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We study a class of stochastic dynamic games that exhibit strategic complementarities between players; formally, in the
games we consider, the payoff of a player has increasing differences between her own state and the empirical distribution
of the states of other players. Such games can be used to model a diverse set of applications, including network security
models, recommender systems, and dynamic search in markets. Stochastic games are generally difficult to analyze, and
these difficulties are only exacerbated when the number of players is large (as might be the case in the preceding examples).

We consider an approximation methodology called mean field equilibrium to study these games. In such an equilibrium,
each player reacts to only the long-run average state of other players. We find necessary conditions for the existence
of a mean field equilibrium in such games. Furthermore, as a simple consequence of this existence theorem, we obtain
several natural monotonicity properties. We show that there exist a “largest” and a “smallest” equilibrium among all those
where the equilibrium strategy used by a player is nondecreasing, and we also show that players converge to each of
these equilibria via natural myopic learning dynamics; as we argue, these dynamics are more reasonable than the standard
best-response dynamics. We also provide sensitivity results, where we quantify how the equilibria of such games move in
response to changes in parameters of the game (for example, the introduction of incentives to players).
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1. Introduction
This paper studies a class of games that exhibit strate-
gic complementarities between players. A strategic com-
plementarity exists if, informally, “higher” actions by
other players increase the return to higher actions for a
given player. Games with strategic complementarities are
a powerful modeling tool, applicable in a wide range
of situations, including: systems with positive network
effects (such as network security models, recommender
systems, and social networks); coordination problems;
dynamic search in markets; social learning; and oligopoly
models (for example, quantity or price competition with
complementarities).

Our focus in this paper is on dynamic games with strate-
gic complementarities. Strategic complementarities have
long provided a fertile analytical ground for static game-
theoretic models; see, for example, Milgrom and Roberts
(1990), Vives (1990), and Topkis (1998). However, the
literature on dynamic games with complementarities has
emerged relatively recently by comparison. Much of the
attention in prior work on such games has focused on
developing existence proofs for equilibrium; see, for exam-
ple, Curtat (1996), Amir (2002, 2005), Vives (2009), Horst
(2005), Nowak (2007), and Sleet (2001) for such results.

In this paper we consider a class of dynamic games
referred to as stochastic games; in these games, agents’
actions directly affect underlying state variables that influ-
ence their payoff (Shapley 1953). The standard solution
concept for stochastic games is Markov-perfect equilibrium
(Fudenberg and Tirole 1991). Despite the previously cited
existence results for Markov-perfect equilibria in games
with complementarities, there remain two significant obsta-
cles, particularly as the number of players grows large. First
is computability: the state space of the preceding games
expands in dimension with the number of players, and thus
the “curse of dimensionality” kicks in, making computation
of Markov-perfect equilibria essentially infeasible (Pakes
and McGuire 2001, Doraszelski and Pakes 2007). Sec-
ond is plausibility: as the number of players grows large,
it becomes increasingly difficult to believe that individual
players track the exact behavior of the other agents. Rather
than treat the growth of the population as an impediment to
analysis, this paper addresses these obstacles by exploiting
an asymptotic regime where the number of players grows
large to simplify analysis of equilibria.

We study an equilibrium concept we call mean field equi-
librium. In a limiting “mean field” regime where the num-
ber of players becomes infinite, it becomes reasonable to
suppose that individuals postulate that fluctuations in the
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empirical distribution of other players’ states have “aver-
aged out” due to large scale, and thus optimize holding
the state distribution of other players fixed. Accordingly,
we consider an approximation methodology where agents
optimize only with respect to long-run average estimates
of the distribution of other players’ states. On the other
hand, there should be a consistency check: the postulated
state distribution should arise from the optimal strategies
that agents compute. The resulting equilibrium concept is
mean field equilibrium (MFE); this notion has been utilized
across a range of work in economics, operations research,
and control (as we discuss below). Although it should
be viewed as an equilibrium concept for a formal limit
stochastic game model with an infinite number of players,
we note that it can be justified via approximation results
that relate mean field equilibria to equilibria of games with
a finite but large number of players.

Our results provide valuable insight into the structure
of mean field equilibria in stochastic games with comple-
mentarities, as well as computational tools to determine
such equilibria. To motivate our results, we first provide
several examples of stochastic games with complementari-
ties where the approach taken in this paper applies. These
examples often exhibit large numbers of players, and thus
the benefits of mean field equilibrium are significant. We
demonstrate in §7 that each of these examples can be ana-
lyzed using the results we develop in this paper.

Example 1 (Interdependent Security). In interdepen-
dent security games, as introduced in Kunreuther and Heal
(2003), a large number of agents make individual decisions
about their own security. However, the ultimate security
of an agent depends on the security decisions made by
other agents. For example, imagine a network of computers
where each individual user makes an investment in keeping
her own machine secure. This investment may be in the
form of advanced antivirus filters, firewalls, etc. Although
these investments improve the security of the individual
computer, it can still be affected if the other computers in
the network are not properly secured. In the interdependent
security games we consider, agents take actions at some
cost to improve their own security level, and earn a pay-
off each period that depends on whether or not a security
breach occurs. The fact that the probability of a security
breach is influenced by others’ security levels introduces
strategic complementarities into the stochastic game.

Example 2 (Collaborative Filtering). Many large on-
line recommendation systems, such as those used by Net-
flix and Amazon, rely on collaborative filtering. In such
systems, if an individual puts forth greater effort in main-
taining their profile, the recommendations they receive will
improve. However, the recommendations other individuals
receive improve as well, and typically other individuals will
feel a stronger incentive to exert additional effort to main-
tain their profile in this case. In the absence of such effort,
the profile of an agent becomes stale and useless both to

her and others in the system. Thus, collaborative filtering
systems exhibit strong strategic complementarities.

Example 3 (Dynamic Search with Learning). In dy-
namic search models, traders in a market exert effort to find
trading partners (Diamond 1982). Such models are com-
monly used to study, for example, decentralized matching
in labor markets. We consider a model where, at each time
step, traders also gain experience by exerting effort; this
experience makes future effort more productive. Of course,
traders’ experience increases as they put forth more effort,
but their experience also increases as others put forth more
effort since this increases the likelihood of useful interac-
tions per unit effort. This creates strategic complementari-
ties between the players; such a model was considered by
Curtat (1996). �

Our main results provide conditions that ensure exis-
tence of mean field equilibria in stochastic games with
complementarities. We also establish that simple learning
procedures converge to equilibria, and provide insight into
sensitivity of equilibria to parameter changes. We consider
a general class of models with parsimonious assumptions
over model primitives that ensure strategic complementar-
ities. In particular, our model class allows players to be
coupled both via their payoff function and state transitions;
that is, players’ payoffs and state transitions can depend on
states or actions of other players. We also discuss exten-
sions of our results to models with multidimensional state
and action spaces, and with heterogeneity among players.
Details of our results follow.

1. Structural characterization of mean field equilibrium.
We establish existence of a mean field equilibrium in
a general stochastic game model using lattice-theoretic
techniques. Lattice-theoretic methods are typically applied
in games with complementarities; the key techniques we
use are attributed to Tarski (1955), Kamae et al. (1977),
Hopenhayn and Prescott (1992), Zhou (1994), and Topkis
(1998). Despite the use of lattice-theoretic techniques in
our analysis, existence of equilibria in our game cannot
be inferred from existence results for other games in the
literature. Moreover, we show that there exists a “largest”
and “smallest” equilibrium among the set of all mean field
equilibria with nondecreasing strategies. Thus, in particular,
there is a natural dominance relationship among the mean
field equilibria of a given stochastic game with comple-
mentarities. This is particularly valuable in dynamic games,
because our characterization applies to the distribution of
states of agents in equilibrium.

2. Convergence to equilibrium. We provide two con-
vergence results. First, we study a standard best-response
dynamic (BRD). In this algorithm, at each time step, each
agent computes the stationary population state distribution
that would be induced by the current strategies of others,
and in turn computes the best response to that state distribu-
tion. Using monotonicity properties derived in establishing
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the existence of mean field equilibrium, we show that BRD
converges.

However, BRD is unsatisfying both computationally and
practically. From a computational standpoint, BRD requires
computation of a stationary distribution given the current
strategy choices of agents in the system; this is in princi-
ple a complex procedure to execute at each iteration. More
importantly, BRD is an implausible approach to play in
an actual game: it is unlikely that agents would explicitly
compute the stationary distribution their competitors would
obtain.

Instead, we consider a more a natural form of myopic
learning dynamics (MLD) among the players; convergence
of MLD is a central insight of our paper. In particular, sup-
pose that, initially, each agent starts at the lowest (respec-
tively, highest) possible state. At each time step, agents
observe the current empirical population state distribution,
and conjecture that this distribution will remain constant
for all time; with this conjecture they compute an opti-
mal strategy, and play in the next period according to that
strategy. At the next time step, the state distribution will
evolve, and agents repeat the same heuristic. We show that
this dynamic converges to the lowest (respectively, highest)
mean field equilibrium among all equilibria with nonde-
creasing strategies.

Note that MLD resolves both the computability and plau-
sibility issues raised above. First, it is a natural, simple,
implementable algorithm for finding a mean field equilib-
rium; indeed, MLD has some similarities with model pre-
dictive control or receding horizon control (Garcia et al.
1989), both popular approaches to complex dynamic con-
trol problems. Second, it corresponds to a learning dynamic
that demands only a weak form of rationality and forecast-
ing from the players, and yet yields an equilibrium in the
limit.

3. Separable stochastic games. Although appealing, the
general theory does pose some significant issues in appli-
cation: the complementarity requirements on model prim-
itives may preclude important and interesting cases of
practical interest. Complementarity is a strong requirement,
but also brittle: a model that does not appear to satisfy the
assumptions a priori may do so through a judicious change
of variables. We employ this fact to show that a range of
games that do not satisfy the assumptions of our baseline
model can be studied by a suitable change of variables, pro-
vided that the payoff is separable in the state and action of a
given player—often a relatively mild assumption. Notably,
models with linear dynamics fall in this class. This greatly
expands the set of models that can be analyzed within our
framework.

4. Sensitivity. Finally, essentially for free, the comple-
mentarity structure allows us to analyze changes in the
equilibrium in response to changes in parameters of the
game. In particular, we can predict shifts (in a first-order
stochastic dominance sense) of the equilibrium state dis-
tribution of players in response to exogenous parameter

changes. Such sensitivity analysis, or comparative stat-
ics, allows our model to address, for example, the value
of incentives to increase security levels, or the value of
increasing the quality of recommendations by a given
factor.

The remainder of the paper is organized as follows. In §2
we introduce our basic stochastic game model as well as
the formal definition of mean field equilibrium. Notably,
we also discuss a justification for the use of mean field
equilibrium: that it approximates equilibria of finite games
well. This approximation property has been developed in
a variety of specific contexts in the past (see, for exam-
ple, Glynn 2004, Huang et al. 2006, Weintraub et al. 2008,
and Tembine et al. 2009), and in our context we apply the
methodology developed in Adlakha et al. (2013) (inspired
by Weintraub et al. 2008) to justify mean field equilibrium
as a limiting notion of equilibrium.

Next, in §3, we define stochastic games with comple-
mentarities. We then prove our first main result: that a mean
field equilibrium exists for a stochastic game with comple-
mentarities. In §3.2, we show that equilibria are “ordered,”
in the sense that there exist a smallest and largest mean
field equilibrium among all those where the equilibrium
strategy is nondecreasing. In §4, we prove convergence of
both the BRD and MLD algorithms described above. We
also discuss the performance of MLD in finite systems.

In §5, we provide comparative statics results for the
games under consideration. In §6, we consider separa-
ble stochastic games with complementarities (as described
above) and establish that these are a special case of our
basic model of stochastic games with complementarities.

