systems
818 Operations Research 61(4), pp. 810–823, © 2013 INFORMS

for the four major German transmission zones. We used
forecasts instead of realized generation because spot prices
are fixed one day in advance so that forecasts have a greater
explanatory power than actual generation data. Since the
price effect of temperature is a function of population den-
sity and local temperatures, we define the mean day tem-
perature as a population weighted index over all Austrian
and German cities with a population of more than 10,000.
The index has been calculated using Mathematica 7 City-
Data and WeatherData. Data on natural inflows have been
provided by an Austrian generating company for a system
of seven interconnected hydro plants in the Alps (see §5
for further details). As the inflow patterns exhibit pairwise
correlations of around ê= 008, we aggregate these inflows
into a single state variable by summing up the inflows for
all reservoirs. To estimate the dynamics of the gas price,
we use daily closing prices from NetConnect Germany.

4.1. State Transition Model

To separate stationary from nonstationary state variables,
we divide the state St into two separate substates: one state
that contains only the gas price S1

t and another state that
contains all other state variables S2

t . The gas price is mod-
eled as nonstationary geometric Brownian motion (GBM),
representing the long term market trends, while the other
state variables follow a stationary Markov process, captur-
ing short-term variations in the electricity price.

To describe the dynamics of the gas price S1
t , we fit a

GBM to the data and discretize the resulting log-normal
price distributions for every day t of the planning hori-
zon. Specifically, we choose gas price states and proba-
bilities such that the Kantorovich distances between the
corresponding discrete distributions and the log-normal
distributions are minimal (Graf and Luschgy 2000). The
Kantorovich distance is suitable for the use in stochas-
tic programming and, in a certain sense, ensures an opti-
mal discretization (Graf and Luschgy 2000, Pflug 2001).
The number of gas price states is chosen such that the
Kantorovich distance does not exceed 0.5 with a cap of
30 gas price states per day. The transition probabilities
between nodes in consecutive stages can easily be com-
puted using the conditional distributions resulting from the
specification of the GBM. In this way we obtain a prob-
ability lattice, representing the stochastic evolution of the
gas price.

The other state 4S2
t 51∂t∂T is decomposed into a deter-

ministic trend component 4Dt51∂t∂T and a random error
4Et51∂t∂T which follows a time-homogeneous Markov
chain,

S2
t =Dt +Et1 t = 11 0 0 0 1T 0 (29)

For the TEMP state variable, we used the temperature index
for the years 2009 to 2011 and estimated the parameters Ñ,
Å and u of the trigonometric regression model,

TEMPt = Ñ+Å sin
✓
365É t

2è
É u

◆
+ Öt11 (30)

which yields an R2 = 80009%. The total wind power gener-
ation per day exhibits annual seasonality because of higher
wind speeds during winter as well as an upward trend over
time due to the ongoing installation of new wind power
units. To capture these two trends, we include a quadratic
term as well as an interaction term in the trigonometric
regression model of wind power production,

WPt = Ñ1 + Ñ2t+ Ñ3t
2 +Å1 sin

✓
365É t

2è
É u1

◆

+Å2 sin
✓
365É t

2è
É u2

◆
t+ Öt21 (31)

with an R2 = 9046%. Production of solar power exhibits
a strong seasonal component as well as a trend in time
and is modeled in an analogous way with residuals Öt3
(R2 = 71067%). We do not model inflows using trigono-
metric models, since the observed inflow peaks in spring
as well as the long dry period in winter cannot be cap-
tured by a sine function. Instead, based on 18 years of daily
inflow data, we estimated the trend wt in natural inflows for
each day of the year by a Nadaraja-Watson nonparametric
regression (R2 = 73065%). The inflow model is given by

INt =wtÖt40 (32)

