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Abstract

Distributionally robust optimization is a paradigm for decision-making under uncertainty

where the uncertain problem data is governed by a probability distribution that is itself subject

to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all

distributions that are compatible with the decision maker’s prior information. In this paper,

we propose a unifying framework for modeling and solving distributionally robust optimization

problems. We introduce standardized ambiguity sets that contain all distributions with pre-

scribed conic representable confidence sets and with mean values residing on an affine manifold.

These ambiguity sets are highly expressive and encompass many ambiguity sets from the recent

literature as special cases. They also allow us to characterize distributional families in terms of

several classical and/or robust statistical indicators that have not yet been studied in the context

of robust optimization. We determine conditions under which distributionally robust optimiza-

tion problems based on our standardized ambiguity sets are computationally tractable. We also

provide tractable conservative approximations for problems that violate these conditions.

Keywords. Robust optimization, ambiguous probability distributions, conic optimization.

1 Introduction

In recent years, robust optimization has witnessed an explosive growth and has now become a

dominant approach to address practical optimization problems affected by uncertainty. Robust
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optimization offers a computationally viable methodology for immunizing mathematical optimiza-

tion models against parameter uncertainty by replacing probability distributions with uncertainty

sets as fundamental primitives. One of the core enabling techniques in robust optimization is

the tractable representation of the so-called robust counterpart, which is given by the following

semi-infinite constraint:

v(x, z) ≤ w ∀z ∈ C (1)

or equivalently,

sup
z∈C

v(x, z) ≤ w,

where z ∈ RP is a vector of uncertain problem parameters, x ∈ X ⊆ RN represents a vector of here-

and-now decisions taken before the realization of z is known, C ⊆ RP is the uncertainty set, v : RN×
RP → R is a given constraint function and w ∈ R constitutes a prescribed threshold. Intuitively,

the constraint (1) ‘robustifies’ the solution of an optimization problem by requiring the decision x

to be feasible for all anticipated realizations of the uncertain parameters z. The tractability of the

robust counterpart (1) depends on the beautiful interplay between the functional properties of v

as well as the geometry of C. We refer interested readers to [6, 7, 11] for comprehensive guides to

reformulating robust counterparts.

Despite the simplicity of characterizing uncertainty through sets, robust optimization has been

exceptionally successful in providing computationally scalable antidotes for a wide variety of chal-

lenging problems ranging from engineering design, finance and machine learning to policy making

and business analytics [6, 11]. However, it has been observed that robust optimization models can

lead to an underspecification of uncertainty as they do not exploit distributional knowledge that

may be available. In such cases, robust optimization may propose overly conservative decisions.

Contrary to robust optimization, stochastic programming explicitly accounts for distributional

information through expectation constraints of the form

EQ0 [v(x, z̃)] ≤ w, (2)

where z̃ ∈ RP is now a random vector, and the expectation is taken with respect to the distribution

Q0 of z̃. Expectation constraints of the type (2) display great modeling power. For instance, they

emerge from epigraphical reformulations of single-stage stochastic programs such as the newsvendor

problem. They may also arise from stochastic programming-based representations of polyhedral
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risk measures such as the conditional value-at-risk [16, 52, 53]. Expectation constraints further

serve as basic building blocks for various more sophisticated decision criteria such as optimized

certainty equivalents, shortfall aspiration levels and satisficing measures [18, 19, 22, 44]. Finally,

expectation constraints can also emerge from reformulations of chance constraints of the form

Q0 [v(x, z̃) ≤ w] ≥ 1− ε based on the identity Q0 [v(x, z̃) ≤ w] = EQ0

[
I[v(x,z̃)≤w]

]
, see [32, 51, 64].

Going back to the seminal works [40, 41], decision theory distinguishes between the concepts

of risk (exposure to uncertain outcomes whose probability distribution is known) and ambiguity

(exposure to uncertainty about the probability distribution of the outcomes). If we identify the

uncertainty set C in the robust counterpart (1) with the support of the probability distribution Q0

in (2), then we see that both robust optimization and stochastic programming provide complemen-

tary approaches to formulating a decision maker’s risk attitude. However, from the perspective of

decision theory, neither robust optimization nor stochastic programming addresses ambiguity.

In the era of modern business analytics, one of the biggest challenges in operations research

concerns the development of highly scalable optimization problems that can accommodate vast

amounts of noisy and incomplete data whilst at the same time truthfully capturing the decision

maker’s attitude towards both risk and ambiguity. We call this the distributionally robust opti-

mization approach. In distributionally robust optimization, we study a variant of the stochastic

constraint (2) where the probability distribution Q0 is itself subject to uncertainty. In particular,

we are concerned with the following distributionally robust counterpart,

EP [v(x, z̃)] ≤ w ∀P ∈ P

or equivalently,

sup
P∈P

EP [v(x, z̃)] ≤ w, (3)

where the probability distribution Q0 is merely known to belong to an ambiguity set P of probabil-

ity distributions. In fact, while Q0 is often unknown, decision makers can typically deduce specific

properties of Q0 from existing domain knowledge (e.g., bounds on the customer demands or sym-

metry in the deviations of manufacturing processes) or from statistical analysis (e.g., estimation of

means and covariances from historical data).

Contrary to classical robust optimization and stochastic programming, the distributionally ro-

bust counterpart (3) captures both the decision maker’s risk attitude (e.g. through the choice of

3



appropriate disutility functions for v) and an aversion towards ambiguity (through the consideration

of the worst probability distribution within P). Ambiguity aversion enjoys strong justification from

decision-theory, where it has been argued that most decision makers have a low tolerance towards

uncertainty in the distribution Q0 [29, 33]. For these decision makers it is rational to take decisions

in view of the worst probability distribution that is deemed possible under the existing information.

There is also strong empirical evidence in favor of distributional robustness. In fact, it has been

frequently observed that fitting a single candidate distribution to the available information leads

to biased optimization results with poor out-of-sample performance. In the context of portfolio

management, this phenomenon is known as the “error maximization effect” of optimization [48].

It has been shown recently that under specific assumptions about the ambiguity set P and the

constraint function v, the distributionally robust counterpart (3) inherits computational tractability

from the classical robust counterpart (1). This is surprising as the evaluation of the seemingly

simpler expectation constraint (2) requires numerical integration over a multidimensional space,

which becomes computationally intractable for high-dimensional random vectors. Moreover, if we

consider ambiguity sets of the form P = {Q : Q[z̃ ∈ C] = 1}, then the distributionally robust

counterpart recovers the classical robust counterpart (1). Distributionally robust optimization

therefore constitutes a true generalization of the classical robust optimization paradigm.

While there has been significant recent progress in distributionally robust optimization, there

is no unifying framework for modeling and solving distributionally robust optimization problems.

The situation is comparable to classical robust optimization, where prior to the papers [7, 15] there

were no methods for reformulating generic classes of robust counterparts. The goal of this paper

is to propose a similar methodology for distributionally robust optimization. In particular, we aim

to develop a canonical form for distributionally robust optimization problems which is restrictive

enough to give rise to tractable optimization problems, but which at the same time is expressive

enough to cater for a large variety of relevant ambiguity sets and constraint functions. From a

theoretical perspective, an optimization problem is considered to be tractable if it can be solved

in polynomial time (e.g. by the ellipsoid method). However, our main interest is in optimization

problems that are tractable in practice. In our experience, this is the case if the problems can be

formulated as linear or conic-quadratic programs (or, to a lesser degree, semidefinite programs)

that can be solved using mature off-the-shelf software tools.
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To achieve these goals, we focus on ambiguity sets that contain all distributions with prescribed

conic representable confidence sets and with mean values residing on an affine manifold. While

conceptually simple, it turns out that this class of standardized ambiguity sets is rich enough to

encompass and extend several ambiguity sets considered in the recent literature. They also allow

us to model information about statistical indicators that have not yet been considered in the robust

optimization literature. Examples are higher-order moments and the marginal median as well as

variability measures based on the mean-absolute deviation and the Huber loss function studied

in robust statistics. We remark that our framework does not cover ambiguity sets that impose

infinitely many moment restrictions, as would be required to describe symmetry, independence or

unimodality characteristics of the distributions contained in P [36, 50].

We demonstrate that the distributionally robust expectation constraints arising from our frame-

work can be solved in polynomial time under certain regularity conditions. In particular, the con-

ditions are met if the constraint functions v is convex and piecewise affine in the decision variables

and the random vector, and the confidence sets in the specification of the ambiguity set satisfy a

strict nesting condition. For natural choices of the constraint functions and the ambiguity sets,

these conditions hold, and (3) can be re-expressed in terms of linear, conic-quadratic or semidefinite

constraints. Thus, the inclusion of distributionally robust constraints of the type (3) preserves the

computational tractability of conic optimization problems. We also explain how the regularity con-

ditions can be relaxed to accommodate for more general constraint functions, and we demonstrate

that the nesting condition is necessary for the tractibility of the distributionally robust optimiza-

tion problem. For problems violating the nesting condition, we develop a tractable conservative

approximation that strictly dominates a näıve benchmark approximation.

The contributions of the paper may be summarized as follows.

1. We develop a framework for distributionally robust optimization that uses expectation con-

straints as basic building blocks. Our framework unifies and generalizes several approaches

from the literature. We identify conditions under which robust expectations constraints of

the type (3) are tractable, and we derive explicit conic reformulations for these cases.

2. We show that distributionally robust expectation constraints that violate our nesting condi-

tion result in intractable optimization problems. We further develop a tractable conservative

approximation for these irregular expectation constraints that significantly improves on a
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näıve benchmark approximation.

3. We demonstrate that our standardized ambiguity sets are highly expressive in that they allow

the modeler to prescribe a wide spectrum of distributional properties that have not yet been

studied in robust optimization. This includes information about generalized and higher-order

moments as well as selected indicators and metrics from robust statistics.

The history of distributionally robust optimization dates back to the 1950s. Much of the early

research relies on ad hoc arguments to construct worst-case distributions for well-structured problem

classes. For example, Scarf [54] studies a newsvendor problem where only the mean and variance

of the demand are known, while Dupačová (as Žáčková) [3] derives tractable reformulations for

stochastic linear programs where only the support and mean of the uncertain parameters are avail-

able. Distributionally robust expectation constraints can sometimes be reduced to ordinary expec-

tation constraints involving a mixture distribution that is representable as a convex combination of

only a few members of the ambiguity set. If this mixture distribution can be determined explicitly,

the underlying expectation constraint becomes amenable to efficient Monte Carlo sampling tech-

niques, see, e.g., Lagoa and Barmish [43], Shapiro and Ahmed [57] and Shapiro and Kleywegt [58].

Most recent approaches to distributional robustness rely on the duality results for moment

problems due to Isii [37], Shapiro [56] and Bertsimas and Popescu [14]. Among the first proponents

of this idea are El Ghaoui et al. [32], who study distributionally robust quantile optimization

problems. Their methods have later been extended to linear and conic chance constraints where only

the mean, covariance matrix and support of the underlying probability distribution are specified,

see, e.g. Calafiore and El Ghaoui [20], Chen et al. [23], Cheung et al. [25] and Zymler et al. [64].

Tractable reformulations for distributionally robust expectation constraints of the form (3) are

studied by Delage [26] and Delage and Ye [27] under the assumption that the ambiguity set specifies

the support as well as conic uncertainty sets for the mean and the covariance matrix of the uncertain

parameters. The authors also provide a recipe for constructing ambiguity sets from historical data

using McDiarmid’s inequality. Two-stage distributionally robust linear programs with first and sec-

ond order moment information are investigated by Bertsimas et al. [12]. It is shown that these prob-

lems are NP-hard if the uncertainty impacts the constraint right-hand side but reduce to tractable

semidefinite programs if only the objective function is affected by the uncertainty. Tractable approx-

imations to generic two-stage and multi-stage distributionally robust linear programs are derived
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by Goh and Sim [34] and Kuhn et al. [42], assuming that only the support, the mean, the covariance

matrix and/or the directional deviations of the uncertain problem parameters are known.

Ben-Tal et al. [4] extend the concepts of distributional robustness to parametric families of

ambiguity sets P(ε), ε ≥ 0, where the constraint (3) may be violated by ε for each ambiguity set

P(ε). There is also a rich literature on distributionally robust combinatorial and mixed-integer

programming, see Li et al. [46]. In this setting a major goal is to calculate the persistence of

the binary decision variables, that is, the probability that these variables adopt the value 1 in

the optimal solution. Finally, there are deep and insightful connections between classical robust

optimization, distributionally robust optimization and the theory of coherent risk measures, see,

e.g. Bertsimas and Brown [10], Natarajan et al. [49] and Xu et al. [61].

The remainder of the paper is organized as follows. Section 2 develops tractable reformulations

and conservative approximations for the robust expectation constraint (3). Section 3 explores the

expressiveness of constraint (3). Section 4 discusses safeguarding constraints that account for both

the ambiguity and the risk aversion of decision makers, and Section 5 presents numerical results.

All proofs are relegated to the appendix. The electronic companion to this article generalizes our

framework to accommodate any constraint functions that admit polynomial time separation oracles.