In §7, we revisit each of the examples described above. In
particular, we provide formal verification that these exam-
ples satisfy the assumptions made in the paper to obtain
existence and convergence results. Section 8 concludes
with a discussion of extensions to include both player
heterogeneity (that is, type information) and multidimen-
sional state and/or action spaces. Supplemental material to
this paper is available at http://dx.doi.org/10.1287/opre.2013
.1192. Supplementary material and omitted proofs are
deferred to the electronic companion; in particular, in §EC.1
there, we extend our results to cover games where players’
payoffs and transition kernels may depend on the actions of
others, rather than their states.

We conclude by briefly surveying related work in two
different areas: on stochastic games with complementar-
ities, and on mean field equilibrium. First, we note that
prior literature has established existence of equilibrium in
stochastic games with complementarities; however, these
results are typically obtained under somewhat restrictive
assumptions and do not yield explicit algorithms for com-
putation of equilibria. For example, several such results
require use of topological fixed-point theorems such as
Kakutani’s theorem (Curtat 1996; Amir 2002, 2005; Horst
2005). In Nowak (2007), the author provides computa-
tional methods for several two-player stochastic games with



Adlakha and Johari: Dynamic Games with Strategic Complementarities
974 Operations Research 61(4), pp. 971–989, © 2013 INFORMS

complementarities, but only with specific transition dynam-
ics: the transition kernel is an additive combination of
finitely many measures on the state space. Another related
work is Vives (2009), where the author derives conditions
under which static complementarities lead to dynamic com-
plementarities; however, he does not deal with the question
of existence of equilibrium.

The preceding works all consider games with finitely
many players, whereas mean field equilibrium is defined
in a limiting regime where the number of players grows
large. The notion of mean field equilibrium is inspired
by mean field models in physics, where large systems
exhibit macroscopic behavior that is considerably more
tractable than their microscopic description. (See, for exam-
ple, Mézard and Montanari 2009 for background, and
Blume 1993 and Morris 2000 for related ideas applied to
static games.) In the context of stochastic games, mean field
equilibrium and related approaches have been proposed
under a variety of monikers across economics and engi-
neering; see, for example, studies of anonymous sequen-
tial games (Jovanovic and Rosenthal 1988, Bergin and
Bernhardt 1995, Chakrabarti 2003); stationary equilibrium
(Hopenhayn 1992); dynamic stochastic general equilibrium
in macroeconomic modeling (Stokey et al. 1989); Nash cer-
tainty equivalent control (Huang et al. 2006, 2007); mean
field games (Lasry and Lions 2007); oblivious equilibrium
(Weintraub et al. 2008, 2011); and dynamic user equilib-
rium (Friesz et al. 1993, Wunderlich et al. 2000). Mean
field equilibrium has also been studied in recent works on
information percolation models (Duffie et al. 2009), sensi-
tivity analysis in aggregate games (Acemoglu and Jensen
2013), coupling of oscillators (Yin et al. 2010), scaling
behavior of markets (Bodoh-Creed 2012), and on power
control in wireless communications (Wiecek et al. 2011).
Most closely related to our paper is the work of Sleet
(2001), who considers mean field equilibria of a dynamic
price-setting game with stochastic, exogenous firm-specific
demand shocks per period, that exhibits strategic comple-
mentarities. The general analytical techniques in this paper
can be applied to recover the existence result for that game.

2. Model and Definitions
In this section we begin with preliminaries. We define a
general model of a stochastic game in §2.1. In §2.2, we
present the standard solution concept for stochastic games
with finitely many players, Markov-perfect equilibrium.
By contrast, in §2.3 we define mean field equilibrium, and
in §2.4 we provide a formal justification for mean field
equilibrium as an approximation to Markov-perfect equilib-
ria in games with a large finite number of players. Finally,
in §2.5, we discuss lattice-theoretic preliminaries necessary
for the analysis in the sequel.

2.1. Stochastic Games

Stochastic games are a general model for dynamic strategic
interactions among multiple agents. The stochastic games

we consider are anonymous: the interaction between play-
ers is via aggregate information about the state.

Formally, an anonymous stochastic game is a tuple
â = 4m1X1A1�1�1�5 defined as follows.

Time. The game is played in discrete time, with time
periods by t = 011121 0 0 0 .

Players. There are m players in the game; we use i to
denote a particular player.

State. The state of player i at time t is denoted by xi1t ∈
X, where X⊂� is compact.

Population state. Let f−i1 t4y5 denote the fraction of play-
ers (excluding player i) that have their state as y at time t,
that is,

f−i1 t4y5=
1

m− 1

∑

j 6=i

18xj1 t=y91 (1)

where 18xj1 t=y9 is the indicator function that the state of
player j at time t is y. We refer to f−i1 t as the population
state at time t (from player i’s point of view). Note that it
is a discrete probability measure on the state space X.

Action. The action taken by player i at time t is denoted
by ai1 t . The set of feasible actions when the player is in
state x is a compact set A4x5 ⊂ �. We let A = ∪x∈XA4x5,
and assume that A is compact as well.

Transition probabilities. The state of a player evolves
according to the following Markov process. If the state of
player i at time t is xi1 t = x, the player takes an action
ai1 t = a ∈ A4x5 at time t, and the population state is
f−i1 t = f , then the next state is distributed according to the
Borel probability measure �4· �x1a1 f 5, where for Borel
sets S ⊂X,

�4S �x1a1 f 5

= Prob4xi1 t+1 ∈ S �xi1 t = x1ai1 t = a1 f−i1 t = f 50 (2)

Further, given xi1 t , ai1 t , and f−i1 t , the next state xi1t+1 is
conditionally independent of all other past history of the
game.

Payoff. The single-period payoff to player i at time t is
�4xi1 t1 ai1 t1 f−i1 t5 ∈ �. Note that all players have the same
payoff function, and it is independent of the actions taken
by other players; we relax the latter assumption in §EC.1
in the e-companion.

Discount factor. The players discount their future payoff
by a discount factor 0 <�< 1. Thus, a player i’s infinite-
horizon payoff is given by:

∑�

t=0 �
t�4xi1 t1 ai1 t1 f−i1 t50

The players are coupled to each other through the
transition probabilities and payoff function. Note that
the transition probability kernel and the payoff function
depend on the number of players only via the popula-
tion state f−i1 t; the fact that this is aggregate (identity-
independent) information about other players captures the
notion of anonymity. The examples discussed in the intro-
duction naturally belong to the class of anonymous stochas-
tic games. For example, in the interdependent security
model (Example 1), it is natural to assume that a single
player’s payoff is affected by the empirical distribution of
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security levels of other players in the network, but not by
their specific identity. The same assumption is also plau-
sible for the other examples presented earlier (see §7 for
details on how the examples discussed in the Introduction
can be analyzed within our framework).

Before we proceed, we introduce some additional use-
ful notation. Let & be the set of all Borel probabil-
ity measures on X2 & = 8f 2 X → 60117 � f 4x5 ¾ 01
∑

x∈X f 4x5 = 19. Throughout the paper, we endow & with
the topology of weak convergence (Billingsley 1968). In
addition, we let &4m5 ⊂& be the set of probability measures
with support on at most m distinct states. Note that in an
m-player anonymous stochastic game, the population state
distribution f−i1 t is an element of &4m5.

We conclude with the following continuity assumption
over the action sets, transition kernel, and payoff function,
which remains in force for the entire paper.

Assumption 1. The point-to-set correspondence x 7→A4x5
has a closed graph. Further, the payoff function �4x1a1 f 5
and the transition probability measure �4· �x1a1 f 5 are both
jointly continuous on X× A ×& (where we endow & with
the topology of weak convergence).

2.2. Markov-Perfect Equilibrium

In studying stochastic games, attention is typically focused
on a class of Markov strategy spaces, where the action
of a player at each time is a function of only the current
state of every player (Fudenberg and Tirole 1991, Maskin
and Tirole 1988). In the context of anonymous stochastic
games, a Markov strategy depends on the current state of
the player as well as the current population state. Because
a player using such a strategy tracks the evolution of the
other players, we refer to such strategies in our context as
cognizant strategies.

Definition 1. Let -4m5 be the set of feasible cognizant
strategies available to a player in an m-player anonymous
stochastic game, that is, all Borel-measurable maps from
X×&4m5 to A.

Consider an m-player anonymous stochastic game. Let-
ting �i ∈ -4m5 denote the cognizant strategy used by
player i, we have ai1 t = �i4xi1 t1 f−i1 t5. The next state of
player i is randomly drawn according to the kernel �. We
let Ì4m5 denote the strategy vector where every player has
chosen cognizant strategy �.

Let V 4m5
(

x1 f ��′1Ì4m−15
)

be the expected discounted
payoff for a player with initial state x and with initial
population state f ∈ &4m5, given that the player follows a
cognizant strategy �′ and every other player follows the
cognizant strategy �. In particular, we have

V 4m5
(

x1 f ��′1Ì4m−15
)

¬ Ɛ

[

�
∑

t=0

�t�4xi1 t1 ai1 t1 f−i1 t5 �xi10 = x1 f−i10 = f 3

�i =�′1Ì−i =Ì4m−15

]

1 (3)

where Ì−i denotes the strategies employed by every player
except i.

We focus our attention on a symmetric Markov-
perfect equilibrium (MPE), where all players use the
same cognizant strategy �. In an abuse of notation, we
write V 4m54x1 f �Ì4m55 to refer to the expected discounted
value as given in Equation ((3)) when every player follows
the same cognizant strategy �.

Definition 2 (Markov-Perfect Equilibrium). The vec-
tor of cognizant strategies Ì4m5 ∈ -4m5 is a symmetric
Markov perfect equilibrium (MPE) if for all initial states x ∈

X and population states f ∈&4m5 we have

sup
�′∈-4m5

V 4m54x1 f ��′1Ì4m−155= V 4m54x1 f �Ì4m550

Thus, an MPE is a profile of cognizant strategies that
simultaneously maximize the expected discounted payoff
for every player, given the strategies of other players. Stan-
dard results in dynamic programming ensure that under our
assumptions, each player i has an optimal cognizant strat-
egy as long as all other players use a cognizant strategy,
even if we allow player i to optimize over possibly history-
dependent strategies.1

2.3. Mean Field Equilibrium

MPE is complex because players must forecast and track
the exact behavior of their competitors; indeed, as a result,
guaranteeing existence of MPE can be quite challeng-
ing, and computation is typically intractable. On the other
hand, in a game with a large number of players, we might
expect that fluctuations of players’ states “average out,” and
hence the actual population state remains roughly constant
over time. Because the effect of other players on a sin-
gle player’s payoff is only via the population state, it is
intuitive that, as the number of players increases, a single
player has negligible effect on the outcome of the game.
This intuition is formalized through the notion of mean
field equilibrium (Jovanovic and Rosenthal 1988; Bergin
and Bernhardt 1995; Hopenhayn 1992; Stokey et al. 1989;
Friesz et al. 1993; Huang et al. 2006, 2007; Lasry and Lions
2007; Weintraub et al. 2008, 2011; Adlakha et al. 2013;
Bodoh-Creed 2012).

In mean field equilibrium, each player optimizes its pay-
off based on only a conjecture of the long-run average pop-
ulation state with an infinite population. Thus, rather than
forecasting and tracking the exact population state, a single
player’s action depends only on her own current state as
well as the conjectured long-run average population state.
This is motivated by the fact that in a large population
in steady state, a single player need not concern herself
with the fine scale dynamics of competitors’ specific states.
Given this simplified player behavior, note that each player
must solve a dynamic program to determine their optimal
strategy; the strategy chosen by each player then leads to a
long-run average state distribution induced by the resulting
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transition dynamics. Mean field equilibrium requires that
the latter distribution matches the original population state
conjecture made by the players.

