
MIT Open Access Articles

A Simulation-Based Optimization Framework 
for Urban Transportation Problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Osorio, Carolina, and Michel Bierlaire. “A Simulation-Based Optimization Framework 
for Urban Transportation Problems.” Operations Research 61, no. 6 (December 2013): 1333–
1345.

As Published: http://dx.doi.org/10.1287/opre.2013.1226

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: http://hdl.handle.net/1721.1/89831

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/89831
http://creativecommons.org/licenses/by-nc-sa/4.0/


Submitted to Operations Research

manuscript (Please, provide the mansucript number!)

Carolina Osorio
Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge,

Massachusetts, USA, osorioc@mit.edu

Michel Bierlaire
Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole

Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, michel.bierlaire@epfl.ch

This paper proposes a simulation-based optimization (SO) method that enables the efficient use of complex

stochastic urban traffic simulators to address various transportation problems. It presents a metamodel

that integrates information from a simulator with an analytical queueing network model. The proposed

metamodel combines a general-purpose component (a quadratic polynomial), which provides a detailed local

approximation, with a physical component (the analytical queueing network model), which provides tractable

analytical and global information. This combination leads to an SO framework that is computationally

efficient and suitable for complex problems with very tight computational budgets.

We integrate this metamodel within a derivative-free trust region algorithm. We evaluate the performance

of this method considering a traffic signal control problem for the Swiss city of Lausanne, different demand

scenarios and tight computational budgets. The method leads to well-performing signal plans. It leads to

reduced, as well as more reliable, average travel times.
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1. Introduction

Microscopic urban traffic simulators embed the most detailed traffic models. They rep-

resent individual vehicles and can account for vehicle-specific technologies/attributes.

They represent individual travelers and embed detailed disaggregate behavioral models

that describe how these travelers make travel decisions (e.g. departure time choice, mode

choice, route choice, how travelers respond to real-time traffic information, how they

decide to change lanes). They also provide a detailed representation of the underlying
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supply network (e.g. variable message signs, public transport priorities). Thus, these traf-

fic simulators can describe in detail the interactions between vehicle performance (e.g.

instantaneous energy consumption, emissions), traveler behavior and the underlying trans-

portation infrastructure, and yield a detailed description of traffic dynamics in urban

networks.

These simulators can provide accurate network performance estimates in the context

of what-if analysis or sensitivity analysis. They are therefore often used to evaluate a set

of predetermined transportation strategies (e.g., traffic management or network design

strategies). Nevertheless, using them to derive appropriate strategies, i.e., to perform

simulation-based optimization (SO), is an intricate task.

We focus on transportation problems of the following form:

min
x∈Ω

f(x;p)≡E[F (x;p)] (1)

The objective function f is usually the expected value of a stochastic network performance

measure, F . The probability distribution function of F depends on the deterministic deci-

sion or control vector x and on deterministic exogenous parameters p. The feasible space Ω

consists of a set of general (e.g., nonconvex) constraints that link x to p and f . Closed-form

differentiable expressions are available for the constraints.

For instance, a traffic signal control problem can take F as the vehicle travel time

and x as the green times for the signalized lanes. Elements such as the total demand or

the network topology are captured by p. Every simulation run leads to realizations of

F , and involves sampling from the numerous probability distributions that account for

uncertainty in, for instance, driver behavior (e.g., route choice for individual drivers) or

traffic generation (e.g., headways of vehicles entering the network). For a given x, assume

we have observed r independent realizations of F , denoted F1(x;p), . . . , Fr(x;p). Then, the

objective function is approximated by the sample average:

f̂(x;p) =
1

r

r
∑

i=1

Fi(x;p). (2)
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In this methodology, the sample size r is kept constant across all points and iterations.

Its value for the empirical results of Section 6 is given in Section 4.3.

The various disaggregate traffic models embedded within a microscopic simulator make

it a detailed model, but lead to nonlinear objective functions containing potentially several

local minima. These objective functions have no available closed-form; we can only derive

estimates for them. Additionally, evaluating these estimates accurately is computationally

expensive because it involves running numerous replications. As nonlinear, stochastic,

generally constrained and computationally-expensive problems, simulation-based urban

transportation problems are complex to address.

In order to efficiently address the challenging urban transportation problems that arise

in practice, SO algorithms that can identify strategies with improved performance within

few simulation runs are needed. This paper proposes a metamodel SO technique that

identifies such strategies under very tight computational budgets (i.e., it has good short-

term performance). The technique is based on a novel metamodel formulation that enables

the combination of detailed, yet intractable, simulated information with less detailed, yet

highly tractable, information from an analytical traffic model.

The computational budget is defined as a maximum number of simulation runs nmax.

Microscopic traffic simulators are typically used in practice under very tight computational

budgets. This paper considers similar budgets. For problems with decision vectors of

dimension d, the total number of simulation runs (i.e. the computational budget) ranges

between d and 5d. For instance, in Section 6.2 we consider a constrained traffic signal

control problem with a decision vector of dimension 51 and a computational budget of

150. Recent work has extended the approach proposed in this paper, enabling it to address

larger-scale constrained problems (d = 100) considering the same tight computational

budget of 150 simulation runs (Osorio and Chong 2012).

This paper is structured as follows. We present a literature review of metamodel SO

methods (Section 2). We present the metamodel in Section 3. The metamodel is then



Osorio and Bierlaire: A simulation-based optimization framework for urban transportation problems
4 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

embedded within a derivative-free trust region algorithm, which is tailored to the needs

of our context (Section 4). We then show how this methodology applies to a fixed-time

traffic signal control problem (Section 5), and present empirical results evaluating its

performance (Section 6).