Residuals Öt4 are obtained by dividing the inflow realiza-
tions by their respective estimated means.
To estimate a model of Et , we used the detrended state

variables êt = 4Ö̂t11 Ö̂t21 Ö̂t31 Ö̂t45, i.e., the residuals from (30)
to (32) for 2009 to 2011. All residuals show a strong auto-
correlation supporting the hypothesis of stagewise depen-
dence. By modeling the transition from one state to another
as a Markov process, we capture autocorrelation up to the
first lag. Note that modeling inflow randomness through a
Markov chain of geometric errors does not fully capture
long-term variability, so that the coefficient of variation of
total inflows over one year is 5.2% in the model compared
to 7.7% in the data. To ensure parsimony of the model,
however, we do not include higher order lags.
We estimated the transition probabilities of the Markov

chain for Et by first fixing a number of states M and apply-
ing k-means clustering to organize the observations 4êt5Tt=1
into M clusters, Z11 0 0 0 1ZM . In a second step, we esti-
mated the transition probabilities by counting the number
of transitions between clusters as they occur in the sample.
Accordingly, the transition probability matrix is given by

⇣4Et+1 =Zj óEt =Zi5

= ó8t2 êt+1 2Zj1 êt 2Zi9ó
óêt 2Zió

8 i1 j0 (33)

For our implementation, we choose M = 30 to obtain the
cluster centers Z11 0 0 0 1Z30 and end up with partitions where
the smallest of the clusters contains 14 of the original data
points, while the largest cluster represents 143 observations.
To obtain a joint probability lattice, we formed the prod-

uct of the gas price lattice S1
t and the Markov chain S2

t ,
under the assumption that both processes are independent.
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4.2. State-Dependent Price Models

Day-ahead prices are represented by linear models. We esti-
mated one model for every hour and distinguish between
working days and weekends, i.e., a total of 48 models. The
regressors consist of all state variables, daily demand for
electricity, and the day length in minutes. We included all
interactions of the regressors up to the second order. Note
that we do not transform the price data, as is done for exam-
ple in semilog models, since our sample contains negative
prices, which cannot be handled in these settings. Further-
more, the corresponding reverse transformations of such
models would have introduced instability in the simulation.

To ensure parsimony of the model, we performed step-
wise combined forward–backward elimination as described
in Draper and Smith (1998, §15.2) and used the Bayesian
information criterion (BIC) for model selection. For the
day-ahead price models, the selection routine chooses 11.67
regressors on average but at most 20 out of 45 regressors.
The number of regressors is reasonable, considering that we
used around 312 observations for the weekend models and
782 observations for the working day models. The overall
in-sample fit of the linear models for the day-ahead prices
is R2 = 65081%, which is satisfactory, considering the vary-
ing economic conditions as well as structural changes on
the market for electricity. Although autocorrelation is still
present in the residuals of the linear models, due to long-
term trends in the power prices not captured by our model,
we do not consider these influences to circumvent a further
increase of the dimensionality of the MDP.

To estimate the price response on the intraday market,
we regressed the difference of intraday and day-ahead price
on the hourly demand for electricity. The linear regression
yielded an intercept of É2003 (E) and a slope coefficient
of 0.0011 (E per megawatt hour), with an in-sample fit of
R2 = 45007%. The negative intercept reflects the fact that
the true price response function is nonlinear. Based on the
data, we set the slope of the price-response function in the
objective function of the stochastic program to Ç= 000011.

4.3. Simulation

To simulate price trajectories over one year, we began by
sampling a state from the steady-state distribution of the
Markov chain. The state transition process is simulated
using the probabilities in (33). To obtain the inflow for
a single reservoir, we multiply the sampled Öt4 with the
average inflows of the respective reservoir on the chosen
day. Based on the realization of the state variable and the
day of the year, we first simulated a demand for electricity
using the linear model for demands described above and
an error term sampled from a normal distribution fitted to
the residuals of that model. In a second step, using the
demand and the state variables of the MDP, we gener-
ated hourly day-ahead prices using the linear models for
electricity prices. Random noise was added by sampling
the error term of location scale t-distributions fitted to the

residuals of the linear models. The approach is supported
by the Kolomogorov-Smirnov goodness of fit test, which
does not reject the null hypothesis of a t-distribution in any
of the linear models (Å = 0005). Using the t-distribution
yields heavy-tailed prices, as they are often observed in
electricity markets.
To generate day-ahead price scenarios for the stochastic

program, we resorted to Latin hypercube sampling (LHS)
as a variance reduction technique (Shapiro 2003). Denote
F É1
h 4St1Ul5 as the inverse CDF (t-distribution) of the day-

ahead price during hour h for a given St , and denote Ul as
a uniform random variable. Then, we can generate K day-
ahead prices using

psh = p0
‰4s5h1 p0

lh = F É1
h 4St1Ul5 with

Ul ⇠U 64lÉ 15/K1 l/K7 8 l 2 811 0 0 0 1K91
(34)

where ‰ is defined as a mapping from s to l such that ph

is a random permutation of p0
h, i.e., we shuffled the price

scenarios.