In this section we formally define mean field equilib-
rium. We study a formal limit model with an infinite pop-
ulation of agents, where a single agent optimizes against
a conjecture of the population state of the others. In the
next section, we provide justification of this limit model by
establishing that in an asymptotic regime where the number
of players approaches infinity, a mean field equilibrium is
approximately a MPE (in a sense we make precise).

Note that in this limit model, because players optimize
holding the population state constant, their optimal strate-
gies will depend only on their current state. We call such
players oblivious and refer to their strategies as oblivious
strategies (following Weintraub et al. 2008). This approach
means players ignore each others’ exact states, and hold
only a conjecture of the long-run average population state.

We let -O denote the set of oblivious strategies.

Definition 3. Let -O be the set of feasible oblivious
strategies available to a player, that is, Borel measurable
maps from X to A.

Given an oblivious strategy � ∈-O , a player i takes an
action ai1 t =�4xi1 t5 at time t. If the player conjectures the
aggregate population state to be f ∈ &, then she also con-
jectures that her next state is randomly distributed accord-
ing to the transition probability measure �:

xi1 t+1 ∼�4· �xi1 t1�4xi1 t51 f 51 (4)

where f ∈& is the conjectured long-run average population
state. Note that f is a Borel probability measure over the
state space; since f is modeling an infinite population, it
need not have finite support (as in games with finitely many
players).

We define the oblivious value function V 4x � �1f 5 to
be the expected net present value for any player with ini-
tial state x, when the long-run average population state is
conjectured to be f , and the player uses an oblivious strat-
egy �. We have

V 4x ��1f 5¬ Ɛ

[

�
∑

t=0

�t�4xt1 at1 f 5

∣

∣

∣

∣

x0 = x3 �

]

0 (5)

Given a population state f , a player computes an optimal
strategy by maximizing their oblivious value function. Note
that because the oblivious value function does not track
the evolution of the population state, we should expect a
player’s optimal strategy to depend only on their current
state—that is, it must be oblivious. We capture this opti-
mization step via the operator P defined next.

Define V ∗4x � f 5 as V ∗4x � f 5= sup�′∈-O
V 4x ��′1 f 5.

Definition 4. The operator P2 &�-O maps a distribu-
tion f ∈ & to the set of optimal oblivious strategies; thus,
P is a point-to-set correspondence. That is, � ∈ P4f 5 if
and only if V 4x ��1f 5= V ∗4x � f 51 ∀x ∈X.

Note that in principle, P4f 5 may be empty, although
under our assumptions standard dynamic programming
results ensure that this does not occur (Maitra 1968, Dutta
et al. 1994).

Now suppose that all players use the oblivious strat-
egy �, and the long-run average population state f drives
their state dynamics. In this scenario, we expect the long-
run population state to be an invariant distribution of the
strategy � under the dynamics

xt+1 ∼�4· �xt1�4xt51 f 50 (6)

We capture this relationship via the operator D, defined
next.

Definition 5. The operator D2 -O × & � & maps an
oblivious strategy � and a distribution f to the set of invari-
ant distributions associated with the dynamics (6); thus, D
is a point-to-set correspondence.

Thus, g ∈D4�1 f 5 if and only if for all Borel sets S ⊂X,

g4S5=

∫

X
�4S �x1�4x51 f 5 g4dx50 (7)

Note that the image of the operator D is empty if the strat-
egy does not result in an invariant distribution, although
again, we show under our assumptions that this does not
occur.

We can now define mean field equilibrium. If every agent
conjectures that f is the long-run average population state,
then every agent would prefer to play an optimal oblivi-
ous strategy �. On the other hand, if every agent plays �,
and the long-run average population state is indeed f ,
then f must also be an invariant distribution of (6). Thus,
mean field equilibrium requires a consistency condition: the
invariant distribution under � and f should be exactly f .

Definition 6 (Mean Field Equilibrium). A strategy �
and a distribution f constitute a mean field equilibrium
(MFE) if � ∈P4f 5 and f ∈D4�1 f 5.

2.4. MFE as an Approximation to MPE

In the previous section we introduced MFE through a for-
mal limit model. A natural question that arises in the con-
text of MFE is whether it is a good approximation to a
game with finitely many players. Here we formalize the
approximation property of interest: informally, we show
that an MFE is (in a sense made precise) approximately an
MPE as the number of players grows large. This provides
a formal justification for the notion of mean field equilib-
rium by considering a limiting regime where the number
of players grows large.

The following proposition establishes the approxima-
tion result. Our result closely follows similar results by
Weintraub et al. (2008) and Adlakha et al. (2013) (where
state spaces are discrete and infinite rather than continuous
and compact), but we also provide a self-contained proof
sketch in the e-companion.
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Proposition 1. Let 4�1 f 5 be an MFE. Then, for all
states x and sequences of cognizant strategies �4m5 ∈ -,
we have:

lim sup
m→�

V 4m54x1 f 4m5
��4m51Ì4m−155

−V 4m54x1 f 4m5
�Ì4m55¶ 01 (8)

almost surely, where the initial state of the given player
is x, and the population state f 4m5 is derived by sampling
states of the other m − 1 players independently from the
probability mass function f .

Note that V 4m54x1 f 4m5 ��4m51Ì4m−155 is the actual value
function of a player as defined in Equation (3), when the
player uses a cognizant strategy �4m5 and every other player
plays an oblivious strategy �. Similarly, V 4m54x1 f 4m5 �Ì4m55
is the actual value function of a player as defined in
Equation (3), when every player is playing the oblivious
strategy �.

To understand this approximation notion, suppose that
we consider a sequence of games with m → �, where all
players other than player i use the oblivious strategy �; and
where the initial state of all players other than player i is
sampled i.i.d. from f . Then, the proposition states that as
m→ �, the difference between the payoff player i achieves
by playing � and the maximum possible payoff player i
can achieve by playing any cognizant strategy approaches
zero almost surely, for all initial states x of player i. Thus,
in particular, � is approximately optimal for player i in a
large finite game. A weaker version of this property was
introduced by Weintraub et al. (2008); a similar notion is
also studied by Glynn (2004), Huang et al. (2005), Tembine
et al. (2009), and Bodoh-Creed (2012).

Based on the preceding proposition, MFE is a reason-
able approximation to MPE with a finite large number of
players. The remainder of the paper is devoted to studying
the properties of MFE. In particular, we focus on existence
of, and convergence to, MFE.

We conclude with a notational note: because in the
remainder of the paper, we focus only on MFE of stochas-
tic games, we drop the number of players m from the tuple
defining a stochastic game â .

2.5. Lattice-Theoretic Preliminaries

This section contains an overview of some basic definitions
and notation used in the remainder of the paper. Our devel-
opment requires some basic concepts from the theory of
lattices. Given a partially ordered set X with order �, an
element x is called an upper bound of S if x � y for all
y ∈ S; similarly, x is called a lower bound of S if y � x
for all y ∈ S. We say that x is a supremum or least upper
bound of S in X if x is an upper bound of S, and for any
other upper bound x′ of S, we have x′ � x. In this case, we
write x = supS. We similarly define infimum (or greatest
lower bound) and denote it by inf S. The partially ordered

set 4X1�5 is a lattice if for all pairs x1 y ∈X, the elements
sup8x1 y9 and inf8x1 y9 exist in X. The lattice 4X1�5 is
a complete lattice if, in addition, for all nonempty subsets
S ⊂X, the elements supS and inf S exist in X.

If X is a lattice, a function f 2 X→� is supermodular if
f 4sup8x1 x′95+ f 4inf8x1 x′95¾ f 4x5+ f 4x′5 for every pair
x1x′. If Y is also a lattice, a function f 2 X × Y → � has
increasing differences in x and y if for all x′ � x, y′ � y,
there holds f 4x′1 y′5−f 4x′1 y5¾ f 4x1 y′5−f 4x1 y5. Finally,
a correspondence T 2 X → Y is nondecreasing if whenever
x′ � x, y ∈ T 4x5, and y′ ∈ T 4x′5, there holds sup8y1 y′9 ∈

T 4x′5, and inf8y1 y′9 ∈ T 4x5. (For more detail on lattice
programming, the reader is referred to Topkis 1998.)

Throughout this paper, we view X and A as lattices
in the usual ordering; since these spaces are both com-
pact subsets of �, the corresponding lattices are complete
(Topkis 1998). We also view the set of strategies -O as a
lattice, under the coordinate ordering Ä: that is, �′ Ä � if
and only if �′4x5¾�4x5 for all x.

In addition, recall that we let & denote the set of all Borel
probability measures on X. We view & as a lattice with
the 4first-order5 stochastic dominance ordering; formally,
we write f ′ �SD f if and only if:

∫

X
g4x5f ′ 4dx5¾

∫

X
g4x5f 4dx5

for all nondecreasing, bounded, measurable functions g on
X (where the integral is the Riemann-Stieltjes integral).
It is straightforward to show that this condition is equivalent
to F 4x5¶ F ′4x5, where F (respectively, F ′) is the cumula-
tive distribution function of f (respectively, f ′). It is well
known that & is a lattice: the lattice supremum supSD8f 1 f

′9
(respectively, the lattice infimum infSD8f 1 f

′9) is found by
the pointwise infimum (respectively, supremum) of the cor-
responding distribution functions. Because X is compact,
it is straightforward using an analogous argument to verify
that & is a complete lattice (Echenique 2003).

We conclude by defining some properties of parame-
terized distributions we require in the sequel. Let f 4· �y5
denote a family of measures in &, parameterized by y ∈ Y ,
where Y is a lattice. Then we say f is stochastically non-
decreasing in y if whenever y′ is larger than y, f 4· �y′5�SD

f 4· �y5. Similarly, let f 4· �y1 z5 denote a family of mea-
sures in & parameterized by y ∈ Y and z ∈ Z, where both
Y and Z are lattices. Then we say that f has stochas-
tically increasing differences in y and z if the expecta-
tion

∫

x∈X g4x5f 4dx �y1 z5 has increasing differences in y
and z, for every nondecreasing, bounded, measurable func-
tion g on X.

3. Existence of MFE
In this section and the following section, we consider a
baseline model of stochastic games with complementari-
ties, in which we prove existence and convergence results.
In this section, we establish our first main result: that there
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exists an MFE for the stochastic game with complemen-
tarities. We also show an ordering result: there exists a
“largest” and a “smallest” equilibrium among the set of all
MFE with nondecreasing strategies.

We have the following definition.

Definition 7. A stochastic game with complementarities
is a stochastic game â = 4X1A1�1�1�5 that satisfies the
following properties.

1. Nondecreasing and supermodular payoff. The pay-
off �4x1a1 f 5 is nondecreasing in x, and supermodular in
4x1a5.

2. Payoff complementarity. The payoff function
�4x1a1 f 5 has increasing differences in 4x1a5 and f .

3. Monotone and supermodular transition kernel. The
transition kernel �4· �x1a1 f 5 is stochastically supermod-
ular in 4x1a5 and is stochastically nondecreasing in each
of x, a, and f .

4. Transition kernel complementarity. The transition ker-
nel �4· �x1a1 f 5 has stochastically increasing differences in
4x1a5 and f .

5. Monotone action set. The correspondence A4x5 is
nondecreasing in x. Further, supa∈A4x5�4x1a1 f 5 is nonde-
creasing in x for all fixed f .

