arXiv:1401.6914v1 [math.OC] 27 Jan 2014
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ABSTRACT. This paper continues the study of equilibria for flows overetin
the fluid queueing model recently considered by Koch andedlijtL0]. We pro-
vide a constructive proof for the existence and uniquengsguilibria in the case
of a single origin-destination with piecewise constantowfrates, through a de-
tailed analysis of the static flows obtained as derivatifesdynamic equilibrium.
We also give a honconstructive existence proof of equdilrnen the inflow rates
belong toL? including the extension to multiple origin-destinations.

1. INTRODUCTION

Understanding time varying flows over networks is relevartantexts where a
steady state is rarely observed such as urban traffic or thmit. Frequently, these
systems are characterized by a lack of coordination amangadtticipating agents
and have to be considered from a game theoretic perspective.

Research in flows over time was initially focused in optirtima. The first to
consider such questions in a discrete time setting were &oddFulkersong, 7]
who designed an algorithm to compute a flow-over-time cagythe maximum
possible flow from a source to a sink in a given timespan. Gil#hgn showed the
existence of a flow pattern that achieves this optimum senelbusly for all time
horizons. These results were extended to continuous tintddigcher and Tardos
[5], and Anderson and Philpoti], respectively. We refer to Skutelld 9] for an
excellent survey.

The study of flows over time when flow particles act selfishlg haostly been
considered in the transportation literature. The semiapkp by Friesz, Bernstein,
Smith, Tobin, and Wie §] (see also the booklB, Ran and Boyce]) proposed a
general framework in the form of a variational inequality ¥ehich, unfortunately,
little is known in terms of existence, uniqueness and chiaraation of solutions.
Under suitable assumptions, an existence result was alntbtained by Zhu
and Marcotte 22]. Also, Meunier and Wagnerlp] establish the existence of dy-
namic equilibria using an alternative specification of theded and exploiting gen-
eral results for games with a continuum of players. Recdflyh and Skutella]0]
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studied a more specific model, which can be traced back ta&§dR(], in which
there is an inflow stream at a single source that travels a¢hesnetwork towards
a sink through edges that are characterized by a travel tintetemcy and ger-
time-unitcapacity. The model is a fluid approximation of a queueingesgsand
can be seen as a special case of Fragsd.s framework, though it does not satisfy
the assumptions required for the existence result of ZhuNdauatotte. This fluid
gueueing model was recently considered by Bhaskar, Fieisoid Anshelevich?]

to investigate the price-of-anarchy in Stackleberg rautiames. A more detailed
comparison with the related literature is postponed #til

Our Contribution. This paper considers flows over time for the fluid queueingehod
as in Koch and SkutellalD], and is an outgrowth of our preliminary work,[11].
We provide a constructive (algorithmic) proof for the egiste and uniqueness of
equilibria, exploiting the key concept tin flow with resettingntroduced by Koch
and Skutella: a static flow together with an associated iladpéthat characterize the
time derivatives of an equilibrium. We actually considelighély more restrictive
definition by adding a normalization condition. Using a fiymant formulation we
show that normalized thin flows exist, and then we prove thatabeling is unique.
As a by-product, this yields an exponential-time algoritittncompute a normalized
thin flow and shows that this problem belongs to the completéss PPAD, though
we conjecture that it might be solvable in polynomial timeg.iBtegrating these thin
flows we deduce the existence of an equilibrium for the casepidcewise constant
inflow rate, and we show that the equilibrium is unique withinatural family of
flows over time. Finally, we give a non-constructive exiseeproof when the inflow
rates belongs to the spacepfntegrable functiond.? with 1 < p < oo, and we
discuss how the result extends to multiple origin-destimapairs.

Organization of the papefSections2 describes the fluid queueing model for flows
over time. Sectiory3 characterizes the time derivatives of a dynamic equiliariu
using the notion of normalized thin flows with resetting, gmdves the existence
and uniqueness of the latter. §a we exploit the previous results to give a construc-
tive proof for the existence of an equilibrium in the case dfiecewise constant
inflow rate, and we discuss the unigueness of this equikitoritn §5 we present a
non-constructive existence result for more general inflates, including the case
of multiple origin-destinations. Finally, if6 we compare our findings with previ-
ous results in the literature and state some open questippEendix§7 at the end
summarizes some technical facts used in the paper.

2. AFLUID QUEUE MODEL FOR DYNAMIC ROUTING GAMES

Throughout this paper we consider a netwafk= (G, v, 7, s, t, u) consisting of
a directed grapltz with node setl” and edge set’, a vector(v,).cp of positive
numbers representing queue service rates, a véciRe g of nonnegative numbers
representing link travel times, a sourgec V, a sinkt € V, and an inflow rate
functionw : R — R, taken from the sef,(R) of non-negative and locally inte-
grable functions which vanish on the negative axis, tha{fy = 0 for a.e.f < 0.

We denotdJ () :foeu(g)dg the cumulative inflowso thatl/ € ACi..(R), the space
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of locally absolutely continuous functions. For the predigfinition of these func-
tional spaces and some of its basic properties we refef &md [L2, Chapter 3].

