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Abstract

We design a dynamic rate scheduling policy of Markov type via the solution (a so-

cial optimal Nash equilibrium point) to a utility-maximization problem over a randomly

evolving capacity set for a class of generalized processor-sharing queues living in a random

environment, whose job arrivals to each queue follow a doubly stochastic renewal process

(DSRP). Both the random environment and the random arrival rate of each DSRP are

driven by a finite state continuous time Markov chain (FS-CTMC). Whereas the schedul-

ing policy optimizes in a greedy fashion with respect to each queue and environmental

state and since the closed-form solution for the performance of such a queueing system

under the policy is difficult to obtain, we establish a reflecting diffusion with regime-

switching (RDRS) model for its measures of performance and justify its asymptotic op-

timality through deriving the stochastic fluid and diffusion limits for the corresponding

system under heavy traffic and identifying a cost function related to the utility function,

which is minimized through minimizing the workload process in the diffusion limit. More

importantly, our queueing model includes both J-user multi-input multi-output (MIMO)

multiple access channel (MAC) and broadcast channel (BC) with cooperation and admis-

sion control as special cases. In these wireless systems, data from the J users in the MAC

or data to the J users in the BC is transmitted over a common channel that is fading

according to the FS-CTMC. The J-user capacity region for the MAC or the BC is a

set-valued stochastic process that switches with the FS-CTMC fading. In any particular

channel state, we show that each of the J-user capacity regions is a convex set bounded

by a number of linear or smooth curved facets. The random arrival rate to each user

for these systems is designed to switch with the FS-CTMC fading via admission con-

trol. At the transmit end, packets to each user are queued and served under the policy.

Therefore our queueing model can perfectly match the dynamics of these wireless systems.
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1 Introduction

In the current cellular systems, each base station is considered as a separate entity with no

cooperation among base stations, infrastructure cooperation among base stations has been

proposed in the literature such as [1, 33, 48], which is to consider the base stations as one

end of a MIMO system that has received a great deal of attention as a method to achieve

high data rates over wireless links. Thus, in this paper, we study a J-user MIMO MAC

uplink system and a J-user MIMO BC downlink system. Both of them can be seen as a

cellular system with multiple users and multiple cooperating base station antennas: either

multiple cooperating base stations each with a single antenna or a single-cell cellular system

with a multi-antenna base station or a combination thereof. In the MAC or the BC, data is

buffered at the transmit end and the channel is time-varying due to multipath fading, which

is a typical feature of wireless channel and brings additional complexity for system design

and performance analysis. We suppose that the fading process is a FS-CTMC whose discrete

time version is widely used in modeling wireless channels (see, e.g., [49, 43, 48, 22], and

references therein). Therefore, the J-user capacity regions of the MAC and the BC are both

time-varying set-valued stochastic processes driven by the FS-CTMC and in each state of the

Markov chain, it is well known that one can obtain the improved capacity by cooperation,

e.g., the sum of the rates at which data can be served for the J users is greater than the

single-user capacity for any user (see, e.g., [3]). Moreover, due to the impact of the random

environmental fading factor and the cooperated design, the service rates of the corresponding

queueing system for the J users in the MAC or in the BC are also random processes driven

by the FS-CTMC.

So, motivated by the above observations, we consider a type of generalized processor-

sharing queues living in a random environment, whose job arrivals to each queue follow a

DSRP. Both the random environment and the random arrival rate of each DSRP are driven

by a FS-CTMC. Presently, for such a queueing system, it is not known how to choose a

reasonable online rate scheduling policy to minimize the average delay for a given load and

exact solutions for average delay are not available even for many simple policies, which implies

that any meaningful comparison has to be done by simulations. Therefore, to make the gap

between the dynamic rate scheduling and the performance optimization for the system be

filled to some extent, we design a dynamic rate scheduling policy of Markov type via the

solution (a social optimal Nash equilibrium point) to an optimization problem that maximizes

a general utility function over each of the randomly evolving capacity regions through the

Karush-Kuhn-Tucker (KKT) optimality conditions (see, e.g., [35]). Moreover, to overcome

the intractability of performance evaluation for the system under the designed policy, we

develop stochastic fluid and diffusion models through suitable scaling of time and space and

justifying related limit theorems for a heavily loaded queueing system operating under this

policy. The limit models for queue lengths (or workloads) are respectively a random process

driven by the FS-CTMC and a RDRS (i.e., a reflecting stochastic differential equation (SDE)

with regime-switching). In addition, we identify a cost function related to the utility function,
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which is minimized through minimizing the workload process in the diffusion limit and hence

provides a useful means in illustrating our policy to be asymptotically optimal.

Finally, in order to incorporate the J-user MIMO MAC and MIMO BC into our general

queueing framework, we justify that the J-user capacity region for the MAC or the BC in

any particular channel state is a convex set formed by a number of linear or smooth curved

facets through applying the method of convex optimization, the implicit function theorem,

and the duality of capacity regions between the MAC and the BC. Moreover, to realize the

DSRP in the MAC or in the BC, we adopt a cross-layer design methodology to switch the

arrival rates with the FS-CTMC channel fading process according to the current channel

state information (CSI) through admission control.

Literature Review

The randomly evolving capacity region used in designing our utility-maximization rate

scheduling policy is a generalization of the so-called MIMO channel capacity region in the

Shannon theoretic sense. For a single-user time-invariant channel, the Shannon capacity is

defined as the maximum mutual information between input and output, which is shown by

Shannon’s capacity theorem to be the maximum data rate that can be transmitted over

the channel with arbitrarily small error probability. For a J-user time-invariant MIMO

channel, the corresponding capacity region is a J-dimensional set of all rate vectors (c1, ..., cJ )
′

simultaneously achievable by all J users. In particular, the region for the Gaussian MAC is a

convex set that is the union of rate regions corresponding to every product input distribution

satisfying the user-by-user power constraints (see, e.g., [14], [12], [56], [25]). The Gaussian

BC differs from the Gaussian MAC in two fundamental aspects (see, e.g., [31]). In the MAC,

each transmitter has an individual power constraint, whereas in the BC there is only a single

power constraint on the transmitter. Moreover, signal and interference come from different

transmitters in the MAC and are multiplied by different channels gains (known as the near-

far effect) before being received, whereas in the BC, the entire received signal comes from

the same source and therefore has the same channel gain. Nevertheless, the capacity region

for the Gaussian BC can be obtained through the duality between the Gaussian MAC and

the Gaussian BC (see, e.g., [31] and [25]), i.e., it is the convex hull of the union over the set

of capacity regions of the dual Gaussian MACs such that the total MAC power is the same

as the power in the BC. Moreover, the authors in [34] provide an analytical and numerical

characterization in terms of the shape of the capacity boundaries for both the MAC and the

BC.

However, in both the Gaussian MAC and the Gaussian BC, the exact characterization

concerning piecewise smoothness of the capacity boundaries is not available until now, which

motivates us to give more accurate analysis about the capacity region in order to apply our

utility maximization rate scheduling algorithm to these wireless systems. In addition, when

the J-user MIMO channels are stochastic and time-varying fading ones, the capacity regions

have multiple definitions (see, e.g., [25]). Nevertheless, to capture the exact capacity region

at each time instant for the MAC or the BC, we consider the capacity regions as a set-valued
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stochastic process evolving with the FS-CTMC rather than think of it as a fixed one in an

average sense such as an ergodic capacity region (see, e.g., [25]).

Concerning the scheduling algorithms, the authors in [1, 3, 4] considered a quasi-static

downlink channel, where the channel is assumed to be fixed for all transmissions over the

period of interest. In this case, the FS-CTMC and the random packet arrival rates assumed

in the current paper reduce to constants, and moreover, without considering utility and cost

optimization, the authors in [1, 3, 4] designed a simple rate scheduling policy of Markov

type, which was shown to be throughput-optimal for a fixed convex capacity region in [1]

and a limit theorem was proved to justify the diffusion approximation of the queue length

process for a heavily loaded system operating under their policy with two users in [3] and

with multiple users in [4]. Their approximating model is a RBM living in the two-dimensional

positive quadrant or in the general-dimensional positive orthant.

In the studies of [43, 41, 22], some scheduling policies were considered for certain heavily

loaded wireless systems with finite state discrete time Markov fading process. In particu-

lar, a MaxWeight scheduling policy was considered in [43] for a generalized switch and it was

shown that the workload process converges to a one-dimensional RBM and MaxWeight policy

asymptotically minimizes the workload under certain conditions. Moreover, an exponential

scheduling rule was designed for wireless channels in [41] and for a generalized switch in [22],

which was proved to be throughput-optimal and under which, the similar results concern-

ing the workload process were obtained and justified as in [43]. In addition, [54] designed

a utility-maximizing resource allocation policy for a class of stochastic networks with con-

current occupancy of resources and established its asymptotic optimality for the associated

heavily loaded queueing system. Their policy covers the generalized cµ-rule in [36] and the

MaxWeight policy in [43] as special cases.

The differences between the current study and those in [43, 41, 22, 54] are in three aspects

as follows.

First, their scheduling policies in [43, 41, 22, 54] depend only on a fixed capacity region

that is a convex polyhedral and ours depends on a time-varying and stochastic evolving

capacity region process (a random environment) that, at each time instant, is a more general

convex region rather than a convex polyhedral.

Second, the rates of packet arrivals to the J users are random processes rather than a

constant as used in [43, 41, 22, 54]. Hence our input traffic to each user is a DSRP whose

particular case is the well-known doubly stochastic Poisson process (see, e.g., [8]) that is

widely used to model voice, video and data source traffics in telecommunication systems and

is called Markovian modulated Poisson process (MMPP) or ON/OFF source (see, e.g., [30],

[37], [44], [20]) and [21])).

Third, our discussion is based on a continuous time horizon rather than a discrete one

as in [43, 41, 22]. Therefore our vector-valued random service rate process depends on the

FS-CTMC whose holding time at each environmental state has an important impact on the

limiting processes, e.g., the limiting fluid model is a random process driven by the FS-CTMC

rather than a deterministic function of time and the limiting diffusion model is a more general
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RDRS rather than a RBM as derived in [43, 41, 22]. If one wants to directly generalize the

studies in [43, 41, 22] to the corresponding ones in a discrete time random environment, a

geometric distribution may be imposed on the holding time at each environmental state.

Finally, without considering optimal dynamic scheduling with utility/cost and perfor-

mance optimizations as the goals. CTMCs have been used to model the random environ-

ments in the studies of some queueing systems under certain static service disciplines, see,

e.g., [13] and references therein for more details.

The rest of the paper is organized as follows. In Section 2, we introduce our generalized

processor-sharing queues under random environment and design our optimal rate scheduling

policy. In Section 3, we introduce our heavy traffic condition and present our main asymptotic

optimality theorem. In Section 4, we illustrate the usages of our optimal policy and our main

results in the J-user MIMO uplink and downlink wireless channels and present the associated

results concerning the piecewise smoothness of capacity boundaries of the J-user MIMOMAC

and MIMO BC. In Sections 5-6, we prove our main theorem and associated lemmas.

2 Optimizing Processor-Sharing Queues under Random Environment

2.1 Primitive Data

The queueing system under consideration is a type of generalized processor-sharing queues

that live in a random environment evolving according to a stationary FS-CTMC α = {α(t), t ∈

[0,∞)}, which takes value in a finite state space K ≡ {1, ...,K} with generator matrix

G = (gil) (i, l ∈ K) and

gil =

{

−γ(i) if i = l,

γ(i)qil if i 6= l
(2.1)

where γ(i) is the holding rate for the chain in an environmental state i ∈ {1, ...,K} and

Q = (qil) is the transition matrix of its embedded discrete time Markov chain (see, e.g., [39]).

Moreover, the queueing system has J queues in parallel, which correspond to J users for a

given positive integer J . Each queue that is of infinite buffer capacity buffers packets (jobs)

arrived for a given user. The queues can be served simultaneously by a single server with rate

allocation vector c(t) = (c1(t), ..., cJ (t))
′ that takes values in a time-varying and randomly

evolving capacity set R(α(t)).

Concretely, for each state i ∈ K, R(i) is a convex set that contains the origin and has

L (> J) boundary pieces of which J are (J−1)-dimensional linear facets along the coordinate

axes while the remaining ones are in the interior of RJ
+ and form the so-called capacity surface

denoted by O(i), which consists of B = L − J (> 0) linear or smooth curved facets hk(c, i)

on RJ
+ for k ∈ U ≡ {1, 2, ..., B}, i.e.,

R(i) ≡
{

c ∈ RJ
+ : hk(c, i) ≤ 0, k ∈ U

}

.(2.2)
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Moreover, if we let CU denote the sum capacity upper bound for the capacity region, then

the facet in the center of the capacity surface is linear and can be expressed by

hkU (c, i) =
J
∑

j=1

cj − CU(2.3)

where kU ∈ U is the index corresponding to CU . Moreover, we suppose that any one of the

J linear facets along the coordinate axes forms a (J − 1)-user capacity region corresponding

to a particular group of J − 1 users who are the only users in the systems. Similarly, we can

define the (J − j)-user capacity region for each j ∈ {2, ..., J − 1}. Examples of such capacity

sets in two- and three-dimensional spaces for a particular state i ∈ K are shown in Figures 1

and 2.

Figure 1: A 2-user capacity set in the 2-dimensional space in a particular environmental state

Figure 2: A 3-user capacity set in the 3-dimensional space in a particular environmental state

In addition, we suppose that the system starts empty and that there is a J-dimensional

packet arrival process A = {A(t) = (A1(t), ..., AJ (t))
′, t ≥ 0}, where Aj(t) with j ∈ J and
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t ≥ 0 is the number of packets arrived to the jth queue during (0, t] and the prime denotes

the transpose of a vector or a matrix. For each j ∈ J , Aj(·) is assumed to be a DSRP with

random arrival rate process λj(α(·)) and squared coefficient of variation process α2
j (α(·)) ∈

(0,∞). The packet interarrival times are assumed to be i.i.d. during the time interval

corresponding to a specific environmental state i ∈ K. Moreover, let {uj(k), k = 1, 2, ...}

denote the sequence of times between the arrivals of the (k − 1)th and the kth packets to

the jth queue and let {vj(k), k = 1, 2, ...} denote the sequence of packet lengths (in bits)

for the successive arrivals to queue j, which is assumed to be a sequence of strictly positive

i.i.d. random variables with average packet length 1/µj ∈ (0,∞) and squared coefficient of

variation β2j ∈ (0,∞). In addition, we suppose that all interarrival and service time processes

are mutually (conditionally) independent when the environmental state is fixed. For each

j ∈ J and each nonnegative constant h (in bits), we use Sj(·) to denote the renewal counting

process associated with {vj(k), k = 1, 2, ...}, i.e.,

Sj(h) = sup

{

n ≥ 0 :
n
∑

k=1

vj(k) ≤ h

}

.(2.4)

The reasonability about the DSRP assumption on the packet arrivals and about the i.i.d.

assumption on the packet sizes in a communication system is due to the large-scale computer

experiments and statistical analysis conducted by Bell Labs scientists [10], and recent findings

by [20]) and [21]).

2.2 A Utility-Maximization Scheduling Algorithm and Queueing Dynamics

First of all, we remark that the service discipline used in this paper is the so-called head of

line discipline under which the service goes to the packet at the head of the line for a serving

queue where packets are stored in the order of their arrivals. The service rates are determined

by a function of the environmental state and the number of packets in each of the queues.

At each state i ∈ K and for a given queue length vector q = (q1, ..., qJ )
′, let Λ(q, i) denote

the corresponding rate vector (in bps) of serving the J queues, which is a solution of the

following utility maximization problem

max
c∈R(i)

∑

j∈J

Uj(qj, cj)(2.5)

where c = (c1, ..., cJ )
′ is a J-dimensional vector and Uj(qj, cj) for each j ∈ J is a util-

ity function defined on RJ
+, which is second-order differentiable and satisfies the following

conditions

Uj(0, cj) = 0,(2.6)

Uj(qj , cj) = Φj(qj)Ψ(cj) is strictly increasing and concave in cj for each qj > 0,(2.7)

∂Uj(qj, cj)

∂cj
is strictly increasing in qj ≥ 0,(2.8)

∂Uj(0, cj)

∂cj
= 0 and lim

qj→∞

∂Uj(qj , cj)

∂cj
= +∞ for each cj > 0.(2.9)
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Due to condition (2.7), we know that there must exist an optimal solution in the following

form for a given q,

Λ(q, i) =

{

ΛQ(k1,...,km)(q, i)′ if q ∈ Q(k1, ..., km) and a given m ∈ J ,

(0, 0, ..., 0) if q = 0,
(2.10)

where kj ∈ J for each j ∈ {1, ...,m} and kj 6= kl if j 6= l. Moreover, Q(k1, ..., km) denotes

the set of all q ∈ RJ
+ that have exactly m components qkj (j ∈ {1, ...,m}) to be zero, and the

components of ΛQ(k1,...,km)(q, i)′ corresponding to kj (j ∈ J \{1, ...,m}) consist of the optimal

solution to (2.5) with the capacity region R(i) replaced by the corresponding (J −m)-user

capacity region and all other components of ΛQ(k1,...,km)(q, i)′ are zero. For example, when

there are only two users in the system, (2.10) is of the following form,

Λ(q, i) =























(c1(q, i), c2(q, i))
′ if q > 0,

(c∗1(i), 0) if q1 > 0, q2 = 0,

(0, c∗2(i)) if q1 = 0, q2 > 0,

(0, 0) if q1 = q2 = 0.