6. Continuity. Assumption 1 holds.

The first assumption is natural for a range of models—
if larger states are more valuable, then the payoff func-
tion will be nondecreasing in the state. The boundedness
assumption on the payoff will be trivially satisfied if, for
example, X is an interval and the payoff is continuous
in x. The second assumption ensures that there are comple-
mentarities between the state and action of a single player
and the population state of other players. The next three
assumptions create complementarities between state and
action, as well as ensure that larger states and/or larger
actions now are more likely to lead to larger states in the
future. The last property simply reiterates the continuity
properties stated in Assumption 1; we use these properties
to simplify dynamic programming arguments.

Whereas it may be straightforward to verify whether a
payoff function exhibits the desired complementarity prop-
erties, the same verification is somewhat more challenging
for the transition kernel. Thus, before continuing, we pro-
vide examples of transition kernels that exhibit the comple-
mentarity conditions required in Definition 7.

Example 4 (Additively Separable Dynamics).
Suppose that �4· �x1a1 f 5 is defined as follows:

�4· �x1a1 f 5= cQ4· �x1a5+ 41 − c5R4· � f 50 (9)

Here c is constant such that 0 ¶ c ¶ 1, and Q and R
are both distributions. If Q4· �x1a5 is stochastically nonde-
creasing in x and a, stochastically supermodular in 4x1a5,
and if R4· � f 5 is stochastically nondecreasing in f , then it
can be checked that the transition kernel of (9) satisfies all
the conditions of Definition 7. This kernel is inspired by
additively separable transition models in classical stochas-
tic games; see, for example, Filar and Vrieze (1996). �

Example 5 (Mixture Dynamics). Suppose that �4· �x1
a1 f 5 is defined as follows:

�4·�x1a1f 5=q4x1a1f 5F 4·5+41−q4x1a1f 55G4·50 (10)

Here F and G are both distributions on X, such
that F first order stochastically dominates G, and
0 ¶ q4x1a1 f 5¶ 1. If q4x1a1 f 5 is nondecreasing in x, a,
and f , supermodular in 4x1a5, and has increasing differ-
ences in 4x1a5 and f , then it can be checked that the expec-
tation of (10) against any nondecreasing function satisfies
all the conditions of Definition 7. As one example of a q
that satisfies these properties, suppose:

q4x1a1 f 5=
x+ a+�4f 5

2 supX+ supA
1

where �4f 5=
∫

X x′f 4dx′5 is the mean of f . Such dynamics
are commonly used in the context of games with strategic
complementarities (Curtat 1996, Nowak 2007). �

Informally, how might we expect players to behave in
such a game? Observe that if other players have a larger
population state, this increases the return to a larger state
for a given player. To achieve a larger state, a player must
take a larger action, but this also increases the likelihood
of larger states in the future. All these effects conspire
to create a situation where, when players are confronted
with larger population states, they are likely to take higher
actions. This monotonicity drives our analysis.

For the remainder of the section, we fix a stochas-
tic game with complementarities â = 4X1A1�1�1�5. Let
ê2 &→& denote the composition of P and D for the
game â : ê4f 5=D4P4f 51 f 5. A fixed point of ê identifies
an MFE of â . Intuitively, under the assumptions we have
made, we might expect ê to be a monotone map; that is,
larger initial conjectures about the population state should
lead players to take higher actions, which should in turn
lead to a larger invariant distribution. Tarski’s fixed-point
theorem ensures that monotone functions on a lattice have
a fixed point.2

Theorem 1 (Tarski 1955). Suppose that L is a nonempty
complete lattice, and T 2 L → L is a nondecreasing func-
tion. Then the set of fixed points of T is a nonempty com-
plete lattice.

We proceed to show that ê is monotone by showing that
each of two correspondences P and D are monotone (with
respect to the coordinate ordering on strategies in -O , and
the first-order stochastic dominance ordering on &).

Our main result in this section is the following theorem.

Theorem 2. There exists an MFE for the stochastic game
with complementarities â .

In the next section, we sketch a proof of this theorem;
and in §3.2, we show that if we restrict attention to equi-
libria where the strategy is nondecreasing, then there exists
a “largest” equilibrium and a “smallest” equilibrium.
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3.1. Theorem 2: Proof Sketch

We sketch the proof of Theorem 2; each step is filled in by
the lemmas in the appendix.

Step 1. We show P4f 5 is nonempty, and that opti-
mal strategies can be identified via Bellman’s equation
(Lemma 2).

Step 2. We show that the value function V ∗4x � f 5 is non-
decreasing in x and has increasing differences in x and f .
We use this fact to show that

�4x1a1 f 5+�
∫

X
V ∗4x′

� f 5�4dx′
�x1a1 f 5

is supermodular in 4x1a5 and has increasing differences in
4x1a5 and f (Lemmas 3, 4, and 5).

Step 3. We use the complementarity properties of the
previous step to show that the strategies p̄4f 5 and p4f 5 are
nondecreasing in the state x, where

p̄4f 5= supP4f 53 and p4f 5= inf P4f 50 (11)

We also show that p̄ and p are nondecreasing in f . (These
facts are shown in Lemma 6).3

Step 4. We show that when restricted to strategies � that
are nondecreasing in state, d̄4�1 f 5 and d4�1 f 5 are non-
decreasing in � and f , where

d̄4�1 f 5= supD4�1 f 5 and

d4�1 f 5= inf D4�1 f 50
(12)

(This is shown in Lemmas 7 and 8.)
Step 5. We conclude that the functions ê̄4f 5 and ê4f 5

are nondecreasing in f , where

ê̄4f 5= d̄4p̄4f 51 f 53 ê4f 5= d4 p4f 51 f 50 (13)

Thus, both ê̄4f 5 and ê4f 5 possess fixed points by Tarski’s
theorem (Lemma 9). These fixed points identify MFE.

3.2. Largest and Smallest Equilibria

Typically, in games with supermodular structure, it is pos-
sible to show various ordering relationships among the
equilibria. In particular, there is typically a “largest” and
“smallest” equilibrium (Milgrom and Roberts 1990). In our
setting, we might conjecture that the largest fixed point of
ê̄ (respectively, the smallest fixed point of ê) is the largest
(respectively, the smallest) MFE of the stochastic game â .
However, this need not be the case: as seen above, mono-
tonicity properties of the map D are only inferred on the
subset of strategies that are nondecreasing in the state. In
general, such monotonicity properties might not hold over
the entire strategy set—that is, d4�1g5 and d̄4�1 g5 may
not be nondecreasing over the entire set -O . These mono-
tonicity properties are necessary for establishing the order-
ing of equilibria in classical supermodular game theory.

From the discussion in the preceding paragraph, how-
ever, observe that if we restrict attention to nondecreasing

strategies, then indeed an ordering result can be proven.
In particular, the following corollary shows that any MFE
where the strategy is nondecreasing is bounded above by
the largest fixed point of ê̄, and bounded below by the
smallest fixed point of ê. (See e-companion for the proof.)

Corollary 1. Let f̄ be the largest fixed point of ê̄, and
let f be the smallest fixed point of ê, that is,

f̄ = sup8f 2 ê̄4f 5= f 93 f = inf8f 2 ê4f 5= f 90 (14)

Let 4�1 f 5 be any MFE of the stochastic game with com-
plementarities â , where � is nondecreasing. Then f �SD

f �SD f̄ , and thus p4 f 5Å�Å p̄4f̄ 5.

4. Convergence to Equilibrium
In this section, we show that an MFE can be obtained using
a natural form of learning dynamics among the players. We
start by considering a simple form of best-response dynam-
ics to compute equilibria, where we iteratively apply the
maps ê̄ and ê defined in (13). We argue that this process
is unsatisfactory, both from a computational and model-
ing standpoint, and instead propose an alternate process we
refer to as myopic learning dynamics; these dynamics are
both computationally simpler and correspond to a natural
learning behavior among the agents. We show that this pro-
cess converges to MFE.

We fix a stochastic game with complementarities â =

4X1A1P1�1�5. Throughout this section, we study â in the
limit of a continuum of agents, consistent with our defini-
tion of MFE.

4.1. Best-Response Dynamics

We start by considering the following algorithm.

Algorithm L-BRD:
1. Initialize the state of every agent to x = inf X, and let

f0 denote the resulting population state—that is, f0 places
all its mass on x.

2. At time t, let �t+1 = p4ft5, and let ft+1 = d4�t1 ft5,
cf. (11) and (12).

3. Repeat (2).

Here L-BRD denotes lower best-response dynamics.
Given a current population state, we compute the lowest
best response of a player, and then compute the smallest
invariant distribution corresponding to the resulting strat-
egy. This is the simplest dynamic we might consider;
since ê4f 5= d4 p4f 51 f 5, we have ft+1 =ê4ft5. In spirit,
this algorithm is similar to other best-response dynamics
that are common in the literature on supermodular games
(Milgrom and Roberts 1990, Vives 1990).

We now show that this algorithm converges, and further,
the limit point is the smallest mean field equilibrium.

The next proposition shows L-BRD converges; the proof
follows by exploiting monotonicity of ê.
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Proposition 2. Let â be a stochastic game with com-
plementarities. Define ft and �t iteratively according to
Algorithm L-BRD. Then, f0 �SD f1 �SD f2 · · · , and �0 Å
�1 Å �2 · · · 0 Further, there exists a distribution f ∗ and a
strategy �∗, nondecreasing in x, such that ft converges
weakly to f ∗ as t → �, and �t converges pointwise to �∗

as t → �.
Further, 4�∗1 f ∗5 is an MFE, and f ∗ is f , the smallest

fixed point of ê (cf. (14)).

Thus, best-response dynamics converge to an MFE. Fur-
ther, the limit point is the smallest MFE among all those
where the equilibrium strategy is nondecreasing.

We conclude by noting that we can analogously define
an upper best-response dynamic algorithm (U -BRD) where
each agent’s initial state is set to x̄ = supX. The next step
population state is given by the dynamics: ft+1 = ê̄4ft5 =

d̄4p̄4ft51 ft5. The same conclusion as Proposition 2 holds
for U -BRD as well, except that the limit point is the largest
fixed point of ê̄; that is, f ∗ = f̄ (cf. 14).

We note that one alternative to L-BRD and U -BRD is
presented by Sleet (2001). He suggests an algorithm based
on iterative value and policy iteration to compute an MFE
of a dynamic price-setting game with stochastic, exogenous
firm-specific demand shocks per period. The setting con-
sidered there is specialized, but the convergence proof also
exploits monotonicity properties induced by complementar-
ity conditions in that specific model.

4.2. Myopic Learning Dynamics

The preceding section establishes the desirable result that
best-response dynamics converge. However, in a dynamic
context, iterative application of ê̄ and ê is not com-
pletely satisfactory, whether viewed from a computational
or modeling standpoint. First, given f , computing ê̄4f 5 or
ê4f 5 requires computing the invariant distribution of the
Markov chain induced by p̄4f 5 or p4f 5, introducing addi-
tional complexity. Second, the process of iteratively apply-
ing ê̄ or ê does not naturally correspond to any reasonable
dynamic process that agents are likely to follow in prac-
tice: it is difficult to imagine an agent first computing the
invariant distribution of the current strategy in use by her
competitors, and then solving a dynamic program given
that invariant distribution.

By contrast, in this section we present a pair of myopic
learning dynamics that address these considerations. The
algorithms presented in this section are simple and easy to
implement. Furthermore, they demand only a weak form
of rationality from the players, thereby resolving the two
main issues of computability and plausibility associated
with the standard solution concept of MPE (as discussed in
the introduction).

In the myopic learning dynamic, at each time t, each
agent computes a best response to the current population
state distribution ft , assuming that the population state will
remain at ft at all future times. (This step is similar to

model predictive control or receding horizon control; see,
for example, Garcia et al. 1989.) In other words, agents
play according to a strategy in P4ft5. This play yields a
new population state ft+1 at the next time step according to
the transition kernel.