Notation. For a proper cone K (i.e., a closed, convex and pointed cone with nonempty inte-

rior), the relation x 4K y indicates that y − x ∈ K. We denote the cone of symmetric (posi-

tive semidefinite) matrices in RP×P by SP (SP+). For A,B ∈ SP , we use A 4 B to abbreviate

A 4SP+
B. We denote by K? the dual cone of a proper cone K. The sets M+(RP ) and P0(RP )

represent the spaces of nonnegative measures and probability distributions on RP , respectively. If

P ∈ P0(RP × RQ) is a joint probability distribution of two random vectors z̃ ∈ RP and ũ ∈ RQ,

then Πz̃P ∈ P0(RP ) denotes the marginal distribution of z̃ under P. We extend this definition to

ambiguity sets P ⊆ P0(RP × RQ) by setting Πz̃P =
⋃

P∈P{Πz̃P}. Finally, we say that a set A is

strictly included in a set B, or A b B, if A is contained in the interior of B.

2 Distributionally Robust Optimization Problems

In this paper we study a class of distributionally robust optimization problems that accommodate a

finite number of robust expectation constraints of the type (3). We require that these optimization
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problems are tractable if they are stripped of all distributionally robust constraints. Clearly, if this

were not the case, then there would be little hope that we could efficiently solve the more general

problems involving constraints of the type (3). We now describe a set of regularity conditions that

ensure the tractability of these distributionally robust optimization problems.

We assume that the ambiguity set P in (3) is representable in the standard form

P =

P ∈ P0(RP × RQ) :
EP [Az̃ +Bũ] = b,

P [(z̃, ũ) ∈ Ci] ∈
[
p
i
,pi

]
∀i ∈ I

 , (4)

where P represents a joint probability distribution of the random vector z̃ ∈ RP appearing in the

constraint function v in (3) and some auxiliary random vector ũ ∈ RQ. We assume thatA ∈ RK×P ,

B ∈ RK×Q, b ∈ RK and I = {1, . . . , I}, while the confidence sets Ci are defined as

Ci =
{

(z,u) ∈ RP × RQ : Ciz +Diu 4Ki ci
}

(5)

with Ci ∈ RLi×P , Di ∈ RLi×Q, ci ∈ RLi and Ki being proper cones. We allow K or Q to be zero, in

which case the expectation condition in (4) is void or the random vector ũ is absent, respectively.

We also assume that p
i
,pi ∈ [0, 1] and p

i
≤ pi for all i ∈ I.

We require that the ambiguity set P satisfies the following two regularity conditions.

(C1) The confidence set CI is bounded and has probability one, that is, p
I

= pI = 1.

(C2) There is a distribution P ∈ P such that P [(z̃, ũ) ∈ Ci] ∈
(
p
i
,pi
)

whenever p
i
< pi, i ∈ I.

Condition (C1) ensures that the confidence set with the largest index, CI , contains the support

of the joint random vector (z̃, ũ). The second condition stipulates that there is a probability

distribution P ∈ P that satisfies the probability bounds in (4) as strict inequalities whenever the

corresponding probability interval
[
p
i
,pi
]

is non-degenerate. This assumption allows us to exploit

the strong duality results from [37, 56] to reformulate the distributionally robust counterpart (3).

The ambiguity set P in (4) specifies joint probability distributions for the uncertain problem

parameters z̃ and an auxiliary random vector ũ that does not explicitly appear in (3). As we will see

below, the inclusion of an auxiliary random vector ũ allows us to model a rich variety of structural

information about the marginal distribution of z̃ in a unified manner. The modeler should encode

all available information about the true marginal distribution Q0 of z̃ into the ambiguity set P. In

other words, she should choose P as the smallest ambiguity set for which she knows with certainty
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that Q0 ∈ Πz̃P. Throughout the paper, the symbol P denotes a joint probability distribution of z̃

and ũ from within P0(RP ×RQ), whereas the symbol Q refers to a marginal probability distribution

of z̃ from within P0(RP ). We denote by Q0 the true marginal distribution of z̃.

We require that the constraint function v in (3) satisfies the following condition.

(C3) The constraint function v(x, z) can be written as

v(x, z) = max
l∈L

vl(x, z)

where L = {1, . . . , L} and the auxiliary functions vl : RN × RP → R are of the form

vl(x, z) = sl(z)>x+ tl(z)

with sl(z) = Slz + sl, Sl ∈ RN×P and sl ∈ RN , tl(z) = t>l z + tl, tl ∈ RP and tl ∈ R.

Thus, v must be convex and piecewise affine in the decision variables x and the random vector z.

Condition (C3) will allow us to use robust optimization techniques to reformulate the semi-infinite

constraints that arise from a dual reformulation of the distributionally robust constraint (3).

In the following, we show that the conditions (C1)–(C3) allow us to efficiently solve optimization

problems involving distributionally robust constraints of the type (3) if and only if the ambiguity set

P satisfies a nesting condition. Afterwards, we develop a conservative approximation for problems

that satisfy the conditions (C1)–(C3) but that violate the nesting condition.

Remark 1 (Generic Constraint Functions). It is possible to relax (C3) so as to accommodate

constraint functions that are convex in x, that can be evaluated in polynomial time and that allow

for a polynomial-time separation oracle with respect to max(z,u)∈Ci v(x, z), see [26, 27, 35]. This

milder condition is satisfied, for example, by constraint functions that are convex in x and convex

and piecewise affine in z. Moreover, if we assume that the confidence sets Ci are described by

ellipsoids, then we can accommodate constraint functions that are convex in x and convex and

piecewise (conic-)quadratic in z. Furthermore, we can accommodate functions v(x, z) that are

non-convex in z as long as the number of confidence regions is small and all confidence regions

constitute polyhedra. We relegate these extensions to the electronic companion of this paper.
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Figure 1. Illustration of the nesting condition (N). The three charts show different

arrangements of confidence sets Ci in the (z,u)-plane. The left arrangement satisfies the

nesting condition, whereas the other two arrangements violate (N).

2.1 Equivalent Reformulation under a Nesting Condition

The tractability of optimization problems with constraints of the type (3) critically depends on the

following nesting condition for the confidence sets in the definition of P:

(N) For all i, i′ ∈ I, i 6= i′, we have either Ci b Ci′ , Ci′ b Ci or Ci ∩ Ci′ = ∅.

The nesting condition is illustrated in Figure 1. The condition implies a strict partial order on

the confidence sets Ci with respect to the b-relation, with the additional requirement that incom-

parable sets must be disjoint. The nesting condition is closely related to the notion of laminar

families in combinatorial optimization [55], and a similar condition has been used recently to study

distributionally robust Markov decision processes [62]. We remark that for two sets Ci and Ci′ , the

relation Ci b Ci′ can be checked efficiently if (i) Ci is an ellipsoid and Ci′ is the intersection of finitely

many halfspaces and/or ellipsoids or (ii) both Ci and Ci′ constitute polyhedra. If both Ci and Ci′
are described by intersections of finitely many halfspaces and/or ellipsoids, then we can use the

approximate S-Lemma to efficiently verify a sufficient condition for Ci b Ci′ . Section 3 investigates

several ambiguity sets for which the nesting condition can be verified analytically.

For ease of notation, we denote by A(i) = {i}∪{i′ ∈ I : Ci b Ci′} and D(i) = {i′ ∈ I : Ci′ b Ci}
the index sets of all supersets (antecedents) and all strict subsets (descendants) of Ci, respectively.

Our first main result shows that the distributionally robust constraint (3) has a tractable reformu-

lation if the nesting condition (N) holds and the regularity conditions (C1)–(C3) are satisfied.

Theorem 1 (Equivalent Reformulation). Assume that the conditions (C1)–(C3) and (N) hold.

Then, the distributionally robust constraint (3) is satisfied for the ambiguity set (4) if and only if
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there is β ∈ RK , κ, λ ∈ RI+ and φil ∈ K?i , i ∈ I and l ∈ L, that satisfy the constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w,

c>i φil + s>l x+ tl ≤
∑

i′∈A(i)

[κi′ − λi′ ]

C>i φil +A>β = S>l x+ tl

D>i φil +B>β = 0


∀i ∈ I, ∀l ∈ L.

If the confidence set Ci is described by linear, conic-quadratic or semidefinite inequalities, then

Theorem 1 provides a linear, conic-quadratic or semidefinite reformulation of the distributionally

robust constraint (3), respectively. Thus, the nesting condition (N) is sufficient for the tractability

of the constraint (3). We now prove that the nesting condition is also necessary for tractability.

Theorem 2. Verifying whether the ambiguity set P defined in (4) is empty is strongly NP-hard

even if the specification of P does not involve any expectation conditions (i.e., K = 0) and there

are only two confidence sets C1, C2 that satisfy C1 ⊆ C2 but C1 6b C2.

Theorem 2 implies that if the nesting condition (N) is violated, then an optimization problem

involving a constraint of type (3) can be strongly NP-hard even if the problem without the con-

straint is tractable. Note that Theorem 2 addresses the ‘mildest possible’ violation of the nesting

condition (N) in the sense that C1 is a subset of C2, but fails to be contained in the interior of C2.

2.2 Conservative Approximation for Generic Problems

We now assume that the ambiguity set P violates the nesting condition (N). In this case, we know

from Theorem 2 that distributionally robust constraints of the type (3) over P are generically

intractable. Our goal is thus to derive an approximation to the constraint (3) which is (i) conser-

vative, that is, it does not introduce any spurious solutions that violate the original constraint (3);

which is (ii) tractable in the sense that any optimization problem that can be solved efficiently

without constraint (3) remains tractable when we include our approximation to the constraint (3);

and which is (iii) tight, or at least not unduly conservative.

To achieve these objectives, we choose a partition {Ij}j∈J of the index set I such that the

following weak nesting condition is satisfied.

(N’) For all j ∈ J and all i, i′ ∈ Ij , i 6= i′, we have either Ci b Ci′ , Ci′ b Ci or Ci ∩ Ci′ = ∅.

11



C1 C3

C2

C4

Figure 2. Illustration of the weak nesting condition (N’). The ambiguity set P with

the confidence regions C1, . . . , C4 violates the nesting condition (N), but each of the four

partitions {{1, 2} , {3, 4}}, {{1} , {2} , {3, 4}}, {{1, 2} , {3} , {4}} and {{1} , {2} , {3} , {4}}
satisfy the weak nesting condition (N’).

In other words, the weak nesting condition (N’) requires that the confidence sets Ci, i ∈ Ij , satisfy

the nesting condition (N) for each j ∈ J . This requirement is nonrestrictive since we can choose

the sets Ij to be singletons. The weak nesting condition is visualized in Figure 2.

We now define the following outer approximations of the ambiguity set P:

Pj =

P ∈ P0(RP × RQ) :
EP [Az̃ +Bũ] = b,

P [(z̃, ũ) ∈ Ci] ∈
[
p
i
,pi

]
∀i ∈ Ij

 for j ∈ J .

By construction, P is indeed a subset of each Pj because the distributions in Pj satisfy the condition

associated with confidence set Ci only if i ∈ Ij . Hence, the following constraint constitutes a näıve

conservative approximation of the distributionally robust expectation constraint (3).

min
j∈J

sup
P∈Pj

EP [v(x, z̃)] ≤ w. (6)

We further propose the following infimal convolution bound as an approximation to constraint (3),

inf
(y,δ)∈Γ(x)

∑
j∈J

δj sup
P∈Pj

EP [v(yj/δj , z̃)] ≤ w, (7)

where

Γ(x) =
{

(y, δ) : y = (yj)j∈J , yj ∈ RN , δ = (δj)j∈J , δj ∈ R,
∑
j∈J

yj = x,
∑
j∈J

δj = 1, δ > 0
}
.

Infimal convolution bounds have already been studied in the context of classical robust optimization

in [22, 34]. The following theorem asserts that while both (6) and (7) constitute conservative

approximations of the distributionally robust constraint (3), the infimal convolution bound (7) is

preferable in terms of tightness.
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Theorem 3. The distributionally robust constraint (3), its näıve approximation (6) and the infimal

convolution bound (7) satisfy the following chain of implications:

(6) is satisfied =⇒ (7) is satisfied =⇒ (3) is satisfied.

Moreover, the reverse implications hold if J = 1.

Note that the feasible set Γ(x) of the auxiliary decision variables y and δ is not closed. To

circumvent this problem, we consider the following closed ε-approximation of Γ(x):

Γε(x) =
{

(y, δ) : y = (yj)j∈J , yj ∈ RN , δ = (δj)j∈J , δj ∈ R,
∑
j∈J

yj = x,
∑
j∈J

δj = 1, δ ≥ εe
}
.

We henceforth denote by (7ε) the constraint (7) where Γ(x) is replaced with its ε-approximation

Γε(x). The following tractability result is an immediate consequence of the proof of Theorem 1.

Observation 1. Assume that the conditions (C1)–(C3) and (N’) hold. Then, the infimal con-

volution bound (7ε) is satisfied if and only if there is τ ∈ R|J |, (y, δ) ∈ Γε(x), βj ∈ RK , κij,

λij ∈ R+ and φijl ∈ K?i , i ∈ Ij, j ∈ J and l ∈ L, that satisfy the constraint system∑
j∈J

τj ≤ w,

b>βj +
∑
i∈Ij

[
piκij − piλij

]
≤ τj

c>i φijl + s>l yj + δjtl ≤
∑

i′∈Aj(i)

[
κi′j − λi′j

]
C>i φijl +A>βj = S>l yj + δjtl

D>i φijl +B>βj = 0


∀i ∈ Ij , ∀l ∈ L


∀j ∈ J ,

where Aj(i) = A(i) ∩ Ij denotes the index set of all supersets of Ci in Ij.