2. Literature review

There are three types of approaches to address SO problems: 1) direct-search methods

(for reviews see Conn et al. (2009b), Kolda et al. (2003)), 2) stochastic gradient methods

(where the gradient of the simulation response is estimated), 3) metamodel (or surrogate)

methods. The stochasticity inherent in traffic simulation outputs along with their high

computational cost, and their often unavailable source code, makes the accurate estimation

of derivatives an expensive task. In order to derive SO techniques for problems with very

tight computational budgets, we focus on metamodel SO techniques.

A metamodel (or surrogate model) is an analytical approximation of the objective func-

tion. Metamodel optimization methods iterate over two main steps. First, the metamodel

is fitted based on a set of simulated observations. Second, it is used to perform opti-

mization and derive a trial point (in this paper the term point refers to a given decision

vector value x). The performance of the trial point can be evaluated by the simulator,

which leads to new observations. As new observations become available the accuracy of

the metamodel can be improved (step 1), leading ultimately to better trial points (step

2).

Metamodels are typically deterministic functions that are much less expensive to evalu-

ate than the underlying simulator. By replacing the stochastic response of the simulation

by a deterministic function, deterministic optimization techniques can be used. Further-

more, by using metamodels that are inexpensive to evaluate, the number of objective

function evaluations is no longer a limitation. The main limitation remains the number of

simulation runs needed such that an accurate metamodel can be built and well-performing

trial points can be derived.
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Recent reviews of metamodels are given by Conn et al. (2009b), by Barton and

Meckesheimer (2006) and by Søndergaard (2003). Metamodels are classified in the lit-

erature as either physical or functional metamodels (Søndergaard 2003, Serafini 1998).

Physical metamodels consist of application-specific metamodels. Their functional form

and parameters have a physical or structural interpretation.

Functional metamodels are generic (i.e., general-purpose) functions that are chosen

based on their analytical tractability, but do not take into account any information with

regards to the specific objective function, let alone the structure of the underlying problem.

They are often a linear combination of basis functions from a parametric family.

The most common choice for a functional metamodel is the use of low-order polyno-

mials (e.g., linear or quadratic). Quadratic polynomials are used, at least asymptotically,

as surrogates in most trust region methods (Conn et al. 2000). They are also used in

sequential response surface methodologies for unconstrained and constrained SO problems

(Marti 2008, Kleijnen 2008). Spline models have also been used, although their use within

an SO framework has focused on univariate or bivariate functions, and as Barton and

Meckesheimer (2006) mention: “unfortunately, the most popular and effective multivari-

ate spline methods are based on interpolating splines, which have little applicability for

SO”. Radial basis functions (Oeuvray and Bierlaire 2009, Wild et al. 2008) and Kriging

surrogates (Kleijnen et al. 2010, Booker et al. 1999) have also been proposed.

Functional metamodels are the most common metamodels used to perform simulation-

based optimization, since they can be used to approximate any objective function.

Nonetheless, they capture little information about the structure of the underlying problem

and often require a large number of simulation runs to be fitted. They can provide accu-

rate local approximations (i.e., approximations of the objective function near simulated

points), yet often fail to provide suitable approximations in non-simulated regions. This

limits their use for applications with tight computational budgets.
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We propose a metamodel that combines a functional component with a physical compo-

nent. The purpose of the functional component is to provide a detailed local approximation

of the function. The physical component should provide a good, yet less detailed, global

approximation. It improves the computational tractability of the SO method, by overcom-

ing the limitations of the simulation model, namely an inability to provide closed-form

continuous expressions for the performance measures and their first-order derivatives.

3. Metamodel

The metamodel combines information from two traffic models: a simulation model and an

analytical network model. We first present these two models, we then describe how they

are combined.

Simulation model. We use a microscopic traffic simulator that models the behavior of

individual drivers within the network. Trips are generated based on an origin-destination

matrix, along with a headway model. Driver behavior is modeled using car following, lane

changing, gap acceptance and route choice models. In this work we use the Aimsun simu-

lator. For a detailed description of its behavioral models see TSS (2008). When simulating

the performance of a set of points {x1, x2, . . .} we obtain estimates of their performance

{f̂(x1;p), f̂(x2;p), . . .} (presented in Equation (2)).

Analytical queueing network model The analytical urban traffic model is formulated

in Osorio and Bierlaire (2009b), it is based on the more general queueing network model

of Osorio and Bierlaire (2009a). Alternatively, for large-scale networks the model of Osorio

and Chong (2012) can be used, and for dynamic control problems the model in Osorio

et al. (2011) is suitable. In this paper, we use the queueing model of Osorio and Bierlaire

(2009b) to formulate a metamodel for simulation-based optimization.

The queueing model formulation combines ideas from traditional urban traffic mod-

els, several national urban transportation norms and queueing theory. An urban road is

mapped into a set of queues. Finite capacity queues are used in order to account for the
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limited space capacity of roads. The finite capacity queueing theory (FCQT) notion of

blocking is used to describe where congestion arises and how it propagates throughout the

network. By resorting to FCQT, the model captures the key traffic interactions and the

underlying network structure, e.g., how upstream and downstream queues interact, and

how this interaction is linked to network congestion. The model consists of a system of

nonlinear equations (which are given in the Appendix). It is formulated based on a set

of exogenous parameters q that capture the network topology, the total demand, as well

as the turning probabilities . A set of endogenous variables y describe the traffic interac-

tions, e.g., spillback probabilities, spillback diffusion rates. For a detailed description of

the elements of q and y, we refer the reader to the Appendix. For a given decision vec-

tor x, the network model yields the objective function T (x, y; q), which is a deterministic

approximation of f(x;p) (Equation (1)).