The algorithms we consider are reasonable in settings
where agents are not likely to predict future learning by
other agents. Indeed, such an assumption seems plausi-
ble precisely in the large systems that mean field equilib-
rium is meant to model. In such systems, myopic behavior
is simple computationally; by contrast, solving a dynamic
program with full knowledge of future strategies that
other agents will employ places unreasonable informational
requirements on the agents.

We first consider an algorithm where agents play actions
induced by p.

Algorithm L-MLD:
1. Every agent initializes their state to x = inf X at time

t = 0.
2. Agents observe the population state ft .
3. An agent with state x chooses the action at so that

at =�t4x5, where �t4x5= p4ft54x5. The agent’s next state
is distributed according to �4· �x1at1 ft5.

4. Repeat (2)–(3).

Here L-MLD denotes lower myopic learning dynamics.
Observe that agents compute a new strategy based on the
observed current population state—not based on the invari-
ant distribution associated with the last strategy chosen.
This means that two simultaneous dynamic processes are
taking place: strategy revision on the part of the players, but
also state update via the system dynamics (4). Due to this
intertwined dynamic, novel arguments are required to prove
convergence of best-response dynamics (relative to usual
proofs of convergence for such dynamics in supermodu-
lar games, for example, Milgrom and Roberts 1990, Vives
1990). We also note that although the same strategy is com-
puted by every agent, the particular action chosen will vary
depending on their current state.

The preceding description yields a simple recursion for
the population state at the next time step; for all Borel
sets S:

ft+14S5=

∫

X
�4S �x′1�t4x

′51 ft5ft4dx
′5

=Q�t 1ft
4ft54S51 (15)

where Q�1f 4f 5 is defined as follows:

Q�1f 4g54S5=

∫

X
�4S �x1�4x51 f 5 g4dx50 (16)

Our goal is to understand the behavior of the sequence of
population states f01 f11 f21 0 0 0 1 as well as the sequence of
policies �01�11�21 0 0 0 0 We have the following proposition,
which mirrors Proposition 2.
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Proposition 3. Let â be a stochastic game with comple-
mentarities. Define ft and �t iteratively, according to Algo-
rithm L-MLD. Then, f0 �SD f1 �SD f2 · · · , and �0 Å �1 Å
�2 · · · . Further, there exists a distribution f ∗ and a strat-
egy �∗, nondecreasing in x, such that ft converges weakly
to f ∗ as t → �, and �t converges pointwise to �∗ as
t → �.

Further, 4�∗1 f ∗5 is an MFE, and f ∗ is f , the smallest
fixed point of ê (cf. (14)).

Thus, we find the same result as for L-BRD: the dynam-
ics converge to the smallest MFE among all those where
the equilibrium strategy is nondecreasing.

The proof of Proposition 3 proceeds as follows. We
exploit two key monotonicity properties established in
the course of proving existence of an equilibrium (Theo-
rem 2): first, that p4f 5 is monotone in f (Lemma 6 in the
appendix); and second, that Q�1f 4g54S5 is monotone in �,
f , and g (Lemma 7 in the appendix). These two properties
together allow us to establish that �t and ft form mono-
tone sequences—even though players are reacting only to
the current population state, the population state over time
moves monotonically towards an equilibrium.

Note that L-MLD initializes players to the lowest state,
inf X. This behavior of L-MLD is particularly meaningful
for several of the applications described in the introduction;
for example, in an interdependent security setting, we might
envision a scenario where a new, more efficient technology
for security is introduced. In this case, the “low” initial
population state might correspond to the status quo, and
then the myopic learning dynamics track the adaptation of
the population to a new equilibrium configuration.

A similar convergence result also holds if instead every
agent starts at the largest state x̄ = supX, and follows the
strategy p̄4ft5 at each time step. We call this Algorithm
U -MLD. The same conclusion as Proposition 3 holds for
U -MLD as well, except that the limit point is the largest
fixed point of ê̄, that is, f ∗ = f̄ (cf. (14)).

We emphasize that the interpretation of these dynamics
that we provide in this section is only valid in the formal
mean field limit model. When there are only finitely many
agents, of course, the population state will not exactly fol-
low the dynamics described here. We conclude this section
by discussing the behavior of myopic learning dynamics in
finite systems. In particular, suppose that in a game con-
sisting of m players, each player follows the dynamic pre-
scribed by L-MLD. Each player starts in the lowest state,
and then at each time step, observes the current population
state and plays one step according to the optimal oblivious
strategy given that population state. Because the system is
finite, additional error is introduced due to the randomness
in state transitions of individual agents; in particular, due
to this randomness, it is not immediately guaranteed that
myopic learning dynamics will converge to an MFE in a
finite game. However, if the state space is discrete, then
using techniques similar to Proposition 1, it can be shown

that f 4m5
t → ft weakly, almost surely, where f

4m5
t is the pop-

ulation state after t time steps with m players, and ft is
the population state in the L-MLD dynamic after t time
steps in the mean field limit. Thus (in this precise sense),
L-MLD behavior in large finite systems is “close” to the
mean field model.

5. Comparative Statics
In this section we discuss sensitivity analysis of equilibria,
also known as comparative statics results. Our goal is to
understand how the equilibrium distribution and optimal
strategy are altered in response to changes in parameters.
These results allow us to evaluate changes in equilibrium
with respect to changes in a parameter.

In this section we consider a family of stochastic games
with complementarities, parameterized by � ∈ä, where ä
is a complete lattice. In the context of security games,
this parameter could, for example, represent the effective-
ness of a particular security technology. Alternatively, in
the context of recommendation systems, ä might repre-
sent the effectiveness of the collaborative filtering engine
in improving recommendations to one agent based on the
profiles of other agents.

Formally, suppose we are given a family of stochastic
games â4�5 for � ∈ä with common strategy spaces, action
spaces, and discount factors, where for each �, â4�5 is a
stochastic game with complementarities, that is, â4�5 satis-
fies Definition 7 for each � ∈ä. We refer to â as a paramet-
ric family of stochastic games with complementarities. Let
�4x1a1 f 3 �5 and P4· �x1a1 f 3 �5 be the payoff and transi-
tion kernel, respectively, in â4�5. We make the following
assumption.

Assumption 2. The payoff �4x1a1 f 3 �5 has increasing
differences in 4x1a1 f 5 and �. The transition kernel
P4· �x1a1 f 3 �5 has stochastically increasing differences in
4x1a1 f 5 and �, and is stochastically nondecreasing in �
for fixed x1a1 f .

Under the preceding assumption, we can give a direc-
tional characterization of the movement of equilibrium in
response to parameter changes; the proof can be found in
the e-companion.

Theorem 3. Let â be a parametric family of stochastic
games with complementarities, and suppose that Assump-
tion 2 holds. Let f 4�5 and f̄ 4�5 denote the “smallest” and
“largest” MFE in the game â4�5, cf. (14). Then f̄ 4�5 and
f 4�5 are both nondecreasing in �.

Such comparative statics results are commonly applied
in the context of games with complementarities, but it is
worth noting that in a dynamic context this result provides
additional insight, because it quantifies how the distribution
of agents’ states will respond as a parameter changes. This
kind of insight is particularly valuable for system designers,
regulators, and policy makers, where changes in equilib-
rium behavior due to control decisions may be challenging
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to characterize. As one simple consequence of the preced-
ing theorem, suppose that in security games an incentive is
introduced for agents to invest in security as a linear rebate
in the payoff, proportional to an agent’s security level x. It
is straightforward to check that this results in more players
opting for higher investment, and thus the equilibrium pop-
ulation state tends to shift towards higher security levels.

6. Separable Stochastic Games
As the preceding sections illustrate, stochastic games with
complementarities possess a number of properties that
make them amenable to equilibrium analysis. One poten-
tial concern, however, is that the set of models admitted
by Definition 7 may be somewhat limiting. Consider the
following example.

Example 6 (Linear dynamics). Consider a simple model
where the distribution of the next state of an agent is “lin-
ear” in x and a. Let W be a zero mean random variable that
takes countably many values, and fix positive constants A
and B. We consider a state space X= 6−M1M̄7, for some
large positive constants M1M̄ , and let A4x5= 6a1 ā7 for all
x, where a¶ ā. Define � as follows:

�4x′
�x1a5

=







Prob4Ax+Ba+W ¾ M̄51 x′ = M̄3
Prob4Ax+Ba+W = x′51 −M <x′ < M̄3
Prob4Ax+Ba+W ¶−M51 x′ = −M0

(17)

In this model, the state dynamics are essentially linear,
except at the boundaries of the state space (where the state
is truncated to lie within 6−M1M̄7). Such a model might
naturally arise in a wide range of examples, such as Exam-
ples 1 or 2 (see §7 for details).

Unfortunately, such a kernel does not exhibit stochas-
tically increasing differences in general. To see this,
we consider a simple instance where Prob4W = 15 =

Prob4W = −15= 1/2, and M = M̄ =M � 1. Consider any
nondecreasing function �4x5, and fix x and a such that
�Ax+Ba�<M − 1. Then,

Ɛ6�4x′5 �x1a7= 1
2�4Ax+Ba+ 15+

1
2�4Ax+Ba− 150

In general, the right-hand side exhibits increasing differ-
ences in x and a only if � is locally convex. This is easiest
to see for differentiable �; in that case, the cross-partial
derivative ¡2�4Ax+Ba+15/¡x¡a has to be nonnegative to
ensure increasing differences, which only holds if �′′4Ax+

Ba + 15 ¾ 0. For general nondecreasing �, therefore, the
expectation Ɛ6�4x′5 �x1a7 need not exhibit increasing dif-
ferences in x and a. �

The preceding example highlights a deficiency in
stochastic games with complementarities: while a rich class
analytically, they do present some restrictions from a mod-
eling standpoint. In this sense, complementarity can appear
to be a brittle property.

However, this same brittleness can actually become an
advantage. Although at first glance it may appear that com-
plementarity fails, often simple transformations can lead
to games that admit analysis via complementarity methods
even if the original game did not. (A common example is
the class of log-supermodular games used extensively in
oligopoly theory, where the logarithm of the profit function
may be supermodular; see, for example, Milgrom and
Roberts 1990 and Vives 1990 for details.)

In this section we demonstrate that a wide range of mod-
els, including those with dynamics similar to Example 6,
can be transformed to standard stochastic games with com-
plementarities. Further, the class of models we develop has
the benefit that the assumptions are typically easier to check
in practice. This significantly widens the applicability of
our theory to models where the desired monotonicity prop-
erties may not be immediately apparent.

The class of games we consider in this section feature
a payoff that is separable in the state and action. We have
the following definition.

Definition 8. A separable stochastic game is a stochas-
tic game â = 4X1A1�1�1�5 with the following additional
properties.

1. Actions. There exist a1 ā, such that A4x5= 6a1 ā7 for
all x.

2. Payoff. The single-period payoff to player i at time t
can be written as �4xi1 t1 ai1 t1 f−i1 t5= v4xi1 t1 f−i1 t5−c4ai1 t5,
where we refer to v4x1 f 5 as the utility at state x and pop-
ulation state f , and c4a5 as the cost for action a.

3. Transition probabilities. The state of a player evolves
according to a Markov process with the following transition
probabilities. If the state of player i at time t is xi1 t = x
and the player takes an action ai1 t = a at time t, then the
next state is distributed according to the Borel probability
measure �4· �h4x1a51 f 5, where for Borel sets S ⊂X,

�4S �h4x1a51 f 5

= Prob4xi1 t+1 ∈ S �xi1 t = x1ai1 t = a1 f−i1 t = f 50 (18)

Note that � depends on x and a only through the func-
tion h4x1a5; we refer to h4x1a5 as the kernel parame-
ter. We assume that h takes values in a compact interval
H = 6h1 h̄7⊂�.