Maybe surprisingly, it turns out that the näıve approximation (6) is not only inferior to the

approximation (7) in terms of tightness, but also in terms of tractability.

Theorem 4. Consider the optimization problem

minimize d>x

subject to min
j∈J

sup
P∈Pj

EP [vs(x, z̃)] ≤ ws ∀s ∈ S,

x ∈ X ,
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where the ambiguity set P satisfies the conditions (C1), (C2) and (N’), S is a finite index set,

vs(x, z) is linear in x and linear in z for all s ∈ S, and X constitutes a polyhedron. This problem

can be solved in polynomial time if |S| = 1. Otherwise, the problem is strongly NP-hard.

Assume that
{
I1
j

}
j∈J1 and

{
I2
j

}
j∈J2 are two partitions of the confidence regions of an ambiguity

set P that both satisfy the weak nesting condition (N’). We say that
{
I1
j

}
j∈J1 is a refinement of{

I2
j

}
j∈J2 if for each set I1

j , j ∈ J1, there is a set I2
j′ , j

′ ∈ J2, such that I1
j ⊆ I2

j′ . In particular, the

singleton partition {{1} , . . . , {I}} is a refinement of any other partition. The following result shows

that coarser partitions lead to tighter approximations of the distributionally robust constraint (3).

Proposition 1. Let
{
I1
j

}
j∈J1 and

{
I2
j

}
j∈J2 be two partitions of the confidence regions of an am-

biguity set P that both satisfy the condition (N’), and let
{
Pj1
}
j∈J1 and

{
Pj2
}
j∈J2 be the associated

sets of outer approximations. If
{
I1
j

}
j∈J1 is a refinement of

{
I2
j

}
j∈J2, then the infimal convolution

bound (7) is satisfied for
{
Pj2
}
j∈J2 whenever it is satisfied for

{
Pj1
}
j∈J1.

Proposition 1 implies that among all partitions of the confidence regions of an ambiguity set

P satisfying the weak nesting condition (N’) we should endeavor to find one that is ‘maximally

coarse’. We remark that there may be multiple maximal partitions. In this case it is a priori unclear

which of these partitions entails the tightest bound of the distributionally robust constraint (3).

3 Expressiveness of the Ambiguity Set

In spite of the apparent simplicity of expectation conditions and probability bounds, ambiguity sets

of the type (4) offer striking modeling power. For example, they allow us to impose constraints on

the support of the random vector z̃ by tailoring the confidence set CI . Due to the general structure

of the confidence sets (5), we can model supports that emerge from finite intersections of halfspaces

and generalized ellipsoids, such as flat ellipsoids embedded into subspaces of RP or ellipsoidal

cylinders given by Minkowski sums of ellipsoids and linear manifolds [7]. Thus, ambiguity sets of

the form (4) generalize many of the uncertainty sets that are used in classical robust optimization.

In particular, they allow us to model distributionally robust constraints involving discrete random

variables whose probability vectors range over uncertainty regions defined via φ-divergences. In this

setting, we interpret z̃ as the uncertain probability vector, while the ambiguity set P contains all

distributions of z̃ supported on the corresponding φ-divergence-constrained uncertainty region. It

14



has been shown in [5] that such uncertainty regions admit conic quadratic representations for many

popular φ-divergences such as the χ2-distance, the variation distance or the Hellinger distance etc.

Note that P is of the form (4), and it trivially satisfies the nesting condition (N).

By selecting the shapes and relative arrangement of the confidence sets Ci, i < I, we can further

encode information about the modality structure of the random vector z̃. Such information could

be gathered, for example, by applying clustering algorithms to an initial primitive data set.

While it is clear that the expected value of z̃ can be set to any prescribed constant through

an appropriate instantiation of the expectation condition in (4), it turns out that our standardized

ambiguity set even allows us to encode (full or partial) information about certain higher-order

moments of z̃ by using a lifting technique. Before formalizing this method, we first introduce some

terminology. We say that the K-epigraph of a function f : RM → RN and a proper cone K is conic

representable if the set
{

(x,y) ∈ RM × RN : f(x) 4K y
}

can be expressed via conic inequalities,

possibly involving a cone different from K and additional auxiliary variables.

Theorem 5 (Lifting Theorem). Let f ∈ RM and g : RP → RM be a function with a conic

representable K-epigraph, and consider the ambiguity set

P ′ =

P ∈ P0(RP ) :
EP [g(z̃)] 4K f ,

P [z̃ ∈ Ci] ∈
[
p
i
,pi

]
∀i ∈ I

 ,

as well as the lifted ambiguity set

P =

P ∈ P0(RP × RM ) :

EP [ũ] = f ,

P [g(z̃) 4K ũ] = 1,

P [z̃ ∈ Ci] ∈
[
p
i
,pi

]
∀i ∈ I

 ,

which involves the auxiliary random vector ũ ∈ RM . We then have that (i) P ′ = Πz̃P and (ii) P
can be reformulated as an instance of the standardized ambiguity set (4).

By virtue of Theorem 5 we can recognize several ambiguity sets from the literature as special

cases of the ambiguity set (4). For example, defining the function g(z) in Theorem 5 to be linear

allows us to specify ambiguity sets that impose conic constraints on the mean value of z̃.

Example 1 (Mean). Assume that GEQ0 [z̃] 4K f for a proper cone K and G ∈ RM×P , f ∈ RM ,

and consider the following instance of the ambiguity set (4), which involves the auxiliary random
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vector ũ ∈ RM .

P =
{
P ∈ P0(RP × RM ) : EP [ũ] = f , P [Gz̃ 4K ũ] = 1

}
We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : GEQ [z̃] 4K f

}
.

Example 1 enables us to design confidence sets for the mean value of z̃ when only a noisy

empirical estimator of the exact mean is available. Since the ambiguity set P in Example 1 sat-

isfies the nesting condition (N), Theorem 1 provides an exact reformulation for distributionally

robust expectation constraints over such ambiguity sets that results in linear, conic-quadratic or

semidefinite programs whenever the cone K in the ambiguity set P is polyhedral, conic-quadratic

or semidefinite, respectively.

Theorem 5 further facilitates the construction of ambiguity sets that impose conditions on the

covariance matrix of z̃. In this case we define g(z) = (z − µ) (z − µ)>, where µ = EQ0 [z̃]. Using

Schur’s complement, one readily shows that g(z) has a conic representable SP+-epigraph [17].

Example 2 (Variance). Set µ = EQ0 [z̃] and assume that EQ0

[
(z̃ − µ) (z̃ − µ)>

]
4 Σ for Σ ∈ SP+.

Consider the following instance of (4), which involves the auxiliary random matrix Ũ ∈ RP×P .

P =

P ∈ (RP × RP×P ) : EP [z̃] = µ, EP

[
Ũ
]

= Σ, P

 1 (z̃ − µ)>

(z̃ − µ) Ũ

 < 0

 = 1


We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : EQ [z̃] = µ, EQ

[
(z̃ − µ) (z̃ − µ)>

]
4 Σ

}
.

The ambiguity set P in Example 2 satisfies the nesting condition (N), and Theorem 1 provides

an exact reformulation for distributionally robust expectation constraints over such ambiguity sets

that results in a semidefinite program. Example 2 can be extended in several directions. For

example, if the upper bound Σ on the variance is only known to belong to some set S ⊆ SP+
described by conic inequalities, then we obtain an ambiguity set that is robust with respect to

misspecifications of Σ as follows.

P =

P ∈ (RP × RP×P ) : EP [z̃] = µ, EP

[
Ũ
]
∈ S, P

 1 (z̃ − µ)>

(z̃ − µ) Ũ

 < 0

 = 1


We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : EQ [z̃] = µ, EQ

[
(z̃ − µ) (z̃ − µ)>

]
4 Σ for some Σ ∈

S
}

. The expectation constraint in this ambiguity set can again be standardized using Theo-

rem 5. As long as membership in S can be expressed via semidefinite constraints, Theorem 1
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implies that distributionally robust expectation constraints over the ambiguity set P have exact

reformulations as semidefinite programs. We remark that lower bounds on the covariance matrix

EQ

[
(z̃ − µ) (z̃ − µ)>

]
generically lead to nonconvex optimization problems, see [27, Remark 2].

However, as demonstrated in [27, Proposition 3], lower bounds on the covariance matrix of z̃ can

often be relaxed without affecting the feasible region of the distributionally robust constraint (3).

Sometimes it is natural to relate the variability of a random vector z̃ to its mean value EQ0 [z̃].

This may be convenient, for example, if the components of z̃ relate to quantities whose mean values

vary widely, for example due to different units of measurement [2]. In such cases, one may impose

bounds on the coefficient of variation, which is defined as the inverse of the signal-to-noise ratio

known from information theory. We can again apply Theorem 5 to construct ambiguity sets of the

form (4) that reflect bounds on the coefficient of variation.

Example 3 (Coefficient of Variation). Assume that

√
EQ0

[
(f>z̃ − f>µ)

2
]
/f>µ ≤ ϑ for f ∈ RP ,

ϑ ∈ R+ and µ = EQ0 [z̃] such that f>µ > 0. Consider the following instance of the ambiguity

set (4), which involves the auxiliary random vector ũ ∈ R.

P =
{
P ∈ P0(RP × R) : EP [z̃] = µ, EP [ũ] = ϑ (f>µ)2, P

[
ũ ≥ (f>z̃ − f>µ)2

]
= 1
}

We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : EP [z̃] = µ,

√
EQ

[
(f>z̃ − f>µ)

2
]
/f>µ ≤ ϑ

}
.

The ambiguity set P in Example 3 satisfies the nesting condition (N), and Theorem 1 implies

that distributionally robust expectation constraints over this ambiguity set have exact reformula-

tions as conic-quadratic programs. As an alternative to the variance and the coefficient of variation,

we can describe the dispersion of a univariate random variable z̃ through its absolute mean spread,

which quantifies the difference between the expectation of z̃ conditional on z̃ being higher and

lower than a given threshold, respectively, see [45]. In contrast to the previous examples, ambiguity

sets involving absolute mean spread information can no longer be constructed via straightforward

application of Theorem 5.

Proposition 2 (Absolute Mean Spread). Let EQ0

[
f>z̃ | f>z̃ ≥ θ

]
− EQ0

[
f>z̃ | f>z̃ < θ

]
≤ σ

and Q0
[
f>z̃ ≥ θ

]
= ρ for f ∈ RP , θ ∈ R, σ ∈ R+ and ρ ∈ (0, 1), and consider the following
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instance of the ambiguity set (4), which involves the auxiliary random variables ũ, ṽ, w̃ ∈ R.

P =

P ∈ P0(RP × R3) : EP [w̃] = σ, P


f>z̃ = θ + ũ− ṽ,

w̃ ≥ ρ−1ũ+ (1− ρ)−1ṽ,

ũ, ṽ ≥ 0

 = 1, P
[
f>z̃ ≥ θ

]
= ρ


We then have

Q0 ∈ Πz̃P =
{
Q ∈ P0(RP ) : EQ

[
f>z̃ | f>z̃ ≥ θ

]
− EQ

[
f>z̃ | f>z̃ < θ

]
≤ σ,

Q
[
f>z̃ ≥ θ

]
= ρ
}
.

The ambiguity set P in Proposition 2 violates the nesting condition (N). Thus, distributionally

robust expectation constraints over such ambiguity sets have to be conservatively approximated

using Theorem 3 and Observation 1. The resulting approximations constitute linear programs.

Next, we show how higher-order moment information can be encoded in the ambiguity set P.

Example 4 (Higher-Order Moment Information). Assume that EQ0

[
fm/n(z̃)

]
≤ σ for a nonneg-

ative function f : RP → R+ with conic representable epigraph, while m,n ∈ N with m > n. It

follows from [8, §2.3.1] that the epigraph of fm/n is given by the conic representable set(x, y) ∈ RP × R+ :
∃ui,j ∈ R+, i = 1, . . . , ` and j = 1, . . . , 2`−i such that

ui,j ≤
√
ui−1,2j−1ui−1,2j ∀i = 1, . . . , `, j = 1, . . . , 2`−i, f(x) ≤ u`,1

 ,

where we use the notational shorthands ` = dlog2me and u0,j = u`,1 for j = 1, . . . , 2`−m; = y for

j = 2`−m+1, . . . , 2`−m+n; = 1 otherwise. Consider the following instance of the ambiguity set (4),

which involves the auxiliary random variables ũi,j ∈ R+, i = 1, . . . , `, j = 1, . . . , 2`−i, and ṽ ∈ R+.