Remark 2.1 The optimal solution to (2.5) may not be unique when qj = 0 for some j ∈ J ,

however, if Λj(q, i) > 0 with qj = 0 for some j ∈ J , we can reset Λj(q, i) to zero without

violating the constraints or decreasing the objective value (referred to (2.7)). Hence, whenever

the solution to (2.5) is concerned, we will always suppose that (2.10) is true. Moreover, for

each q > 0 (and similarly, for a lower dimensional case), it follows from (2.7) that every

point on the capacity surface defined in (2.2) is a Nash equilibrium point to a concave game

in the sense of [40] and therefore the solution to (2.5) is a social optimal Nash equilibrium

point to the concave game.

In addition, we assume that {Uj(qj , cj), j ∈ J } satisfies the so-called radial homogeneity

condition, i.e., for any scalar a > 0, each q > 0 and each i ∈ K, its maximizer satisfies

Λj(aq, i) = Λj(q, i).(2.11)

Interested readers are referred to [54] for numerous examples of the utility function that

satisfies conditions (2.6)-(2.9) and (2.11), such as, the so-called proportional fair allocation,

minimal delay allocation, and (β, α)-proportionally fair allocation, which are widely used in

communication protocols.

2.3 The Dual Cost Minimization Problem

In this subsection, we consider the following cost minimization problem for each i ∈ K, a

given c ∈ R(i) and a given parameter w ≥ 0,

min
q
V (q, c)(2.12)

s.t.
J
∑

j=1

qj
µj

≥ w,

qj ≥ 0 for each j ∈ J
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where the function V is defined by

V (q, c) =
J
∑

j=1

Cj(qj, cj)(2.13)

and Cj is the cost function associated with the utility function Uj in (2.5), i.e.,

Cj(qj, cj) =
1

µj

∫ qj

0

∂Uj(u, cj)

∂cj
du.(2.14)

In other words, when the environment is in state i ∈ K, we try to identify a queue state q

corresponding to a given c ∈ R(i) and a given parameter w ≥ 0 such that the total cost over

the system is minimized and the (average) workload meets or exceeds w.

2.4 Performance Measure Processes

Let Qj(t) denote the queue length for the jth queue with j ∈ J at each time t ∈ [0,∞), i.e.,

Qj(t) = Qj(0) +Aj(t)−Dj(t)(2.15)

where Dj(t) is the number of packet departures from the jth queue in (0, t], i.e., Dj(t) =

Sj(Tj(t)), where

Tj(t) =

∫ t

0
Λj(Q(s), α(s))ds(2.16)

which denotes the cumulative amount of service (measured in bits) given to the jth queue

up to time t. Moreover, let W (t) denote the (expected) workload at time t and Y (t) denote

the unused capacity up to time t, i.e.,

W (t) =
J
∑

j=1

Qj(t)

µj
, Y (t) =

J
∑

j=1

(∫ t

0
ρj(α(s))ds − Tj(t)

)

(2.17)

where, for each i ∈ K, ρ(i) = (ρ1(i), ..., ρJ (i))
′ is a given point on the capacity surface O(i)

and it is chosen to satisfy

J
∑

j=1

ρj(i) = max
c∈R(i)





J
∑

j=1

cj



 = CU and ρ1(i) = ... = ρJ(i).(2.18)

Here we remark that the second condition in (2.18) and the separable condition in (2.8) are

required in proving Lemmas 5.5-5.6. However, when only a constant environment (e.g., a

pseudo channel in a wireless system) is concerned, these two conditions can be removed.

Obviously,

Y (t) is non-decreasing in t ≥ 0(2.19)

since, for each t ≥ 0, we have

J
∑

j=1

Λj(Q(t), α(t)) ≤
J
∑

j=1

ρj(α(t)).(2.20)
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3 Main Theorem: Asymptotic Optimality

In this section, we present the optimality result for our scheduling policy by considering

the operation of the queueing system in the asymptotic regime where it is heavily loaded.

Concretely, we define three sequences of diffusion-scaled processes Q̂r(·), Ŵ r(·) and Ŷ r(·) by

Q̂r
j(t) ≡

Qr
j(r

2t)

r
, Ŵ r(t) ≡

W r(r2t)

r
, Ŷ r(t) ≡

Y r(r2t)

r
(3.1)

for each t ≥ 0 and j ∈ J , which associate with a sequence of independent Markov processes

{αr(·), r ∈ {1, 2, ...}}. These systems indexed by r all have the same basic structure as

described in the last section except the arrival rates λrj(i) and the holding time rates γr(i) for

all i ∈ K, which may vary with r ∈ {1, 2, ...} and satisfy the following heavy traffic condition

r
(

λrj(i)− λj(i)
)

→ θj(i) as r → ∞, γr(i) =
γ(i)

r2
(3.2)

for each j ∈ J , where θj(i) ∈ R are some constants and λj(i) ≡ µjρj(i) are the nominal

average packet arrival rates when the channel is in state i ∈ K.

Note that, due to the heavy traffic condition in (3.2) for the rth environmental state

process αr(·) with r ∈ {1, 2, ...}, we know that αr(r2·) and α(·) equal each other in distribution

since they own the same generator matrix (see, e.g., the definition in pages 384-388 of [39]).

Hence, in the sense of distribution, all of the systems indexed by r ∈ {1, 2, ...} in (3.1) share

the same random environment over any time interval [0, t].

Moreover, let BE(·) and BS(·) denote the two independent J-dimensional standard Brow-

nian motions, and for each i ∈ K, let

λ(i) = (λ1(i), ..., λJ (i))
′,(3.3)

ρ(i) = (ρ1(i), ..., ρJ (i))
′ ,(3.4)

θ(i) = (θ1(i), ..., θJ (i))
′,(3.5)

ΓE(i) =
(

ΓE
kl(i)

)

J×J
≡ diag

(

λ1(i)α
2
1(i), ..., λJ (i)α

2
J (i)

)

,(3.6)

ΓS(i) =
(

ΓS
kl(i)

)

J×J
≡ diag

(

λ1(i)β
2
1 , ..., λJ (i)β

2
J

)

,(3.7)

He(t) =
(

He
1(t)

′, ...,He
J (t)

)′
with e denotes E or S,(3.8)

He
j (t) =

∫ t

0

(

Γe
jj(α(s))

) 1

2 dBe
j (s).(3.9)

In addition, let Q̂r,G(·) and Ŵ r,G(·) denote the diffusion-scaled queue-length and workload

processes under an arbitrarily feasible rate scheduling policy G, e.g., a simple Markovian

policy as studied in [4] or a policy ΛG(Qr(t), α(t)) that may not be the optimal solution to

the utility maximization problem (2.5). Then we have the following theorem.

Theorem 3.1 Suppose Qr(0) = 0 for all r ∈ {1, 2, ...} and the heavy traffic condition (3.2)

holds, then under the scheduling policy (2.10), we have the claims as stated in the following
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two parts:

Part A: Along r ∈ {1, 2, ...}, the following convergence in distribution is true,

(Q̂r(·), Ŵ r(·), Ŷ r(·)) ⇒ (Q̂(·), Ŵ (·), Ŷ (·))(3.10)

and the limits Q̂(·), Ŵ (·) and Ŷ (·) are continuous a.s., which satisfy the following RDRS

Ŵ (t) = X̂(t) + Ŷ (s) ≥ 0(3.11)

where

dX̂(t) =
J
∑

j=1

1

µj

(

θj(α(t))dt + dHE
j (t) + dHS

j (t)
)

(3.12)

Moreover, (Ŵ (·), Ŷ (·)) is the unique solution of (3.11) with the following complementary

property:

1. Ŷ (0) = 0,

2. Ŷ (·) is non-decreasing,

3. Ŷ (·) can increase only at a time t ∈ [0,∞) that Ŵ (t) = 0.

In addition, we have

Q̂(t) = q∗(Ŵ (t), ρ(α(t)))(3.13)

with q∗(w, ρ(i)) being the solution to the cost minimization problem (2.12) in terms of each

given w and i ∈ K.

Part B: The workload Ŵ (·) and the cost
∑J

j=1Cj(Q̂j(·), ρ(α(·))) are minimal with probability

one in the sense that, for all t ≥ 0,

lim inf
r→∞

Ŵ r,G(t) ≥ Ŵ (t),(3.14)

lim inf
r→∞

J
∑

j=1

Cj(Q̂
r,G
j (t), ρj(α(t))) ≥

J
∑

j=1

Cj(Q̂j(t), ρj(α(t))).(3.15)

Remark 3.1 Comparing with the RBM widely studied in queueing literature, the RDRS

model derived in (3.11) exhibits its new feature in the sense that it corresponds to a more

realistic FS-CTMC fading process in certain applications such as in a wireless system and

indicates that the random process α(·) is a non-ignorable random environmental factor to the

system performance even in the limiting approximation model. From the model, we can also

see that, when a constant environment (e.g., a quasi-static channel in a wireless system) is

concerned, the model in (3.11) reduces to a RBM since the state process α(·) keeps a constant.

Moreover, by the discussions in [11], [18], [17], and [26], we know that the unique solution

(Ŵ (t), Ŷ (t)) to (3.11) can be represented by (Ŵ , Ŷ ) = (Φ(X̂),Ψ(X̂)), where Φ(·) and Ψ(·)

are Lipschitz continuous mappings. In addition, a RDRS is different from a conventional

SDE since its drift and diffusion coefficients are not adapted to the filtration generated by

the driving Brownian motions. This type of SDEs without boundary reflections has received

a great attention in the area of financial engineering (see, e.g., [57]).
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4 Applications to J-user MIMO Uplink and Downlink Wireless Channels

In this section, we apply the discussions in the previous sections to a cellular system where

base stations cooperate among noise-free infinite capacity links. We do not make any dis-

tinction between a single-cell cellular system having multiple base-station antennas and the

traditional cellular system with cooperating single-antenna base stations. Here, the coop-

eration means that the base stations can perform joint beamforming and/or power control

but there is a constraint on the total power that the base stations can share. Therefore,

our wireless system can be considered consisting of a base station having M antennas and

J users (mobiles), each of which has N antennas. Thus the uplink channel can be mod-

eled as a J-user MIMO MAC and the downlink channel can be modeled as a J-user MIMO

BC (see, e.g., Figure 3). The channel fading is supposed to obey the stationary FS-CTMC

+

+

+

1( )H i

2 ( )H i

( )
K

H i

1N

2N

K
N

1( )Y i

2 ( )Y i

( )
K
Y i

( )X i +

( )V i

W

1 ( )H i
 

2 ( )H i
 

( )
K

H i
 

1( )U i

2 ( )U i

( )
K

U i

Broadcast Channel Multiple Access Channel

Figure 3: The BC and MAC channels in a particular environmental state

α = {α(t), t ∈ [0,∞)} that is described in the previous sections. Moreover, we suppose that

the receive or transmit end (the cooperating base stations) has perfect CSI. For each channel

state i ∈ K, we let Hj(i) (j ∈ J ≡ {1, ..., J}) denote the downlink channel matrix from the

base station to user j. Assuming the same channel is used on the uplink and downlink, then

the uplink matrix of user j is H†
j (i) that is the conjugate transpose of Hj(i).

Moreover, at the transmit end, arriving packets for each user are buffered before trans-

mission and the rate of arrivals is a random process that switches with the FS-CTMC channel

fading through admission control. Therefore, the processor-sharing queues presented in the

previous section can be used to model the channel dynamics for both J-user MIMO MAC

and J-user MIMO BC. The remaining issue is about how to characterize the MAC and BC

capacity region processes, which is also a central topics in information theory literature.
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4.1 The MIMO MAC Capacity Region

In the MAC and for each channel state i ∈ K, let Uj(i) ∈ CN×1 be the transmitted signal

of user j, where CN×1 denotes the N × 1 complex matrix, and let V (i) ∈ CM×1 denote the

received signal,W ∈ CM×1 denote the noise vector whereW ∼ N̄(0, I) is circularly symmetric

complex Gaussian with identity covariance (note that the notation W here has the different

meaning from the workload process W (t) defined in (2.17)). Then the received signal at the

base station is equal to

V (i) = H†(i)U ′(i) +W(4.1)

where H†(i) = [H†
1(i), ...,H

†
J (i)] and U(i) = [U ′

1(i), ...U
′
J (i)] (see, e.g., Figure 3). Moreover,

each user j is subject to an individual power constraint Pj . The transmit covariance matrix of

user j is defined to be Γj(i) ≡ E[Uj(i)U
†
j (i)]. The power constraint implies that Tr(Γj(i)) ≤

Pj for j ∈ J . During the period of each channel state i ∈ K, it follows from [25] and [56]

that the MAC capacity region is a J-dimensional closed convex set in RJ
+ ≡ {c ∈ RJ : cj ≥

0, j ∈ J }, i.e.,

R(i) = CMAC(P1, ..., PJ ,H
†(i)) =(4.2)

⋃

{Γj(i)≥0,Tr(Γj(i))≤Pj ,j∈J}







c ∈ RJ
+ :

∑

j∈S

cj ≤
1

2
log

∣

∣

∣

∣

∣

∣

I +
∑

j∈S

H†
j (i)Γj(i)Hj(i)

∣

∣

∣

∣

∣

∣

,∀ S ⊂ J







where S is a subset of J and | · | denotes the determinant of a matrix. Moreover, every point

in R(i) can be achieved by Shannon’s source coding theorem and successive decoding (see,

e.g., [24] and [25]). However, in designing a utility maximization based rate scheduling policy,

we need to know more detailed boundary characterization of the MAC capacity region since

it frequently relies on the KKT optimality conditions (see, e.g., [35] and [34]). Thus we have

the following lemma.

Lemma 4.1 For the J-user MIMO MAC and each channel state i ∈ K, R(i) contains the

origin and has L linear or smooth curved facets with L given by

L = J ! +
J
∑

j=2

Cj
J(J − j + 1)! + J.(4.3)

Moreover, J of these pieces are (J − 1)-dimensional linear facets along the coordinate axes

while the remaining B = L − J ones are in the interior of RJ
+ and form O(i), which are

linear or smooth curved facets hk(c, i) on RJ
+ for k ∈ U ≡ {1, 2, ..., B}, i.e.,

R(i) ≡
{

c ∈ RJ
+ : hk(c, i) ≤ 0, k ∈ U

}

.(4.4)

Moreover, if CMAC(P,H(i)) is used to denote the sum capacity upper bound for the MAC

capacity region, then

hkMAC
(c, i) =

J
∑

j=1

cj − CMAC(P,H(i))(4.5)
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where kMAC ∈ U is the index corresponding to CMAC(P,H(i)).

Example 4.1 For the MAC channel and each i ∈ K, when J = 2 and N = 1 (i.e., each of

the user’s mobiles has only single transmit antenna), it follows from [25] that

g1(c, i) = c1 − log
∣

∣

∣I +H†
1(i)P1H1(i)

∣

∣

∣ ,

g2(c, i) = c1 + c2 − log
∣

∣

∣I +H†
1(i)P1H1(i) +H†

2(i)P2H2(i)
∣

∣

∣ ,

g3(c, i) = c2 − log
∣

∣

∣I + (I +H†
1(i)P1H1(i))

−1H†
2(i)P2H2(i)

∣

∣

∣ .

4.2 The MIMO BC Capacity Region

In the MIMO BC and for each channel state i ∈ K, let X(i) ∈ CM×1 denote the transmitted

vector signal from the base station and let Yj(i) ∈ CN×1 be the received signal at the user j.

The noise at user j is represented by Nj ∈ CN×1 and is assumed to be circularly symmetric

complex Gaussian noise (Nj ∼ N(0, I)). The received signal of user j (see, e.g., Figure 3) is

equal to

Yj(i) = Hj(i)X(i) +Nj.

The transmit covariance matrix of the input signal is ΓX(i) ≡ E
[

X(i)X†(i)
]

. The base

station is subject to an average power constraint, which implies that Tr(ΓX(i)) ≤ P . During

each channel state i ∈ K, the J-user MIMO BC capacity region denoted by R(i) can be

calculated by the duality of the MAC and the BC in [31] and [25], where the BC capacity

region is obtained by taking the convex hull of the union over the set of capacity regions of

the dual MIMO MACs such that the total MAC power is the same as the power in the BC,

i.e.,

R(i) = CBC(P,H(i)) =
⋃

{(P1,...,PJ):
∑J

j=1
Pj=P}

CMAC(P1, ..., PJ ,H
†(i)).(4.6)

Moreover, the Dirty Paper Coding (DPC) proposed in [15] achieves the capacity for the

MIMO BC (see, e.g., [50]). In particular, if each user has only single receive antenna, we

have the following lemma.

Lemma 4.2 For the J-user MIMO BC with N = 1, each i ∈ K and L given in (4.3), R(i)

contains the origin and has L boundary pieces of which J are ((J−1)-dimensional linear facets

along the coordinate axes while the remaining B = L− J ones are in the interior of RJ
+ and

form O(i), which are linear or smooth curved facets hk(c, i) on RJ
+ for k ∈ U ≡ {1, 2, ..., B},

i.e.,

R(i) ≡
{

c ∈ RJ
+ : hk(c, i) ≤ 0, k ∈ U

}

.(4.7)
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Moreover, if CSato(P,H(i)) denotes the sum capacity upper bound (called the Sato upper

bound) for the BC capacity region, then

hkSato
(c, i) =

J
∑

j=1

cj − CSato(P,H(i))(4.8)

where kSato ∈ U is the index corresponding to CSato(P,H(i)).