We recall here the notation that we have introduced so far:

x decision vector;
T approximation of the objective function derived by the queueing model;

f̂ estimate of the objective function derived by the simulation model;
y endogenous queueing model variables;
q exogenous queueing model parameters;
p exogenous simulation model parameters.

We now describe how f̂ and T are combined to derive the metamodel m. The proposed

metamodel m combines a functional component with a physical component as follows.

m(x, y;α,β, q) = αT (x, y; q)+φ(x;β), (3)

where φ is the functional component, α and β are parameters of the metamodel.

In this paper, the metamodel is embedded within a trust region (TR) derivative-free

algorithm. The main idea of trust region methods is to build, at each iteration, a model of

the objective function which one “trusts” in a neighborhood of the current iterate, the trust

region. The most common model choice is a quadratic polynomial. Additionally, numerical

experiments for derivative-free TR methods indicate that quadratic polynomials with a
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diagonal second derivative matrix are often more efficient than full quadratic polynomials

(Powell 2003). We therefore define φ as a quadratic polynomial in x with a diagonal second

derivative matrix.

φ(x;β) = β1 +
d

∑

j=1

βj+1xj +
d

∑

j=1

βj+d+1x
2
j , (4)

where d is the dimension of x, xj and βj are the jth components of x and β, respectively.

Other formulations, such as minimum Frobenius norm quadratic models, can also be

suitable for this framework.

At each iteration of a trust region algorithm the objective function is evaluated at a set

of points. The metamodel is then constructed based on objective function observations.

Traditionally, trust region methods fit the polynomial via interpolation. In this framework,

we fit the metamodel via regression. At each iteration of the SO algorithm, the metamodel

is fitted using the simulated observations obtained at the current iteration, as well as all

simulated observations collected at previous iterations.

The parameters β and α of the metamodel are fitted by solving a least squares problem.

At a given iteration, the model approximates the objective function in a neighborhood

of the current iterate. In order to give more importance to observations that correspond

to points that are near the current iterate, we associate weights with each observation.

Assume at iteration k we have simulated the performance of a set of nk distinct points

{x1, x2, . . . xnk}, then the least squares problem is formulated as follows.

min
α,β

nk
∑

i=1

{

wki

(

f̂(xi;p)−m(xi, yi;α,β, q)
)}2

+ (w0.(α− 1))
2
+

2d+1
∑

i=1

(w0.βi)
2, (5)

where xi represents the ith point, with corresponding endogenous queueing model vari-

ables yi and simulated estimate f̂(xi;p). The weight associated at iteration k with the ith

estimate is denoted wki. The parameter w0 represents a fixed weight.

The first squared term of Equation (5) represents the weighted distance between the

simulated estimates and the metamodel predictions. The next two squared terms measure
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the distance between the parameters and their initial values. These terms ensure that the

least squares matrix is always of full rank (regardless of the number or location of the

simulated points). The initial values used here (one for α and zero for β) lead to an initial

metamodel that is based only on the queueing model. This is of interest when starting off

the algorithm with few or even no simulated observations.

The weights, wki, capture the importance of each point with regards to the current

iterate. We use what is known as the inverse distance weight function (Atkeson et al.

1997) along with the Euclidean distance. This leads to the following weight parameters:

wki = 1/(1+ ‖xk −xi‖2), where xk is the current iterate, and xi is the ith point.

The weight of a given point is therefore inversely proportional to its distance from

the current iterate. This allows us to approximately have a Taylor-type behavior, where

observations corresponding to local points have more weight. The least squares problem

is solved using the Matlab routine lsqlin (Mathworks, Inc. 2008).

4. Optimization algorithm

4.1. Multi-model algorithms

In order to integrate the proposed metamodel within an existing optimization method,

we resort to multi-model (or hybrid) algorithms, which allow for an arbitrary metamodel

to be used. These methods share a common motivation, which is to combine the use of

models with varying evaluation costs (low versus high-fidelity models, or coarse versus

fine models). Multi-model algorithms include that of Carter (1986) (see references herein

for previous multi-model frameworks), Booker et al. (1999), Alexandrov et al. (2001), and

Bandler et al. (2006). Alexandrov and Lewis (2001) give a comparison of some of these

multi-model algorithms.

Conn et al. (2009a) recently proposed a trust region derivative-free framework for uncon-

strained problems. It builds upon the Basic TR algorithm of Conn et al. (2000). In this

paper, we choose to tailor the algorithm of Conn et al. (2009a) and integrate the proposed
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metamodel within it. Other approaches, such as that of Booker et al. (1999), can also

be tailored to integrate the proposed metamodel. Our choice is based on the following

reasons. Among the two main strategies used to ensure global convergence, line search and

trust region methods, the latter are more appropriate for our context since they “extend

more naturally than line search methods to models that are not quadratics with posi-

tive definite Hessians” (page 13 of Carter (1986)). The most common approach for fitting

metamodels within a trust region (TR) framework is interpolation. Nevertheless, for noisy

functions we believe that regression is more appropriate since it is less sensitive to the

inaccuracy of the observations. This algorithm allows for arbitrary metamodels and makes

no assumption on how these metamodels are fitted (interpolation or regression). Given

the difficulty and cost of obtaining accurate gradient estimates for simulation-based urban

transportation problems, derivative-free (DF) methods are appealing since they do not

require derivative estimations.