P =

P ∈ P0(RP × R2`

+ ) : EP [ṽ] = σ, P


ũi,j ≤

√
ũi−1,2j−1ũi−1,2j ∀i = 1, . . . , `,

∀j = 1, . . . , 2`−i,

f(z̃) ≤ ũ`,1

 = 1


Here we use the notational shorthands ` = dlog2me and u0,j = u`,1 for j = 1, . . . , 2` − m; = ṽ

for j = 2` − m + 1, . . . , 2` − m + n; = 1 otherwise. The first set of almost sure constraints in

the definition of P can be reformulated as conic-quadratic constraints, see [1, 47]. We can apply

Theorem 5 to conclude that this ambiguity set satisfies

Q0 ∈ Πz̃P =
{
Q ∈ P0(RP ) : EQ

[
fm/n(z̃)

]
≤ σ

}
.
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Since the ambiguity set P in Example 4 satisfies the nesting condition (N), Theorem 1 provides

exact reformulations for distributionally robust expectation constraints over such ambiguity sets

that result in conic-quadratic programs. Setting f(z̃) =
∣∣f>z̃∣∣ in Example 4 yields ambiguity sets

that impose upper bounds on the expected value of
∣∣f>z̃∣∣m/n. Since |x|k = xk for any x ∈ R and

even k, this implies that we can prescribe upper bounds on all even moments of f>z̃. Likewise,

setting f(z̃) = max
{
f>z̃, 0

}
yields ambiguity sets that impose upper bounds on the (even and/or

odd) partial moments of f>z̃. More generally, we can bound the moments of any piecewise linear

functions maxj∈J

{
f>j z̃ + gj

}
, where fj ∈ RP for j ∈ J = {1, . . . , J} and g ∈ RJ , as long as these

functions are guaranteed to be nonnegative or if we focus exclusively on even moments.

To our knowledge, Example 4 presents the first conic-quadratic representation of ambiguity sets

incorporating higher-order moment information. Previously studied ambiguity sets with higher-

order moment information were either tied to specific problem classes [13], gave rise to refor-

mulations that require solution algorithms akin to the ellipsoid method [26], or they resulted in

semidefinite programs [14]. Note that our construction cannot be generalized to odd univariate

moments without sacrificing the convexity of the almost sure constraints in the definition of P.

Bounding the higher-order moments of the random vector z̃ allows us to capture asymmetries

in the probability distribution Q0. This helps to reduce the conservatism of the distributionally

robust constraint (3) when the constraint function v is nonlinear in z̃, or when we consider any of

the safeguarding constraints presented in Section 4.

In the remainder we demonstrate that our framework can even capture information that orig-

inates from robust statistics. Robust statistics provides descriptive measures of the location and

dispersion of a random variable that are reminiscent of standard statistical indicators (such as mean

or variance), but which are less affected by outliers and deviations from the model assumptions

under which the traditional statistical measures are usually derived (e.g., normality). Recently,

robust statistics has received attention in portfolio optimization, where robust estimators help to

immunize the portfolio weights against outliers in the historical return samples [28]. In the fol-

lowing, we consider three popular measures from robust statistics: the median, the mean absolute

deviation and the expected Huber Loss function.

A univariate random variable z̃ has median m under the distribution Q0 if Q0(z̃ ≤ m) ≥ 1/2 and

Q0(z̃ ≥ m) ≥ 1/2. Likewise, a multivariate random variable z̃ ∈ RP has marginal median m ∈ RP
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if the median of z̃p is mp for all p = 1, . . . , P . The (marginal) median can be regarded as a robust

counterpart of the expected value. Unlike the expected value, the median attaches less importance

to the tails of the distribution, which makes it more robust against outliers if the distribution is

estimated from historical data. It can be shown that in terms of asymptotic relative efficiency, the

sample median is a better estimator of the expected value than the sample mean if the sample

distribution is symmetric and has fat tails or if it is contaminated with another distribution [21].

In analogy to the median, we can define the mean absolute deviation as a robust counterpart of

the standard deviation. For a univariate random variable z̃, the mean absolute deviation around the

value m is given by EQ0 [|z̃ −m|]. The mean absolute deviation can be generalized to multivariate

random variables z̃ by considering the marginal mean absolute deviation EQ0 [|z̃ −m|], where the

absolute value is understood to apply component-wise. Compared to the standard deviation, the

mean absolute deviation enjoys similar robustness properties as the median does in comparison to

the expected value, see [21]. Next, for a scalar z ∈ R we define the Huber Loss function as

Hδ(z) =


1

2
z2 if |z| ≤ δ,

δ

(
|z| − 1

2
δ

)
otherwise,

(8)

where δ > 0 is a prescribed robustness parameter. We are interested in the Huber loss func-

tion because its expected value EQ0 [Hδ(z̃ − µ)] represents a robust counterpart of the variance

EQ0

[
(z̃ − µ)2

]
. Figure 3 illustrates that the Huber Loss function Hδ(z) can be viewed as the

concatenation of a quadratic function for z ∈ [−δ,+δ] (reminiscent of the variance) and a shifted

absolute value function for z /∈ [−δ,+δ] (reminiscent of the mean absolute deviation). The intercept

and slope of the absolute value function are chosen to ensure continuity and smoothness at ±δ. In

analogy to the median and the mean absolute deviation, the expected Huber Loss function displays

favorable properties in the presence of outliers and distributions with fat tails or contaminations.

The following proposition describes how information about robust estimators can be reflected

in our standardized ambiguity set P.

Proposition 3 (Robust Statistics).

1. Marginal Median. Assume that the marginal median of z̃ under the probability distribution

Q0 is given by m, and consider the following instance of the ambiguity set (4).

P =
{
P ∈ P0(RP ) : P [z̃p ≤mp] ≥ 1/2, P [z̃p ≥mp] ≥ 1/2 for p = 1, . . . , P

}
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Figure 3. Huber Loss function H1(z). The chart shows that the Huber loss function is

composed of the quadratic function 1
2z

2 for z ∈ [−1,+1] and the shifted absolute value

function |z| − 1
2 for z /∈ [−1,+1].

We have (i) Q0 ∈ P and (ii) the marginal median of z̃ coincides with m for all P ∈ P.

2. Mean Absolute Deviation. Assume that EQ0 [|z̃ −m|] ≤ f for m,f ∈ RP , and consider

the following instance of the ambiguity set (4) involving the auxiliary random vector ũ ∈ RP .

P =
{
P ∈ P0(RP × RP ) : EP [ũ] = f , P [ũ ≥ z̃ −m, ũ ≥m− z̃] = 1

}
We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : EQ [|z̃ −m|] ≤ f

}
.

3. Expected Huber Loss Function. Assume that EQ0

[
Hδ(f

>z̃)
]
≤ g for f ∈ RP , g ∈ R+

and Hδ is defined as in (8), and consider the following instance of the ambiguity set (4),

which involves the auxiliary random variables ũ, ṽ, w̃, s̃, t̃ ∈ R+.

P =

P ∈ P0(RP × R5
+) :

EP [w̃] = g,

P

 δ (ũ− s̃) +
s̃2

2
+ δ

(
ṽ − t̃

)
+
t̃2

2
≤ w̃,

ũ ≥ s̃, ṽ ≥ t̃, f>z̃ = ũ− ṽ

 = 1


We then have Q0 ∈ Πz̃P =

{
Q ∈ P0(RP ) : EQ

[
Hδ(t

>z̃)
]
≤ g
}

.1

Note that the ambiguity set P in the first statement in Proposition 3 violates the nesting

condition (N). Thus, we have to conservatively approximate distributionally robust expectation

1We would like to thank an anonymous referee for pointing out this elegant reformulation.

21



constraints over such ambiguity sets using the results from Theorem 3 and Observation 1. The

resulting approximations constitute linear programs. The first statement in Proposition 3 can be

readily extended to situations in which only lower and upper bounds mp and mp on the marginal

median are available. In this case, the corresponding ambiguity set can be redefined as

P =
{
P ∈ P0(RP ) : P [z̃p ≤mp] ≥ 1/2, P

[
z̃p ≥mp

]
≥ 1/2 for p = 1, . . . , P

}
.

More generally, by replacing 1/2 with qp ∈ [0, 1] in the ambiguity set, we can specify lower and

upper bounds on any marginal quantile qp of z̃. Also, we can extend the second statement in

Proposition 3 to piecewise linear functions of the random vector z̃. The ambiguity sets in the

second and third statement of Proposition 3 both satisfy the nesting condition (N), which implies

that we can derive exact reformulations of distributionally robust expectation constraints over such

ambiguity sets using Theorem 1. The resulting reformulations consistute linear programs (mean

absolute deviation) or conic-quadratic programs (expected Huber Loss function).

An attractive feature of our approach is its modularity. In fact, several ambiguity sets of

the type (4), each reflecting a different piece of information about the distribution of z̃, can be

amalgamated to a master ambiguity set that contains all distributions compatible with every piece

of information available to us. The master ambiguity set is still of the form (4). We note that

ambiguity sets involving only a single confidence set C1, which has necessarily probability 1, and

any combinations of such sets satisfy the nesting condition (N). However, condition (N) is generally

not preserved under combinations of ambiguity sets involving more than one confidence set.

In practice, the only directly observable data generally are historical realizations of z̃, while

distributional information such as location or dispersion measures or the support of the random

vector z̃ are not directly observable. However, the support of z̃ can often be inferred from domain-

specific knowledge (e.g., customer demands are nonnegative and can be assumed to be bounded from

above), or it can be constructed from historical data (e.g., the convex hull of all historical realizations

of z̃ or some approximation thereof). Likewise, confidence regions for the mean and covariance

matrix of z̃ can be derived analytically from historical samples, see [27]. Confidence regions for

the other indicators discussed in this section can be constructed from historical observations using

resampling techniques such as jackknifing or bootstrapping [24].

Care must be taken, however, when we combine several statistical measures in the definition of

the master ambiguity set P. For example, if we restrict the mean and the variance of the admissible
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distributions Q ∈ Πz̃P using 0.95-confidence regions for both measures, then the resulting master

ambiguity set will contain the unknown true distribution Q0 with a confidence of less than 0.95. In

order to guarantee a specified confidence level for the ambiguity set P, we can adapt the confidence

levels of the individual measures using Bonferroni’s inequality [16]. This implies that the individual

confidence levels have to be increased. Hence, we should carefully select the measures to be included

in the master ambiguity set. If there is evidence, e.g., from historical data, that the random vector z̃

is approximately normally distributed, then we expect mean and covariance information to provide

a good description of the location and dispersion of Q0. If, on the other hand, we have reason to

suspect that the distribution of z̃ displays fat tails or deviates significantly from normality, we should

expect the median, mean absolute deviation and/or the expected Huber loss function to describe

Q0 more accurately. Finally, if the distributionally robust optimization problem involves nonlinear

constraint functions v or any of the safeguarding constraints of Section 4, then we anticipate that

the inclusion of higher order moment information effectively reduces the conservatism of the model.

4 Safeguarding Constraints

The distributionally robust constraint (3) captures the ambiguity aversion of the decision maker,

but it assumes risk neutrality since it requires the stochastic constraint v(x, z̃) ≤ w to be satisfied

in the expected sense. In this section, we generalize (3) to various classes of safeguarding constraints

that account for the decision maker’s risk aversion. We begin with safeguarding constraints based

on Gilboa and Schmeidler’s minmax expected utility criterion.

Example 5 (Minimax Expected Utility [33]). Consider the constraint

sup
P∈P

EP [U(v(x, z̃))] ≤ w, (9)

where U : R→ R is a non-decreasing convex piecewise affine disutility function of the form U(y) =

maxu∈U {γu y + δu} for a finite index set U and γ ≥ 0. Under the conditions of Theorem 1,

constraint (9) is satisfied if and only if there is β ∈ RK , κ, λ ∈ RI+ and φilu ∈ K?i , i ∈ I, l ∈ L
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and u ∈ U , that satisfy the constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w,

c>i φilu + γus
>
l x+ γutl + δu ≤

∑
i′∈A(i)

[κi′ − λi′ ]

C>i φilu +A>β = γuS
>
l x+ γutl

D>i φilu +B>β = 0


∀i ∈ I, ∀l ∈ L, ∀u ∈ U .

In a similar way, we can generalize the distributionally robust constraint (3) to safeguarding

constraints based on the shortfall risk measure [30] and the optimized certainty equivalent [9].

The shortfall risk measure is defined through

ρSR [v(x, z̃)] = inf
η∈R

{
η : sup

P∈P
EP [U(v(x, z̃)− η)] ≤ 0

}
, (10)

where U : R→ R is a non-decreasing convex disutility function that is normalized, that is, U(0) = 0

and the subdifferential map of U satisfies ∂U(0) = {1}. For a risky position v(x, z̃), the shortfall

risk measure ρSR [v(x, z̃)] can be interpreted as the smallest amount of cash that needs to be injected

in order to make the position ‘acceptable’, that is, to achieve a nonpositive expected disutility.

The optimized certainty equivalent risk measure is defined through

ρOCE [v(x, z̃)] = inf
η∈R

{
η + sup

P∈P
EP [U(v(x, z̃)− η)]

}
, (11)

where U : R → R is again assumed to be a normalized non-decreasing convex disutility function.

The optimized certainty equivalent determines an optimized payment schedule of an uncertain

future liability v(x, z̃) into a fraction η that is paid today and a remainder v(x, z̃)− η that is paid

after the uncertainty has been revealed. Optimized certainty equivalents generalize mean-variance

and conditional value-at-risk measures, see [9].

Example 6 (Shortfall Risk and Optimized Certainty Equivalent). Assume that U : R → R

is a normalized non-decreasing convex piecewise affine disutility function of the form U(y) =

maxu∈U {γu y + δu} for a finite index set U and γ ≥ 0. Then ρSR [v(x, z̃)] ≤ w is equivalent to

sup
P∈P

EP [U(v(x, z̃)− w)] ≤ 0,

which under the conditions of Theorem 1 is satisfied if and only if there is β ∈ RK , κ, λ ∈ RI+ and

24



φilu ∈ K?i , i ∈ I, l ∈ L and u ∈ U , that satisfy the constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ 0,

c>i φilu + γus
>
l x+ γutl − γuw + δu ≤

∑
i′∈A(i)

[κi′ − λi′ ]

C>i φilu +A>β = γuS
>
l x+ γutl

D>i φilu +B>β = 0


∀i ∈ I, ∀l ∈ L, ∀u ∈ U .