In this section, we provide insight into separable
stochastic games with complementarities. We have the fol-
lowing definition.

Definition 9. A separable stochastic game with com-
plementarities is a separable stochastic game â = 4X1A1�1
�1�5 with the following properties.

1. Nondecreasing payoff and convex cost. The utility
function v4x1 f 5 is nondecreasing in x, and the cost func-
tion c4a5 is nondecreasing and convex in a.

2. Payoff complementarity. The utility function v4x1 f 5
has increasing differences in x and f .
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3. Monotone transition kernel. The transition kernel
�4· � ĥ1 f 5 is stochastically nondecreasing in ĥ and f .

4. Transition kernel complementarity. The transition ker-
nel �4· � ĥ1 f 5 has stochastically increasing differences in ĥ
and f .

5. Kernel parameter monotonicity and complementarity.
The kernel function h4x1a5 is supermodular in x and a,
nondecreasing in the state x, and concave and nondecreas-
ing in the action a.

6. Continuity. The primitives v4x1 f 5, �4· � ĥ1 f 5, and
h4x1a5 are continuous on their respective domains.

We proceed by reparameterizing the strategy in terms
of the kernel parameter; under this reparametrization, the
resulting model is revealed to be a special case of the gen-
eral model studied earlier in this paper.

Formally, suppose we are given a separable stochastic
game with complementarities â = 4X1A1�1�1�5. Before
we proceed, we require some additional notation. For each
x, define

H4x5= 8ĥ2 h4x1a5= ĥ for some a ∈A90 (19)

Thus H4x5 is the image of A under h4x1 ·5. In addition, for
each ĥ ∈H4x5, define

C4x1 ĥ5= inf
a∈A2 h4x1a5=ĥ

c4a50 (20)

Thus, C4x1 ĥ5 is the minimum cost incurred to achieve
kernel parameter ĥ when at state x.

The next lemma establishes some basic properties of H
and C. It uses the assumption that the cost function is a
convex function of action a.

Lemma 1. Suppose â is a separable stochastic game with
complementarities. Suppose H4x5 and C4x1 ĥ5 are defined
as in (19) and (20), respectively. Then, for each x, H4x5
is a compact interval, and the sets H4x5 are nondecreas-
ing in x.

The function C4x1 ĥ5 is convex and nondecreasing in ĥ
on H4x5 for each x, and nonincreasing in x for each ĥ as
long as ĥ ∈H4x5. Further, for all x:

inf
ĥ∈H4x5

C4x1 ĥ5= c4a50 (21)

If x′ > x, ĥ′1 ĥ ∈H4x′5∩H4x5, and ĥ′ > ĥ, then

C4x′1 ĥ′5−C4x1 ĥ′5¶C4x′1 ĥ5−C4x1 ĥ50

In other words, C4x1 ĥ5 has decreasing differences in x
and ĥ.

We now use Lemma 1 to define a new stochastic game,
which is in fact a stochastic game with complementarities
as in Definition 7.

Proposition 4. Suppose that â = 4X1A1�1�1�5 is a sep-
arable stochastic game with complementarities. Define a
new game â̂ = 4X̂1 Â1 �̂1 �̂1�5, where:

1. X̂=X;
2. Â4x5=H4x5 for all x ∈X;
3. �̂4x′ �x1 ĥ1 f 5=�4x′ � ĥ1 f 5; and
4. �̂4x1 ĥ1 f 5= v4x1 f 5−C4x1 ĥ5,

with H4x5 and C4x1 ĥ5 defined in (19) and (20), respec-
tively. Then â̂ is a stochastic game with complementarities,
cf. Definition 7.

Based on the preceding proposition, we have the follow-
ing theorem.

Theorem 4. Any separable stochastic game with comple-
mentarities â has an MFE.

The preceding result can be extended, of course, to pro-
vide analogs of Corollary 1 (existence of a largest and
smallest equilibrium), as well as Propositions 2 and 3 (con-
vergence of best-response dynamics and myopic learning
dynamics, respectively). Note, however, that the dynamics
defined here are in the modified strategy space, where the
“action” is the kernel parameter chosen. In particular, the
dynamics in the original action space may not be monotone
at all; nevertheless, the eventual limit point is an MFE.

It is also straightforward to generalize the comparative
statics result in Theorem 3 to separable stochastic games
using the same transformation as the preceding result.
In addition, the definition of a separable stochastic game
with complementarities can be naturally extended to sep-
arable action-coupled stochastic games with complemen-
tarities (simply by replacing the population state f by the
population action distribution � in the payoff and transition
kernel), and an argument similar to Proposition 4 shows
that such a game can be transformed to a standard action-
coupled stochastic game with complementarities.

We conclude this section by noting that the preceding
results continue to hold in a setting where the payoff is not
necessarily monotone, as long as dynamics are decoupled.
Formally, suppose that â = 4X1A1�1�1�5 is a stochastic
game that satisfies all the conditions in Definition 9, except
that v is not necessarily nondecreasing in x. Suppose in
addition that �4· � ĥ1 f 5 does not depend on f ; thus, we
denote the kernel simply as �4· � ĥ5. In this model it can
again be shown that an MFE exists, as we now describe.

The proof of Theorem 2 (and subsequent results on
ordering of equilibria and convergence) use the fact
that the payoff is nondecreasing in x to show that
∫

X V ∗4x′ � f 5�4dx′ �x1a1 f 5 is supermodular in 4x1a5 and
has increasing differences in 4x1a5 and f (see Lemma 3).
For the expectation to preserve these properties, the inte-
grand must be nondecreasing in state; this is why we
require the payoff to be nondecreasing. However, if �
only depends on the kernel parameter, then we can show
that

∫

X V ∗4x′ � f 5�4dx′ � ĥ5 has increasing differences in x

and ĥ, even if the payoff is not necessarily nondecreas-
ing. For details, we refer the reader to Lemma EC.1 in the
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e-companion. Substitution of this lemma in the proof of
Theorem 2 yields the desired result.

7. Examples
In this section we revisit two of the examples mentioned in
the introduction: interdependent security and collaborative
filtering. We show that each of these examples can be for-
malized within the framework developed in this paper, so
that the existence and convergence results we have proven
apply. (The third example, dynamic search with learning,
is discussed in §EC.1 in the e-companion.)

7.1. Example 1: Interdependent Security

We consider a dynamic model of interdependent security
in a computer cluster, where the state x gives the secu-
rity level of a player. Players can improve their security
level through investment; an investment a incurs a cost c4a5
that is convex and nondecreasing in a. A higher action leads
to improvement in the security level, and with no or little
investment the security level deteriorates due to deprecia-
tion. Thus, a reasonable model for the dynamic evolution
of the security level might be the linear dynamics in (17),
where M = 0 and M̄ � 0, and A = 1, B > 0, and W has
a negative expected value. Let p4x5 be the probability of a
bad event occurring when an individual computer is at the
security level x, and let L be the cost of this bad event to
the host. Assume p is decreasing and continuous.

We consider a simplified model where at each time step,
an individual computer “talks” to a randomly selected com-
puter in the network. (This talk can be in the form of estab-
lishing a TCP connection, exchanging data, emails, etc.)
Thus, at each time, there is a probability that an individual
computer will suffer a bad event because of the security
level of the rest of the network. Let f−i1 t4y5 be the fraction
of all computers (except computer i) that have their secu-
rity level at y at time t. Then, at each time step, computer i
receives an expected value that is given as:

v4xi1 t1x−i1 t5=−p4xi1 t5L−41−p4xi1 t55

(

∫

X
p4y5f−i1 t 4dy5

)

0

The first part of the payoff reflects the security of host i.
The scaling factor 1−p4xi1 t5 in the second term is the prob-
ability that no bad event happens because of the individ-
ual security level. The term

∫

X p4y5f−i1 t4dy5 represents the
average security level of the rest of the network. Because p
is decreasing and continuous, it is straightforward to verify
that the product of these two terms exhibits strategic com-
plementarities between the security level of agent i and the
security level of every other agent. It follows that this is a
separable stochastic game with complementarities.

7.2. Example 2: Collaborative Filtering

As a canonical example, we consider the collaborative fil-
tering system used by a recommendation engine on a movie

rental site such as Netflix. We let the state x be the qual-
ity of a user’s profile, and assume that x takes values in
a compact interval. The action a represents the effort put
forth in updating her profile, for example, through rating
more movies; actions are costly, with c4a5 denoting the
cost incurred by action a. We assume c is convex. If user
i does not put forth any effort at time t, then the profile
becomes “stale”; that is, the quality of the profile drops
over time. Thus, in this model the quality can be modeled
via dynamics as in (17) as well, where A = 1, B > 0, and
W has negative expected value.

Based on the quality of a user’s profile x as well as
the profile of other users in the system (captured by the
population state f ), the recommendation system suggests a
movie to a user. Let v4x1 f 5 denote the expected desirabil-
ity of the movie recommended to a user, given their profile
quality x and the population state f . Observe that v will
increase if x increases, since a more accurate profile results
in more accurate recommendations. However, for most col-
laborative filtering systems, it is also the case that if others
have higher-quality profiles, then the marginal return to a
higher-quality profile is higher; for example, this would be
the case under a nearest neighbor algorithm as is commonly
used by a variety of online recommendation systems. Thus,
such a model is a separable stochastic game with strate-
gic complementarities. Collaborative filtering systems are
one example of a setting with positive network effects;
games with strategic complementarities are commonly used
to model settings with positive network effects.

8. Conclusion
This paper has considered existence of MFE in games that
exhibit strategic complementarities in the states of the play-
ers. Our proofs exploit monotonicity and complementar-
ity properties of the model primitives to demonstrate that
there exist both a “largest” and “smallest” MFE among all
equilibria where the strategy is nondecreasing in the state.
Further, we demonstrate that there exist natural myopic
learning dynamics that converge to these equilibria. Finally,
we apply our results in the context and illustrate how spe-
cific examples of games with complementarities may be
analyzed using our techniques.

We conclude by noting two extensions that can be devel-
oped for the models described here.

1. Types. In our model players are homogeneous; how-
ever, this is not a consequential restriction, and is made pri-
marily for convenience. More generally, we can extend the
definition of a stochastic game by assuming that there exists
a finite type space ã, with �4x1a1 f 3�5 and P4· �x1a1 f 3�5
the payoff and transition kernel, respectively, of a type �
player. Further, we assume that the probability a player is
of type � is given by �4�5. With this extension, as long
as the conditions of Definition 7 are satisfied for each �,
it is straightforward to extend our existence, convergence,
and comparative statics results. The main technical issue is
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that now an MFE must provide an optimal strategy �� and
population state f� for each �. We omit the details.

2. Multidimensional state and action spaces. A more
difficult extension involves models where the state and
action spaces may be multidimensional lattices. The main
challenge here arises because the set of distributions on
a multidimensional compact lattice X is not generally a
lattice in the first-order stochastic dominance ordering;
see Kamae et al. (1977) for details. However, first-order
stochastic dominance does give a closed partial order on
the set of distributions on X.

We can leverage this fact as follows. Suppose that in
addition to the conditions of Definition 7, the action set
is a fixed lattice A for all x, that is, A4x5 = A for all x.4

Further, suppose the model primitives (payoff and transi-
tion kernel) are all continuous in state, action, and popula-
tion state—that is, Assumption 1 is satisfied. Then Kleene’s
fixed-point theorem (Kleene 1971) can be used to estab-
lish existence of, and convergence to, an MFE. Kleene’s
fixed-point theorem states that if X is a space with a closed
partial order and a smallest element, then any monotone
continuous function from X to itself possesses a fixed point.
We omit the details of this argument, because it is essen-
tially identical to our preceding development.