Remark 4.1 The concept of Sato upper bound of the J-user MIMO BC can be found in such

as [25], [9], [47], [45], [55]. Moreover, here we conjecture that, in the MIMO BC channel,

if each user has multiple receive antennas, the corresponding property stated in the lemma

should also be true.

Example 4.2 Considering the BC channel with J = 2 and N = 1 for each i ∈ K, we can

derive hk(c, i) explicitly for k = 1, 2, 3 by employing the results in [25], [46], [50] as follows

h1(c, i) = e2(c1+c2) −
∣

∣

∣I +
(

H†
1(i)H1(i) −H†

2(i)H2(i)
)

(4.9)

e2c1 − 1

|H111|2(i) + |H122|2(i)
+ H†

2(i)H2(i)P
∣

∣

∣

2
,

h2(c, i) = c1 + c2 − CSato(P,H(i)),(4.10)

h3(c, i) = e2(c1+c2) −
∣

∣

∣I +
(

H†
2(i)H2(i) −H†

1(i)H1(i)
)

(4.11)

e2c2 − 1

|H211|2(i) + |H222|2(i)
+ H†

1(i)H1(i)P
∣

∣

∣

2
.

5 Proof of Theorem 3.1

To be convenient for readers, we first outline the proof of Theorem 3.1, which consists of the

following five parts.

Firstly, in Subsection 5.1, we first justify a dual relationship between the utility-maximization

problem in (2.5) and the cost-minimization problem in (2.12), which is summarized in

Lemma 5.2. Then we prove a claim in Lemma 5.3, which states that when the system

state is close to the unique optimal solution to the cost minimization problem (called a fixed

point), the capacity of the system will be fully utilized. The claims stated in Lemmas 5.2-5.3

are similar to their counterparts in [54], nevertheless, their concrete proofs are different due

to the different problem formulations and the difference of the capacity constraints between

the two studies.

Secondly, in Subsection 5.2, we present an equivalent queueing model due to the as-

sumption (3.2) imposed on the FS-CTMC and justify a functional central limit theorem

(Lemma 5.4) for a DSRP whose arrival rate process is driven by the FS-CTMC. The main

idea used in proving Lemma 5.4 is stemmed from the related discussion in [18], [17] and the

concrete proving techniques include the conventional functional central limit theorem (see,

e.g., [28] and [38]), random change of time lemma (see, e.g., [5]), establishment of oscillation
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inequality (see, e.g., [18], [17]), equivalent conditions of relative compactness and Skorohod

representation theorem (see, e.g., [23]), and etc.

Thirdly, in Subsection 5.3, we derive the fluid limit processes for the physical processes

under fluid scaling in Lemma 5.5 and study the asymptotic behavior for the fluid limit

processes as time evolves in Lemma 5.6. Fluid limits are widely used as an intermediate step

in justifying diffusion approximations (see, e.g., [7], [43], [54], [19], [3], [4], and references

therein). Nevertheless, our fluid limit is a random process driven by the FS-CTMC rather

than a deterministic function of time as obtained in the existing studies. This new feature

brings us additional complexity in proving Lemma 5.5 and Lemma 5.6, e.g., comparing with

the study in [54], it requires more technical treatment in handling the FS-CTMC based

jumps for the constructed Lyapunov function. Therefore, by noticing this new feature and

the difference between our optimal scheduling policy and the one in [54], we develop a theory

through combining and generalizing the discussions in [54], [16], [3], and [4] to finish the

justifications of Lemma 5.5 and Lemma 5.6.

Fourthly, in Subsection 5.4, we study the convergence of the workload and queue length

processes on a finer time-scale, which is an important step in justifying the main result of

the paper. This method has appeared in queueing literature for a while (see, e.g., [6], [54],

[43], [36], [41], and etc.) The main difference between ours and the existing works is as

follows: all the processes concerned in our study involve the jumps introduced by the random

environment and in the meanwhile the processes in existing studies do not involve this type

of jumps. Therefore we develop a scheme and incorporate it into the framework as used in

[54] to finish the proof of the convergence properties for the processes on a finer time-scale.

Finally, in Subsection 5.5, we combine the results obtained in the previous subsections

with the uniqueness of solution to an associated Skorohod problem and the minimality of the

Skorohod problem to provide a proof for Theorem 3.1. This type of techniques have been

used in the studies concerning network scheduling (see, e.g., [54], [43], [36], [41], and etc.)

Nevertheless, our justification logic and technical treatment are somewhat different.

5.1 Preliminary Lemmas on the Utility-Maximization and Dual Cost Minimiza-

tion Problems

Lemma 5.1 Consider the utility-maximization problem in (2.5) and suppose conditions (2.6)-

(2.9) and (2.11) are imposed, then for a sequence of queue states, {ql, l = 1, 2, ...}, which

satisfies ql → q ∈ RJ
+ as l → ∞, we have

Λj(q
l, i) → Λj(q, i) as l → ∞(5.1)

for each i ∈ K and any j ∈ J such that qj > 0.

Proof. Consider each specific state i ∈ K, then the proof can be accomplished similarly as

for Lemma 6.2 in [53] and hence we omit it. ✷

Lemma 5.2 For each state i ∈ K, the following claims are true.
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1. Under the policy in (2.10) and the associated convention, if c∗ = ρ(i) is an optimal

solution to the maximization problem in (2.5) with a queue state q in the utility function.

Then q∗ = q must be the optimal solution to the minimization problem in (2.12) with

c = c∗ in the cost function and with w =
∑J

j=1 q
∗
j/µj in the constraints.

2. Conversely, if q∗ is the optimal solution to the minimization problem in (2.12) with

w > 0 and Λ(q∗, i) = ρ(i) for each i ∈ K in the cost function. Then q∗ > 0 and

Λ∗(q∗, i) = Λ(q∗, i) must be an optimal solution to the maximization problem in (2.5)

with q = q∗ in the utility function.

Proof. First of all, without loss of generality, we suppose that q > 0. Then it follows from

the KKT optimality conditions (see, e.g., [35]) that the solution to the utility maximization

problem in (2.5) can be obtained through the following equations,

cj

(

∂Uj(qj, cj)

∂cj
+

B
∑

k=1

ηk
∂hk(c, i)

∂cj

)

= 0 for j ∈ J ,(5.2)

ηkhk(c, i) = 0 for each k ∈ U(5.3)

where B and U are defined in (2.2), ηk ≥ 0 for all k ∈ U are the Lagrangian multipliers

and hk(c, i) for each k ∈ U and i ∈ K is defined in (2.2). Similarly, the solution to the cost

minimization problem (2.12) can be obtained through the following equations,

qj

(

∂Cj(qj, cj)

∂qj
+

θ

µj

)

= 0 for each j ∈ J ,(5.4)

θ



w −
J
∑

j=1

qj
µj



 = 0,(5.5)

where θ ≥ 0 is the Lagrangian multiplier. Moreover, it follows from (2.14) that

∂Cj(qj, cj)

∂qj
=

1

µj

∂Uj(qj, cj)

∂cj
.(5.6)

Thus, based on the above facts, the claim in the first part of the lemma can be proved

as follows. By condition (2.7), we know that
∑J

j=1Uj(qj, cj) is strictly concave in c for each

q > 0. Therefore c∗ = ρ(i) is the unique optimal solution to the utility maximization problem

in (2.5) for the given q > 0 in the utility function, which satisfies (5.2)-(5.3). Thus, if we take

θ = −
B
∑

k=1

ηk
∂hk(ρ(i), i)

∂cj
,

then it follows from (5.2) and (5.6) that (5.4) holds. Due to condition (2.9), we know that

V (q, c) is strictly convex in q for each c > 0. So the cost minimization problem in (2.12) has a

unique optimal solution q∗ = q when c = c∗ = ρ(i) is in the cost function and w =
∑J

j=1 q
∗
j/µj

is in the constraints.
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Conversely, the claim in the second part of the lemma can be proved as follows. Due

to the conditions (2.8)-(2.9) and the relationship (2.14), we know that V (q, ρ(i)) is strictly

convex in q. Therefore q∗ is the unique optimal solution to the cost minimization problem

(2.12) with Λ(q∗, i) = ρ(i). Thus we can prove q∗ > 0 by showing a contradiction.

In fact, without loss of generality, we suppose that there is some m ∈ J with m < J such

that q∗ ∈ Q(k1, ..., km) with k1 6= 1 and km = J , where Q(k1, ..., km) is defined in (2.10).

Then we can construct a 2-dimensional line for some constant ǫ ≥ w,

P1 :
q1
µ1

+
qJ
µJ

+
∑

j 6=1,J,j∈J

q∗j
µj

= ǫ ≥ w(5.7)

such that it passes through the point q∗. Now it follows from (2.14) that the function

f(q1, ρ(i)) (= V (q, ρ(i))) with the constraint P1 for all q = (q1, q
∗
2, ..., q

∗
J−1, qJ)

′ ∈ RJ
+) is of

the following derivative function in q1 ∈ R+
1 ,

∂f(q1, ρ(i))

∂q1
=

1

µ1

∂U1(q1, ρ1(i))

∂c1
−

1

µ1

∂UJ((ǫ−
q1
µ1

−
∑

j 6=1,J,j∈J
q∗
j

µj
)µJ , ρJ (i))

∂cJ
,(5.8)

which is strictly increasing in q1 ∈ R+
1 due to (2.8). Moreover, it follows from (5.8) and (2.9)

that

∂f(0, ρ(i))

∂q1
= −

1

µ1

∂UJ((ǫ−
∑

j 6=1,J,j∈J
q∗
j

µj
)µJ , ρJ (i))

∂cJ
< 0,(5.9)

∂f(q∗1, ρ(i))

∂q1
=

1

µ1

∂U1(q
∗
1 , ρ1(i))

∂c1
> 0.(5.10)

Then, by (5.9) and (5.10), we know that there is a q̃1 ∈ (0, q∗1) such that

∂f(q̃1, ρ(i))

∂q1
= 0(5.11)

which implies that, on the curve f(q, ρ(i)) with q = (q1, q
∗
2 , ..., q

∗
J−1, qJ)

′ ∈ RJ
+, there exists a

minimal point q̃ ∈ RJ
+ with q̃ = (q̃1, q

∗
2, ..., q

∗
J−1, q̃J)

′ such that V (q̃, ρ(i)) < V (q∗, ρ(i))

q̃J =



ǫ−
q̃1
µ1

−
∑

j 6=1,J,j∈J

q∗j
µj



µJ .

This contradicts the assumption that q∗ is the optimal solution to the cost minimization

problem in (2.12). Hence we can conclude that q∗ > 0.

Finally, if q∗ is the optimal solution to (2.12) with c = Λ(q∗, i) = ρ(i) in the cost function,

we see that (5.4)-(5.5) hold with q = q∗ and c = Λ(q∗, i) = ρ(i). Therefore we can take ηkU = θ

and ηk = 0 when k 6= kU in (5.2)-(5.3) since q∗ > 0 and ρ is on the curve hkU (c, i) = 0. Hence

Λ∗(q∗, i) = Λ(q∗, i) = ρ(i) for each i ∈ K is an optimal solution to (2.5) with q = q∗ in the

utility function. ✷

Next, let ‖ · ‖ denote the norm of a vector q ∈ RJ in the sense that ‖q‖ =
∑J

j=1 |qj|. Then

we have the following lemma.
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Lemma 5.3 For each state i ∈ K, the following claims are true.

1. The cost minimization problem (2.12) has a unique optimal solution q∗ = q when c =

ρ(i) is in the cost function, and moreover, q∗(w, ρ(i)) is continuous in terms of w.

2. Assuming that, for any given constant ǫ > 0, there exists another constant σ > 0, which

depends only on ǫ, such that, for any q ∈ V(ǫ, σ, i) with

V(ǫ, σ, i) ≡







q ∈ RJ
+ : ‖q − q∗(w, ρ(i))‖ ≤ σ and w =

J
∑

j=1

1

µj
qj ≥ ǫ







,(5.12)

we have

J
∑

j=1

Λj(q, i) =
J
∑

j=1

ρj(i).(5.13)

Remark 5.1 The unique optimal solution q∗(w, ρ(i)) will be referred to as a fixed point in

the following discussion.

Proof. For the first part in the lemma, we have the following observations. Due to

condition (2.9), we know that V (q, c) is strictly convex in q for each c > 0. So the cost

minimization problem in (2.12) has a unique optimal solution q∗ = q when c = ρ(i) is in the

cost function. Moreover, the continuity of q∗(w, ρ(i)) in terms of w for each i ∈ K can be

proved similarly as in [54].

For the second part in the lemma, it can be proved by showing a contradiction. As a

matter of fact, if the claim is not true for some i ∈ K and some ǫ > 0, then for a sequence

of σl ↓ 0 along l ∈ {1, 2, ...}, there is a sequence of states q̃l ∈ V(ǫ, σl, i) with l = 1, 2, ...

satisfying

∥

∥

∥q̃l − q∗(w̃l, ρ(i))
∥

∥

∥→ 0 as l → ∞,(5.14)

w̃l =
J
∑

j=1

1

µj
q̃lj ≥ ǫ for all l = 1, 2, ...(5.15)

such that

J
∑

j=1

Λj(q̃
l, i) <

J
∑

j=1

ρj(i) for all l = 1, 2, ...(5.16)

Otherwise, if there is some l0 ∈ {1, 2, ...} such that V(ǫ, σl, i) are empty for all l ≥ l0, then

(5.13) is automatically true for the given i ∈ K and ǫ > 0, which is a contradiction. Now, let

ql = (ǫ/w̃l)q̃l so that wl =
J
∑

j=1

qlj
µj

= ǫ for all l = 1, 2, ...,(5.17)
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then it follows from (5.14)-(5.15), (5.17), (2.11) and Lemma 5.2 that, along l ∈ {1, 2, ...},

ql =
ǫq∗(w̃l, ρ(i))

w̃l
+

ǫ

w̃l

(

q̃l − q∗(w̃l, ρ(i))
)

→ q̂ = q∗(ǫ, ρ(i)) > 0,(5.18)

which implies that ql > 0 for all large enough l ∈ {1, 2, ...}, and moreover, we also have

ǫq∗(w̃l, ρ(i))

w̃l
→ q̂.(5.19)

Hence, by (5.18), (2.7), (2.10), and the similar proof as used for the second part of Lemma 5.2,

we have, for all large enough l ∈ {1, 2, ...},

Λ(q̂, i) > 0 and Λ(ql, i) > 0.(5.20)

Furthermore, by (2.11) and (5.16), we have, for each l ∈ {1, 2, ...},

J
∑

j=1

Λj(q
l, i) <

J
∑

j=1

ρj(i).(5.21)

Thus it follows from (5.21) and Lemma 5.1 that

J
∑

j=1

Λj(q̂, i) ≤
J
∑

j=1

ρj(i).(5.22)

Notice that the condition in (2.7) and the fact in (5.18) imply that Λ(q̂, i) and Λ(ql, i) for

large enough l can only locate on the capacity surface of R(i) (that is defined in (2.2)). Then,

by combining this fact with (5.21)-(5.22) and Lemma 5.1, we can see that Λ(q̂, i) can not be

in the interior of the facet corresponding to CU . Hence we can conclude that there is some

j ∈ J , e.g., without loss of generality, take j = 1 such that

Λ1(q̂, i) < ρ1(i).(5.23)

So, on the one hand, it follows from (5.20) and (5.2) that there exists a set of Lagrange

multipliers {ηjk ≥ 0, k ∈ {1, ..., B + J}, j ∈ J } such that

J
∑

j=1

B
∑

k=1

ηk
∂hk(Λ(q̂, i), i)

∂cj
= −

J
∑

j=1

∂Uj(q̂j ,Λj(q̂, i))

∂cj
(5.24)

= − lim
l→∞

J
∑

j=1

∂Uj(q̂j ,Λj(q
∗(w̃l, ρ(i)), i))

∂cj

= −
J
∑

j=1

∂Uj(q̂j , ρj(i))

∂cj
.

where B is defined in (2.2), the first equality of (5.24) follows from (5.2)-(5.3) and (5.20),

the second equality follows from (5.21), (2.11) and (5.1), and the third equality follows from

Lemma 5.2.
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On the other hand, due to the strict concavity of Uj(qj , cj) in cj for each j ∈ J as stated

in (2.7), it follows from (5.20)-(5.23) that

J
∑

j=1

B
∑

k=1

ηk
∂hk(Λ(q̂, i), i)

∂cj
(5.25)

< −
∂U1(q̂1, ρ1(i))

∂c1
− lim

l→∞

∑

j 6=1,j∈J

∂Uj(q̂j ,Λj(q
∗(w̃l, ρ(i)), i))

∂cj

= −
J
∑

j=1

∂Uj(q̂j, ρj(i))

∂cj
.