4.2. Algorithm

In this section, we omit references to the exogenous parameters of the simulation model,

i.e., we denote f(x;p) as f(x).

0. Initialization.

Define for a given iteration k: mk(x, y;νk, q) as the metamodel (denoted hereafter as

mk(x)), xk as the iterate, ∆k as the trust region radius, νk = (αk, βk) as the vector of

parameters of mk, nk as the total number of simulation runs carried out up until and

including iteration k, uk as the number of successive trial points rejected, εk as the measure

of stationarity (norm of the derivative of the Lagrangian function of the TR subproblem

with regards to the endogenous variables) evaluated at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0< η1 < 1, 0< γ < 1< γinc,

εc > 0, 0< τ̄ < 1, 0< d̄<∆max, ū∈N
∗. Set the total number of simulation runs permitted
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(across all points) nmax, this determines the computational budget. Set the number of

simulation replications per point r (defined in Equation (2)).

Set k= 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Compute T and f̂ at x0, fit an initial model m0 (i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode (detailed in Sec-

tion 4.3).

2. Step calculation. Compute a step sk that reduces the model mk and such that

xk+sk (the trial point) is in the trust region (i.e. approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk +1.

Include the new observation in the set of sampled points (nk = nk+r), update the weights

w and fit the new model mk+1.

4. Model improvement. Compute τk+1 =
‖νk+1−νk‖

‖νk‖
. If τk+1 < τ̄ , then improve the

model by simulating the performance of a new point x, which is sampled from a distri-

bution such as the one defined in Section 4.3. Evaluate T and f̂ at x. Include this new

observation in the set of sampled points (nk = nk + r). Update mk+1.

5. Trust region radius update.

∆k+1 =







min{γinc∆k,∆max} if ρk > η1
max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū
∆k otherwise

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k= k+1.

If nk <nmax, then go to Step 1. Otherwise, stop.
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4.3. Algorithmic details

Asymptotic properties. Recall that the primary purpose of the proposed methodol-

ogy is to enable the identification of points with improved performance under very tight

computational budgets. To achieve this, we tailor the Conn et al. (2009a) algorithm such

as to yield an algorithm with good short-term performance.

In order to ensure global convergence for unconstrained problems, the Conn et al.

(2009a) algorithm requires that within a uniformly bounded number of steps a certifi-

ably fully linear model (i.e., a model that satisfies first-order Taylor-type bounds) can be

obtained. Whenever a certificate of full linearity is required, our algorithm switches to the

conservative mode. For the complex transportation problems and the tight computational

budgets that we consider, this mode has never been triggered in any of our experiments.

If the asymptotic performance (and therefore the conservative mode) of the algorithm is

of interest, we suggest to follow the lines of traditional SO techniques that use a quadratic

polynomial as a metamodel (i.e., set α of Equation (3) to zero), along with traditional

sampling strategies and statistical tests at various steps of the algorithm (Shapiro et al.

2009, Bharadwaj and Kleywegt 2008, Bastin et al. 2006, Kleywegt and Shapiro 2001,

Shapiro 2000). Nonetheless, this will come at the cost of a much larger computational

budget, and is therefore out of the scope of this paper.

Criticality step. The criticality step of the algorithm ensures that if the measure of

stationarity goes under a given threshold, then the model can be made certifiably fully

linear so that its stationarity measure can be trusted.

Step calculation. Details regarding the TR subproblem are given for the traffic signal

control problem in Section 5.2.

Acceptance of the trial point. The actual reduction of the objective function is com-

pared to the reduction predicted by the model, this determines whether the trial point is

accepted or rejected.
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Model improvement step. This step aims to sample points that can improve the accu-

racy of the metamodel. Such points can, for instance, improve the geometric properties

of the sampled space (e.g., attempting to fully span the feasible space such that a full

rank least squares matrix is obtained, or in the case of interpolation methods improving

the poisedness of the sample (Conn et al. 2008a; Conn et al. 2008b)). To sample we draw

uniformly from the feasible space.

TR radius update. In the Conn et al. (2009a) algorithm the TR radius can be reduced

if the model is fully linear but has not performed well. As long as α 6= 0, we cannot certify

whether the model is fully linear. We therefore reduce the TR radius after ū successive

trial points have been rejected. If the TR radius reaches a lower bound d̄, then we switch

to the conservative mode in order to obtain a fully linear model. In our experiments, this

was never necessary.

Sample sizes. The simulator is called at steps 3 and 4 of the algorithm to evaluate

the performance of a trial point and a model improvement point, respectively. Given the

tight computational budgets considered in this paper, each time the simulator is used to

evaluate the performance of a point only one replication is run (i.e., r of Equation (2)

equals 1).

Algorithmic parameters. The following values are used for the parameters of the TR

algorithm: ∆max = 1010, ∆0 = 103, η1 = 10−3, γ = 0.9, γinc = 1.2, ǫc = 10−6, τ̄ = 0.1, d̄ =

10−2, ū= 10, w0 = 0.1. Typical values for TR parameters are given in Carter (1986).

Convergence of constrained DF TR algorithms. As detailed by Conn et al.

(2009b), DF TR methods are a relatively recent topic. The Conn et al. (2009a) algo-

rithm ensures global convergence for unconstrained problems. Conn et al. (1998) propose

a method to solve problems with general constraints using an unconstrained TR algo-

rithm. The transportation problems that we are interested in solving fall into the category

of what they call easy constraints. These are general constraints that are continuously
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differentiable and whose first-order partial derivatives can be computed relatively cheaply

(with regards to the cost of evaluating the objective function). In their approach, they

include such constraints in the TR subproblem, which ensures that all trial points are

feasible. Conn et al. (2009b) mention that such an approach is often sufficient in practice.