We do emphasize, however, that our analysis of sepa-
rable stochastic games is intimately tied to the assump-
tion that state and action spaces are single dimensional.
In particular, our proof techniques rely heavily on the
scalar nature of the action and kernel parameter spaces
(cf. Lemma 1); relaxing these conditions remains an open
direction.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2013.1192.

Appendix A. Proofs: Section 3.1

We start with the lemma that demonstrates that optimal strate-
gies exist and can be identified via Bellman’s equation; the proof
uses standard results from dynamic programming. See the e-
companion (supplementary material) for the proof.

Lemma 2. For each f ∈&, P4f 5 is nonempty. Furthermore, � ∈

P4f 5 if and only if for each x:

�4x5∈argmax
a∈A4x5

{

�4x1a1f 5+�
∫

X
V ∗4x′

�f 5�4dx′
�x1a1f 5

}

The next three lemmas combine to show that the value function
V ∗4x � f 5 has increasing differences in x and f .

Lemma 3. Suppose that U4x � f 5 is a nondecreasing bounded
function in x and has increasing differences in x and f . Define

T 4x1a1 f 5=

∫

X
U4x′

� f 5�4dx′
�x1a1 f 50 (A1)

Then, T 4x1a1 f 5 is nondecreasing in x and a, supermodular in
4x1a5, and has increasing differences in 4x1a5 and f .

Proof. By Definition 7, �4· �x1a1 f 5 is stochastically nonde-
creasing in x and a and stochastically supermodular in 4x1a5.
Since U4x � f 5 is a nondecreasing bounded function, it follows
from the definition of stochastically nondecreasing and stochasti-
cally supermodular that T 4x1a1 f 5 is nondecreasing in x and a

and supermodular in 4x1a5 for fixed f .
Fix x̂ ¾ x, â ¾ a, and f̂ �SD f and define T̂ 4x1a1 f 1 g5 =

∫

XU4x′ � f 5�4dx′ �x1a1 g5. To prove T 4x1a1 f 5 has increasing
differences in 4x1a5 and f , it suffices to show that

T̂ 4x̂1 â1 f̂ 1 f̂ 5− T̂ 4x1a1 f̂ 1 f̂ 5

¾ T̂ 4x̂1 â1 f 1 f 5− T̂ 4x1a1 f 1 f 50 (A2)

Let us fix g; since U4x � f 5 has increasing differences in x and
f , U4x � f̂ 5 − U4x � f 5 is a nondecreasing function of x. Since
�4· � x̂1 a1 g5�SD �4· �x1a1 g5 by Definition 7, it follows that:

T̂ 4x̂1 a1 f̂ 1 g5− T̂ 4x̂1 a1 f 1 g5

¾ T̂ 4x1a1 f̂ 1 g5− T̂ 4x1a1 f 1 g50 (A3)

Also by Definition 7, �4· � x̂1 â1 g5 �SD �4· � x̂1 a1 g5, which
implies that

T̂ 4x̂1 â1 f̂ 1 g5− T̂ 4x̂1 â1 f 1 g5

¾ T̂ 4x̂1 a1 f̂ 1 g5− T̂ 4x̂1 a1 f 1 g50 (A4)

Using Equations (A3) and (A4) and rearranging the terms, we get
that

T̂ 4x̂1 â1 f̂ 1 g5− T̂ 4x1a1 f̂ 1 g5

¾ T̂ 4x̂1 â1 f 1 g5− T̂ 4x1a1 f 1 g50 (A5)

Now let ĝ �SD g and note that �4· �x1a1 g5 has increasing differ-
ences in 4x1a5 and g by Definition 7. Also, note that U4x � f 5

is a bounded nondecreasing function of x. This implies that
T̂ 4x1a1 f 1 g5 has increasing differences in 4x1a5 and g. That is,

T̂ 4x̂1 â1 f̂ 1 ĝ5− T̂ 4x1a1 f̂ 1 ĝ5

¾ T̂ 4x̂1 â1 f̂ 1 g5− T̂ 4x1a1 f̂ 1 g50 (A6)

From Equations (A5) and (A6), we get that for any x̂¾ x, â¾ a,
f̂ �SD f , and ĝ �SD g we have

T̂ 4x̂1 â1 f̂ 1 ĝ5− T̂ 4x1a1 f̂ 1 ĝ5¾ T̂ 4x̂1 â1 f 1 g5− T̂ 4x1a1 f 1 g50

Taking f̂ = ĝ and f = g in the above equation shows that Equa-
tion (A2) is true, which proves the lemma. �

Lemma 4. Suppose that U4x � f 5 is a nondecreasing bounded
function in x that has increasing differences in x and f . Define

U ∗4x � f 5= sup
a∈A4x5

{

�4x1a1 f 5+�
∫

X
U4x′

� f 5�4dx′
�x1a1 f 5

}

0

Then U ∗4x � f 5 is nondecreasing in x and has increasing differ-
ences in x and f .



Adlakha and Johari: Dynamic Games with Strategic Complementarities
986 Operations Research 61(4), pp. 971–989, © 2013 INFORMS

Proof sketch. Define W4x1a1 f 5=�4x1a1 f 5+�
∫

XU4x′ � f 5 ·

�4dx′ �x1a1 f 5 = �4x1a1 f 5 + �T 4x1a1 f 5. From Lemma 3, we
know that T 4x1a1 f 5 is nondecreasing in x and a, supermodular
in 4x1a5, and has increasing differences in 4x1a5 and f . From
Definition 7, we get that W4x1a1 f 5 is nondecreasing in x, super-
modular in 4x1a5, and has increasing differences in 4x1a5 and f .

To complete the proof, observe that if A4x5= A for all x, then
it would be trivial that U ∗4x � f 5= supa∈A4x5W4x1a1 f 5 is nonde-
creasing in x. The general argument is slightly more technical,
but follows the same logic. To show that U ∗4x � f 5 has increas-
ing differences, we follow an argument inspired by Lemma A.1
of Hopenhayn and Prescott (1992). To see the complete details of
these derivations, we refer the reader to the e-companion. �

Lemma 5. V ∗4x � f 5 is nondecreasing in x and has increasing
differences in x and f .

Proof. Let V04x � f 5= 0 for all x, and let:

Vk+14x�f 5= sup
a∈A4x5

{

�4x1a1f 5

+�
∫

X
Vk4x

′
�f 5�4dx′

�x1a1f 5

}

3 (A7)

this is value iteration. By the preceding lemma, every Vk is non-
decreasing in x and has increasing differences in x and f . Under
our assumptions, value iteration converges starting from the zero
function (Bertsekas 2001), that is, for all x, Vk4x � f 5→ V ∗4x � f 5

as k → �. Since monotonicity and increasing differences are pre-
served upon taking limits, we conclude V ∗4x � f 5 is nondecreasing
in x and has increasing differences in x and f . �

We now apply Topkis’ Theorem in the next lemma to conclude
that the set of optimal strategies is monotone; see the ecompanion
for the proof.

Lemma 6. For each x and f , define the set ì4x1 f 5 as:

ì4x1f 5=argmax
a∈A4x5

{

�4x1a1f 5

+�
∫

X
V ∗4x′

�f 5�4dx′
�x1a1f 5

}

0 (A8)

Then, ì is nondecreasing in 4x1 f 5.
Further,

p̄4f 54x5= supì4x1 f 53 p4f 54x5= inf ì4x1 f 51

where p̄ and p are the strategies defined in (11). Both p̄4f 5 are
p4f 5 are nondecreasing in f , and for fixed f both strategies are
also nondecreasing in x.

We now turn our attention to D. Given any strategy � and
population state f , define a map Q�1f 2 & → & according to the
kernel induced by � and f , that is, for all Borel sets S:

Q�1f 4g54S5=

∫

X
�4S �x1�4x51 f 5 g4dx50

(This is Equation (16).)

Lemma 7. Suppose f ′ �SD f , g′ �SD g, and �′ Ä�, and both �′

and � are nondecreasing, then Q�′1f ′ 4g′5�SD Q�1f 4g5.

Proof. Let � be a bounded nondecreasing real-valued function
on X. We need to show that for every x ∈X, we have
∫

X

∫

X
�4y5�4dy �x1�′4x51 f ′5 g′4dx5

¾
∫

X

∫

X
�4y5�4dy �x1�4x51 f 5 g4dx50 (A9)

Let us define H4x3�1 f 5 =
∫

X�4y5 �4dy �x1�4x51 f 5. Observe
that
∫

X

∫

X
�4y5�4dy �x1�4x51 f 5 g4dx5=

∫

X
H4x3�1 f 5 g4dx50

Let x′ ¾ x and note that � is a nondecreasing function of x.
From Definition 7, we know that �4· �x1a1 f 5 is stochastically
nondecreasing in 4x1a5, which implies that �4· �x′1�4x′51 f 5�SD
�4· �x1�4x51 f 5. Since � is a nondecreasing function, we get that
H4x′3�1 f 5¾H4x3�1 f 5.

From Definition 7, we know that �4· �x1a1 f 5 is nondecreasing
in a and f . Thus, for any fixed x, we have �4· �x1�′4x51 f ′5�SD
�4· �x1�4x51 f 5. This, along with the fact that � is a nondecreas-
ing function, implies that H4x3�′1 f ′5 ¾ H4x3�1 f 5 for every
fixed x ∈X.

We now reason as follows:
∫

X
H4x3�′1 f ′5 g′4dx5¾

∫

X
H4x3�1 f 5 g′4dx5

¾
∫

X
H4x3�1 f 5 g4dx50

Here the first inequality follows from the fact that H4x3�′1 f ′5¾
H4x3�1 f 5 and the second inequality follows from that fact that
H4x′3�1 f 5 ¾ H4x3�1 f 5 for x′ ¾ x, and that g′ �SD g. This
proves Equation (A9) and hence proves the lemma. �
Lemma 8. Fix � ∈ -O and f ∈ &, and suppose � is nonde-
creasing in x. Then D4�1 f 5 is a nonempty complete lattice. Fur-
ther, d4�1 f 5 and d̄4�1 f 5 (as defined in (12)) exist and are both
invariant distributions of the Markov process induced by � and f
(cf. (7)).

Finally, if f ′ �SD f and �′ Ä� and both � and �′ are nonde-
creasing, then d4�′1 f ′5�SD d4�1 f 5 and d̄4�′1 f ′5�SD d̄4�1 f 5.

Proof. By the preceding lemma, Q�1f 4g5 is nondecreasing in g.
By Tarski’s theorem, the set of fixed points of Q�1f is a nonempty
complete lattice. View the set of nondecreasing strategies � as
a partially ordered set -O with the coordinate-wise ordering Ä.
Then Q�1f 4 · 5 is a nondecreasing function on -O × & × &, by
the preceding lemma. Theorem 2.5.2 in Topkis (1998) general-
izes Tarski’s theorem to fixed points of a nondecreasing function
parameterized by a partially ordered set (-O × &); one conse-
quence of this generalization is that the largest and smallest fixed
points are nondecreasing in the parameter. This generalization
directly implies that both d4�1 f 5 and d̄4�1 f 5 are nondecreasing
in � and f . �

In the next lemma we establish existence of fixed points of ê,
thus proving Theorem 2.

Lemma 9. Let ê4f 5 and ê̄4f 5 be defined as in (13). Then
ê4f 51 ê̄4f 5 ∈ ê4f 5. Further, both are nondecreasing in f , and
thus the sets of their fixed points are each nonempty complete
lattices.