Obviously, there is a contradiction between (5.24) and (5.25). Thus the assumption stated

in (5.14)-(5.16) is not true, which implies that the second claim in the lemma holds for the

third case. Hence we finish the proof of Lemma 5.3. ✷

5.2 Equivalent Processes in Distribution

First of all, we define a sequence of jump times in terms of the FS-CTMC process α(·) as

follows,

τ0 ≡ 0, τn ≡ inf{t > τn−1 : α(t) 6= α(t−)}.(5.26)

So it follows from Proposition 5.2.1 in page 376 of [39] that τn → ∞ a.s. as n → ∞ and

each sample path of α(·) has at most finitely many jump points over any bounded interval

[0, T ] since the state space of α(·) is finite. Moreover, we introduce a new stochastic process

α·(·) induced by α(·) up to each given time t ∈ [0,∞), i.e., αt(s) = α(s) with s ∈ [0, t]. In

addition, for each j ∈ {1, ..., J}, let

Ar
j(r

2·, α·(·)) ≡
{

Ar
j(r

2t, αt(·)), t ∈ [0,∞)
}

(5.27)

denote the counting process that the arrival rate corresponding to Ar
j(r

2·, α·(·)) during time

interval [r2τn, r
2τn+1) is λ

r
j(α(τn)) for n ∈ {0, 1, 2, ..., }. Similarly, let

Ar
j(r

2·, αr
r2·(·)) ≡

{

Ar
j(r

2t, αr
r2t(·)), t ∈ [0,∞)

}

(5.28)

denote the corresponding process with arrival rate λrj(α
r(τ rn)) during time interval [τ rn, τ

r
n+1)

for each n ∈ {0, 1, 2, ..., }, where {τ rn, n ∈ {0, 1, ..., }} is a sequence of jump times in terms of

αr(·). Due to the second condition in (3.2), the definition of DSRP, the assumptions among

the arrival and FS-CTMC fading processes, and Theorem 5.4 in page 85 of [32], we have,

Er
j (·) ≡ Ar

j(r
2·, α·(·)) =

d Ar
j(r

2·, αr
r2·(·)),(5.29)

where the notation =d denotes ”equals in distribution”. Then it follows from (2.15) and the

assumptions among the arrival, service and FS-CTMC fading processes again that

Q̂r
j(·) =

d 1

r
Er

j (·)−
1

r
Sr
j (T̄

r
j (·))(5.30)
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where

T̄ r
j (·) ≡

∫ ·

0
Λj

(

Q̄r(s), α(s)
)

ds =d 1

r2
T r
j (r

2·),(5.31)

Q̄r
j(t) ≡

1

r2
Qr

j(r
2t)(5.32)

and we have used the radial homogeneity of Λ(q, i) in (2.11) for (5.31). Now, let

Êr(·) = (Êr
1(·), ..., Ê

r
J (·))

′ with Êr
j (·) =

1

r

(

Ar
j(r

2·, α(·)) − r2λ̄rj(·, α·(·))
)

,(5.33)

Ŝr(·) = (Ŝr
1(·), ..., Ŝ

r
J (·))

′ with Ŝr
j (·) =

1

r

(

Sj(r
2·)− µjr

2·
)

(5.34)

for each j ∈ {1, ..., J} with

λ̄rj(·, α·(·)) ≡
∫ ·

0
λrj(α(s))ds(5.35)

=d
∫ ·

0
λrj(α

r(r2s))ds

=
1

r2

∫ r2·

0
λrj(α

r(s))ds.

Moreover, define

λ̄r(·, α·(·)) =
(

λ̄r1(·, α·(·)), ..., λ̄
r
J (·, α·(·))

)′
.(5.36)

Then we have the following lemma.

Lemma 5.4 For the diffusion-scaled processes in (5.33)-(5.34), the following convergence in

distribution is true as r → ∞, i.e.,
(

Êr(·), Ŝr(·)
)

⇒
(

HE(·), (ΓB)1/2BS(·)
)

.(5.37)

where ΓB = diag(µ1β
2
1 , ..., µJβ

2
J).

Proof. It follows from the heavy traffic condition (3.2), the functional central limit theorem

(see, e.g., [28] and [38]), and the random change of time lemma (see, e.g., page 151 of [5]),

Lemma 8.4 in [17] that, for each n ∈ {0, 1, ...},
(

Êr(τn + t)− Êr(τn)
)

I{0≤t<σn}(5.38)

=
1

r

(

Ar(r2(τn + t), ατn+t(·)) −Ar(r2τn, ατn(·))
)

I{0≤t<σn}

−r
(

λ̄r(τn + t, ατn+t(·))− λ̄r(τn, ατn(·))
)

I{0≤t<σn}

=
1

r
Ãr(r2(t− φn/r

2)I{0≤t<σn}) + en − r
(

λ̄r(τn + t, ατn+t(·)) − λ̄r(τn, ατn(·))
)

I{0≤t<σn}

⇒
(

ΓE(α(τn))
) 1

2 I{0≤t<σn}B
E(t) as r → ∞

=d
(

HE(τn + t)−HE(τn)
)

I{0≤t<σn},

22



where σn = τn+1 − τn is an exponentially distributed random variable independent of all

other random events concerned since α(·) is a FS-CTMC, en = (e1n, ..., e
J
n)

′ with ejn = 0 if

Êr
j (·) has a jump at τn and 1 otherwise for each j ∈ {1, ..., J}, Ãr(·) is a renewal process with

rate vector λr(α(τn)) = (λr1(α(τn)), ..., λ
r
J (α(τn)))

′ and

Ãr(r2(· − φn/r
2)) = (Ãr

1(r
2(· − φ1n/r

2)), ..., Ãr
J (r

2(· − φJn/r
2)))′

with φn = (φ1n, ..., φ
J
n)

′ being a J-dimensional random vector whose jth component φjn for

each j ∈ {1, ..., J} denotes the remaining arrival time beginning at τn for a packet to the jth

queue with rate λj(α(τn)) switched from λj(α(τn−1)) at τn for each n ∈ {1, 2, ...}. Moreover,

to be convenient for later purpose, we reexpress (5.38) as follows, over each [τn, τn+1) and as

r → ∞,

Ẽr,n(·) ≡ Êr(τn + ·)− Êr(τn)(5.39)

⇒ HE(τn + ·)−HE(τn)

≡ H̃E,n(·).

Then, by following (5.39) and by generalizing the discussion in the proof for Theorem 3.2 in

[18] or Lemma 8.2 in [17], we can reach a proof for the claim in (5.37).

To do so, we first establish the relative compactness for Êr(·) with r ∈ {1, 2, ..., }. As a

matter of fact, define the modulus of continuity in terms of a function x(·) : [0,∞) → Rd

with some integer d > 0 for each given T > 0 and δ > 0 as follows,

w(x, δ, T ) ≡ inf
tl

max
l

Osc (x, [tl−1, tl))(5.40)

where the infimum takes over the finite sets {tl} of points satisfying 0 = t0 < t1 < ... < tm = T

and tl − tl−1 > δ for l = 1, ...,m, and

Osc(x, [tl−1, tl]) = sup
t1≤s≤t≤t2

‖x(t)− x(s)‖2(5.41)

with ‖·‖2 denoting the Euclidean norm in Rd. Then it follows from Corollary 7.4 in page 129

of [23] that the justification of the relative compactness is equivalent to proving the following

two conditions:

(a) For each η > 0 and rational t ≥ 0, there exists a constant c(η, t) such that

lim inf
r→∞

P
{∥

∥

∥Êr(t)
∥

∥

∥

2
≤ c(η, t)

}

≥ 1− η.

(b) For each η > 0 and T > 0, there exists a δ > 0 such that

lim sup
r→∞

P
{

w(Êr, δ, T ) ≥ η
}

≤ η.

To show (a), we first define N(t) ≡ max{n, τn ≤ t} for each t ∈ (0,∞). Then, for

each rational t > 0, take a T > 0 such that t ∈ (0, T ] and define a sequence of events:
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Sl ≡ {ω : N(T, ω) ≤ l} for each l ∈ {1, 2, ..., }. Since α(·) has at most finitely many jumps

a.s. over [0, T ], we know that the sequence of probabilities P{Sl} increases monotonously to

the unity as l → ∞. Thus, for the given η > 0, there is some large enough L > 0 such that

P{SL} ≥ 1−
η

2
.(5.42)

Moreover, it follows from (5.39) and Remark 7.3 in page 129 of [23] that Ẽr(·) satisfies the

following compact containment condition, i.e., for each η > 0 and T > 0, there is a constant

Kn > 0 for each n ∈ {0, 1, ..., } such that

inf
r
P {T r,n} ≥ 1−

η

2L
with T r,n ≡ {ω : ‖Ẽr(t)‖2 ≤ Kn, t ∈ [0, T ] ∩ [0, σn)}.(5.43)

In addition, for each n ∈ {1, 2, ..., }, let ∆n = (δ1n, ..., δ
J
n )

′ with δjn = 1 if Êr
j (·) has a jump at

τn and zero otherwise for each j ∈ {1, ..., J}. Then, for each t ∈ [τN(t), τN(t)+1), we have

Êr(t) = Êr(τN(t)) + Ẽr,N(t)(t− τN(t)),(5.44)

Êr(τn)− Êr(τ−n ) =
1

r
∆n.(5.45)

Therefore it follows from (5.44)-(5.45) that, along each sample path and for any t1, t2 ∈ [0, T ],

Osc
(

Êr, [t1, t2]
)

≤
N(t2)
∑

n=0

Osc
(

Ẽr,n, [t1 − τn, t2 − τn] ∩ [0, σn)
)

+
1

r
(N(t2)−N(t1)).(5.46)

Thus it follows from (5.46) that, along each sample path in SL ∩ T r,n with r, n ∈ {1, 2, ...},

∥

∥

∥Êr(t)
∥

∥

∥

2
≤

∥

∥

∥Êr(0)
∥

∥

∥

2
+Osc

(

Êr, [0, t]
)

(5.47)

≤ 2
L
∑

n=0

sup
t∈[0,T ]∩[0,σn

∥

∥

∥Ẽr,n(t)
∥

∥

∥

2
+
L

r
.

Hence, for the above arbitrarily given η > 0, each rational t ∈ [0, T ], and large enough

r ∈ {1, 2, ...}, we know that

P

{

∥

∥

∥Êr(t)
∥

∥

∥

2
≤ 2L+1

L
∑

n=0

Kn

}

(5.48)

≥ P

{{

∥

∥

∥Êr(t)
∥

∥

∥

2
≤ 2L+1

L
∑

n=0

Kn

}

⋂

SL

}

≥ P {SL} −
L
∑

n=0

P

{{

∥

∥

∥Ẽr,n(t)
∥

∥

∥

2
>

(

2Kn −
1

r2L

)}

⋂

SL for some t ∈ [0, T ] ∩ [0, σn)

}

≥ P {SL} −
L
∑

n=0

P
{{∥

∥

∥Ẽr,n(t)
∥

∥

∥

2
> Kn

}

⋂

SL for some t ∈ [0, T ] ∩ [0, σn)
}

> 1− η,
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where the second inequality follows from (5.47) and the fact that

P{‖aX + bY ‖2 ≥ K1 +K2} ≤ P

{

‖X‖2 ≥
K1

2|a|

}

+ P

{

‖Y ‖2 ≥
K2

2|b|

}

for any real number a, b and random vectors X,Y . Moreover, the last inequality in (5.48)

follows from (5.42) and (5.43). Thus condition (a) holds.

Next we prove the condition (b) to be true. Due to (5.39), we know that, for each η > 0

and T > 0, there exists a δn > 0 for each n ∈ {0, 1, ..., } such that

lim sup
r→∞

P

{

w(Ẽr,n, δn, [0, T ] ∩ [0, σn)) ≥
η

2LL

}

≤
η

2LL
.(5.49)

Now take δ = min{δ0, ..., δL} > 0, then for each r ∈ {1, 2, ..., } and each sample path in SL,

w(Êr, δ, T ) ≤
J
∑

n=0

w(Ẽr,n, δ, [0, T ] ∩ [0, σn)) +
L

r
(5.50)

≤
J
∑

n=0

w(Ẽr,n, δn, [0, T ] ∩ [0, σn)) +
L

r

where the first inequality follows from (5.40) and (5.46), and the second inequality follows

from 1.9 in page 326 of [29]. Therefore, for each large enough r ∈ {1, 2, ..., }, it follows from

(5.49)-(5.50) that

P
{

w(Êr, δ, T ) ≥ η
}

<
η

2
+ P

{{

w(Êr, δ, T ) ≥ η
}

⋂

SL

}

<
η

2
+

L
∑

n=0

P

{{

w(Ẽr,n, δn, [0, T ] ∩ [0, σn)) ≥
1

2L−1

(

η

L
−

1

r

)}

⋂

SL

}

<
η

2
+

L
∑

n=0

P

{{

w(Ẽr,n, δn, [0, T ] ∩ [0, σn)) ≥
η

2LL

}

⋂

SL

}

≤ η.

So the condition (b) is true and hence we know that Êr(·) is relatively compact for r ∈

{1, 2, ..., }.

Finally, consider any subsequence R1 ⊆ {1, 2, ..., } such that, along r ∈ R1, we have

Êr(·) ⇒ Ê(·) (a process to be identified).(5.51)

Then it follows from the Skorohod representation theorem (see, e.g., Theorem 3.1.8 in page

102 of [23]) and the random change of time lemma (see, e.g., page 151 of [5]) that, for each

n ∈ {0, 1, ..., } and along r ∈ R1,

(

Êr(·)I{·≤τn+1}, Ê
r(·)I{·≤τn}

)

⇒
(

Ê(·)I{·≤τn+1}, Ê(·)I{·≤τn}

)

.
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Then, by the method of induction in terms of n ∈ {0, 1, ..., }, (5.39), and the continuous-

mapping theorem (see, e.g., Theorem 3.4.1 in page 85 of [52]), we can conclude that, along

r ∈ R1, the limit in (5.51) is HE(·). Moreover, since R1 is arbitrarily chosen, we know

that Êr ⇒ HE(·) along r ∈ {1, 2, ..., }. Moreover, by the independence assumptions and the

functional central limit theorem, we know that the claim in Lemma 5.4 is true. ✷

5.3 Fluid Limiting Processes

For each j ∈ J , t ≥ 0 and r > 0, we define the fluid-scaled processes as follows,

W̄ r(t) ≡
1

r2
W r(r2t), Ȳ r(t) =

1

r2
Y r(r2t), Ēr

j (t) ≡
1

r2
Er

j (t), S̄r
j (t) ≡

1

r2
Sr
j (r

2t)(5.52)

and use Q̄r(·), Ēr(·), S̄r(·), T̄ r(·) to denote the corresponding vector processes. Further, let

Q̄j(t) = Q̄j(0) + λ̄j(t)− µjT̄j(t) for each j ∈ J ,(5.53)

W̄ (t) =
J
∑

j=1

Q̄j(t)

µj
= W̄ (0) + Ȳ (t),(5.54)

Ȳ (t) =
J
∑

j=1

(∫ t

0
ρj(α(s))ds − T̄j(t)

)

,(5.55)

T̄j(t) =

∫ t

0
Λ̄j(Q̄(s), α(s))ds,(5.56)

where, for each i ∈ K,

Λ̄(q, i) =

{

Λ̄Q(k1,...,km)(q, i)′ if q ∈ Q(k1, ..., km) and a given m ∈ J ,

ρ(i) if q = 0.
(5.57)

and, for each j ∈ J ,

Λ̄
Q(k1,...,km)
j (q, i) =

{

Λj(q, i) = Λ
Q(k1,...,km)
j (q, i) if j 6= kl, l ∈ {1, ...,m},

ρj(i) if j = kl, l ∈ {1, ...,m}.
(5.58)

Thus we have the following lemma.

Lemma 5.5 Suppose Q̄r(0) ⇒ Q̄(0) as r → ∞, then under the utility-maximization alloca-

tion policy Λ(q, i) in (2.10), any subsequence of {r, r = 1, 2, ..., } has a further subsequence

{rl, l = 1, 2, ...} such that the following convergence in distribution is true,

(

Ērl(·), S̄rl(·), T̄ rl(·), Q̄rl(·), W̄ rl(·), Ȳ rl(·)
)

⇒
(

Ē(·), S̄(·), T̄ (·), Q̄(·), W̄ (·), Ȳ (·)
)

(5.59)

as l → ∞, where the limit in (5.59) satisfies (5.53)-(5.57). Moreover, if Q̄(0) = 0, then the

convergence in (5.59) is true along the whole sequence r = 1, 2, ... with the limit satisfying

Ē(t) = λ̄(t, αt(·)), S̄(t) = µ(t), T̄ (t) = c̄(t, αt(·)),(5.60)

Q̄j(t) = W̄ (t) = Ȳ (t) = 0,(5.61)
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for each t ≥ 0 and j ∈ J , where µ(t) ≡ (µ1, ..., µJ )
′t, and

λ̄(t, αt(·)) =
(

λ̄1(t, αt(·)), ..., λ̄J (t, αt(·))
)′
, λ̄j(t, αt(·)) ≡

∫ t

0
λj(α(s))ds,(5.62)

c̄(t, αt(·)) = (c̄1(t, αt(·)), ..., c̄J (t, αt(·)))
′ , c̄j(t, αt(·)) ≡

∫ t

0
ρj(α(s))ds.(5.63)

Proof. It follows from (5.31) and (2.16) that T̄ r(·) is a.s. uniformly Lipschitz contin-

uous with Lipschitz constant maxi∈K(
∑J

j=1 ρj(i)) for each r > 0, which implies that it is

absolutely continuous and differentiable at almost every t ∈ (0,∞) (in other words, almost

every t ∈ (0,∞) is a regular point of T̄ r(·)). Thus the sequence of stochastic processes

{T̄ r(·), r = 1, 2, ...} is C-tight, that is, it is tight and each weak limit point is in C[0,∞)J

a.s., where C[0,∞)J is the space of all J-dimensional continuous functions over [0,∞) and

is endowed with the Skorohod J1-topology (see, e.g, Page 116 of [23]). Moreover, it follows

from Lemma 5.4 that
(

Ēr(·), S̄r(·)
)

is also C-tight. In addition, by (5.30)-(5.31) and (5.52),

we know that

Q̄r
j(t) = Ēr

j (t)− S̄r
j (T̄

r
j (t)).(5.64)

Hence it follows from (5.64), (2.17) and the random time change lemma in page 151 of [5]

that the following sequence is C-tight as well,

(

Ēr(·), S̄r(·), T̄ r(·), Q̄r(·), W̄ r(·), Ȳ r(·)
)

,(5.65)

where we have used the independent assumption related to {αr(·), r = 1, 2, ...}, the second

condition in (3.2) and the fact that

1

r2

∫ r2·

0
ρj(α

r(s))ds =d
∫ ·

0
ρj(α(s))ds.(5.66)

Therefore, any subsequence of the processes in (5.65) has a further subsequence convergent

in distribution. Now suppose (Ē(·), S̄(·), T̄ (·), Q̄(·), W̄ (·), Ȳ (·)) is a weak limit point corre-

sponding to the further subsequence indexed by {rl, l = 1, 2, ...}. Then, by the Skorohod

representation theorem (see, e.g., Theorem 3.1.8 in page 102 of [23]), there is a common

supporting probability space such that

(

Ērl(·), S̄rl(·), T̄ rl(·), Q̄rl(·), W̄ rl(·), Ȳ rl(·)
)

→ (λ̄(·, α·(·)), µ(·), T̄ (·), Q̄(·), W̄ (·), Ȳ (·))(5.67)

u.o.c. a.s. as l → ∞ and the limiting processes in (5.67) satisfy (5.53)-(5.57). Here we only

need to justify (5.57) to be true and other equations hold obviously.