Here we use the TR algorithm proposed by Conn et al. (2009a) for unconstrained

methods, and extend its use to constrained problems as Conn et al. (1998) suggest. That

is, we include the constraints in the TR subproblem to ensure that all trial points are

feasible. Section 5.2 formulates the TR subproblem for a signal control problem.

5. Traffic signal control

5.1. Problem formulation

We illustrate the use of this framework with a traffic signal control problem. A review

of signal control formulations is given in Appendix A of Osorio (2010). Traffic signal

setting strategies can be either fixed-time or traffic-responsive strategies. In this paper we

consider fixed-time (also called pre-timed) strategies. These strategies use historical traffic

data, and yield one traffic signal setting for the considered time of day. The traffic signal

optimization problem is solved offline.

We consider the same problem as in Osorio and Bierlaire (2009b). In this problem, the

signal plans of several intersections are determined jointly. For a given intersection and

a given time interval (e.g., evening peak period), a fixed-time signal plan is a cyclic (i.e.,

periodic) plan that is repeated throughout the time interval. The duration of the cycle

is the time required to complete one sequence of signals. For example, the cycle times of

the model considered in Section 6 are of 90 or 100 seconds. A phase is defined as a set of

traffic streams that are mutually compatible and that receive identical control.

The cycle of a signal plan is divided into a sequence of periods called stages. Each stage

consists of a set of mutually compatible phases that all have green. The cycle may also

contain all-red periods, where all streams have red indications. The difference between the
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cycle time and the sum of the all-red times is called the available cycle time. The ratio of

the available cycle time and the cycle time is called the available cycle ratio.

In order to coordinate the signals of adjacent intersections (e.g., to create green waves

along arterials), offsets variables are used. An offset is the difference in time between the

reference points of the cycles of two intersections. The ratio of green times to cycle time

is known as the green split.

In this paper, we consider a fixed-time signal control problem where the offsets, the

cycle times and the all-red durations are fixed. The stage structure is also given, i.e., the

set of lanes associated with each stage as well as the sequence of stages are both known.

This is known as a stage-based approach. The decision variables of this problem consist

of the green splits of the different intersections.

This is a traditional signal control problem, which is easy to solve for a single intersec-

tion. For multiple intersections this problem becomes difficult due to the need to account

for the interactions between the vehicular queues of adjacent intersections.

To formulate this problem we introduce the following notation:

bi available cycle ratio of intersection i;
x(j) green split of phase j;
xL vector of minimal green splits;
I set of intersection indices;
PI(i) set of phase indices of intersection i.

The problem is traditionally formulated as follows:

min
x

f(x;p)≡E[F (x;p)] (6)

subject to

∑

j∈PI (i)

x(j) = bi, ∀i∈I (7)

x≥ xL. (8)

The decision vector x consists of the green splits for each phase. The objective is to

minimize the expected travel time (Equation (6)). The linear constraints (7) link the green



Osorio and Bierlaire: A simulation-based optimization framework for urban transportation problems
16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

times of the phases with the available cycle time for each intersection. The bounds (8)

correspond to minimal green time values for each phase. These have been set to 4 seconds

according to the Swiss transportation norm (VSS 1992).

5.2. Trust region subproblem

At a given iteration k the TR subproblem includes three more constraints than the pre-

vious problem. It is formulated as follows:

min
x,y

mk = αkT (x, y; q)+φ(x;βk) (9)

subject to

∑

j∈PI (i)

x(j) = bi, ∀i∈I (10)

h2(x, y; q) = 0 (11)

‖x−xk‖2 ≤∆k (12)

y≥ 0 (13)

x≥ xL, (14)

where xk is the current iterate, ∆k is the current trust region radius, αk and βk are the

current metamodel parameters, and h2 of Equation (11) represents the queueing model

(System of Equations (15) given in the Appendix). Constraint (12) is the TR constraint,

using the Euclidean norm. The endogenous variables of the queueing model are subject to

positivity constraints (Equation (13)). Thus, the TR subproblem consists of a nonlinear

objective function subject to nonlinear and linear equalities, a nonlinear inequality and

bound constraints. The analytical form of T for the signal control problem considered in

this paper is given in the Appendix.

For a problem with ℓ lanes (i.e., queues), s signalized lanes, n endogenous phases and

r controlled intersections, there are 5ℓ+ s+ n endogenous variables, which consist of 5
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endogenous queueing model variables per lane, the green splits for each signalized lane

and the green splits for each phase. There are ℓ+ s+ r linear and 4ℓ nonlinear equations,

as well as 5ℓ+ s+n+1 inequalities (lower bound constraints for all endogenous variables

and the trust-region constraint).

This problem is solved with the Matlab routine for constrained nonlinear problems,

fmincon, for which one option, which we use, resorts to a sequential quadratic program-

ming method (Coleman and Li 1996, Coleman and Li 1994). We set the tolerance for

relative change in the objective function to 10−3 and the tolerance for the maximum

constraint violation to 10−2.

5.3. Signal plan features

Sampling. The model improvement step of the algorithm attempts to diversify the set

of sampled points by drawing points uniformly from the feasible space. A feasible signal

plan is defined by Equations (7) and (8) (or equivalently Equations (10) and (14)). We

draw uniformly from this space, using the code of Stafford (2006). Given this signal plan,

we solve the network model (Equation (11)) following the procedure described in Osorio

and Bierlaire (2009a).