Likewise, ρOCE [v(x, z̃)] ≤ w is satisfied if and only if there is η ∈ R such that

sup
P∈P

EP [U(v(x, z̃)− η)] ≤ w − η,

which under the conditions of Theorem 1 is satisfied if and only if there is η ∈ R, β ∈ RK ,

κ, λ ∈ RI+ and φilu ∈ K?i , i ∈ I, l ∈ L and u ∈ U , that satisfy the constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w − η,

c>i φilu + γus
>
l x+ γutl − γuη + δu ≤

∑
i′∈A(i)

[κi′ − λi′ ]

C>i φilu +A>β = γuS
>
l x+ γutl

D>i φilu +B>β = 0


∀i ∈ I, ∀l ∈ L, ∀u ∈ U .

5 Numerical Example

To get a deeper grasp of our distributionally robust optimization framework, we compare the

performance of some of the statistical indicators of Section 3 on a stylized newsvendor problem.

All optimization problems are solved using the YALMIP modeling language and SDPT3 3.0 [38, 59].

We assume that a newsvendor trades in i = 1, . . . , n products. Before observing the uncertain

product demands z̃i, the newsvendor orders xi units of product i at the wholesale price ci. Once

z̃i is observed, she can sell the quantity yi(z̃i) ∈ [0,min {xi, z̃i}] at the retail price vi. Any unsold

stock [xi − yi(z̃i)]+ is cleared at the salvage price gi, and any unsatisfied demand [z̃i − yi(z̃i)]+ is

lost. Here we use the shorthand notation [·]+ = max {·, 0}. We assume that ci < vi and gi < vi,

which implies that the optimal sales decisions are of the form yi(z̃i) = min {xi, z̃i}. We can thus
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Figure 4. Single-product results for different symmetric (left) and asymmetric (right)

statistical indicators. All results are averaged over 100 instances. For each indicator, the

upper and lower curves represent the out-of-sample and in-sample results.

describe the newsvendor’s minimum losses as a function of the order decision x:

L(x, z̃) = c>x− v>min {x, z̃} − g> [x− z̃]+

= (c− v)>x+ (v − g)> [x− z̃]+ .

Here, the minimum and the nonnegativity operator are applied component-wise.

We assume that the probability distribution Q0 governing the product demands z̃ is unknown.

Instead, the newsvendor has access to a limited number of i.i.d. samples of z̃. Assuming stationarity,

she can then construct an ambiguity set P using the statistical indicators of Section 3. We first

assume that the newsvendor solves the risk-neutral optimization problem

minimize sup
P∈P

EP [L(x, z̃)]

subject to x ≥ 0.

Using the results of Sections 2 and 4, we can readily reformulate and solve this problem as a conic

optimization problem for the ambiguity sets presented in Section 3.

In our first experiment, we assume that the newsvendor trades in a single product (n = 1)

with a wholesale price c1 = 5, retail price v1 = 10 and salvage price g1 = 2.5. The demand z̃1

follows a lognormal distribution with mean 5 and a varying standard deviation. Since the mean

is fixed, higher standard deviations correspond to increasingly right-skewed demand distributions.

The newsvendor has access to 250 i.i.d. samples of z̃. Applying standard resampling techniques and
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Bonferroni’s inequality, she uses these samples to construct ambiguity sets that contain (a lifted

version of) the unknown distribution Q0 with a confidence of at least 95%.

The left chart in Figure 4 shows the results for ambiguity sets P constructed from the mean

and variance (mean/var), the mean and mean absolute deviation (mean/MAD) and the mean and

Huber loss function with δ = 1 (mean/Huber). The right graph reports the performance of the

corresponding asymmetric indicators, that is, ambiguity sets constructed from the mean and semi-

variances EP [z̃1 − µ1]2+ and EP [µ1 − z̃1]2+ (mean/semi-var), the mean and semi-mean absolute

deviations EP [z̃1 − µ1]+ and EP [µ1 − z̃1]+ (mean/semi-MAD), as well as the mean and semi-Huber

loss functions H1

(
[z̃1 − µ1]+

)
and H1

(
[µ1 − z̃1]+

)
(mean/semi-Huber). For ease of exposition, all

results are presented as expected profits relative to the optimal solution that could be achieved

under full knowledge of the demand distribution Q0. For each ambiguity set, the lower curve

presents the in-sample results, that is, the worst-case expected profits predicted by the objective

function of the respective optimization problem, and the upper curve reports the out-of-sample

results from a backtest under the true distribution Q0. By construction of our ambiguity sets, the

out-of-sample results exceed the in-sample results with a probability of at least 95%.

Figure 4 shows that with increasing standard deviation, both the in-sample and the out-of-

sample results tend to deteriorate. This effect is much more pronounced for the symmetric indica-

tors, which are unable to capture the asymmetry of Q0. Among these indicators, the two robust

measures significantly outperform the variance if the demand is skewed. This confirms our intuition

that robust indicators are preferable to classical indicators when the distributions deviate from nor-

mality. Among the asymmetric indicators, mean/semi-var has the best out-of-sample performance,

whereas mean/semi-MAD combines a good out-of-sample performance with an accurate in-sample

prediction. It is worth noting that mean/semi-MAD gives rises to linear programming problems that

can be solved very efficiently. We do not show the curves for the ambiguity set that only bounds

the mean demand EP [z̃] as it results in zero order quantities in all of our experiments. Also, the

inclusion of higher-order moments beyond the (semi-)variance does not lead to significant improve-

ments. The same holds true for ambiguity sets constructed from combinations of several statistical

indicators, such as the mean, variance and the semi-variances or the mean, semi-variances and the

semi-mean absolute deviations.

We now fix the standard deviation to 0.75 and investigate the impact of the number of available
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Figure 5. Single-product results for different symmetric (left) and asymmetric (right)

statistical indicators. All results are averaged over 100 instances. The curves have the

same meaning as in Figure 4.

demand samples on the performance of the ambiguity sets. Figure 5 shows that for increasing

sample sizes, the in-sample and out-of-sample results improve for all ambiguity sets. The figure also

shows that smaller sample sizes are sufficient for the ambiguity sets constructed from asymmetric

measures, even though they require twice as many indicators to be estimated. We also observe that

the robust indicators require less samples than their classical counterparts.

We now study the following risk-averse variant of the multi-product newsvendor problem:

minimize sup
P∈P

EP [U(L(x, z̃))]

subject to x ≥ 0

Here, U(y) approximates the exponential disutility function ey/10 with 25 affine functions. We

consider instances of this problem with n = 3 products and identical wholesale, retail and salvage

prices of ci = 5, vi = 10 and gi = 2.5. The product demands are characterized by identical

lognormal marginal distributions with mean 5 and a standard deviation of 0.75. The demands for

the first two products are coupled by a copula whose parameter θ specifies the probability that

both products exhibit an identical demand. Thus, the settings θ = 0 and θ = 1 correspond to the

special cases of independent and perfectly dependent product demands, respectively. The demand

for the third product is independent of the other two demands. We construct ambiguity sets from

750 i.i.d. samples of z̃.

In the multi-product setting, the most elementary class of ambiguity sets only specifies bounds

on component-wise indicators of the form EP [fi(z̃i)], i = 1, . . . , n. For our problem, however, such
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ambiguity sets do not capture the stochastic dependence between the product demands. In fact,

the associated optimization problems hedge against a worst-case distribution in which all product

demands exhibit strong dependences, and the resulting order quantities fall significantly below the

optimal order quantities derived under full knowledge of the demand distribution Q0. For the

asymmetric indicators from the previous experiments, the component-wise ambiguity sets result in

average order quantities of 2.0 (mean/semi-var and mean/semi-Huber) and 1.56 (mean/semi-MAD).

The certainty equivalent of the associated out-of-sample expected utility ranges between 70.2% (for

independent demands) and 77.9% (for perfectly dependent demands) of the certainty equivalent

corresponding to the expected utility of the optimal order quantities.

To capture the dependence between the product demands, we now construct ambiguity sets from

the component-wise semi-mean absolute deviations EP [z̃i − µi]+ and EP [µi − z̃i]+, as well as all

pairs of semi-mean absolute deviations EP [(z̃i ± z̃j)− (µi ± µj)]+ and EP [(µi ± µj)− (z̃i ± z̃j)]+.

Figure 6 shows the resulting order quantities as functions of the copula parameter θ. We observe

that the newsvendor orders less of the first two products when θ increases. This is intuitive as

with increasingly dependent product demands, the newsvendor becomes exposed to the risk of low

demand for both products. The certainty equivalents of the order quantities in Figure 6 range

between 90.2% and 99.7% of the certainty equivalents of the optimal order quantities under full

knowledge of Q0. We do not show the results for the ambiguity sets constructed from the mean,

variance and semi-variances, as well as the mean and the semi-Huber loss functions, since they are

very similar to the ones in Figure 6.
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pro pěstováńı matematiky, 91(4):423–430, 1966.

[4] A. Ben-Tal, D. Bertsimas, and D. B. Brown. A soft robust model for optimization under ambiguity.
Operations Research, 58(4):1220–1234, 2010.

[5] A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of
optimization problems affected by uncertain probabilities. Management Science, 59(2):341–357, 2013.

[6] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press, 2009.

[7] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research,
23(4):769–805, 1998.

[8] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and
Engineering Applications. SIAM, 2001.

[9] A. Ben-Tal and M. Teboulle. An old-new concept of convex risk measures: The optimized certainty
equivalent. Mathematical Finance, 17(3):449–476, 2007.

[10] D. Bertsimas and D. B. Brown. Constructing uncertainty sets for robust linear optimization. Operations
Research, 57(6):1483–1495, 2009.

[11] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization. SIAM
Review, 53(3):464–501, 2011.

[12] D. Bertsimas, X. Vinh Doan, K. Natarajan, and C.-P. Teo. Models for minimax stochastic linear
optimization problems with risk aversion. Mathematics of Operations Research, 35(3):580–602, 2010.

[13] D. Bertsimas, K. Natarajan, and C.-P. Teo. Persistence in discrete optimization under data uncertainty.
Mathematical Programming, 108(2–3):251–274, 2006.

[14] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A convex optimization ap-
proach. SIAM Journal of Optimization, 15(3):780–804, 2004.

[15] D. Bertsimas and M. Sim. Tractable approximations to robust conic optimization problems. Mathe-
matical Programming, 107(1–2):5–36, 2006.

30



[16] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in Operations
Research. Springer, 1997.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[18] D. B. Brown, E. G. De Giorgi, and M. Sim. Aspirational preferences and their representation by risk
measures. Accepted for publication in Management Science, 2012.

[19] D. B. Brown and M. Sim. Satisficing measures for analysis of risky positions. Management Science,
55(1):71–84, 2009.

[20] G. C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained linear programs.
Journal of Optimization Theory and Applications, 130(1):1–22, 2006.

[21] G. Casella and R. L. Berger. Statistical Inference. Duxbury Thomson Learning, 2nd edition, 2002.

[22] W. Chen and M. Sim. Goal driven optimization. Operations Research, 57(2):342–357, 2009.

[23] W. Chen, M. Sim, J. Sun, and C.-P. Teo. From CVaR to uncertainty set: Implications in joint chance
constrained optimization. Operations Research, 58(2):470–485, 2010.

[24] M. R. Chernick. Bootstrap Methods: A Guide for Practitioners and Researchers. Wiley-Blackwell, 2nd
edition, 2007.

[25] S.-S. Cheung, A. Man-Cho So, and K. Wang. Linear matrix inequalities with stochastically depen-
dent perturbations and applications to chance-constrained semidefinite optimization. SIAM Journal on
Optimization, 22(4):1394–1430, 2012.

[26] E. Delage. Distributionally Robust Optimization in context of Data-driven Problem. PhD thesis, Stanford
University, USA, 2009.

[27] E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty with application
to data-driven problems. Operations Research, 58(3):596–612, 2010.

[28] V. DeMiguel and F. J. Nogales. Portfolio selection with robust estimation. Operations Research,
57(3):560–577, 2009.

[29] L. G. Epstein. A definition of uncertainty aversion. Review of Economic Studies, 66(3):579–608, 1999.
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Appendix A: Proofs

The proof of Theorem 1 requires the following auxiliary result.

Lemma 1. Assume that v(x, z) satisfies (C3). Then the semi-infinite constraint

v(x, z) + f>z + g>u ≤ h ∀(z,u) ∈ Ci (12)

is satisfied if and only if there is φl ∈ K?i , l ∈ L, such that c>i φl+s
>
l x+tl ≤ h, C>i φl = S>l x+tl+f

and D>i φl = g for all l ∈ L.

Proof. The semi-infinite constraint (12) is equivalent to

(S>l x+ tl + f)>z + g>u ≤ h− s>l x− tl ∀l ∈ L, ∀(z,u) ∈ RP × RQ : Ciz +Diu 4Ki ci.