As a matter of fact, due to (5.67), we know that the limit processes in (5.67) are uniformly

Lipschitz continuous a.s. So our discussion will base on a fix sample path and each regular

point t > 0 over an interval (τn−1, τn) with n ∈ {1, 2, ...} for T̄j with j ∈ J . It follows from

(5.53) that Q̄ is differential at t and satisfies

dQ̄j(t)

dt
= λj(α(t)) − µj

dT̄j(t)

dt
(5.68)
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for each j ∈ J . If Q̄j(t) = 0 for some j ∈ J , then it follows from Q̄j(·) ≥ 0 that

dQ̄j(t)

dt
= 0 which implies that

dT̄j(t)

dt
=
λj(α(t))

µj
= ρj(α(t)).(5.69)

If Q̄j(t) > 0 for the j ∈ J , then there exists a finite interval (a, b) ∈ [0,∞) containing t in it

such that Q̄j(s) > 0 for all s ∈ (a, b) and hence we can take small enough δ > 0 such that

Q̄j(t+ s) > 0 with s ∈ (0, δ). Thus it follows from (5.31) and (5.1) that

∣

∣

∣

∣

1

δ

(

T̄ rk
j (t+ δ)− T̄ rk

j (t)
)

− Λj(Q̄(t), α(t))

∣

∣

∣

∣

(5.70)

≤
1

δ

∫ δ

0

∣

∣Λj(Q̄
rk(t+ s), α(t + s))− Λj(Q̄(t+ s), α(t+ s))

∣

∣ ds

+
1

δ

∫ δ

0

∣

∣Λj(Q̄(t+ s), α(t+ s))− Λj(Q̄(t), α(t))
∣

∣ ds

→
1

δ

∫ δ

0

∣

∣Λj(Q̄(t+ s), α(t+ s))− Λj(Q̄(t), α(t))
∣

∣ ds as k → ∞

where we have used the Lebesgue dominated convergence theorem for the last claim in (5.70).

Due to the right-continuity of α(·), the Lipschitz continuity of Q̄(·) and (5.1), the last ex-

pression in (5.70) tends to zero as δ → 0+. Hence we have

dT̄j(t)

dt
=
dT̄j(t

+)

dt
= Λ̄j(Q̄(t), α(t)) for each j ∈ J(5.71)

which implies that the claims in (5.56)-(5.57) are true.

Next, we introduce the following cost objective with c(i) = ρ(i) in (2.14) for each i ∈ K,

ψ(q, i) ≡
J
∑

j=1

Cj(qj , ρj(i)).(5.72)

Then, for each regular time t ≥ 0 of Q̄(t) over time interval (τn−1, τn) with a given n ∈

{1, 2, ...}, we have

dψ(Q̄(t), α(t))

dt
=

J
∑

j=1

(

dQ̄j(t)

dt

∂Cj(Q̄j(t), ρj(α(t))

∂Q̄j(t)
+
dρj(α(t))

dt

∂Cj(Q̄j(t), ρj(α(t))

∂ρj(α(t))

)

(5.73)

=
J
∑

j=1

(

ρj(α(t)) − Λj(Q̄(t), α(t))
) ∂Uj(Q̄j(t), ρj(α(t)))

∂ρj(α(t))
I{Q̄j(t)>0}

≤ 0

where we have used (5.68), (5.71), (2.14) and the fact that the sample paths of α(·) are

piecewise constants for the second equality of (5.73), and we have used the concavity of

the utility functions, the fact that Λj(Q̄(t), α(t)) is the optimal solution to (2.5), and the
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similar arguments as used in [54] for the last inequality of (5.73). Therefore, for any given

n ∈ {0, 1, 2, ...} and each t ∈ [τn, τn+1), we have,

0 ≤ ψ(Q̄(t), α(t))(5.74)

≤ ψ(Q̄(τn), α(τn))

=
n
∏

l=1

(

dΨ(ρ1(α(τl)))

dc1

)(

dΨ(ρ1(α(τl−1)))

dc1

)−1

ψ(Q̄(0), α(0))

≤ κψ(Q̄(0), α(0)),

where the second inequality in (5.74) follows from (5.73) and the last equality in (5.74) follows

from (2.14), (2.7)-(2.8), (2.18), the continuity of Q̄(t) at all jump times τn with n ∈ {1, 2, ..., }.

Moreover, the κ in the last inequality of (5.74) is a positive constant given by

κ =
M
∑

m=1

m
∏

l=1

(

dΨ(ρ1(il))

dc1

)(

dΨ(ρ1(il−1))

dc1

)−1

(5.75)

where the indices in each of the M products of (5.75) satisfy that ik 6= il if k 6= l for

k, l ∈ {0, 1, ...,m} and the integer M can be explicitly calculated since the state space of α(·)

is finite.

If Q̄(0) = 0, it follows from (5.74) that Q̄(t) = 0 for all t ≥ 0. Thus, by (5.54), we know

that W̄ (t) = Ȳ (t) = 0 for all t ≥ 0. Moreover, it follows from(5.69) that the third claim

in (5.60) is true. Hence, under the assumption that Q̄(0) = 0, all the claims stated in the

lemma are true. ✷

Next, since yj = Cj(qj , ρj(i)) is strictly increasing in qj for each i ∈ K and j ∈ J , its

inverse C−1
j (yj , ρj(i)) is well defined and is strictly increasing in yj. So, for each κ ≥ 0, we

can define

g̃(κ) ≡
K
∑

i=1

max
‖q‖≤κ

ψ(q, i) and g(κ) ≡
K
∑

i=1

J
∑

j=1

C−1
j (g̃(κ), ρj(i)).(5.76)

Then we have the following lemma.

Lemma 5.6 Under the same conditions as used in Lemma 5.5, if ‖Q̄(0)‖ ≤ χ for some

constant χ, then Q̄(t) is bounded for each t ≥ 0, i.e.,

‖Q̄(t)‖ ≤ g(χ) for each t ≥ 0.(5.77)

Moreover, there exists a time Tχ,ǫ > 0 for any given ǫ > 0 such that

∥

∥Q̄(t)− q∗(W̄ (t), ρ(α(t)))
∥

∥ < ǫ for all t ≥ Tχ,ǫ(5.78)

and in particularly, if Q̄(0) = q∗(W̄ (0), ρ(α(0))), then Q̄(t) = Q̄(0) a.s. for all t ∈ [τ0, τ1).
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Proof. If ‖Q̄(0)‖ ≤ χ, it follows from (5.74) that Q̄(t) is bounded for all t ≥ 0 since

Cj(qj , ρj(i)) for each j ∈ J and i ∈ K is strictly increasing and unbounded function in qj.

Moreover, it follows from (5.76) that g(κ) is increasing in κ with g(0) = 0 and hence it follows

from (5.74) and (5.72) that

Cj(Q̄j(t), ρj(α(t))) ≤ g̃(χ) and Q̄j(t) ≤ C−1
j (g̃(χ), ρj(α(t)))(5.79)

for each t ≥ 0 and j ∈ J , which implies that (5.77) is true and W̄ (t) increases to some finite

number as t increases due to (5.54)-(5.55) and (5.77), i.e.,

W̄ (t) ↑ W̄ (∞) <∞ as t→ ∞.(5.80)

Thus we can define the following Lyapunov function with at most countably many jumps,

L(Q̄(t), α(t)) ≡ ψ(Q̄(t), α(t)) − ψ(q∗(W̄ (t), ρ(α(t))), α(t)),(5.81)

which is nonnegative and bounded over t ∈ [0,∞) due to Lemma 5.3, (5.54), Lemma 5.5,

(5.80) and the fact that Q̄(t) and ρ(α(t)) are bounded over [0,∞). Then, for any given

regular time t > 0 over an interval (τn−1, τn) with n ∈ {1, 2, ...} and for any δ > 0, we can

show that there exists a σ > 0 such that

dL(Q̄(t), α(t))

dt
≤ −σ if

∥

∥Q̄(t)− q∗(W̄ (t), ρ(α(t)))
∥

∥ ≥ δ.(5.82)

As a matter of fact, it follows from (5.73) and (5.80) that ψ(Q̄(t), α(t)) is non-increasing

and ψ(q∗(W̄ (t), ρ(α(t))), α(t)) is non-decreasing in t ∈ (τn−1, τn) since α(t) keeps flat over the

time interval (τn−1, τn). So we only need to show (5.82) true with respect to ψ(Q̄(t), α(t)).

By (5.73), we define

h(Q̄(t), α(t)) ≡
dψ(Q̄(t), α(t))

dt
(5.83)

=
J
∑

j=1

(

ρj(α(t)) − Λj(Q̄(t), α(t))
) ∂Uj(Q̄j(t), ρj(α(t)))

∂ρj(α(t))
I{Q̄j(t)>0}

which is continuous in terms of Q̄(t) = q 6= 0 with q ∈ RJ
+ due to (5.1), (2.9) and the

second-order differentiability of Uj(qj , cj). Next, let

C(i) ≡ {q ∈ RJ
+ : ‖q − q∗(w(q), ρ(i))‖ ≥ δ} ⊂ {q ∈ RJ

+ : q 6= 0}(5.84)

where the workload w(q) corresponding to each q ∈ RJ
+ is defined as in (5.54) and the set

C(i) is a closed subset of RJ
+ due to the first part of Lemma 5.3. Moreover, similar to (5.73),

we know that h(q, i) ≤ 0 and the equality is true if and only if q = q∗(w(q), ρ(i)).

In fact, supposing the if part is true with some q ∈ Q(k1, ..., km) that is defined in

(2.10), then it follows from (5.83) and the last equality in (5.73) that {ρl(i), l 6= k1, ..., km}

is the solution to the corresponding optimization problem in (2.5) with {ql, l 6= k1, ..., km} in
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the associated (J −m)-dimensional utility function. Thus, it follows from Lemma 5.2 that

{ql, l 6= k1, ..., km} = {q∗l (w(q), ρ(i)), l 6= k1, ..., km}. Moreover, since q∗(w(q), ρ(i)) > 0 due

to w(q) > 0 and Lemma 5.2, we know that ψ(Q̄(t), α(t))− ψ(q∗(W̄ (t), ρ(α(t))), α(t)) < 0 for

Q̄(t) = q, which contradicts the fact that q∗(w(q), ρ(i)) is the solution to the cost minimization

problem in (2.12). Conversely, the only if part is the direct conclusion of the second part in

Lemma 5.2. Therefore we have that h(q, i) < 0 over C(i). Since h(q, i) is continuous in q 6= 0,

we know that there exists a σ > 0 such that

h(q, i) ≤ −σ in C(i)(5.85)

Moreover, since the state space of α(·) is finite, we can consider σ as the common constant

such that (5.85) is true for all i ∈ K. So the claim in (5.82) is proved.

Next, we prove that there exists a time Tχ,ǫ > 0 for any given ǫ > 0 such that (5.78) is

true. To do so, we first show that

L(Q̄(t), α(t)) → 0 as t→ ∞.(5.86)

As a matter of fact, define

L1(Q̄(t), α(t)) ≡ L(Q̄(t), α(t)) − e(t)(5.87)

where e(t) is a step function given by

e(t) ≡
∑

n:τn≤t

(

ψ(Q̄(τn), α(τn)))− ψ(Q̄(τ−n ), α(τ−n ))
)

−
∑

n:τn≤t

(

ψ(q∗(W̄ (τn), ρ(α(τn)), α(τn))− ψ(q∗(W̄ (τ−n ), ρ(α(τ−n )), α(τ−n ))
)

.(5.88)

Therefore we can see that L1(Q̄(t), α(t)) is continuous and bounded over t ∈ [0,∞) since

Q̄(t) and ρ(α(t)) are bounded. Thus we know that e(t) is also bounded over t ∈ [0,∞) due

to the fact that L(Q̄(t), α(t)) is bounded. Moreover, since

dL1(Q̄(t), α(t))

dt
=
dL(Q̄(t), α(t))

dt
≤ 0 for a.a. t ∈ [0,∞),(5.89)

we know that L1(Q̄(t), α(t)) converges to some constant as t→ ∞.

Now, since e(t) is a step function and is bounded, any convergent subsequence of e(t)

in terms of t corresponds to a sequence of holding time intervals as t → ∞ such that the

convergence of e(t) is true for all t along the sequence of holding time intervals. Moreover,

since the state space of α(·) is finite, there exists at least one i ∈ K such that the holding

time intervals corresponding to this particular state i appear infinitely many times. To be

convenient, we use [τnl
, τnl+1

) with l ∈ {1, 2, ..., } to denote such a sequence of holding time

intervals, where τnl
is the jump time of α(·) corresponding to the index nl. Notice that

[τnl
, τnl+1

) with l ∈ {1, 2, ..., } are sampled from a sequence of i.i.d random variables (actually
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exponentially distributed). Therefore, due to the strong law of large number and without

loss of generality, we can assume that

∞
∑

l=1

(

τnl+1
− τnl

)

= ∞.(5.90)

Therefore, for an arbitrarily given convergent subsequence of e(t), we can obtain a sequence

of holding time intervals [τnl
, τnl+1

) (l ∈ {1, 2, ..., }) with the property (5.90) associated with

a particular state i ∈ K. Then it follows from the convergence of L1(Q̄(t), α(t)) that

L(Q̄(t), α(t)) → L∞ ≥ 0 as t→ ∞ over t ∈ ∪∞
l=1[τnl

, τnl+1
).(5.91)

Furthermore, we can claim that L∞ = 0 by showing a contradiction. In fact, if we assume

L∞ > 0, then for any given constant ǫ satisfying 0 < ǫ < L∞, there exists some large enough

time T1 > 0 such that

L(Q̄(t), α(t)) > L∞ − ǫ > 0 for all t ∈ [T1,∞) ∩
(

∪∞
l=1[τnl

, τnl+1
)
)

.(5.92)

Since ψ(q, i) is continuous and strictly increasing in q ∈ RJ
+ for each i ∈ K, it follows

from (5.92) that there exist some δ > 0 and σ > 0 such that (5.82) is true for all t ∈

[T1,∞) ∩
(

∪∞
l=1[τnl

, τnl+1
)
)

. Thus it follows from (5.87) and (5.89)-(5.90) that

L(Q̄(t), α(t)) = L(Q̄(0), α(0)) + e(t) +

∫ t

0

dL1(Q̄(t), α(t))

dt
dt(5.93)

≤ C − σ

N(t)−1
∑

l=1

(τnl+1
− τnl

)

< 0

for all sufficient large t ∈ [T1,∞)∩
(

∪∞
l=1[τnl

, τnl+1
)
)

, where N(t) = max{l : τnl
≤ t} and C is

a positive constant since e(t) is bounded. However, the derived result in (5.93) contradicts

the fact that L(Q̄(t), α(t)) ≥ 0. Therefore the assumption that L∞ > 0 is not true, which

implies that L∞ = 0. Since the convergent subsequence of α(·) is arbitrarily chosen, we know

that the convergence in (5.86) is true (readers are also referred to [16] for related discussion

concerning a continuous Lyapunov function with no jumps.) Hence it follows from (5.86),

the continuity and strict monotonicity of ψ(q, i) in q ∈ RJ
+ for each i ∈ K that there exists a

time Tχ,ǫ > 0 for any given ǫ > 0 such that (5.78) is true.