Thus, there exists an MFE for the stochastic game with com-
plementarities â : in particular, if f is a fixed point of ê (respec-
tively, ê̄), then 4 p4f 51 f 5 (respectively, 4p̄4f 51 f 5) is an MFE.
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Proof. That ê4f 5 is nonempty follows by Lemmas 2 and 8.
Observe that if f ′ �SD f , then p4f ′5Ä p4f 5 by Lemma 6. Fur-
ther, p4f ′5 and p4f 5 are both nondecreasing in x as well, so
by Lemma 8, d4 p4f ′51 f ′5 �SD d4 p4f 51 f 5, establishing that ê
is monotone. That ê4f 5 ∈ê4f 5 follows from the definition. The
proof for ê̄4f 5 is identical. The conclusion regarding fixed points
follows from Tarski’s theorem. �

Appendix B. Proofs: Section 4

We start with two essential lemmas; proofs of both can be found
in the e-companion.

Lemma 10. Suppose that f0 �SD f1 �SD f2 · · · , and �0 Å �1 Å
�2 · · · . Then there exists a distribution f ∗ and a strategy �∗ such
that ft converges weakly to f ∗ as t → �, and �t converges point-
wise to �∗ as t → �.

Lemma 11. The strategies p4f 5 and p̄4f 5 (cf. (11)) are both
continuous in f , and Q�1g4f 5 (cf. (16)) is continuous in �, g, and
f , where we endow & with the topology of weak convergence, and
-O with the topology of pointwise convergence.

Proof of Proposition 2. Because ft+1 =ê4ft5 and ê is mono-
tone by Lemma 9, it follows that f0 �SD f1 �SD f2 · · · . Since
�t = p4ft5, and p is monotone in ft by Lemma 6, it follows that
�0 Å �1 Å �2 · · · . Finally, because p4f 54x5 is nondecreasing in
x for every f , it follows that �t is nondecreasing. By Lemma 10,
there exists a limit 4�∗1 f ∗5. Since every �t is nondecreasing in
x, the limit �∗ must be nondecreasing in x as well.

We now show that because Assumption 1 holds, then the limit
point 4�∗1 f ∗5 is the smallest MFE. By Lemma 11, both p4f 5 and
Q�1g4f 5 are continuous. This implies that �t = p4ft5→ p4f ∗5 as
t → �, so �∗ = p4f ∗5. Further, because ft+1 = d4�t1 ft5, it fol-
lows that Q�t 1 ft

4ft+15 = ft+1. Taking limits on the left and right,
we have Q�∗1 f ∗4f ∗5= f ∗, that is, f ∗ ∈D4�∗1 f ∗5. Thus, we con-
clude 4�∗1 f ∗5 is an MFE.

Let f be the smallest fixed point of ê4f 5, as defined in (14).
Observe that at time 0, f0 �SD f , since f0 is the smallest distri-
bution in the lattice &. Because ê is monotone, ft �SD f for all
t. Since ft converges weakly to f ∗, we conclude f ∗ �SD f . On
the other hand, observe that �∗ is nondecreasing, so by Corollary
1, we have f �SD f ∗—that is, f ∗ = f , as required. �

Proof of Proposition 3. We proceed by induction. First note
that by Lemma 6, p4f 54x5 is a nondecreasing strategy in x for
each f , so every �t is nondecreasing. We start by observing that
f0 is the smallest distribution in & in the �SD ordering, so f1 �SD
f0 trivially. Since p is monotone in f by Lemma 6, we have
�0 = p4f05Å p4f15=�1.

So now suppose that f0 �SD f1 �SD · · · �SD ft , and �0 Å �1 Å
· · · Å �t . Define Q�t 1 ft

according to (16). Then by Lemma 7,
Q�t 1 ft

is nondecreasing; because ft+1 = Q�t 1 ft
4ft5, we conclude

ft+1 �SD ft . The same argument as the preceding paragraph then
yields �t+1 Ä �t , as required. Applying Lemma 10 yields the
convergence result; note that �∗ must be nondecreasing, since
every �t is nondecreasing.

From Lemma 11, because Assumption 1 holds, we conclude
that �∗ = p4f ∗5, and Q�∗1 f ∗4f ∗5 = f ∗—that is, f ∗ ∈ D4�∗1 f ∗5.
Thus, 4�∗1 f ∗5 is an MFE.

Let f be the smallest fixed point of ê4f 5, as defined in
(14). Observe that at time 0, f0 �SD f , because f0 is the small-
est distribution in the lattice &. Thus, �0 = p4f05 Å p4 f 5, so

f1 =Q�01 f0
4f05�SD Q p4 f 51 f 4 f 5= f , where the last equality fol-

lows since f must be an invariant distribution associated with
p4 f 5 and f . Proceeding inductively, we have ft �SD f for all t.
Because ft converges weakly to f ∗, we conclude f ∗ �SD f . On
the other hand, observe that �∗ is nondecreasing, so by Corollary
1, we have f �SD f ∗—that is, f ∗ = f , as required. �

Appendix C. Proofs: Section 6

Proof of Lemma 1. Because h is continuous in a for fixed x,
and because A is a compact interval, it follows by the intermediate
value theorem that H4x5 is a compact interval. Now if x′ ¾ x,
then h4x′1 a5¾ h4x1a5 for all a (by Definition 9), so we conclude
H4x5 is nondecreasing in x.

Since h4x1a5 is nondecreasing in both x and a, and c4a5 is
nondecreasing in a, it follows that C4x1 ĥ5 is nondecreasing in ĥ
when x is fixed, and nonincreasing in x when ĥ is fixed. Equa-
tion (21) also follows because c4a5 is nondecreasing in a. Con-
vexity in ĥ follows by standard results in convex optimization:
since we restrict attention to ĥ ∈ H4x5 and h and c are both
nondecreasing in a, we can rewrite the constraint h4x1a5 = ĥ as
h4x1a5¾ ĥ in the definition of C4x1 ĥ5, that is, for ĥ ∈H4x5 we
have:

C4x1 ĥ5= inf
a∈A2 h4x1a5¾ĥ

c4a50

Now, because C4x1 ĥ5 is defined via minimization of a convex
objective function over a convex feasible region parameterized by
ĥ, it is convex in ĥ (Bertsekas 2009).

Finally, we establish the claim of decreasing differences.
Fix x1x′1 ĥ, and ĥ′ as in the statement of the lemma. Define
�11�21�3, and �4 as optimizing values of a in the definition of
C4x1 ĥ5, C4x′1 ĥ5, C4x1 ĥ′5, and C4x′1 ĥ′5, respectively. We have
h4x1�15= h4x′1�25= ĥ, and h4x1�35= h4x′1�45= ĥ′.

Observe that since ĥ′ > ĥ and h is nondecreasing in action,
�4 > �2, and �3 > �1. Further, because h is nondecreasing in x,
we have �4 ¶ �3 and �2 ¶ �1. Let �= �4 −�2. Define g4a5 =

−h4x1−a5 for a ∈ −A; then observe that g is a convex, nonde-
creasing function on −A. By Lemma 12 (see below), we have
g4−�25 − g4−�45 ¾ g4−�15 − g4−�1 − �5. In terms of h, this
implies:

h4x1�45−h4x1�25¾ h4x1�1 + �5−h4x1�150 (C1)

We can now show that �4 − �2 ¶ �3 − �1. We have ĥ′ − ĥ =

h4x′1�45 − h4x′1�25 ¾ h4x1�45 − h4x1�25 ¾ h4x1�1 + �5 −

h4x1�15. Here, the first inequality follows by supermodularity of
h in 4x1a5 (Definition 9), and the second inequality follows by
(C1). Since h4x1�15= ĥ and h4x1�35= ĥ′, and h is nondecreas-
ing in action, it follows that �1 + � ¶ �3; that is, �3 − �1 ¾
�4 −�2.

The result now follows by another application of Lemma 12
(see below), which implies: c4�35 − c4�15 ¾ c4�45 − c4�25,
or equivalently, C4x1 ĥ′5 − C4x1 ĥ5 ¾ C4x′1 ĥ′5 − C4x′1 ĥ5, as
required. �

The proof of the following lemma is in the e-companion.

Lemma 12. Let S ⊂ � be convex, and suppose g2 S → � is a
nondecreasing convex function. Fix x1x′1 y1 y′ ∈ S, such that y ¾
x, y′ > y, x′ > x, and y′ − y ¾ x′ − x. Then:

g4y′5− g4y5¾ g4x′5− g4x50
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Proof of Proposition 4. We simply check the conditions out-
lined in Definition 7. Observe that v4x1 f 5 is nondecreasing in
x and has increasing differences in x and f by assumption. In
addition, C4x1 ĥ5 is convex in ĥ and nonincreasing in x, and has
decreasing differences in x and ĥ by Lemma 1. It follows that
�̂4x1 ĥ1 f 5 is nondecreasing in x, supermodular in 4x1 ĥ5 (the lat-
ter as it is separable in x and ĥ), and has increasing differences in
4x1 ĥ5 and f . Furthermore, for fixed ĥ and f , supx∈X�4x1 ĥ1 f 5 <

�. Thus, the first two conditions of Definition 7 are satisfied.
Next, we consider the transition kernel. Here the desired prop-

erties follow by assumption: �̂4· �x1 ĥ1 f 5 is trivially stochastically
supermodular in 4x1 ĥ5, since it does not depend on x and ĥ is
scalar. By assumption, the kernel is stochastically nondecreasing
in ĥ and f , and has increasing differences in ĥ and f .

Finally, note that H4x5 is a compact interval, H is nondecreas-
ing, and H4x5⊂ 6h1 h̄7 for all x, which is also compact. Further,
observe that for all x and f ,

sup
ĥ∈H4x5

�̂4x1ĥ1f 5=v4x1f 5− inf
ĥ∈H4x5

C4x1ĥ5=v4x1f 5−c4a51

where the last step follows by Lemma 1. Since v is nondecreasing
in x, it follows that supĥ∈H4x5�4x1 ĥ1 f 5 is nondecreasing in x.

The requisite continuity properties follow from the continuity
properties assumed on v, �, and h. It follows that â is a stochastic
game with complementarities, as required. �

Proof of Theorem 4. Let â̂ be the equivalent stochastic game
with complementarities constructed in Proposition 4. Suppose that
4�̂1 f̂ 5 is an MFE of â̂ ; note that in this case �̂ is a strategy where
�̂4x5 ∈H4x5 for all x ∈X.

Define a new strategy �2 X → A as follows. For each x, let
�4x5 be an action such that h4x1�4x55= �̂4x5. That is, we choose
the action �4x5 to yield exactly the kernel parameter �̂4x5. Then
observe that �4x1�4x51 g5= �̂4x1 �̂4x51 g5 for all x and g. Since
�̂ is an optimal oblivious strategy for a player given population
state f in â̂ , by construction of â̂ the strategy � maximizes the
expected discounted payoff to a player given f in the original
game â . Further, because �4· �x1�4x51 g5 = P̂4· �x1 �̂4x51 g5, it
follows that f is an invariant distribution of the strategy �. Thus,
4�1 f 5 is an MFE of the game â , as required. �

Endnotes

1. Note that guaranteeing existence of MPE may require the use
of randomized strategies. To keep the presentation simple, we do
not consider randomization.
2. Note that although Tarski’s theorem applies to functions, in
our case ê is a correspondence. Zhou (1994) provides a general-
ization of Tarski’s theorem to correspondences.
3. See also Hopenhayn and Prescott (1992), Topkis (1998), and
Smith and McCardle (2002) for other conditions that yield mono-
tonicity of optimal solutions to dynamic programs.
4. We employed the total ordering of A4x5 in proving that the
value function V ∗4x � f 5 is nondecreasing in x, via Lemma 4;
however, if A does not depend on x, then it is straightforward to
check that V ∗4x � f 5 is nondecreasing in x even if A is multidi-
mensional.
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