This constraint is satisfied if and only if the optimal values of the L strictly feasible problems

maximize (S>l x+ tl + f)>z + g>u

subject to z ∈ RP , u ∈ RQ

Ciz +Diu 4Ki ci

do not exceed the values h−s>l x− tl, respectively. This is the case if and only if the optimal values

of the L dual problems

minimize c>i φl

subject to φl ∈ K?i
C>i φl = S>l x+ tl + f

D>i φl = g.

do not exceed the values h− s>l x− tl, respectively, which is what the statement requires.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The left-hand side of the distributionally robust constraint (3) coincides
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with the optimal value of the following moment problem.

maximize

∫
CI
v(x, z) dµ(z,u)

subject to µ ∈M+(RP × RQ)∫
CI

[Az +Bu] dµ(z,u) = b∫
CI

1[(z,u)∈Ci] dµ(z,u) ≥ p
i∫

CI
1[(z,u)∈Ci] dµ(z,u) ≤ pi

 ∀i ∈ I

By assumption, we have p
I

= pI = 1. Hence, every feasible measure µ in this problem is naturally

identified with a probability measure P ∈ P0(RP × RQ) that is supported on CI . The dual of the

moment problem is given by

minimize b>β +
∑
i∈I

[
piκi − piλi

]
subject to β ∈ RK , κ, λ ∈ RI+

[Az +Bu]> β +
∑
i∈I

1[(z,u)∈Ci] [κi − λi] ≥ v(x, z) ∀(z,u) ∈ CI .

Strong duality is guaranteed by Proposition 3.4 in [56], which is applicable due to condition (C2).

Next, the nesting condition (N) allows us to partition the support CI into I nonempty and disjoint

sets Ci = Ci \
⋃
i′∈D(i) Ci′ , i = 1, . . . , I, where D(i) denotes the index set of strict subsets of Ci. The

constraint in the dual problem is therefore equivalent to the constraint set

[Az +Bu]> β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z) ∀(z,u) ∈ Ci, ∀i ∈ I.

We can then reformulate the i-th constraint as

max
(z,u)∈Ci

v(x, z)− [Az +Bu]> β −
∑

i′∈A(i)

[κi′ − λi′ ]

 ≤ 0.

The expression inside the maximization inherits convexity from v, which implies that it is maximized

on the boundary of Ci. Due to the nesting condition (N), the boundary of Ci coincides with the
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boundary of Ci. Thus, the robust expectation constraint (3) is satisfied if and only if

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w

[Az +Bu]> β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z) ∀(z,u) ∈ Ci, ∀i ∈ I

is satisfied by some β ∈ RK and κ, λ ∈ RI+. The assertion now follows if we apply Lemma 1 to

the second constraint by setting f = −A>β, g = −B>β and h =
∑

i′∈A(i) [κi′ − λi′ ].

For the proof of Theorem 2, we recall that the strongly NP-hard 0/1 Integer Programming

(IP) problem [31] is defined as follows.

0/1 Integer Programming.

Instance. Given are E ∈ ZM×P , f ∈ ZM , g ∈ ZP , ζ ∈ Z.

Question. Is there a vector y ∈ {0, 1}P such that Ey ≤ f and g>y ≤ ζ?

Assume that y′ ∈ [0, 1]P constitutes a fractional vector that satisfies Ey′ ≤ f and g>y′ ≤ ζ.

The following lemma shows that we can obtain an integral vector y ∈ {0, 1}P that satisfies Ey ≤ f
and g>y ≤ ζ by rounding y′ if its components are ‘close enough’ to zero or one.

Lemma 2. Let 0 < ε ≤ min {εE , εg}, where 0 < εE ≤ minm

{(∑
p |Emp|

)−1
}

and 0 < εg ≤(∑
p |gp|

)−1
. Assume that y′ ∈ ([0, ε)∪ (1− ε, 1])P satisfies Ey′ ≤ f and g>y′ ≤ ζ. Then Ey ≤ f

and g>y ≤ ζ for y ∈ {0, 1}P , where yp = 1 if y′p > 1− ε and yp = 0 otherwise.

Remark 2. A proof of Lemma 2 can be found in [60]. To keep the paper self-contained, we repeat

the proof here.

Proof of Lemma 2. By construction, we have that E>my ≤ E>my′ +
∑

p |Emp| εE < E>my
′ + 1 ≤

fm+1 for all m ∈ {1, . . . ,M}. Similarly, we have that g>y ≤ g>y′+∑p |gp| εg < g>y′+1 ≤ ζ+1.

Due to the integrality of E, f , g, ζ and y, we therefore conclude that Ey ≤ f and g>y ≤ ζ.

Proof of Theorem 2. Fix an instance (E,f , g, ζ) of the IP problem and consider the following

instance of the ambiguity set P defined in (4), where ε < 1
2 is chosen as prescribed in Lemma 2.

P =

P ∈ P0(RP ) :
P

 z̃ ∈ [0, 1]P , Ez̃ ≤ f , g>z̃ ≤ ζ∥∥z̃ − 1
2e
∥∥

2
≤
√
P
(

1
2 − ε

)
 = 0

P
(
z̃ ∈ [0, 1]P , Ez̃ ≤ f , g>z̃ ≤ ζ

)
= 1
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By construction, the first confidence set in the specification of P (which is assigned probability 0)

is a subset of the second confidence set (which is assigned probability 1).

Assume first that the ambiguity set P is not empty. Then, fix some P ∈ P and choose any

vector z ∈ RP in the support of P. By construction, we have z ∈ [0, 1]P , Ez ≤ f , g>z ≤ ζ and∥∥z − 1
2e
∥∥

2
>
√
P
(

1
2 − ε

)
, that is, zp ∈ [0, ε) ∪ (1− ε, 1] for all p = 1, . . . , P . We can then use

Lemma 2 to round z to a solution of the IP problem. Assume now that the instance of the IP

problem is feasible, that is, there is z ∈ {0, 1}P such that Ez ≤ f and g>z ≤ ζ. By construction,

z satisfies
∥∥z − 1

2e
∥∥

2
= 1

2

√
P >

√
P
(

1
2 − ε

)
. Thus, we have δz ∈ P, where δz represents the Dirac

distribution that concentrates unit mass at z.

Proof of Theorem 3. By construction, any (y, δ) ∈ Γ(x) satisfies∑
j∈J

δj sup
P∈Pj

EP [v(yj/δj , z̃)] ≥
∑
j∈J

δj sup
P∈P

EP [v(yj/δj , z̃)]

≥ sup
P∈P

EP

[
v
(∑
j∈J

yj , z̃
)]

= sup
P∈P

EP [v(x, z̃)] .

Here, the first inequality holds because P ⊆ Pj for all j ∈ J , the second inequality follows from

the subadditivity of the supremum operator and the convexity of v in its first argument, and the

identity is due to the definition of Γ(x). Thus, the robust constraint (3) is implied by the infimal

convolution constraint (7).

We now show that the infimal convolution constraint (7) is satisfied whenever the näıve approx-

imation (6) is satisfied. Due to the strict non-negativity requirement δ > 0, we need a limiting

argument to prove this implication. Assume that the näıve approximation (6) is satisfied and that

the minimum in (6) is attained at j? ∈ J . Fix any k ≥ 2 and set yj? = x and δj?(k) = 1 − 1
k , as

well as yj = 0 and δj(k) = 1
k(J−1) for j ∈ J \ {j?}. Then (y, δ(k)) ∈ Γ(x) and∑

j∈J
δj(k) sup

P∈Pj

EP [v(yj/δj(k), z̃)] −→
k→∞

sup
P∈Pj?

EP [v(x, z̃)]

because supP∈Pj EP [v(0, z̃)] is finite for all j ∈ J . Hence, the infimal convolution constraint (7) is

implied by the näıve approximation (6).

Finally, if J = 1, then we have P = P1, and the distributionally robust constraint (3) and the

näıve approximation (6) are equivalent. From the first part of the proof we can then conclude that

all three constraints (3), (6) and (7) are equivalent.
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Proof of Theorem 4. Assume first that |S| = 1. In this case, the optimal value of the optimization

problem coincides with the minimum of the optimal values of the J optimization problems

minimize d>x

subject to sup
P∈Pj

EP [v1(x, z̃)] ≤ w1

x ∈ X .

The assumptions of Theorem 1 are satisfied, and we conclude that each of these J optimization

problems can be solved efficiently.

We now show that for |S| > 1 the IP problem reduces to the problem in the theorem statement.

To this end, fix an instance (E,f , g, ζ) of the IP problem and consider the ambiguity set

P =
{
P ∈ P0(R2P ) : z̃ ∈ [0, 1]2P P-a.s., z̃p = 1 P-a.s. ∀p = 1, . . . , 2P

}
,

as well as the singleton partition J = {{1} , . . . , {2P}} with the associated 2P outer approximations

Pj =
{
P ∈ P0(R2P ) : z̃ ∈ [0, 1]2P P-a.s., z̃j = 1 P-a.s.

}
for j = 1, . . . , 2P.

Note that the box constraints in the definition of the ambiguity set P are redundant, and that P
satisfies the nesting condition (N). For the feasible region X =

{
x ∈ [0, 1]P : Ex ≤ f

}
, objective

function coefficients d = g, index set S = {1, . . . , P}, constraint functions vs(x, z) = −zsxs −
zs+P (1 − xs) and right-hand sides ws = −1, s ∈ S, the optimization problem in the theorem

statement reads as follows.

minimize g>x

subject to min

{
sup
P∈Ps

EP [vs(x, z̃)] , sup
P∈Ps+P

EP [vs(x, z̃)] ,

min
j∈J\{s,s+P}

sup
P∈Pj

EP [vs(x, z̃)]

}
≤ −1 ∀s ∈ S

Ex ≤ f , x ∈ [0, 1]P .

Note that the third argument of the outmost minimization operator in each distributionally robust

constraints is redundant. Indeed, for each j ∈ J \ {s, s+ P} there exists a probability distribution

P̂ ∈ Pj with P̂[z̃s = z̃s+P = 0] = 1, and thus we have

sup
P∈Pj

EP [vs(x, z̃)] ≥ EP̂ [vs(x, z̃)] = 0 > −1.
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The optimization problem therefore simplifies to

minimize g>x

subject to min

{
sup
P∈Ps

EP [vs(x, z̃)] , sup
P∈Ps+P

EP [vs(x, z̃)]

}
≤ −1 ∀s ∈ S

Ex ≤ f , x ∈ [0, 1]P .

(13)

The first argument of the minimization operator evaluates to

sup
P∈Ps

EP [−z̃sxs − z̃s+P (1− xs)] = −xs − (1− xs) inf
P∈Ps

EP [z̃s+P ] .

Because there is P̂ ∈ Ps with P̂ [z̃s+P = 0] = 1, this term is less or equal to −1 if and only if xs = 1.

Similarly, the second term inside the minimization expression in (13) simplifies to

sup
P∈Ps+P

EP [−z̃sxs − z̃s+P (1− xs)] = −(1− xs)− xs inf
P∈Ps+P

EP [z̃s] .

Because there is P̂ ∈ Ps+P with P̂ [z̃s = 0] = 1, this term is less or equal to −1 if and only if xs = 0.

Hence, the optimization problem (13) is equivalent to

minimize g>x

subject to Ex ≤ f , x ∈ {0, 1}P ,

which we readily identify as the strongly NP-hard IP problem.

Proof of Proposition 1. For j ∈ J2, we define J1(j) =
{
j′ ∈ J1 : I1

j′ ⊆ I2
j

}
as the set of indices

corresponding to elements of the partition
{
I1
j′

}
j′∈J1

that are contained in I2
j . Similarly, for j ∈ J1

we define J2(j) as the index of the element of
{
I2
j′

}
j′∈J2

that contains I1
j , that is, J2(j) = j′ if and

only if j′ ∈ J2 and I1
j ⊆ I2

j′ . Let Γ1(x) and Γ2(x) denote the sets of feasible vectors (y1, δ1) and

(y2, δ2) associated with the two partitions. Fix any (y1, δ1) ∈ Γ1(x) and define (y2, δ2) ∈ Γ2(x)

through y2
j =

∑
j′∈J1(j) y

1
j′ and δ2

j =
∑

j′∈J1(j) δ
1
j′ . We then obtain

∑
j∈J1

δ1
j sup
P∈Pj

1

EP
[
v(y1

j /δ
1
j , z̃)

]
≥

∑
j∈J1

δ1
j sup
P∈PJ2(j)2

EP
[
v(y1

j /δ
1
j , z̃)

]
≥

∑
j∈J2

[ ∑
j′∈J1(j)

δ1
j′

]
sup
P∈Pj

2

EP

[
v
([ ∑

j′∈J1(j)

y1
j′

]
/
[ ∑
j′∈J1(j)

δ1
j′

]
, z̃
)]

=
∑
j∈J2

δ2
j sup
P∈Pj

2

EP
[
v(y2

j /δ
2
j , z̃)

]
,
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where the first inequality follows from the fact that PJ2(j)
2 ⊆ Pj1 , which is a consequence of the

assumption that I1
j ⊆ I2

J2(j). The second inequality holds because v is convex in its first argument,

and the identity is due to the definition of (y2, δ2). Thus, the infimal convolution constraint (7) is

satisfied for
{
Pj2
}
j∈J2

whenever it is satisfied for
{
Pj1
}
j∈J1

.