Finally, if Q̄(0) = q∗(W̄ (0), ρ(α(0))), then it follows from (5.81) that the claim that

Q̄(t) = Q̄(0) a.s. for all t ∈ [τ0, τ1) is true. Hence we finish the proof of the lemma. ✷

5.4 A Key Lemma on Finer Time-Scaling

It follows from (3.1), (2.17), (2.15), (5.29)-(5.35), and the similar argument as for (5.30) that

Ŵ r(·) =d X̂r(·) + Ŷ r(·)(5.94)

32



where, for each t ≥ 0,

Ŷ r(t) = r
J
∑

j=1

(∫ t

0
ρj(α(s))ds − T̄ r

j (t)

)

(5.95)

which is non-decreasing in t ≥ 0 due to (5.31), (2.16) and (2.20), and

X̂r(t) =
J
∑

j=1

1

µj

(

Êr
j (t)− Ŝr

j (T̄
r
j (t))

)

+
J
∑

j=1

r

∫ t

0

(

ρrj(α(s))− ρj(α(s))
)

ds(5.96)

⇒ X̂(t) as r → ∞

where ρrj(α(·)) = λrj(α(·))/µj , and the weak convergence in (5.96) is due to Lemma 5.4,

Lemma 5.5 and the random change of time lemma (see, e.g., page 151 of [5]) with X̂(·) given

by (3.12). Since X̂(·) is a continuous process, it follows from the Skorohod representation

theorem that the convergence in (5.96) can be assumed u.o.c. So, in the rest of this subsection,

we will only consider an arbitrarily given sample path for which the above u.o.c. convergence

holds.

Now, for a time τ ≥ 0, a constant δ > 0, a large enough integer r, and a fixed time

T > 0 of certain magnitude to be specified later, we divide the time interval [τ, τ + δ] into

a total of ⌈rδ/T ⌉ − 1 segments with equal length T/r except the last one, where ⌈·⌉ denotes

the integer ceiling. The lth segment with l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1} covers the time interval

[τ + lT/r, (τ + (l + 1)T/r) ∧ T ]. Then, for any t ∈ [τ, τ + δ], it can be expressed as

t = τ + (lT + u)/r ≡ ηr,l(u)(5.97)

for some l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1} and u ∈ [0, T ]. Hence, due to the explanations in (5.27)-

(5.35), we can define

W̄ r,l(u) ≡
1

r
W r((r2τ + rlT ) + ru, αηr,l(u)(·))(5.98)

=
1

r
W r(r2t, αt(·))

= Ŵ r(t)

for each l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1} and u ∈ [0, T ]. In other words, for each time point, we will

study the behavior of Ŵ r(t) through the fluid process, W̄ r,l(u), over the time interval [0, T ]

(see, e.g., [54] and references therein). Similarly, we can define Q̄r,l(u) and Ȳ r,l(u) through

Q̂r(t) and Ŷ r(t). Moreover, define c1 and c2 to be the following constants

c1 = max
j∈J

(1/µj) and c2 =

(

min
j∈J

(1/µj)

)−1

.(5.99)

Thus, for any given w ≥ 0 and all i ∈ K, we have

w ≤ c1‖q
∗(w, ρ(i))‖ and ‖q∗(w, ρ(i))‖ ≤ c2w(5.100)
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since

min
j∈J

(1/µj)
J
∑

j=1

q∗j (w, ρ(i)) ≤ w =
J
∑

j=1

q∗j (w, ρ(i))

µj
≤ max

j∈J
(1/µj)

J
∑

j=1

q∗j (w, ρ(i)).

In addition, for any ǫ > 0, define

T1 = max
{

T(c2+1)ǫ,ǫ, Tmax{b1,1,b1,2},ǫ/2, Tmax{b1,1,b1,2},σ/2

}

(5.101)

where σ is determined in Lemma 5.3 and

b1,1 = g((c2 + 1)ǫ) + ǫ, b2,1 = c1b1,1 + ǫ,(5.102)

b2,2 = max{b2,1, ν + ǫ}+ C + ǫ, b1,2 = c2b2,2 + ǫ(5.103)

where g(·) is defined in (5.76). Then we have the following lemma.

Lemma 5.7 Consider the time interval [τ, τ + δ] with τ ≥ 0 and δ > 0 and suppose that

there is some constant ν ≥ 0 such that

lim
r→∞

Ŵ r(τ) = ν and lim
r→∞

Q̂r(τ) = q∗(ν, ρ(α(τ))).(5.104)

Moreover, let C be an arbitrarily chosen positive constant such that

sup
t1,t2∈[τ,τ+δ]

‖X̂(t1)− X̂(t2)‖ ≤ C with X̂(·) given by (3.12).(5.105)

Then, for any given small enough number ǫ > 0 and a given T ≥ T1, the following claims are

true for all large enough r ∈ {1, 2, ...} and all l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1}:

‖Q̄r,l(u)− q∗(W̄ r,l(u), ρ(α(ηr,l(u))))‖ ≤ ǫ for all u ∈ [0, T ],(5.106)

W̄ r,l(u) ≤ ν +C +O(ǫ) for all u ∈ [0, T ],(5.107)

Ȳ r,l(u)− Ȳ r,l(0) = 0 for all u ∈ [0, T ] if W̄ r,l(u) > ǫ for all u ∈ [0, T ],(5.108)

where limǫ→0O(ǫ) = 0.

Proof. For convenience, besides (5.106), we will prove the following stronger claims

instead of showing (5.107) and (5.108) directly, that is, for large enough r ∈ {1, 2, ...} and all

nonnegative integers l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1},

if W̄ r,l(u) ≤ ǫ < C for some u ∈ [0, T ],(5.109)

then W̄ r,l(u) ≤ b2,1,
∥

∥

∥Q̄r,l(u)
∥

∥

∥ ≤ b1,1 for all u ∈ [0, T ];

if W̄ r,l(u) > ǫ for all u ∈ [0, T ],(5.110)

then W̄ r,l(u) ≤ b2,2, Q̄
r,l(u) ≤ b1,2, Ȳ

r,l(u)− Ȳ r,l(0) = 0 for all u ∈ [0, T ].

Thus the remaining proof of the lemma can be divided into the following two parts.
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Part One: We justify the claims stated in the lemma to be true when l = 0. As a matter

of fact, it follows from (5.98) and (5.104) that

(W̄ r,0(0), Q̄r,0(0)) = (Ŵ r(τ), Q̂r(τ)) → (ν, q∗(ν, ρ(α(τ))) as r → ∞.(5.111)

Now, due to the definition of τn defined in (5.26), we know that [τ, τ +T/r] ⊂ [τn−1, τn) with

some n ∈ {1, 2, ...} for all large enough r ∈ {1, 2, ...}. Thus α(ηr,0(u)) keeps some constant

α(τ) for all u ∈ [0, T ] when r is large enough. So, as r → ∞, we have,

(W̄ r,0(u), Q̄r,0(u)) → (W̄ (u), Q̄(u)) = (ν, q∗(ν, ρ(α(τ))) u.o.c. for all u ∈ [0, T ](5.112)

where we have used Lemma 5.5, the uniqueness of the limit, and (5.98).

Therefore it follows from the first part of Lemma 5.3, (5.112), and the similar argument

as used in [54] that, for all large enough r ∈ {1, 2, ...} and for all u ∈ [0, T ],

∥

∥

∥Q̄r,0(u)− q∗(W̄ r,0(u), ρ(α(ηr,0(u))))
∥

∥

∥ ≤ ǫ(5.113)

Thus (5.106) presented in the lemma holds when l = 0. Moreover, it follows from (5.112)

and (5.105) that the bound estimations in (5.109) and (5.110) are true for all u ∈ [0, T ] and

all large enough r when l = 0. In addition, the complementarity in (5.110) can be shown as

follows. For the given ǫ > 0 in the current lemma, it follows from the first part of Lemma 5.3

and (5.112) that a σ > 0 can be chosen such that, for large enough r ∈ {1, 2, ...} and all

u ∈ [0, T ],

∥

∥

∥Q̄r,0(u)− q∗(W̄ r,0(u), ρ(α(ηr,0(u)))
∥

∥

∥ ≤ σ(5.114)

since α(ηr,0(u)) = α(τ) for all u ∈ [0, T ] when r is large enough. Thus, if W̄ r,0(u) > ǫ for all

u ∈ [0, T ], then

Ȳ r,0(u)− Ȳ r,0(0) =
J
∑

j=1

∫ u

0

(

ρ(α(ηr,0(s))) − Λj(Q̄
r(ηr,0(s)), α(ηr,0(s)))

)

ds(5.115)

=
J
∑

j=1

∫ u

0

(

ρ(α(ηr,0(s))) − Λj(Q̄
r,0(s), α(ηr,0(s)))

)

ds

= 0,

for any u ∈ [0, T ], where the first equality of (5.115) follows from (5.95), (5.31) and the

fact that Q̄r,0(s) 6= 0 for all s ∈ [0, u] ⊂ [0, T ] due to the assumption imposed in (5.108),

furthermore, the second equality of (5.115) follows from (2.11), in addition, the last equality

of (5.115) follows from (5.13) in the second part of Lemma 5.3.

Part Two: we prove the claims in the lemma for the case that l ∈ {1, ..., ⌈rδ/T ⌉ − 1}

by showing a contradiction. As a matter of fact, suppose that there is a subsequence R1

of r such that at least one of the claims stated in (5.106) and (5.109)-(5.110) does not hold

for any r ∈ R1 and some integer l ∈ {1, ..., ⌈rδ/T ⌉ − 1}, where for later reference, we use
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lr ∈ {1, ..., ⌈rδ/T ⌉ − 1} with r ∈ R1 to denote the smallest integer to have such property.

However, we can show that there is a subsequence R2 ⊂ R1 such that all the claims stated in

(5.106) and (5.109)-(5.110) are true for l = lr and all large enough r ∈ R2. To do so, we first

construct a subsequence R3 such that (5.106) is true for l = lr and all large enough r ∈ R3

as follows.

Due to the proof in the first part, we know that the claims stated in (5.106) and (5.109)-

(5.110) are true for all l ∈ {0, 1, ..., lr − 1} and all large enough r ∈ R1. So, for l = lr − 1, we

have

∥

∥

∥Q̄r,lr−1(0)
∥

∥

∥ ≤ max{b1,1, b1,2} for all r ∈ R1.(5.116)

Then we know that {Q̄r,lr−1(0), r ∈ R1} has a convergent subsequence from which we can

find a further subsequence R′
3 ⊂ R1 such that, along r ∈ R′

3,

0 ≤
lr − 1

r
↓ l∞ ≡ inf

h∈R′

3

(

lh − 1

h

)

<∞(5.117)

since 0 ≤ (lr − 1)/r ≤ δ/T . Then it follows from (5.97) and (5.117) that, for r ∈ R′
3 and

u ∈ [0, 2T ],

ηr,lr−1(u) ↓ τ + l∞T ≡ η∞ as r → ∞.(5.118)

Thus it follows from the definition of τn defined in (5.26), we know that [η∞, η
r,lr−1(u)] ⊂

[τn−1, τn) with some n ∈ {1, 2, ...} for all u ∈ [0, 2T ] and large enough r ∈ R′
3. Moreover, due

to Lemma 5.5, there is a subsequence R3 ⊂ R′
3 such that

(W̄ r,lr−1(u), Q̄r,lr−1(u)) → (W̄ (u), Q̄(u)) with
∥

∥Q̄(0)
∥

∥ ≤ max{b1,1, b1,2}(5.119)

u.o.c. over u ∈ [0, 2T ] along R3. Hence

∥

∥

∥Q̄r,lr−1(u)− q∗(W̄ r,lr−1(u), ρ(α(ηr,lr−1(u))))
∥

∥

∥(5.120)

≤
ǫ

3
+
∥

∥

∥Q̄(u)− q∗(W̄ (u), ρ(α(ηr,lr−1(u))))
∥

∥

∥ +
ǫ

3

holds over u ∈ [0, 2T ] when r ∈ R3 is large enough, where we have used (5.119) and the first

part of Lemma 5.3 for (5.120). Then, by (5.78) in Lemma 5.5 and (5.118), we know that, for

all u ∈ [T, 2T ] and large enough r ∈ R3,

∥

∥

∥Q̄(u)− q∗(W̄ (u), ρ(α(ηr,lr−1(u))))
∥

∥

∥ <
ǫ

3
(5.121)

since α(ηr,lr−1(u)) keeps a constant i ∈ K for all u ∈ [0, 2T ] and large enough r ∈ R3, and

moreover, since

T ≥ T1 ≥ Tmax{b1,1,b1,2},ǫ/2
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where T1 is defined in (5.101). So, for large enough r ∈ R3 and u ∈ [0, T ], it follows from

(5.120) and (5.121) that
∥

∥

∥Q̄r,lr(u)− q∗(W̄ r,lr(u), ρ(α(ηr,lr (u))))
∥

∥

∥(5.122)

=
∥

∥

∥Q̄r,lr−1(T + u)− q∗(W̄ r,lr−1(T + u), ρ(α(ηr,lr−1(T + u))))
∥

∥

∥

< ǫ

where we have used (5.120) for the inequality in (5.122). Then we know that the claim in

(5.106) is true with l = lr for large enough r ∈ R3.

Next we divide R3 into the union of the following two sets, that is, R3 = R4 ∪R5, where

R4 ≡
{

r ∈ R3 : W̄
r,lr(u) ≤ ǫ for some u ∈ [0, T ]

}

,(5.123)

R5 ≡
{

r ∈ R3 : W̄
r,lr(u) > ǫ for all u ∈ [0, T ]

}

.(5.124)

Here we remark that at least one of R4 and R5 must contain infinite numbers. So the

remaining proof can be divided into the following two parts.

Firstly, if R4 is infinite, then there is a fixed ur ∈ [0, T ] for each r ∈ R4 such that

W̄ r,lr(ur) ≤ ǫ.(5.125)

Moreover, there is a subset R′
4 ⊂ R4 such that ur → u′ as r → ∞ for r ∈ R′

4 and some

u′ ∈ [0, T ]. Therefore we have

W̄ (0) ≤ W̄ (u′) = lim
r→∞

W̄ r,lr(ur) ≤ ǫ(5.126)

where the first inequality in (5.126) follows from the increasing property of W̄ (·), the equality

in (5.126) follows from (5.119) since W̄ r,lr(ur) = W̄ r,lr−1(T + ur), and the second inequality

in (5.126) follows from (5.125). Thus we have

∥

∥Q̄(0) − q∗(W̄ (0), ρ(α(η∞)))
∥

∥ < ǫ(5.127)

where η∞ is defined in (5.118) and the inequality in (5.127) follows from (5.119), the first part

of Lemma 5.3, and the fact that (5.106) is true with l = lr for all large enough r ∈ R′
4 ⊂ R3

as discussed above. Therefore it follows from (5.127), (5.100) and (5.126) that

∥

∥Q̄(0)
∥

∥ ≤
∥

∥q∗(W̄ (0), ρ(α(η∞)))
∥

∥+ ǫ ≤ (c2 + 1)ǫ.(5.128)

Then, for all large enough r ∈ R′
4 and all u ∈ [0, T ], we have
∥

∥

∥Q̄r,lr(u)
∥

∥

∥ ≤
∥

∥Q̄(u)
∥

∥+ ǫ ≤ b1,1(5.129)

where b1,1 is defined in (5.102) and the two inequalities in (5.129) follow from (5.119), the

similar argument as in (5.122) and Lemma 5.6 respectively. Similarly, for large enough r ∈ R′
4

and all u ∈ [0, T ], we have,

W̄ r,lr(u) ≤ W̄ (u) + ǫ ≤ c1
∥

∥q∗(W̄ (u), ρ(α(η∞)))
∥

∥ + ǫ ≤ b2,1,(5.130)
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where the two inequalities in (5.130) follows from (5.119) and the similar argument as in

(5.122). Then it follows from (5.129)-(5.130) that (5.109) is true for l = lr for large enough

r ∈ R4.

Secondly, if R5 is infinite, we can choose σ = σ(ǫ) as in Lemma 5.3. Then, it follows from

Lemma 5.6 that, for all u ∈ [0, T ],

∥

∥Q̄(T + u)− q∗(W̄ (T + u), ρ(α(η∞)))
∥

∥ ≤
σ

2
(5.131)

where α(η∞) = α(ηr,lr−1(T + u)) keeps a constant i ∈ K for all u ∈ [0, 2T ] and all large

enough r ∈ R5 and moreover, the chosen time T satisfies

T ≥ T1 ≥ Tmax{b1,1,b1,2},σ/2

with T1 defined in (5.101). Thus, for all large enough r ∈ R5 and all u ∈ [0, T ], we have

∥

∥

∥Q̄r,lr−1(T + u)− q∗(W̄ r,lr−1(T + u), ρ(α(ηr,lr−1(T + u))))
∥

∥

∥ < σ(5.132)

where the inequality follows from the similar explanations as used for (5.127). Therefore, by

(5.132), (5.13) in the second part of Lemma 5.3, and the fact that

W̄ r,lr−1(T + u) = W̄ r,lr(u) > ǫ for all u ∈ [0, T ],

we know that Ȳ r,lr−1(T + u) does not increase over u ∈ [0, T ] for all large enough r ∈ R5,

i.e.,

Ȳ r,lr(u)− Ȳ r,lr(0) = 0 for all u ∈ [0, T ].(5.133)

To finish the remaining proof based on (5.133), we need to consider the following two mutually

exclusive cases for a given large enough r ∈ R5.

Case One: the condition in (5.110) is true for all l ∈ {0, 1, ..., lr}. Then we know that

Ȳ r,lr(u) does not increase over u ∈ [0, T ] for all l ∈ {0, 1, ..., lr} due to the induction assump-

tion and (5.133). So, for large enough r ∈ R5 and all u ∈ [0, T ], we have,

W̄ r,lr(u) = W̄ r,0(0) +
lr−1
∑

l=0

(

W̄ r,l(T )− W̄ r,l(0)
)

+
(

W̄ r,lr(u)− W̄ r,lr(0)
)

(5.134)

= Ŵ r(τ) +
(

X̂r(ηr,lr(u)) − X̂r(ηr,0(0))
)

≤ (ν + ǫ) + (C + ǫ)

where the second equality in (5.134) follows from (5.94)-(5.95), and the inequality in (5.134)

follows from (5.104), (5.118), (5.96) and (5.105).