5. Results

To test the efficiency of the proposed algorithm, we con-
ducted a numerical analysis based on data from a gener-
ating company in Austria. The company operates a large
hydro storage system in the Austrian alps that consists
of an upper (j = 1) and a lower reservoir (j = 2). Both
reservoirs are fed by natural inflows of two glacier rivers,
and water can be pumped from the lower into the upper
reservoir. In 2011, the system received a capacity upgrade
that increased the pumping and generating capacities at
the upper reservoir by a factor of five. Another capac-
ity upgrade by the same amount is planned for 2016. All
releases from the lower reservoir flow into a hydro cascade,
which consists of several small hydro plants that line up
along downstream rivers. System specifications of all plants
are given in Table 1.
Based on a default model configuration, consisting of

reservoirs J = 81129 at their current stage of expansion,
we investigated the influence of changing selected param-
eters ceteris paribus on the performance of the algorithm
as well as the behavior of the optimal policy. As varia-
tions, we considered a version of the model with its former
capacity until the 2011 expansion (small capacity) as well
as a version of the model with its future capacity after a
possible expansion in 2016 (large capacity). To study the
effect of a larger number of reservoirs, we also included
five downstream hydro plants (reservoir chain). Moreover,
to study the effect of more difficult integer requirements on
approximation quality, we increased the minimum capacity
of turbines and pumps to 50% of maximum capacity (50%
min capacity). Finally, since we used a default ò= 104 for
all models, we studied the effect of setting ò= 0 (epsilon
zero). All model configurations are summarized in Table 2.
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Table 1. System specifications.

Reservoir j 1 2 3 4 5 6 7

Max reservoir content 1,000 m3 UBR
j 84,941 83,000 30 10 2,000 120 95

Initial reservoir content 1,000 m3 R0j 34,333 37,000 15 5 1,000 60 47
Average hourly inflow 1,000 m3 w̄j 23.0 6.9 13409 45.2 6608
Max pumping capacity MW UBÉ

j 600
Min pumping capacity MW LBÉ

j 20
Max generating capacity MW UB+

j 592 220 005 120 9 16 1604
Min generating capacity MW LB+

j 15 10
Pump efficiency MW/1,000 m3 áÉ

j 4.23
Turbine efficiency MW/1,000 m3 á+

j 3.17 7.51 00006 1.32 0.06 0.27 0010

5.1. Implementation

The algorithm and the electricity price model were imple-
mented in Java. The linear relaxation used with ADDP
was modeled using the Java API of Google’s OR-Tools
and solved using Sulum Optimization’s linear program-
ming solver. The stochastic quadratic mixed-integer pro-
gram used for the simulations was modeled and solved
using the Java API of the Xpress Optimization Suite. All
computations were executed on Amazon EC2 ’m2.4xlarge’
instances, which correspond to Intel Xeons E5-2665 with
8 cores at 2.4 Ghz with 68-G memory. The implementation
of the algorithm makes heavy use of multithreading, which
led to a linear speed-up in the number of cores.

For our numerical analyses, we generated states and
electricity price scenarios using the econometric model
described in §4. The full problem formulation has
T = 365 stages, óS ó= 2821211 states, and 44,765,192 tran-
sition probabilities. Moreover, for each state, we gener-
ated K = 20 scenario paths, each containing óH ó= 24 price
realizations. An equivalent scenario tree that reproduces
all possible price paths would require 403 · 1011234 terminal
nodes.

The discount factor was set to É = 100, and all bidding
curves had four segments with I = 3 breakpoints. Initial
experiments showed that using a larger number of break-
points or a larger number of scenarios did not significantly
change the objective value.

5.2. Computational Performance

To test the convergence of the algorithm, we ran ADDP
for 25 iterations with all 6 configurations and compared

Table 2. Model configurations used for the numerical
analyses.