Proof of Theorem 5. To prove statement (i), we first show that P ′ ⊆ Πz̃P. To this end, fix

any probability distribution P′ ∈ P0(RP ) that satisfies EP′ [g(z̃)] 4K f and P′ [z̃ ∈ Ci] ∈
[
p
i
,pi

]
,

i ∈ I. We can then construct a probability distribution P ∈ P0(RP ×RM ) such that P′ = Πz̃P and

ũ = g(z̃)− EP [g(z̃)] + f P-a.s. By construction, P satisfies g(z̃) 4K ũ P-a.s. and EP [ũ] = f . To

prove that P ′ ⊇ Πz̃P, fix any probability distribution P ∈ P. Since K is a convex cone, g(z̃) 4K ũ

P-a.s. implies that EP [g(z̃)] 4K EP [ũ]. The statement now follows since EP [ũ] = f for all P ∈ P.

Statement (ii) follows immediately from our definition of conic representable K-epigraphs.

Proof of Proposition 2. We first show that

Πz̃P ⊆
{
Q ∈ P0(RP ) : EQ

[
f>z̃ | f>z̃ ≥ θ

]
− EQ

[
f>z̃ | f>z̃ < θ

]
≤ σ, Q

[
f>z̃ ≥ θ

]
= ρ
}
.

To this end, fix any P ∈ P. By construction, we have that P
[
f>z̃ ≥ θ

]
= ρ. Next, we show that

EP
[
f>z̃ | f>z̃ ≥ θ

]
− EP

[
f>z̃ | f>z̃ < θ

]
≤ σ. To this end, we note that

EP

[
f>z̃ | f>z̃ ≥ θ

]
P
[
f>z̃ ≥ θ

]
= EP [ũ− ṽ | ũ ≥ ṽ] P [ũ ≥ ṽ] + θ P

[
f>z̃ ≥ θ

]
≤ EP [ũ | ũ ≥ ṽ] P [ũ ≥ ṽ] + θ P

[
f>z̃ ≥ θ

]
≤ EP [ũ] + θ P

[
f>z̃ ≥ θ

]
.

Here, the identity follows from the fact that ũ−ṽ = f>z̃−θ P-a.s. The first inequality holds because

ṽ ≥ 0 P-a.s., and the second inequality is due to the law of total expectation and the fact that

EP [ũ | ũ < ṽ] ≥ 0 since ũ ≥ 0 P-a.s. We thus conclude that EP
[
f>z̃ | f>z̃ ≥ θ

]
≤ ρ−1EP [ũ] + θ.

Using an analogous argument, we observe that

EP

[
f>z̃ | f>z̃ < θ

]
P
[
f>z̃ < θ

]
= EP [ũ− ṽ | ũ < ṽ] P [ũ < ṽ] + θ P

[
f>z̃ < θ

]
≥ EP [−ṽ | ũ < ṽ] P [ũ < ṽ] + θ P

[
f>z̃ < θ

]
≥ EP [−ṽ] + θ P

[
f>z̃ < θ

]
,
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that is, EP
[
f>z̃ | f>z̃ < θ

]
≥ (1− ρ)−1EP [−ṽ] + θ. From the definition of the ambiguity set P we

now conclude that

EP

[
f>z̃ | f>z̃ ≥ θ

]
− EP

[
f>z̃ | f>z̃ < θ

]
≤ ρ−1EP [ũ] + (1− ρ)−1EP [ṽ] ≤ EP [w̃] = σ.

The claim now follows from the observation that functions of z̃ (but not of ũ, ṽ, w̃) have the same

expected value under P and Πz̃P. We now show that

Πz̃P ⊇
{
Q ∈ P0(RP ) : EQ

[
f>z̃ | f>z̃ ≥ θ

]
− EQ

[
f>z̃ | f>z̃ < θ

]
≤ σ, Q

[
f>z̃ ≥ θ

]
= ρ
}
.

To this end, fix any probability distribution Q ∈ P0(RP ) that satisfies Q
[
f>z̃ ≥ θ

]
= ρ and

EQ
[
f>z̃ | f>z̃ ≥ θ

]
− EQ

[
f>z̃ | f>z̃ < θ

]
≤ σ. We show that there is a probability distribution

P ∈ P such that Q = Πz̃P, ũ =
[
f>z̃ − θ

]+
and ṽ =

[
θ − f>z̃

]+ P-a.s. Note that

EP [ũ] = EP

([
f>z̃ − θ

]+
)

= EP

([
f>z̃ − θ

]+
| f>z̃ − θ ≥ 0

)
P
[
f>z̃ − θ ≥ 0

]
= ρEP

[
f>z̃ | f>z̃ ≥ θ

]
− ρθ.

Here, the first identity follows from the definition of ũ. The second identity is due to the law of total

expectation and the fact that EP

([
f>z̃ − θ

]+ | f>z̃ − θ < 0
)

= 0, and the last identity follows

from the fact that P
[
f>z̃ ≥ θ

]
= Q

[
f>z̃ ≥ θ

]
= ρ. An analogous argument shows that

EP [ṽ] = EP

([
θ − f>z̃

]+
)

= EP

([
θ − f>z̃

]+
| f>z̃ − θ < 0

)
P
[
f>z̃ − θ < 0

]
= (1− ρ)EP

[
−f>z̃ | f>z̃ < θ

]
+ (1− ρ)θ.

We thus conclude that EP
[
ρ−1ũ+ (1− ρ)−1ṽ

]
= EP

[
f>z̃ | f>z̃ ≥ θ

]
− EP

[
f>z̃ | f>z̃ < θ

]
≤ σ,

which implies that there is indeed a probability distribution P ∈ P such that Q = Πz̃P.

Proof of Proposition 3. Assertion 1 follows directly from the definition of the marginal median,

while assertion 2 is an immediate consequence of Theorem 5. For the remainder of the proof, we

introduce the shorthand notation [x]+ = max {x, 0} for x ∈ R.

To prove assertion 3, we first show that
{
Q ∈ P0(RP ) : EQ

[
Hδ(f

>z̃)
]
≤ g
}
⊆ Πz̃P. To this

end, fix any probability distribution Q ∈ P0(RP ) that satisfies EQ
[
Hδ(f

>z̃)
]
≤ g. Next we

construct a probability distribution P ∈ P0(RP × R5
+) such that Πz̃P = Q, ũ =

[
f>z̃

]
+

, ṽ =
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[
−f>z̃

]
+

, s̃ = min {ũ, δ} and t̃ = min {ṽ, δ} P-a.s. By construction, we have P-a.s. that

δ (ũ− s̃) +
s̃2

2
+ δ

(
ṽ − t̃

)
+
t̃2

2
= δ

∣∣∣f>z̃∣∣∣− δmin
{∣∣∣f>z̃∣∣∣ , δ}+

min
{∣∣f>z̃∣∣ , δ}2

2

=


1

2

∣∣∣f>z̃∣∣∣2 if
∣∣∣f>z̃∣∣∣ ≤ δ,

δ

(∣∣∣f>z̃∣∣∣− 1

2
δ

)
otherwise.

Thus, we have EP

[
δ (ũ− s̃) + s̃2

2 + δ
(
ṽ − t̃

)
+ t̃2

2

]
= EP

[
Hδ(f

>z̃)
]
≤ g, which allows us to con-

struct a probability measure P ∈ P0(RP×R5
+) such that w̃ ≥ δ (ũ− s̃)+ s̃2

2 +δ
(
ṽ − t̃

)
+ t̃2

2 P-a.s. and

EP [w̃] ≤ g. We then conclude that P ∈ P, that is, we indeed have Q ∈ Πz̃P as claimed.

We now show that Πz̃P ⊆
{
Q ∈ P0(RP ) : EQ

[
Hδ(f

>z̃)
]
≤ g
}

. To this end, fix any probability

distribution P ∈ P. By construction, we have that

g = EP [w̃] ≥ EP

[
δ (ũ− s̃) +

s̃2

2
+ δ

(
ṽ − t̃

)
+
t̃2

2

]
≥ EP

[
δ (ũ−min {ũ, δ}) +

min {ũ, δ}2
2

+ δ (ṽ −min {ṽ, δ}) +
min {ṽ, δ}2

2

]

= EP

[
I[ũ+ṽ≤δ] ·

1

2
(ũ+ ṽ)2 + I[ũ+ṽ>δ] · δ

(
ũ+ ṽ − 1

2
δ

)]
≥ EP

[
I[|f>z̃|≤δ] ·

1

2

∣∣∣f>z̃∣∣∣2 + I[|f>z̃|>δ] · δ
(∣∣∣f>z̃∣∣∣− 1

2
δ

)]
= EP

[
Hδ(f

>z̃)
]
.

Here, the second inequality holds since for fixed u ∈ R, the function δ(u−s)+ s2

2 attains its minimum

over the interval [0, u] at min {u, δ}; the same holds true for v and t. The identity in the next to

last row follows from a case distinction. Since the expression in this row is increasing in ũ + ṽ,

the definition of P implies that the expression is minimized when ũ =
[
f>z̃

]
+

and ṽ =
[
−f>z̃

]
+

P-a.s., which leads to the expression in the last row. We thus conclude that EP
[
Hδ(f

>z̃)
]
≤ g

whenever P ∈ P, which completes the proof.
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Appendix B: E-Companion

We keep the regularity conditions (C1) and (C2) regarding the ambiguity set P, but we replace

the condition (C3) concerning the constraint function v with the following two conditions.

(C3a) The function v(x, z) is convex in x for all z ∈ RP and can be evaluated in polynomial time.2

(C3b) For i ∈ I, x ∈ X and θ ∈ R, it can be decided in polynomial time whether

max
(z,u)∈Ci

v(x, z) ≤ θ. (14)

Moreover, if (14) is not satisfied, then a separating hyperplane (π, φ) ∈ RN × R can be

constructed in polynomial time such that π>x > φ and π>x̂ ≤ φ for all x̂ ∈ X satisfying (14).

One readily verifies that the condition (C3) from the main paper implies both (C3a) and (C3b).

If (C3a) fails to hold, then the distributionally robust expectation constraint (3) may have a

non-convex feasible set. Condition (C3b) will enable us to efficiently separate the semi-infinite

constraints that arise from the dual reformulation of constraint (3). The conditions (C3a) and

(C3b) are satisfied by a wide class of constraint functions v that are convex in x and convex

and piecewise affine in z. In the following, we will show that both conditions are also satisfied for

constraint functions that are convex in x and convex and piecewise (conic-)quadratic in z, provided

that the confidence set Ci in the ambiguity set P are described by ellipsoids. We will also show

that both conditions are satisfied by certain constraint functions that are non-convex in z as long

as the number of confidence regions is small and that all confidence regions constitute polyhedra.

We first provide tractable reformulations of the distributionally robust expectation constraint (3)

under the relaxed conditions (C3a) and (C3b). Afterwards, we present various classes of constraint

functions that satisfy the conditions (C3a) and (C3b) and that give rise to conic optimization

problems that can be solved with standard optimization software.

B.1 Tractable Reformulation for Generic Constraints

Theorem 1 in the main paper provides a tractable reformulation for the distributionally robust

expectation constraint (3). In its proof, we first re-express constraint (3) in terms of semi-infinite

2Here and in the following, “polynomial time” is understood relative to the length of the input data (i.e., the

constraint function v and the ambiguity set P) and log ε−1 for a pre-specified approximation tolerance ε.
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constraints, and we afterwards apply robust optimization techniques to obtain a tractable refor-

mulation of these semi-infinite constraints. Condition (C3) is not needed for the first step if the

constraint function v(x, z) is convex in z.

Theorem 6 (Convex Constraint Functions). Assume that the conditions (C1), (C2) and (N)

hold and that the constraint function v(x, z) is convex in z. Then, the distributionally robust

constraint (3) is satisfied for the ambiguity set (4) if and only if the semi-infinite constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w

[Az +Bu]> β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z) ∀(z,u) ∈ Ci, ∀i ∈ I

is satisfied by some β ∈ RK and κ, λ ∈ RI+.

Proof. The statement follows immediately from the proof of Theorem 1 in the main paper.

The semi-infinite constraints in Theorem 6 are tractable if and only if (C3a) and (C3b) hold.

This follows from Theorem 3.1 in the celebrated treatise on the ellipsoid method by Grötschel et

al. [35]. Next, we investigate situations in which v(x, z) fails to be convex in z.

Theorem 7 (Nonconvex Constraint Functions). Assume that the conditions (C1), (C2) and (N)

hold and that the confidence regions Ci constitute polyhedra, that is, Ki = RLi
+ for all i ∈ I. Then,

the distributionally robust constraint (3) is satisfied for the ambiguity set (4) if and only if the

semi-infinite constraint system

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w

[Az +Bu]> β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z) ∀(z,u) ∈
[ ⋂
i′∈D(i)

Ci′,li′
]
∩ Ci, ∀i ∈ I,

∀l = (li′)i′∈D(i) : li′ ∈ {1, . . . , Li′} ∀i′ ∈ D(i)

is satisfied by some β ∈ RK and κ, λ ∈ RI+. Here, Ci,l =
{

(z,u) ∈ RP × RQ : C>il z +D>ilu ≥ cil
}

denotes the closed complement of the l-th halfspace defining the confidence region Ci.