Case Two: the condition in (5.109) is true for some l ∈ {0, 1, ..., lr − 1} and use lmr to

denote the largest such integer. Then both the condition and the claim in (5.110) are true for

all l ∈ {lmr +1, ..., lr} and therefore the corresponding Ȳ r,l(u) does not increase over u ∈ [0, T ]

due to the induction assumption and the discussion as in (5.132)-(5.133). Moreover, by
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the same discussion as used in (5.118), there is a subsequence R′
5 ⊂ R5 such that ηr,l

m
r (T )

converges along r ∈ R′
5. Thus, similar to (5.134), for large enough r ∈ R′

5 and all u ∈ [0, T ],

we have

W̄ r,lr(u) = W̄ r,lmr (T ) +
(

X̂r(ηr,lr(u)) − X̂r(ηr,l
m
r (T ))

)

(5.135)

≤ b2,1 + (C + ǫ)

where the inequality in (5.135) follows from (5.119), the induction assumption (since lmr < lr),

(5.96) and (5.105).

Therefore, it follows from both of the discussions in Case One and Case Two that, for

large enough r ∈ R′
5 and all u ∈ [0, T ], we have,

W̄ r,lr(u) ≤ max{(ν + ǫ) + (C + ǫ), b2,1 + (C + ǫ)}(5.136)

= b2,2,
∥

∥

∥Q̄r,lr(u)
∥

∥

∥ ≤
∥

∥

∥q∗(W̄ r,lr(u), ρ(α(ηr,lr (u))))
∥

∥

∥ + ǫ(5.137)

≤ c2W̄
r,lr(u) + ǫ

≤ b1,2,

where the first inequality in (5.137) follows from (5.122), the second inequality in (5.137)

follows from (5.100), and the third inequality in (5.137) follows from (5.136). Thus, by

(5.133) and (5.136)-(5.137), we know that (5.110) is true with l = lr for large enough r ∈ R′
5.

In the end, take R2 = R′
4 ∪ R′

5 and then we have that (5.106) and (5.109)-(5.110) are

true in terms of l = lr for large enough r ∈ R2 ⊂ R1. This is a contradiction and hence we

finish the proof of Lemma 5.7. ✷

5.5 Proof of Theorem 3.1

As in the proof of Lemma 5.7, our discussion will base on each particular sample path. For

convenience, we divide the proof into two parts.

Part One. In this part, we prove the convergence in distribution as stated in (3.10) and

the related properties (3.11)-(3.13). First of all, since it may be not true that any subsequence

of {Ŷ r(t), r ∈ {1, 2, ..., }} exists a further subsequence that converges to a continuous and

nondecreasing limit Ŷ (t) when Ŷ r(t) are unbounded (e.g., Ŷ r(t) = (logr)t). So, we employ

Lemmas 5.5-5.7 to provide a justification in terms of u.o.c. convergence for {Ŷ r(t), r ∈

{1, 2, ..., }}, which can be considered as an supplementary illustration to the corresponding

claims used in [54], [43], and etc. As a matter of fact, since Qr(0) = 0 for all r ∈ {1, 2, ...}, we

can conclude that the conditions stated in (5.104) of Lemma 5.7 are satisfied. Moreover, due

to (5.96), we know that (5.105) is true for an arbitrarily chosen constant C > 0 over any given

interval [0, T ] ⊃ [0, T1], where T1 is defined in (5.101). So, by (5.94), (5.98), Lemmas 5.5-5.7,

we know that, for any t ∈ [0, T ] and each large enough r ∈ {1, 2, ...}, there is a u ∈ [0, T ] and

l ∈ {0, 1, ..., ⌈rδ/T ⌉ − 1} such that, for any given small enough ǫ > 0,

0 ≤ Ŷ r(t) = W̄ r,l(u)− X̂r(t) ≤ C +O(ǫ) +K,(5.138)
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where K is some positive constant due to (5.96) and the continuity of X̂(t). Therefore we

know that Ŷ r(t) is uniformly bounded over the given interval [0, T ] for all r ∈ {1, 2, ...}.

Moreover, since Ŷ r(t) for each r ∈ {1, 2, ...} is nondecreasing and continuous with Ŷ r(0) = 0,

it follows from the Helly’s Theorem (e.g., Theorem 2 in page 319 of [42]) that, for any

subsequence of these processes, there is a further subsequence R ⊂ {1, 2, ...} such that

Ŷ r(t) → Ŷ (t) for every t ∈ [0, T ] along r ∈ R(5.139)

where Ŷ (t) is also nondecreasing and continuous with Ŷ (t) = 0 over [0, T ].

Next, take T ∈ {1, 2, ...} and let T → ∞ since T ≥ T1 is arbitrarily taken, we know that

there is a further subsequence R1 ⊂ R such that the convergence in (5.139) is extended to

the whole interval [0,∞) along r ∈ R1, and Ŷ (t) is nondecreasing and continuous over [0,∞).

Thus, it follows from Theorem 2.15 in page 342, Corollary 2.24 in page 345, and Proposition

1.17(b) of [29] that the convergence in (5.139) is u.o.c. over [0,∞). Consequently, it follows

from (5.94) and (5.96) that, along r ∈ R1,

Ŵ r(t) → Ŵ (t) = X̂(t) + Ŷ (t) ≥ 0 u.o.c. over t ∈ [0,∞),(5.140)

which is continuous in t ∈ [0,∞).

Thus it follows from (5.139)-(5.140), Lemma 5.5, and the similar argument as used in [54],

we know that the complementary property as stated in Theorem 3.1 is true. Furthermore,

take a number δ > 0, then for a given ǫ > 0, it follows from (5.106) in Lemma 5.7 that, for

large enough r ∈ R1,

sup
t∈[0,δ]

∥

∥

∥Q̂r(t)− q∗(Ŵ r(t), ρ(α(t)))
∥

∥

∥ ≤ ǫ,(5.141)

or equivalently, for each j ∈ {1, 2}, t ∈ [0, δ] and large enough r ∈ R1, we have

q∗j (Ŵ
r(t), ρ(α(t))) − ǫ ≤ Q̂r

j(t) ≤ q∗j (Ŵ
r(t), ρ(α(t))) + ǫ.(5.142)

Then it follows from Lemma 5.3 and (5.140) that the following convergence is true (e.g., let

r → ∞ first and let ǫ→ 0 later in (5.142)),

Q̂r(t) → Q̂(t) ≡ q∗(Ŵ (t), ρ(α(t))) uniformly over t ∈ [0, δ].(5.143)

Since δ is arbitrarily taken, the convergence stated in (5.143) can be considered true u.o.c.

over [0,∞). Therefore, we have

(Q̂r(t), Ŵ r(t), Ŷ r(t)) → (Q̂(t), Ŵ (t), Ŷ (t)) u.o.c. over [0,∞) along r ∈ R1(5.144)

with the limit satisfying all the requirements as stated in Theorem 3.1. Consequently, due

to the uniqueness of solution to the associated Skorohod problem (see, e.g., [11], or [18] and

[17]), we know that the convergence in (5.144) is true along r ∈ {1, 2, ...}.

Part Two. In this part, we prove the optimality claims stated in (3.14)-(3.15) along the

line of [54], however, the justification logic and technical treatment are somewhat different.
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First of all, suppose that all the processes related to an arbitrarily given feasible allocation

scheme G will be superscripted by an additional G. Moreover, for each t ∈ [0,∞), we define

ŴG(t) ≡ lim inf
r→∞

Ŵ r,G(t)(5.145)

which may be infinitely-valued. In other words, for any particularly given t ∈ [0,∞), there

exists a subsequence T ⊂ {1, 2, ...} such that

ŴG(t) = lim
r→∞

Ŵ r,G(t) along r ∈ T .(5.146)

Moreover, let Q denote the set of all the nonnegative rational numbers. Thus there exists a

subsequence R ∈ T such that

Ŵ r,G(s) → ŴG(s) along r ∈ R for each s ∈ Q.(5.147)

In addition, by applying the similar discussion as in Lemma 5.5, we can select a subsequence

R1 ⊂ R such that, along r ∈ R1,

T̄ r,G(s) → T̄G(s) u.o.c. over s ∈ [0,∞) as r → ∞(5.148)

where T̄G(s) is Lipschitz continuous and increasing with T̄G(0) = 0. Furthermore, we can see

that Q̄r,G(s), W̄ r,G(s) and Ȳ r,G(s) also converge u.o.c. to Q̄G(s), W̄G(s) and Ȳ G(s) along

r ∈ R1, which are Lipschitz continuous and satisfy the following relationships

Q̄G
j (s) = λ̄j(s)− µj T̄

G
j (s) ≥ 0 for each j ∈ J ,(5.149)

W̄G(s) =
J
∑

j=1

Q̄G
j (s)

µj
= Ȳ G(s),(5.150)

Ȳ G(s) =
J
∑

j=1

(∫ s

0
ρj(α(u))du − T̄G

j (s)

)

,(5.151)

where Ȳ G(s) is nondecreasing with Ȳ G(0) = 0. To further investigate, we define

ζ = inf
{

s ≥ 0 : T̄G
j (s) 6= c̄j(s) for some j ∈ J

}

(5.152)

where c̄j(s) is defined in (5.63). Then, under the policy G, it follows from the similar discus-

sion as in (5.96) that

X̂r,G(s) → X̂G(s) u.o.c. over s ∈ [0, ζ) along r ∈ R1.(5.153)

So it follows from (5.147) that

Ŷ r,G(s) → γ̂G(s) along r ∈ R1 for each s ∈ Q(5.154)

where γ̂G(s) is some discrete function in s ∈ Q and is nondecreasing since Ŷ r,G(s) is nonde-

creasing for each r ∈ R1. Moreover, define

ζ1 = inf
{

s ≥ 0 : γ̂G(s) = +∞, s ∈ Q
}

,(5.155)
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then we know that {Ŷ r,G(s), r ∈ R1} is uniformly bounded over any compact set of [0, ζ∧ζ1).

Thus it follows from the similar explanation as used for (5.139) that there is a subsequence

R2 ⊂ R1 such that

Ŷ r,G(s) → Ŷ G(s) for each s ∈ [0, ζ ∧ ζ1) along r ∈ R2(5.156)

where Ŷ G(s) is continuous and nondecreasing with Ŷ G(0) = 0, and moreover, it satisfies

Ŷ G(s) = γ̂G(s) for all s ∈ Q ∩ [0, ζ ∧ ζ1).

Then it follows from (5.153), (5.156) and the similar expression as in (5.94) that, along r ∈ R2

and for each s ∈ [0, ζ ∧ ζ1),

β̂G(s) ≡ lim
r→∞

Ŵ r,G(s) = X̂G(s) + Ŷ G(s) ≥ 0.(5.157)

However, the complementarity may not be true for (ŴG(t), Ŷ G(t)). Therefore it follows from

(5.156)-(5.157) and the minimality of the Skorohod problem (see, e.g., [11], [18], [17], and

[26]) that

β̂G(s) ≥ Ŵ (s) for all s ∈ [0, ζ ∧ ζ1).(5.158)

Hence, if t ∈ [0, ζ ∧ ζ1), then we know that, along r ∈ R2,

ŴG(t) = lim
r→∞, r∈R

Ŵ r,G(t) = lim
r→∞, r∈R2

Ŵ r,G(t) = β̂G(t) ≥ Ŵ (t),(5.159)

which is always true if ζ = ζ1 = ∞.

Furthermore, if ζ < ζ1 or ζ = ζ1 < ∞, and t ∈ [ζ,∞), then we can take a time τ ∈ [ζ, t]

such that T̄G
j (τ) 6= c̄j(τ) for some j ∈ J . So it follows from (5.149) that T̄G

j (τ) < c̄j(τ)

and Q̄G
j (τ) > 0 for the j. Then it follows from (5.150)-(5.151) that W̄G(t) ≥ W̄G(τ) > 0.

Therefore, along r ∈ R2, we have

ŴG(t) = lim
r→∞, r∈R2

Ŵ r,G(t) = lim
r→∞, r∈R2

rW̄ r,G(t) = +∞ ≥ Ŵ (t).(5.160)

In addition, if ζ > ζ1 and t ∈ [ζ1,∞), then it follows from (5.152) that

lim inf
r→∞, r∈R2

Ŷ r,G(t) ≥ lim
r→∞, r∈R2

Ŷ r,G(ζ1) = γ̂G(ζ1) = +∞.(5.161)

Thus, by (5.153), we know that

ŴG(t) = lim
r→∞, r∈R2

Ŵ r,G(t) = +∞ ≥ Ŵ (t).(5.162)

Since the given time t ∈ [0,∞) is arbitrarily taken, it follows from (5.159), (5.160) and (5.162)

that the claim (3.14) in the theorem is true for any t ≥ 0.

In the end, it follows from (3.14) and (3.13) that (3.15) is true. Hence we finish the proof

of Theorem 3.1. ✷
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6 Proofs of Lemmas 4.1 and 4.2

First of all, to be convenient for readers, we outline the proofs of the two lemmas as follows:

For the proof of Lemma 4.1, we first use the optimization technique studied in [25] and [56]

to characterize the boundary of the MAC capacity region presented in (4.2), i.e., the region

in (4.2) is convex and thus the boundary of it can be fully characterized by maximizing the

function
∑J

j=1 νjrj over all rate vectors in the region and for all nonnegative priority vectors

ν = (ν1, ..., νJ ) such that
∑J

j=1 νj = 1. Then, based on priority vectors and permutation

schemes, we can determine the number of boundary pieces of the region, which is consistent

with what is obtained in [34]. Finally, by applying the KKT optimality conditions and the

implicit function theorem, we can prove that the boundary of the MAC capacity region

consists of the derived number of linear or smooth curved facets.

For the proof of Lemma 4.2, we use the duality of the capacity regions between MAC and

BC to transform the discussion for BC to the one for MAC (see, e.g., [25]).

6.1 Proof of Lemma 4.1

Notice that, for a fixed priority vector ν, the optimization characterization described in the

outline is equivalent to finding the point on the capacity boundary that is tangent to a line

whose slope is defined by the priority vector. Due to the structure of the capacity region, we

can see that all boundary points of the region are corner points of polyhedrons corresponding

to different sets of covariance matrices. In addition, the corner point should correspond to

successive decoding in order of increasing priority, i.e., the user with the highest priority

should be decoded last and, therefore, sees no interference. Hence, by [25] and [56], the

problem of finding the boundary point on the capacity region associated with a descending

ordered priority vector ν can be written as

max
{Γj(i)≥0,Tr(Γj(i))≤Pj ,j∈J}

f(Γ1(i), ...,ΓJ (i), ν)(6.1)

where

f(Γ1(i), ...,ΓJ (i), ν)(6.2)

= νJ log

∣

∣

∣

∣

∣

∣

I +
J
∑

j=1

H†
j (i)Γj(i)Hj(i)

∣

∣

∣

∣

∣

∣

+
J−1
∑

j=1



(νj − νj+1)log

∣

∣

∣

∣

∣

∣

I +
j
∑

l=1

H†
l (i)Γl(i)Hl(i)

∣

∣

∣

∣

∣

∣





which is concave in the covariance matrices.

Now, let ν̃j = νj − νj+1 for j ∈ {1, ..., J − 1} and ν̃J = νJ . Then, for any integer

m ∈ {1, ..., J − 1}, let S(k1, ..., km) denote the following set corresponding to exactly having

m indices k1, ..., km ∈ {1, ..., J − 1} such that ν̃k1 = ... = ν̃km = 0, i.e.,

S(k1, ..., km) ≡ {f(Γ1(i), ...,ΓJ (i), ν) : Γj(i) ≥ 0, ν̃j ≥ 0 for j ∈ J , ν̃k1 = ... = ν̃km = 0,(6.3)

kj 6= kl for j 6= l and j, l ∈ {1, ...,m}, νJ > 0,
J
∑

j=1

νj = 1}.
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Moreover, if m = 0, we use S(k0) to denote the set corresponding to ν̃j > 0 for all j ∈ J ,

i.e.,

S(k0) ≡







f(Γ1(i), ...,ΓJ (i), ν) : Γj(i) ≥ 0, ν̃j > 0 for j ∈ J , νJ > 0,
J
∑

j=1

νj = 1







.(6.4)

In addition, if m = J , νJ = 0, we use S(kJ ) to denote the following set corresponding to

νJ = 0,

S(kJ ) ≡







f(Γ1(i), ...,ΓJ (i), ν) : Γj(i) ≥ 0 for j ∈ J , νJ = 0,
J
∑

j=1

νj = 1







.(6.5)

Eventually, we can define

S(k0, k1, ..., km) =











S(k1, ..., km) if m ∈ J ,

S(k0) if m = 0,

S(kJ) if m = J.

(6.6)

Thus we have






f(Γ1(i), ...,ΓJ (i), ν) : Γj(i) ≥ 0, νj ≥ 0, ν̃j ≥ 0 for j ∈ J ,
J
∑

j=0

νj = 1







(6.7)

=
J
⋃

m=1

⋃

k1,...,km∈J

S(k0, k1, ..., km).