Model J ò UB+
1 LB+

1 UBÉ
1 LBÉ

1

Default 81129 104 592 15 600 20
Small capacity 81129 104 112 15 120 20
Large capacity 81129 104 11072 15 11080 20
Reservoir chain 8112131 104 592 15 600 20

41516179
50% min capacity 81129 104 592 296 600 300
Epsilon zero 81129 0 592 15 600 20

expected first-stage profits with simulated profits. To avoid
reservoirs ending up being emptied at the end of the year,
the value function of the final stage V̄T is such that it suf-
ficiently penalizes any reservoir content below the initial
reservoir levels. To obtain the expected profits, after each
iteration we computed the objective values of the stochas-
tic program at T = 1 using the most recent approximate
post-decision value function. To assess the actual value of
the current approximation, we simulated the decision pro-
cess by solving the nonrelaxed version of the stochastic
program 1,000 times for different scenario paths over the
whole planning horizon of one year.
Furthermore, as a benchmark, we formulated the deter-

ministic counterpart of the relaxed problem as one large
linear program. We then simulated the planning process
that results from using this model on a rolling horizon. The
model takes the current point estimate of future prices and
inflows to make decisions and then evaluates these deci-
sions using the actual price and inflow realizations.
Table 3 summarizes the results of the numerical study.

We recorded the iteration in which the upper bound of the
95% confidence interval of the simulated profit exceeds the
expected profit found by ADDP. Note that the true profit
lies in between the expected profit and the lower bound
of the 95% confidence interval of the simulated profit with
97.5% probability (Shapiro 2011).
The figures in all other columns refer to the correspond-

ing recorded iteration. The third and fourth columns show
the expected and the simulated profits (in E1.0 M). Col-
umn 5 summarizes the rolling horizon solution. Column 6
shows the gap, i.e., one minus the ratio of expected to sim-
ulated profit. Column 7 shows the coefficient of variation
of the simulated profit. Column 8 shows the computational
time in hours until convergence. The last column shows the
total number of hyperplanes that were used to construct the
post-decision value function.
The small gap between expected and simulated profits

observed for all problem instances demonstrates that the
relaxed problem is sufficient to find a tight value func-
tion approximation for the original two-stage mixed-integer
problem.
We find that the convergence behaviour is largely

affected by the size of the system, both in terms of storage
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Table 3. Summary of the results for different problem configurations.

Model Iter Exp profit Sim mean (SE) RH (SE) Gap CV Time Hyp count

Default 13 164.3 162.4 (2.1) 154.8 (1.7) 00012 0.21 609 210061569
Small capacity 11 134.0 132.2 (1.8) 131.3 (1.6) 00013 0.22 406 115091970
Large capacity 17 188.3 188.2 (3.1) 173.5 (2.0) 00000 0.26 1109 215121240
Reservoir chain 17 229.2 229.2 (3.2) 219.3 (2.6) É00002 0.22 3808 212441477
50% min capacity 13 164.7 163.4 (2.6) 154.5 (1.9) 00008 0.25 608 118921744
Zero epsilon 13 164.3 162.6 (2.2) 154.2 (1.7) 00012 0.21 708 314981359

Note. RH=Rolling horizon benchmark, SE=Standard error of the mean, CV=Coefficient of variation of the simulated profit, Iter= Iterations
to convergence, Time=Computing hours to convergence, Hyp count= Final number of hyperplanes.

power capacity, i.e., the capacity of turbines and pumps, as
well as the number of storage units. Increasing the num-
ber of reservoirs from two to seven increases the computa-
tional time due to the larger complexity of the optimization
problem. However, the increase in the number of iterations
as well as the number of hyperplanes does not reflect the
magnitude of the increase in problem size. While a larger
number of reservoirs has a direct effect on computational
times, it apparently has only a minor effect on the number
of required hyperplanes and thereby on the required num-
ber of iterations. Problems that require more hyperplanes
seem to be those where the optimal value function reaches
a larger number of sufficiently different reservoir states,
which is the case when the power capacity of the storage
plant is relatively large.

With respect to the rolling horizon benchmark, the value
of following the optimal policy also largely depends on the
power capacity of the plant. While the gap between rolling
horizon and optimal policy is low for the small capacity
system (+007%), it is much higher for the large capacity
system (+805%). This indicates that a flexible storage sys-
tem that possesses the ability to quickly change the reser-
voir content benefits more from a stochastic solution than
less flexible systems.