Proof. Following the argument in Theorem 1 in the main paper, the distributionally robust

constraint (3) is satisfied if and only if there is β ∈ RK and κ, λ ∈ RI+ such that

b>β +
∑
i∈I

[
piκi − piλi

]
≤ w

[Az +Bu]> β +
∑

i′∈A(i)

[κi′ − λi′ ] ≥ v(x, z) ∀(z,u) ∈ Ci, ∀i ∈ I.
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Contrary to the constraints in the statement of Theorem 6, the semi-infinite constraints only have

to be satisfied for all vectors (z,u) belonging to the non-convex sets Ci.
Using De Morgan’s laws and elementary set algebraic transformations, we can express Ci as

Ci = Ci \
⋃

i′∈D(i)

Ci′ =
⋂

i′∈D(i)

Ci \ Ci′ =
⋂

i′∈D(i)

⋃
li′∈{1,...,Li′}

Ci ∩ int Ci′,li′

=
⋃

l=(li′ )i′∈D(i):

li′∈{1,...,Li′} ∀i′∈D(i)

⋂
i′∈D(i)

Ci ∩ int Ci′,li′ .

The statement of the theorem now follows from the continuity of v in z, which allows us to replace

int Ci′,li′ with its closure Ci′,li′ .
Individually, each semi-infinite constraint in Theorem 7 is tractable if and only if the conditions

(C3a) and (C3b) are satisfied, see [35]. Note, however, that the number of semi-infinite constraints

grows exponentially with the number I of confidence regions. Thus, Theorem 7 is primarily of

interest for ambiguity sets with a small number of confidence regions. We remark that apart from

the absolute mean spread and the marginal median, all statistical indicators of Section 3 result

in ambiguity sets with a single confidence region. In those cases, Theorem 7 provides a tractable

reformulation of the distributionally robust constraint (3).

B.2 Reformulation as Conic Optimization Problems

Theorems 6 and 7 demonstrate that the distributionally robust constraint (3) with ambiguity set (4)

admits an equivalent dual representation that involves several robust constraints of the form

v(x, z) + f>z + g>u ≤ h ∀(z,u) ∈ Ci, (15)

where f ∈ RP , g ∈ RQ and h ∈ R are interpreted as auxiliary decision variables, while Ci is defined

as in (5). Robust constraints of the form (15) are tractable if and only if the conditions (C3a) and

(C3b) are satisfied. Unlike (C3a), condition (C3b) may not be easy to check. In the following,

we provide a more elementary condition that implies (C3b).

Observation 2. If v(x, z) is concave in z for all admissible x and if one can compute subgradients

with respect to x and supergradients with respect to z in polynomial time, then (C3b) holds.

The proof of Observation 2 is standard and thus omitted, see e.g. [27, 35]. We emphasize

that a wide range of convex-concave constraint functions satisfy the conditions of Observation 2.
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For example, v(x, z̃) could represent the losses (negative gains) of a portfolio involving long-only

positions in European stock options [63]. In this situation x denotes the nonnegative asset weights,

which enter the loss function linearly, while z̃ reflects the random stock returns, which enter the

loss function in a concave manner due to the convexity of the option payoffs. The conditions of

Observation 2 also hold, for instance, if v(x, z̃) represents the losses of a long-only asset portfolio

where the primitive uncertain variables z̃ reflect the assets’ log returns [39].

Although (C3a) and (C3b) represent the weakest conditions to guarantee tractability of (15),

the methods required to solve the resulting optimization problems (e.g. the ellipsoid method [26])

can still be slow and suffer from numerical instabilities. Therefore, we now characterize classes of

constraint functions for which the robust constraint (15) admits an equivalent reformulation or a

conservative approximation in terms of polynomially many conic inequalities. The resulting conic

problem can then be solved efficiently and reliably with standard optimization software.

From the proof of Theorem 1 in the main text, we can directly extract the following result.

Observation 3 (Bi-Affine Functions). Assume that v(x, z) = s(z)>x+ t(z) with s(z) = Sz + s,

S ∈ RN×P and s ∈ RN , as well as t(z) = t>z + t, t ∈ RP and t ∈ R. Then the following two

statements are equivalent.

(i) The semi-infinite constraint (15) is satisfied, and

(ii) there is λ ∈ K?i such that c>i λ+ s>x+ t ≤ h, C>i λ = S>x+ t+ f and D>i λ = g.

Here, K?i represents the cone dual to Ki.

If the confidence set Ci is described by linear, conic quadratic or semidefinite inequalities, then

Observation 3 provides a linear, conic quadratic or semidefinite reformulation of (15), respectively.

Bi-affine constraint functions can represent the portfolio losses in asset allocation models with

uncertain returns or the total costs in revenue management models with demand uncertainty.

Next, we study a richer class of functions v(x, z) that are quadratic in x and affine in z.

Proposition 4 (Quadratic-Affine Functions). Assume that v(x, z) = x>S(z)x + s(z)>x + t(z)

with S(z) =
∑P

p=1 Spzp+S0, Sp ∈ SN for p = 0, . . . , P and S(z) � 0 for all z ∈ Ci, s(z) = Sz+s,

S ∈ RN×P and s ∈ RN , as well as t(z) = t>z + t, t ∈ RP and t ∈ R. Then the following two

statements are equivalent.
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(i) The semi-infinite constraint (15) is satisfied, and

(ii) there is λ ∈ K?i and Γ ∈ SN such that c>i λ+ 〈S0,Γ〉+ s>x+ t ≤ h, D>i λ = g and

C>i λ−


〈S1,Γ〉

...

〈SP ,Γ〉

 = S>x+ t+ f ,

1 x>

x Γ

 < 0.

Here, K?i represents the cone dual to Ki, and 〈·, ·〉 denotes the trace product.

Proof. Since S(z) < 0 over Ci, the semi-infinite constraint (15) is equivalent to

x>T x+
[
S>x+ t+ f

]>
z + g>u ≤ h− s>x− t ∀(z,u,T ) ∈ RP × RQ × SN+ :

Ciz +Diu 4Ki ci,

T =
P∑
p=1

Spzp + S0.

This constraint is equivalent to the requirement that the optimal value of the optimization problem

maximize
〈
xx>,T

〉
+
[
S>x+ t+ f

]>
z + g>u

subject to z ∈ RP , u ∈ RQ, T ∈ SN+
Ciz +Diu 4Ki ci

T =
P∑
p=1

Spzp + S0

does not exceed h− s>x− t. This is the case if and only if the optimal value of the dual problem

minimize c>i λ+ 〈S0,Γ〉
subject to λ ∈ K?i , Γ ∈ SN

C>i λ−


〈S1,Γ〉

...

〈SP ,Γ〉

 = S>x+ t+ f

D>i λ = g, Γ < xx>

does not exceed h− s>x− t. Applying Schur’s complement [17] to the last constraint, we see that

this is precisely what the second statement requires.
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In contrast to Observation 3, Proposition 4 results in a semidefinite reformulation of the con-

straint (15) even if the confidence sets Ci are described by linear or conic quadratic inequalities.

Next, we consider two classes of constraint functions that are quadratic in z. In order to

maintain tractability, we now assume that the confidence set Ci is representable as an intersections

of ellipsoids, that is,

Ci =
{
ξ = (z,u) ∈ RP × RQ : (ξ − µj)>Σ−1

j (ξ − µj) ≤ 1 ∀j = 1, . . . , Ji

}
, (16)

where Ji ∈ N, µj ∈ RP+Q and Σ−1
j ∈ SP+Q positive definite. Propositions 5 and 6 below provide

conservative approximations for the robust constraint (15). These approximations become exact if

Ci reduces to a single ellipsoid.

Proposition 5 (Affine-Quadratic Functions). Let v(x, z) = z>S(x) z+s(z)>x+t(z) with S(x) =∑N
n=1 Snxn + S0, Sn ∈ SP for s = 0, . . . , N , s(z) = Sz + s, S ∈ RN×P and s ∈ RN , as well as

t(z) = t>z + t, t ∈ RP and t ∈ R. Assume that the confidence set Ci is defined as in (16), and

consider the following two statements.

(i) The semi-infinite constraint (15) is satisfied, and

(ii) there is λ ∈ RJi+ such that
γ(x)−∑j λj(1− µ>j Σ−1

j µj) −1
2π(x)> − µ(λ)>

−1
2π(x)− µ(λ) Σ(λ)−

S(x) 0

0 0


 < 0,

where γ(x) = h − t − s>x, π(x) = (
[
S>x+ t+ f

]>
, g>)>, µ(λ) =

∑
j λjΣ

−1
j µj and

Σ(λ) =
∑

j λjΣ
−1
j .

For any Ji ∈ N, (ii) implies (i). The reverse implication holds if Ji = 1 or S(x) 4 0 for all x ∈ X .

Proof. The semi-infinite constraint (15) is equivalent to

z>S(x) z + (S>x+ t+ f)>z + g>u ≤ h− s>x− t ∀(z,u) ∈ Ci.

This constraint is satisfied if and only if for all (z,u) ∈ RP × RQ, we have
1

z

u


>

h− s>x− t −1
2(S>x+ t+ f)> −1

2g
>

−1
2(S>x+ t+ f) −S(x) 0

−1
2g 0 0




1

z

u

 ≥ 0
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whenever (z,u) satisfies
1

z

u


>1− µ>j Σ−1

j µj µ>j Σ−1
j

Σ−1
j µj −Σ−1

j




1

z

u

 ≥ 0 ∀j = 1, . . . , Ji.

The statement now follows from the exact and approximate S-Lemma, see e.g. [42], as well as from

Farkas’ Theorem, see e.g. [60].

Proposition 6 (Bi-Quadratic Functions). Let v(x, z) = x>S(z)S(z)>x + s(z)>x + t(z) with

S(z) =
∑P

p=1 Spzp + S0, Sp ∈ RN×S for p = 0, . . . , P , s(z) = Sz + s, S ∈ RN×P and s ∈ RN , as

well as t(z) = t>z + t, t ∈ RP and t ∈ R. Assume that the confidence set Ci is defined as in (16),

and consider the following two statements.

(i) The semi-infinite constraint (15) is satisfied, and

(ii) there is λ ∈ RJi+ such that
I S>0 x Ŝ(x)>

x>S0 γ(x)−∑j λj(1− µ>j Σ−1
j µj) −1

2π(x)> − µ(λ)>

Ŝ(x) −1
2π(x)− µ(λ) Σ(λ)

 < 0,

where I is the S × S-identity matrix, Ŝ(x) ∈ R(P+Q)×S with Ŝ(x) =
[
S>1 x, . . . , S

>
P x, 0

]>
,

γ(x) = h − t − s>x, π(x) = (
[
S>x+ t+ f

]>
, g>)>, µ(λ) =

∑
j λjΣ

−1
j µj and Σ(λ) =∑

j λjΣ
−1
j .

For any Ji ∈ N, (ii) implies (i). The reverse implication holds if Ji = 1.

Proof. The proof follows closely the argument in Theorem 3.2 of [7].

Bi-quadratic constraint functions of the type considered in Proposition 6 arise, for example, in

mean-variance portfolio optimization when bounds on the portfolio variance are imposed.

Proposition 7 (Conic-Quadratic Functions). Assume that v(x, z) = ‖S(z)x+ t(z)‖2 with S(z) =∑P
p=1 Spzp + S0, Sp ∈ RS×N for p = 0, . . . , P , as well as t(z) = Tz + t, T ∈ RS×P and t ∈ RS.

Moreover, assume that the confidence set Ci is defined as in (16) and that f = 0 and g = 0 in

(15). Consider the following two statements.
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(i) The semi-infinite constraint (15) is satisfied, and

(ii) there is α ∈ R+ and λ ∈ RJi+ such that α ≤ h− t and
αI S0x+ t Ŝ(x)> +

[
T , 0

]
x>S>0 + t> α−∑j λj(1− µ>j Σ−1

j µj) −µ(λ)>

Ŝ(x) +
[
T , 0

]> −µ(λ) Σ(λ)

 < 0,

where I is the S × S-identity matrix, Ŝ(x) ∈ R(P+Q)×S with Ŝ(x) =
[
S1x, . . . , SPx, 0

]>
,

γ(x) = h− t− s>x, µ(λ) =
∑

j λjΣ
−1
j µj and Σ(λ) =

∑
j λjΣj.

For any Ji ∈ N, (ii) implies (i). The reverse implication holds if Ji = 1.

Proof. The proof follows closely the argument in Theorem 3.3 of [7].

In contrast to the previous results, Proposition 7 requires that f = 0 and g = 0 in the semi-

infinite constraint (15). An inspection of Theorems 6 and 7 reveals that this implies A = B = 0

in (4), that is, the ambiguity set P must not contain any expectation constraints.

Note that the constraint functions in Propositions 5–7 are convex or indefinite in z, which

implies that the conditions of Observation 2 fail to hold. This is in contrast to the constraint

functions in Observation 3 and Proposition 4, which satisfy the conditions of Observation 2.

The following result allows us to further expand the class of admissible constraint functions.

Observation 4 (Maxima of Tractable Functions). Let the constraint function be representable as

v(x, z) = maxl∈L vl(x, z) for a finite index set L and constituent functions vl : RN × RP → R.

(i) If every function vl satisfies condition (C3b), then v satisfies (C3b) as well.

(ii) If the robust constraint (15) admits a tractable conic reformulation or conservative approxi-

mation for every constituent function vl, then the same is true for v.

This result exploits the fact that inequality (14) of condition (C3b) and the robust constraint

(15) are cast a less-than-or-equal constraints. For a proof of Observation 4, we refer to [12, 26, 27].

Table 1 consolidates the results of the main paper and the electronic companion.
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Table 1. Summary of the results of the paper and its companion. The results above

(below) the middle line constitute exact reformulations (conservative reformulations).

All constraint functions can be combined to piecewise functions using Observation 4.