Explanatory/independent variables. The polynomial component of the metamodel,

φ, is a quadratic polynomial in the decision variables x, which are the phase variables of the

different intersections. For a given intersection the phase variables are linked through the

linear Equation (7) (or equivalently Equation (10)). In order to use independent explana-

tory variables, we exclude one phase per intersection. Thus for a set of i intersections

and p phases, the polynomial is a function of p− i phase variables, and has a total of

2(p− i)+ 1 coefficients.

6. Empirical analysis

We evaluate and illustrate the use of this framework with case studies based on road net-

works within the Swiss city of Lausanne. We use a calibrated microscopic traffic simulation
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model of the Lausanne city center. This model (Dumont and Bert 2006) is implemented

with the Aimsun simulator (TSS 2008). Details regarding the Lausanne network are given

in Osorio and Bierlaire (2009b).

We consider two Lausanne city subnetworks. Firstly, we consider a simplified demand

distribution. Secondly, we analyze the performance of the method given the demand of

the city of Lausanne for the evening peak hour, and control the plans of a larger set of

intersections. For both subnetworks, we consider tight computational budgets in order to

evaluate the ability of the proposed approach to address important traffic control problems

in a computationally efficient manner. More detailed results can be found in Osorio and

Bierlaire (2010).

To refer to the different metamodels we use the notation of Equation (3). In both sec-

tions, we compare the performance of the signal plans derived by the use of three models:

(i) the proposed metamodel, m, (ii) a quadratic polynomial with diagonal second deriva-

tive matrix, (i.e., the metamodel consists of φ), (iii) the queueing model, T . Procedure

(iii) is proposed in Osorio and Bierlaire (2009b), and resorts to the same algorithm as the

one used to solve the TR subproblem. The corresponding algorithms are referred to as

Am, Aφ and AT , respectively.

6.1. Lausanne subnetwork with simplified demand distribution

We consider the Lausanne road network with a simplified demand distribution. We control

a set of two adjacent signalized intersections. Demand arises at the nine centroids nearest

to these two intersections. The simulation setup considers a 20 minute run time, preceded

by a 15 minute warm-up time.

The subnetwork consists of 12 roads with 21 lanes, 13 of which are signalized. A total

of 13 phases are considered variable (i.e., the dimension of the decision vector is 13). This

leads to a polynomial φ with 23 coefficients. Since each lane is modeled as a queue, this

subnetwork is modeled as a set of 21 queues. The corresponding TR subproblem consists of
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131 endogenous variables with their corresponding lower bound constraints, 84 nonlinear

and 36 linear equalities.

Firstly, we consider a tight computational budget, which is defined as a maximum

number of simulation runs that can be carried out. The computational budget is set to

150 runs. We consider the performance of the signal plans derived by Am and Aφ. We run

each algorithm 10 times. We then compare their performance for increasing total number

of simulation runs, which we denote n. Initially, no simulated observations are available,

i.e., we start off with an empty sample. We initialize all runs with the same signal plan,

which is a uniformly drawn signal plan generated with the method of Stafford (2006).

To compare the performance of both methods for a given number of simulation runs

(i.e., a given n), we consider the 10 signal plans derived and evaluate their performance by

running 50 replications of the simulation model. We then compare the empirical cumulative

distribution function (cdf) of the average travel times over all 10 signal plans and 50

replications, i.e., each cdf consists of a set of 500 observations.

Figure 1 considers a set of four plots. Each plot displays results for the initial plan, and

the plans derived by both methods for a given n. Each plot considers a different n value.

Plots 1(a)-1(d) consider, respectively, n values of 10, 50, 100 and 150. The cdf labeled

x0 denotes the cdf of the initial random plan. The numbers denote the corresponding n

values, e.g., the cdf labeled “Aφ 10” corresponds to the signal plans proposed by Aφ after

running 10 simulation runs (n= 10).

For all four n values, Am leads to signals plans with improved average travel times,

when compared to both the initial plan and the plans proposed by Aφ. It also yields

reduced variance in the average travel times across signal plans and replications. The plan

proposed by Aφ for n= 10 (plot 1(a)) has worse performance than the initial plan. Once

n reaches 50 (plot 1(b)), Aφ leads to signal plans with improved performance compared

to the initial plan. For n values of 100 and 150 (plots 1(c) and 1(d)), the plans derived
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(d) n= 150

Figure 1 Empirical cdf’s of the average travel times considering an initial random signal plan.

by Am and Aφ have similar performance, with Am leading to signal plans with smaller

variance.

Secondly, we allow for a larger computational budget. We allow for a total of 750

simulation runs. We run each method once. As before, we initialize both methods with a

uniformly drawn initial signal plan and start off with an empty sample.

Figure 2(a) considers the signal plans derived by Am and Aφ for n∈ {10,20,30,40}. For

each signal plan, the figure displays the empirical cdf of the average travel times over the

50 replications. Once again, the cdf denoted x0 corresponds to the initial random plan.

The signal plan derived by Am is the same when running 10,20,30 and 40 simulation

runs. For n = 10, the plans of both Am and Aφ lead to improved average travel times,
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Figure 2 Empirical cdf’s of the average travel times considering an initial random signal plan and

evaluating the performance as n increases from 10 to 40 (left plot) and at n = 750 (right

plot).

when compared to the initial plan. As the number of simulation runs increases, Aφ leads

to plans with improved performance. At n= 40, its performance is similar to that of the

signal plan proposed by Am. The latter leads to reduced variance in the average travel

time.