The convergence of expected and simulated profits for
ò= 0 and ò= 104 is shown in Figure 3 along with the final
number of hyperplanes. Despite using the relaxed prob-
lem to approximate the value function, the gap between
expected and simulated profits is less or equal to 1.2%
(even if the minimum capacity is at 50% of the maximum
capacity as seen in Table 3). We can see from the plot that
the gap closes after 25 iterations if ò= 0 but not if ò= 104.
However, using a lower ò is paid for by a higher compu-
tational burden, which is reflected in the number of hyper-
planes needed to approximate the value function. Setting
ò= 104 requires solution of 307 · 108 linear programs until
convergence is reached (as opposed to 409 · 108 linear pro-
grams if ò= 0), which reduces the computational time by
about 12%. Note that we deliberately used a large default
ò to illustrate this aspect.

5.3. Structural Insights

So far, the analyses showed that the optimal policy as well
as the added value of following it is highly sensitive toward

the power capacity of the storage system, i.e., the size of the
turbines and pumps relative to the size of the reservoir. For
a constant reservoir size, a higher power capacity decreases
the time that the storage plant can run at full capacity. For
example, if we ignore inflows, it would take 134 days to
empty the upper reservoir with 112-MW turbine capacity
(small), but only 14 days with 1,073-MW turbine capacity
(large). This has a tremendous effect on which reservoir
states could possibly be reached by the optimal policy.
Figure 4 shows the reservoir contents of the upper reser-

voir over the course of the year for the small and the large
setup. While the variation in the reservoir content curves
over the year is low for the small capacity system, the

Figure 3. Convergence of ADDP for different approx-
imation bounds for the case 50% min
capacity.
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Figure 4. Reservoir content curves.
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variation is high for the high capacity system. Due to the
large amount of inflow arriving during the summer months,
the small system pumps 5.0% of the time in winter and
20.0% of the time in summer on average. The large system,
on the other hand, pumps 30.0% of the time regardless of
the season. This operational flexibility in addition to the
lower number of days at which the plant can run at full
capacity leads to a higher variability in reservoir contents
and thereby increases the value of a stochastic solution.

An analysis of the simulated decisions revealed that
the plants operate in three states 99% of the time. The
plants either turbinate at full capacity, or they pump at full
capacity, or neither. Such a decision policy seems to be
sufficiently represented by bidding curves with only four
segments, which is also reflected by the small gap between
expected and simulated profits.

6. Conclusion

We modeled the bidding problem of a generating company
that operates a network of hydro storage plants as a multi-
stage stochastic program and proposed a solution strategy
that integrates stochastic dual dynamic programming with
ideas from approximate dynamic programming. We divided
the annual planning horizon into daily stages with hourly
bidding decisions as part of the intrastage bidding prob-
lem. Accordingly, we separated intrastage from interstage
randomness, which enabled us to model price uncertainty
at each stage dependent on a state variable that evolves
over time following a Markov process. To solve the multi-
stage decision problem, we proposed a solution strategy
that computes an approximation of the value function of the
interstage process. The algorithm, referred to as approxi-
mate dual dynamic programming (ADDP), uses a probabil-
ity lattice to represent the Markov process and iteratively

constructs a polyhedral approximation of the value func-
tion. This approximation can be used inside the original,
more complicated intraday bidding problem to derive near-
optimal bidding decisions.
We showed that the algorithm converges and derived

an error bound of the polyhedral approximation. Tailored
to the modeling framework, we developed an econometric
model of electricity prices and stochastic inflows fitted to
data from the EPEX SPOT wholesale electricity market as
well as actual inflow data. We then carried out a case study
based on different configurations of a hydro storage sys-
tem in Austria. We find that approximating the continuous
Markov process by a discrete probability lattice provides
a good model fit. Numerical results indicate that the algo-
rithm converges to a near-optimal solution, despite using
a relaxed version of the original problem to approximate
the value function of the interstage problem. Furthermore,
we find that computational complexity as well as the value
of the stochastic solution depends on the ratio of reservoir
size to installed power capacity.
Future work should focus on models that additionally

consider the market for reserve electricity as well as the
market for future contracts. It would also be interesting to
test the approach on the unit commitment problem of a
thermal power system.
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