Note that the J users can be arbitrarily ordered, so we have J ! such priority orders, e.g.,

νj1 ≥ νj2 ≥ ... ≥ νjJ , where (j1, ..., jJ ) is a permutation of (1, ..., J). Thus we can see that

our capacity region is bounded by L boundary pieces with L given by (4.3). In fact, the first

term J ! on the right-hand side of the first equality in (4.3) is the number of boundary pieces

corresponding to all νj1 > νj2 > ... > νjJ , C
j
J(J − j + 1)! (j ∈ {2, ..., J}) is the number of

boundary pieces corresponding to all νk1 = ... = νkj with k1, ..., kj ∈ {1, ..., J} and kl 6= kh
for l 6= h when νjJ > 0, and the last term J on the right-hand side of (4.3) is the number

of boundary pieces corresponding to νjJ = 0. Here we remark that the number of boundary

pieces obtained through the above method is consistent with the one derived in [34].

Next we show the smoothness of these boundary pieces. Without loss of generality, our

discussion will focus on a specific set S(k0) in a particular user priority order since the

discussions for all other cases are similar. Therefore, we have that ν1 > ν2 > ... > νJ > 0.

Moreover, let y = (y1, ..., y2NNJ )
′ denote the (2NNJ)-dimensional vector formed by the real

part and the imaginary part of entries of Γ1(i),...,ΓJ (i) in a suitable order. Thus we know that

f(Γ1(i), ...,ΓJ (i), ν) = f(y, ν) is concave in y for each given ν ≥ 0. Then the optimization

problem in (6.1) can be restated as follows.

max
y≥0

f(y, ν)(6.8)
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subject to

fj(y) ≡ Tr(Γj(i))− Pj ≤ 0 for all j ∈ J .(6.9)

So it follows from the KKT optimality conditions (see, e.g., [35]) that the solution to the

optimization problem in (6.8)-(6.9) for a function f(y, ν) ∈ S(k0) with the associated ν ≥ 0

can be obtained through the following equations,

yl





∂f(y, ν)

∂yl
+

J
∑

j=1

ηj
∂fj(y)

∂yl



 = 0 for each l ∈ {1, 2, ..., 2NNJ},(6.10)

ηjfj(y) = 0 for each j ∈ J ,(6.11)

where ηj ≥ 0 for j ∈ J are the Lagrangian multipliers. Then our remaining discussion can

be divided into the following two steps.

Step One: If there exists some ν ∈ N such that the problem in (6.8)-(6.9) for the

function f(y, ν) ∈ S(k0) has at least one optimal solution located in the interior of the

associated feasible region, where

N ≡







ν = (ν1, ..., νJ )
′ : ν1 > ... > νJ > 0,

J
∑

j=1

νj = 1







,(6.12)

then we have the following discussions.

Firstly, we suppose that the optimal solution is unique given by y∗ = (y∗1 , ..., y
∗
2NNJ )

′.

Then we know that f(y, ν) is strictly concave since it is sufficiently smooth in y for the given

ν due to the definition of f . So it follows from (6.10)-(6.11) that

Fl(y
∗, ν) ≡

∂f(y∗, ν)

∂yl
= 0 for all l ∈ {1, ..., 2NNJ}.(6.13)

Moreover, it follows from Theorem 4.3.1 in page 115 of [27] that the following Hessian matrix

▽2f(y, ν) ≡

(

∂2f(y, ν)

∂yl∂yk

)

(2NNJ)×(2NNJ)

for all l, k ∈ {1, ..., 2NNJ}.(6.14)

is positive definite at all y within the (2NNJ)-dimensional feasible region. Now define

F (y, ν) ≡ {Fl(y, ν), l ∈ {1, ..., 2NNJ}}.

Thus we know that F (y∗, ν) = 0 and the Jacobian determinant of F (y, ν) with respect to y

at (y∗, ν) is nonzero due to (6.14), i.e.,

D(F1, ..., F2NNJ )

D(y1, ..., y2NNJ )
6= 0.(6.15)

Therefore F (y, ν) satisfies all the conditions as stated in the implicit function theorem. Hence

F (y, ν) = 0 uniquely determines a (2NNJ)-dimensional function y∗(ν) that is continuous and
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differentiable with respect to ν in a neighborhood O(ν, ǫ) of ν. Moreover, (6.15) and (6.13)

hold in O(ν, ǫ), which implies that y∗(ν) is an optimal solution to the problem in (6.8)-(6.9)

for each ν ∈ O(ν, ǫ).

Secondly, we suppose that the problem in (6.8)-(6.9) for the function f(y, ν) ∈ S(k0) has

multiple optimal solutions located in the interior of the associated feasible region. Without

loss of generality, we suppose that these optimal points are all in a m-dimensional hyperplane

that is parallel to each coordinate-axis corresponding to those y with part of its components,

ysl ∈ Y, where

Y ≡ {ysl ∈ R, l ∈ {1, ...,m}, sl ∈ {1, ..., 2NNJ}} for some m ∈ {1, ..., 2NNJ}.

(Here we remark that, if this is not the case, we can employ the method of rotation transfor-

mation to make this case true.) Therefore, due to (6.2) and the concavity of f(y, ν) in y, we

know that f(y, ν) is independent of ysl ∈ Y. Thus there exists a (2NNJ−m)-dimensional set

Pν corresponding to each ν such that f(y, ν) only depends on ysl ∈ Yc (the complementary

set of Y) and is strictly concave in those ysl . Therefore for any optimal point y∗(ν) in the set

Pν and by considering the similar (2NNJ −m)-dimensional problem as in (6.13)-(6.14), we

can conclude that y∗(ν) is continuous and differentiable in a neighborhood O(ν, ǫ) of ν.

So, if the optimal points of f(y, ν) are all strictly located within the feasible region when

ν moves in N , it follows from the above discussion that f(y, ν) keeps either strictly concave

or flat with respect to ysl ∈ Yc or ysl ∈ Y for all ν ∈ N . Thus we can conclude that all

the optimal paths y∗(ν) are continuous and differentiable with respect to ν ∈ N . In other

words, any set {Γ∗
1(ν, i), ...,Γ

∗
J (ν, i)} of the optimal covariance matrices is continuous and

differentiable with respect to ν ∈ N . Hence it follows from (4.2) that the corner points of

the capacity region, which are determined by the following equations, form a smooth curved

facet f(Γ∗
1(ν, i), ...,Γ

∗
J (ν, i)) when ν moves in the region N , and moreover, the facet does not

depend on the choice of the set {Γ∗
1(ν, i), ...,Γ

∗
J (ν, i)} along ν ∈ N . In addition, due to (4.2),

for all j ∈ J , we have

cj(ν) = log

∣

∣

∣

∣

∣

∣

I +
j
∑

l=1

H†
l (i)Γ

∗
l (ν, i)Hl(i)

∣

∣

∣

∣

∣

∣

− log

∣

∣

∣

∣

∣

∣

I +
j−1
∑

l=1

H†
l (i)Γ

∗
l (ν, i)Hl(i)

∣

∣

∣

∣

∣

∣

(6.16)

However, if some optimal point of f(y, ν) reaches one of the boundaries of the feasible

region when ν moves in N , then the associated justification for this case is part of the proof

in the following Step Two.

Step Two: Without loss of generality, we suppose that f(y, ν) is strictly concave for

all ν ∈ N and otherwise we can employ the similar argument as above. Therefore, if y∗ =

(y∗1 , ..., y
∗
2NNJ )

′ is the solution to the optimization problem in (6.8)-(6.9), which is located

on one of the boundary pieces, and if Y∗ ≡ {y∗sl , l ∈ {1, ...,m}, sl ∈ {1, ..., 2NNJ}} for some

m ∈ {1, ..., 2NNJ} is the set of components of y∗, which are either 0 or on the surface

fj(y) = 0 for some j ∈ J since fj(y) depends only on part of the components of y, then the
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remaining components of y∗ are located in the interior of the corresponding (2NNJ −m)-

dimensional feasible region and satisfy

Fl(y
∗, η∗, ν) ≡

∂f(y∗, ν)

∂yl
+
∑

j∈L1

η∗j
∂fj(y

∗)

∂yl
= 0(6.17)

for each l ∈ L ≡ {l : y∗sl ∈ y∗ \ Y∗}, where L1 ≡ J ∩ {j : fj(y
∗) = 0} and η∗j (j ∈ L1) are

the Lagrangian multipliers corresponding to y∗. Now let y ∈ R2NNJ
+ denote the vector whose

components ysl for all l ∈ {1, ...,m} are confined in Y∗. Then f(y, ν) is strictly concave in

the components of y except those ysl ∈ Y∗ since it is sufficiently smooth in y and since y∗sl
with l ∈ L is in the interior of the corresponding (2NNJ −m)-dimensional feasible region.

Thus it follows from Theorem 4.3.1 in page 115 of [27] that the following Hessian matrix

▽2f(y, ν) ≡

(

∂2f(y, ν)

∂yl∂yk

)

(2NNJ−m)×(2NNJ−m)

for all l, k ∈ L.

is positive definite at all y whose components ysl for all l ∈ {1, ...,m} are confined in Y∗.

Moreover, if we define

F (y, η, ν) ≡

{

Fl(y, η, ν) if l ∈ L,

Fl(y) = fl(y) if l ∈ L1,
(6.18)

we can conclude that the Jacobian determinant of F (y, η, ν) with respect to yl (l ∈ L) and

ηl (l ∈ L1) is nonzero at y∗. Moreover, due to the definition of f(y, ν) and fj(y) for j ∈ J ,

we know that F (y, η, ν) satisfies all the conditions as stated in the implicit function theorem.

Hence F (y, η, ν) = 0 uniquely determines a (2NNJ + J̄)-dimensional function (y∗(ν), η∗(ν))

that is continuous and differentiable in ν ∈ N (where J̄ is the number of fl (l ∈ L1) such

that fl(y
∗) = 0), and moreover, all the components y∗sl(ν) with l ∈ {1, ...,m} are confined

in Y∗ when ν ∈ N moves. Therefore the remaining proof of this boundary situation can be

divided into the following three cases.

Case One: When u ∈ N continuously moves to a vector ν ∈ N , the optimal point y∗(u)

moves from the interior of the feasible region to the optimal point y∗(ν)(= y∗) on the boundary

of the feasible region. Then we need to prove that y∗(u) and its associated derivatives

converge to y∗(ν) and its corresponding derivatives as u converges to ν continuously within a

neighborhood of ν ∈ N in the whole 2NNJ-dimensional feasible region, which implies that

the components y∗sl(u) for all l ∈ {1, ...,m} are not necessarily confined in Y∗ when u ∈ N

moves.

In fact, let L2 ≡ {k ∈ {1, ...,m} : y∗sk(ν) = 0, y∗sk(ν) ∈ Y∗} and define the following

constraints of parallel surfaces,

f̃j(y, b) ≡ fj(y)− bj = 0 for j ∈ L1,(6.19)

gk(y, b) ≡ ysk − bk = 0 for k ∈ L2,(6.20)

where b is an arbitrary constant vector whose components are given by bj (j ∈ L1) and bk
(k ∈ L2). Therefore, by applying the KKT optimality conditions, the optimal solution ỹ∗
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to the the problem (6.8) with the constraints (6.19)-(6.20) should be given by the following

equations

Fl(ỹ
∗, η̃∗, ν, b) ≡

∂f(ỹ∗, ν)

∂yl
+
∑

j∈L1

η̃∗j
∂f̃j(ỹ

∗, b)

∂yl
+
∑

k∈L2

η̃∗k
∂gk(ỹ

∗, b)

∂yl
= 0(6.21)

for each l ∈ L ≡ {l : y∗sl ∈ y∗ \ Y∗}, where η̃∗j (j ∈ L1) and η̃∗k (k ∈ L2) are the related

Lagrangian multipliers corresponding to ỹ∗. Now, for each ỹ ∈ R2NNJ , define

F (ỹ, η̃, ν, b) ≡











Fl(ỹ, η̃, ν, b) if l ∈ L,

Fl(ỹ, b) = f̃l(ỹ, b) if l ∈ L1,

Fl(ỹ, b) = gl(ỹ, b) if l ∈ L2.

(6.22)

Then, by the similar argument as used for (6.18), we know that there is a unique (2NNJ +

J̄)-dimensional optimal path (ỹ∗(u, b), η̃∗(u, b)) which is continuous and differentiable with

respect to (u, b) ∈ N ×RJ̃ (where J̃ is the dimension of b), and moreover, all the components

of ỹ∗(u, b) corresponding to y∗sl ∈ Y∗ satisfy the constraints (6.19)-(6.20), either being bl
(l ∈ L2) or on the boundary fl(y) = bl (l ∈ L1). Thus we know that ỹ∗(u, b) and its

associated derivatives converge to y∗(ν) and its corresponding derivatives as (u, b) converges

to (ν, 0) continuously. Moreover, notice that y∗(u) = ỹ∗(u, b) when bl > 0 (l ∈ L2) and

bl < 0 (l ∈ L1) are all close to zero, which implies that all the components of ỹ∗(u, b)

corresponding to y∗sl ∈ Y∗ are also continuous and differentiable with respect to u ∈ N when

bl > 0 (l ∈ L2) and bl < 0 (l ∈ L1) are all close to zero. So we can conclude that y∗(u)

and its associated derivatives converge to y∗(ν) and its associated derivatives as u → ν,

which implies that y∗(ν) is continuous and differentiable at a neighborhood of ν in the whole

2NNJ-dimensional feasible region.

Case Two: When u ∈ N moves to a vector ν ∈ N , the optimal point y∗(u) moves to the

optimal point y∗(ν) (= y∗) from a boundary piece of the feasible region next to the boundary

piece on which y∗(ν) is located. The proof for this case is similar to the one as used in Case

One. Hence we omit it.

Case Three: When u ∈ N moves to a vector ν ∈ N , the optimal point y∗(u) moves to the

optimal point y∗(ν) (= y∗) from a boundary piece of the feasible region that is not next to the

boundary piece on which y∗(ν) is located. Due to the concavity of f(y, u), the optimal point

y∗(u) must go first into the interior of the feasible region and then to the other boundary

piece. Therefore, the proof for this case is the same as the one as used in Case One.

In the end, we note that the boundary piece corresponding to S(k1, ..., kJ ) is a J-

dimensional linear facet, which is determined by the sum-rate capacity bound (see, e.g.,

[56] for more details). Hence we we finish the proof of Lemma 4.1. ✷

6.2 Proof of Lemma 4.2

It follows from [25] that the capacity region for the J-user MIMO BC with N = 1 and each

i ∈ K is given by

R(i) = CBC(P,H(i))(6.23)
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=
⋃

{(P1,...,PJ):
∑J

j=1
Pj=P}

CMAC(P1, ..., PJ ,H
†(i))

=
⋃

{(P1,...,PJ):
∑J

j=1
Pj=P}







c ∈ RJ
+ :

∑

j∈S

cj ≤
1

2
log

∣

∣

∣

∣

∣

∣

I +
∑

j∈S

H†
j (i)PjHj(i)

∣

∣

∣

∣

∣

∣

,∀ S ⊂ J







.

So, due to the similarity of structures between M(i) in (4.2) and R(i) in (6.23), we can apply

the similar discussion as for the MIMO MAC and the discussion in [46] to conclude that the

claims in the lemma are true. Hence we we finish the proof of Lemma 4.2. ✷
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[27] Hiriart-Urruty, J. B. and C. Lemaréchal, C. 2001. Fundamentals of Convex Analysis,

Springer-Verlag, Berlin.

[28] Iglehart, D. L. and Whitt, W. 1971. The equivalence of functional central limit theorems

for counting processes and associated partial sums. Ann. Math. Statist. 42(4) 1372-1378.

[29] Jacod, J. and Shiryaev, A. N. 2003. Limit Theorems for Stochastic Processes, Second

Edition, Springer-Verlag, Berlin.

[30] Jain, R. and Routhier, S. A. (1986). Packet trains: measurements and a new model for

computer network traffic. IEEE Journal on Selected Areas in Communications 4 986-995.

[31] Jindal, N., Vishwanath, S., and Goldsmith, A. 2004. On the duality of Gaussian multiple-

access and broadcast channels. IEEE Transactions on Information Theory 50(5) 768-783.

[32] Kallenberg, O. 1997. Foundations of Modern Probability, Springer-Verlag, Berlin.

[33] Kumaran, K. and Viswanathan, S. 2005. Joint power and bandwidth allocation in down-

link transmission. EEE Transactions on Wireless Communications 4(3) 1008-1016.

[34] Liu, J. and Hou, Y. T. 2008. Weighted proportional fairness capacity of Gaussian MIMO

broadcast channels. Proceedings of IEEE INFOCOM 2008 1058-1066, IEEE Computer

Society Press.

[35] Luenberger, D. G. 1984. Linear and Nonlinear Programming, Second Edition, Addison-

Wesley Publishing Company, Reading, Massachusetts.

[36] Mandelbaum, A. and Stolyar, A. L. 2004. Scheduling flexible servers with convex delay

costs: heavy-traffic optimality of the Generalized cµ-rule. Operations Research 52(6) 836-

855.

[37] Nokolaidis, I. and Akyildiz, I. F. (1997). An overview of source characterization in ATM

networks. Modeling and Simulation of Computer and Communication Networks: Tech-

niques, Tools and Tutorials 123-150. Gordon & Breach Publishing Co.

[38] Prokhorov, Y. V. 1956. Convergence of random processes and limit theorems in proba-

bility theory. Theory Probab. Appl. 1(2) 157-214.

51



[39] Resnick, S. I. 1992. Adventures in Stochastic Processes, Birkhäuser, Boston.
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