Figure 2(b) considers the signal plans proposed by Am and Aφ at n = 750, as well

as the initial signal plan and the signal plan proposed by the queueing method, AT . It

displays for each method the cdf of the average travel times. All three methods, Am, Aφ

and AT , lead to signal plans with improved performance compared to the random initial

signal plan. The methods that use simulated observations throughout the optimization

process, Am and Aφ, lead to improved signal plan performance when compared to the

queueing method AT . The proposed method, Am, also yields the signal plan with the

smallest variance in the average travel times.

6.2. Lausanne subnetwork with evening peak hour demand

We evaluate the performance of the proposed method by considering a larger subnet-

work of the Lausanne city center. The Lausanne city road network model is displayed in

Figure 3(a). The considered subnetwork is located in the city center, and is delimited in
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(a) (b)

Figure 3 Lausanne city road network model (left) and subnetwork model (right).

Figure 3(a) by an oval. The subnetwork is displayed in detail in Figure 3(b). It is presented

in detail in Osorio and Bierlaire (2009b). We use the demand of the evening peak period

(17h-18h). The simulation outputs used both to fit the metamodel and to evaluate the

performance of the derived signal plans are the subnetwork average travel times.

This subnetwork contains 48 roads and 15 intersections. The signalized intersections

have a cycle time of either 90 or 100 seconds. Nine intersections are signalized and control

the flow of 30 roads. There are 102 lanes, 60 of which are signalized. There are a total of

51 phases that are considered variable.

The queueing model of this subnetwork consists of 102 queues (one queue for each lane).

The TR subproblem consists of 621 endogenous variables with their corresponding lower

bound constraints, 408 nonlinear equality constraints, 171 linear equality constraints and

1 nonlinear inequality constraint.

Note that this problem is considered a large-scale problem for existing unconstrained DF

methods, not to mention the added complexity of the nonlinear constraints. In particular,

the problem has 51 decision variables. Thus if one were to resort to a classical interpolation-

based quadratic polynomial surrogate, the evaluation of the performance of 1378 points

would be necessary to fit the full polynomial, and in order to obtain an accurate evaluation,
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Figure 4 Empirical cdf’s of the average travel times considering an initial random signal plan.

a large number of replications would need to be carried out at each point. This is because

for a problem with n decision variables (n+1)(n+2)/2 suitably sampled points (i.e., well

poised (Conn et al. 2000, Conn et al. 2009b)) are necessary to fit the full quadratic.

We allow for a maximum number of 150 simulation runs that can be carried out, and

no initial observation available. For a given initial signal plan, we run the corresponding

algorithm 10 times, deriving 10 signal plans. We then evaluate the performance of each

of these signal plans by running 50 replications of the simulation model. All simulations

are preceded by a 15 minute warm-up period. To compare the methods, we consider the

empirical cdf of the average travel times.

Each plot of Figure 4 considers one method. The left plot considers Am, the right plot

considers Aφ. Each plot displays 11 cdf’s: the cdf of the initial plan (thick solid curve),

and the cdf’s of the 10 signal plans obtained with the corresponding method (thin solid

curves). All 10 plans proposed by Am yield improved average travel times compared to

the initial plan. For Aφ, there are cases where after 150 simulation runs the algorithm

does not identify a plan with improved performance compared to the initial plan.

Hereafter, we consider the empirical cdf of the average travel times over all 10 signal

plans and 50 replications, i.e., each cdf consists of a set of 500 observations. Each plot
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Figure 5 Empirical cdf’s of the average travel times considering an initial random signal plan, running

10 instances of each method, and evaluating their performance at different n values.

of Figure 5 considers one method, and displays the cdf’s of the initial plan, and of the

plans derived after running 10, 50, 100 and 150 simulation runs. For all n values, Am

(left plot) yields signal plans with improved distributions. The distributions also improve

as n increases. For n values of 10 and 50, Aφ (right plot) yields signal plans with worse

performance compared to the initial plan. For n values of 100 and 150, it identifies plans

with improved performance.

We now consider a case with a higher computational budget. We allow for 3000 simu-

lation runs and consider a random initial point. In this case, we run the algorithm once.

We then evaluate the performance of the derived plans by running 50 replications of the

simulation model.

Figure 6(a) presents the cdf’s of the average travel times across the 50 replications,

considering the plans derived by Am, Aφ and AT . It also presents the performance of an

existing signal plan for the city of Lausanne (denoted Base).

All three methods (Am, Aφ and AT ) lead to improvement compared to the existing

plan for the city of Lausanne. All three methods have similar performance, with Am

leading to signal plans with slightly lower travel times. The method that consists of only
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Figure 6 Empirical cdf’s of the average travel times considering different initial random signal plans

and allowing for 3000 simulation runs.

the queueing model and does not resort to the use of simulated observations, AT , has very

good performance.

We perform the same experiment, allowing for 3000 simulation runs, with a different

initial point. Figure 6(b) presents the corresponding results. The same conclusions as for

Figure 6(a) hold.

We evaluate the computational time required by Am. We consider the two instances of

3000 simulations, previously presented. The optimization algorithm is instantaneous (less

than 1 second) in more than 95% of the runs, whereas the simulation run time for one

replication is typically between 1 and 2 minutes. This illustrates the computational cost of

each simulation and the need to limit the number of evaluations of the simulation model.

The results of Section 6 indicate that the proposed metamodel systematically yields sig-

nal plans with improved performance when compared to the initial plans, whereas limiting

the metamodel to a quadratic polynomial may fail to do so. The proposed technique also

leads to plans with reduced variance in the average travel times, i.e., it increases travel

time reliability.
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7. Conclusions

This paper presents a simulation-based optimization framework for the design and man-

agement of congested urban networks. It proposes a metamodel that combines information

from a traffic simulation tool and an analytical network model. It builds upon the classical

approach of using a general-purpose quadratic polynomial as a metamodel, by combining

the polynomial with the analytical network model. It integrates this metamodel within a

derivative-free trust region optimization algorithm.

The performance of this approach is evaluated on a fixed-time signal control problem

with two subnetworks of the city of Lausanne. We consider cases with tight computational

budgets, and initialize all runs with an empty set of simulated observations. The analytical

information provided by the queueing network model enables the identification of well

performing trial points within few simulation runs, and continues to perform well as the

number of runs increases. This illustrates the added valued of the structural information

provided analytically by the network model. The method is computationally efficient and

suitable for complex problems with tight computational budgets.

Efficiently tackling unconstrained high dimensional problems (e.g., more than 200 vari-

ables) is one of the main limitations of existing derivative-free methods, not to mention

the added complexity of constrained and stochastic problems. The generic metamodels

used in these algorithms require a moderate to large number of simulation runs to ini-

tially fit the metamodel of interest. The proposed combination of generic metamodels with

application-specific physical metamodels allows the algorithm 1) to overcome the need for

a substantial initial sample, 2) to identify trial points with good performance since the first

iterations, and thus 3) to address high dimensional problems under tight computational

budgets.

The accuracy and the computational efficiency of this method can be improved by inves-

tigating different sample size calculation and allocation strategies, as well as by integrating
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statistical tests at various steps of the algorithm, such as those presented in Shapiro et al.

(2009).

This simulation-based optimization method enables the use of stochastic traffic sim-

ulators to go beyond a what-if analysis. With this framework, we can address complex

problems that account, in detail, for the performance of individual vehicles (e.g., energy

consumption, emissions), the behavior of individual drivers (e.g., reaction to real-time

traffic information), as well as their impact at an urban scale. Recent work has used this

framework to address energy-efficient traffic management problems (Osorio and Nanduri

2012), as well as to propose novel formulations for traditional transportation problems that

account for higher-order distributional information (Chen et al. 2012). Such formulations

can improve, for instance, the reliability or the robustness of transportation systems.

The proposed approach of combining a functional metamodel with an analytical queue-

ing network model is of interest to efficiently address SO problems for other networked

systems, ranging from healthcare networks (Osorio and Bierlaire 2009a) to biological pro-

tein synthesis networks (Osorio and Bierlaire 2012).
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Appendix

Analytical network model

The physical component of the metamodel is an analytical and differentiable urban traffic

model. Each lane of an urban road network is modeled as a set of finite capacity queues.

In the following notation the index i refers to a given queue. We refer the reader to Osorio

and Bierlaire (2009b) and to Osorio and Bierlaire (2009a) for details.

γi external arrival rate;
λi total arrival rate;
µi service rate;
µ̃i unblocking rate;
µeff
i effective service rate (accounts for both service and eventual blocking);

ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;
Ni total number of vehicles in queue i;
P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;
pij transition probability from queue i to queue j;
xj green split of phase j;
si saturation flow rate of lane i [veh/h];
Di set of downstream queues of queue i;
S set of indices of the signalized queues;
P(i) set of phase indices of signalized queue i.

The queueing network model is formulated as follows.























































































































λi = γi +

∑

j
pjiλj(1−P (Nj = kj))

(1−P (Ni = ki))
, (15a)

1

µ̃i

=
∑

j∈Di

λj(1−P (Nj = kj))

λi(1−P (Ni = ki))µeff
j

, (15b)

1

µeff
i

=
1

µi

+P f
i

1

µ̃i

, (15c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii , (15d)

P f
i =

∑

j

pijP (Nj = kj), (15e)

ρi =
λi

µeff
i

, (15f)

µi −
∑

j∈P(i)

xjsi = 0, ∀i∈ S (15g)

(15h)

In this model, the exogenous parameters of a given queue are γi, µi, pij , ki and si. All
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other parameters are endogenous. When used to solve a signal control problem (as in

this paper), the capacity of the signalized lanes become endogenous, which makes the

corresponding service rates, µi, endogenous. In that case, the exogenous parameters are

γi, pij , ki and si.

The form of the analytical approximation of the objective function provided by the

queueing model, T (x, y; q), for the signal control problem of this paper is given by:

(
∑

i
E[Ni])/(

∑

i
γi(1−P (Ni = ki))), where E[Ni] represents the expected number of vehi-

cles in lane i, and is given by: E[Ni] = ρi

(

1
1−ρi

−
(ki+1)ρ

ki

i

1−ρ
ki+1

i

)

. Details on the derivation of

these expressions can be found in Osorio (2010).

Model improvement step

Figure 7 analyses the number of model improvement steps (step 4 in Section 4.2) that were

carried out when running the experiments of Figure 4. Each plot of Figure 7 considers one

initial point. Each plot displays two boxplots, one for each method. The method labeled 1

(resp. 2) is the proposed approach (resp. polynomial approach). Each boxplot summarizes

10 points, which are the total number of model improvement steps for each of the 10 runs

of the algorithm (each run of the algorithm allowed for 150 simulations). For the first

initial point (left plot), across all 10 runs of the algorithm, the proposed method requires

fewer model improvement points than the polynomial. There is a similar but less marked

trend for the second initial point (right plot).
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Figure 7 Number of model improvement steps carried out for each method and each initial point.