A continuous stream of particles is injected at the sourata time-dependent
rateu(6), and flows through the network towards the sinRarticles arriving to an
edgee join a queue with service rate, and, after leaving the queue, travel along
the edge to reach its head aftertime units. Each infinitesimal inflow particle is
interpreted as a player that seeks to complete its journéyeiteast possible time,
so that equilibrium occurs when each particle travels alang-t shortest path.
The relevant edge costs for a particle entering the netwidtikna #, must consider
the queueing delays induced by other particles along its ipathe time at which
each edge is reached. This introduces intricate spatiateangdoral dependencies
among the flows that enter the network at different timessipbsat future dates if
overtaking occurs.

The rest of this section makes these notions more precisesimplicity, and
without loss of generality, we assume that there is at mostemtge between any
pair of nodes inG, that there are no loops, and that for each nedeV’ there is a
path froms to v. An edgee € F from nodev to nodew is written vw, while the
forward and backward stars of a node V' are denoted™ (v) andé~ (v). We also
suppose that the sum of latencies along any cycle is pasitarely) " . 7. > 0
for every cycleC in G.

2.1. Flows over time. The model is stated in terms of the flow rates on every edge.
A flow-over-timeis a pairf = (f*, f~) of arrays of functions,", /. € Fo(R) for
eache € F, representing the rate at which flow enters the tait ahd the rate of
flow leaving the head of respectively. Theumulative inflowcumulative outflow
andqueue sizare defined as thaCy,.(R) functions

FXO) = [y [ dg,
FZ0) = fy f(9)dg,
ze(0) = F1(0)— F;(0+ ).
Note that the expression for the queue siz@) accounts for the time, required

to reach the head of the link after leaving the queue. We sayftts feasibleif for
almost allg the following are satisfied

e capacity constraintsyf; (¢) < v, for eache € E,
¢ non-deficit constraintsz.(#) > 0 for eache € F,
e flow conservation constraints:

B (9) forv=s
() — o=1{" 1
ee;@)m ) ee;(v)fe() { 0 forvevigsg O

2.2. Queue dynamics.We assume that queueperate at capacitythat is to say,
for almost allé we have

_ B Ve if z¢(0) > 0,
fe(0+7e) = { min{ f(0),v.} otherwise. 2)
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This condition can be equivalently stated in terms of thauguength dynamics

/(9) . { f:(@)—ye if 26(9) >0 (3)

T [f4(0) -]y otherwise,

whose unique solution is given by (se@.[17, section§l1.3])

6
() = max [ 519~ vl @
u€l0,6] Jy
This formula shows that the inflo," completely determines the queue length
and then the outflovf_" is also uniquely determined by)(
Thequeueing delagxperienced by a particle enteringt time# before it starts
traversing the edge is defined as

0+q
qe()) = min{g > 0 g Je (& +7e)d§ = z.(0)}. %)

We denotdV? = [0, 0 + q.(0)) the interval on which the particle waits in the queue
and@. = {0 : z.(0#) > 0} the instants at which the queue is nonempty. We observe
that for all¢ € W7 the queue remains nonempty since

13 13
20(€) = 2(0) + /9 FHE) — fr (€] dE > 20(0) - /@ Jo (647 dE > 0

and therefore), = UgIW’.

Proposition 1. A queue operates at capacity if and only if the following ¢hcen-
ditions hold simultaneously

(a) Capacity constraintsf; (6) < v, for almost allg,
(b) Non-deficit constraintsz.(¢) > 0 for all 6,
(c) Queueing delayg.(0) = z.(0) /v, for all 6.

Proof. Suppose the queue operates at capacity. FR)wé clearly have (a) while
(4) implies (b). To prove (c) we observe thg‘?“’fg (€+7e) d€ < veq from which

it follows that ¢.() > z.(0)/v.. On the other hand, since the queue remains
nonempty oriV’? condition @) implies f- (¢ + 7.) = v, a.e.£ € W7 and then

0+z(0)/ve
/9 F (€ 7) dE = 2(6)

which yieldsg, (0) = z.(0)/ve.

Conversely, suppose (a)-(c). From (c) we gﬁf‘h’(e) [fo(E+Te) —ve]dE =0
so that (a) giveg, (¢ +7.) = v, for almost allé € W?, and Lemma2implies that
this equality holds a.e. anyW?¢ = Q. proving the first case of]. For the second
case, (b) and Lemma3:(a)=-(c) give that almost everywherg (6) = 0 implies
0=2.(0) = fr(0)—f.(0+7.) and thereforef, (0 +7.) = min{f(0),v.}. O
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2.3. Link travel times. The time at which a particle exits from an edgean be
computed as the sum of the entrance tiimplus queueing delay, plus latenc.
T.(0) =0+ 29 4 7. 6)
For notational convenience we omit the dependencé.ain the flow f. Clearly
T. € AC),¢(R) and using ) we can compute its derivative almost everywhere as

o = f(0) if 2.(0) > 0,
T,(0) —{ max{1, ;- f;(6)} otherwise.

()

HenceT.(#) > 0 so thatT, is non-decreasing and thus particles traversingspect
FIFO without overtaking. Moreover, all the flow that entersp to timed exits by
time 7.(#). Indeed, since the queue is nonempty over the intéiV8 service at
capacity impliesf; (¢ + 7.) = v, for almost all¢ € W? and then

O+Te Te(G)
o) = | fe‘(é)d£+/9+ Ve de
= F(0+7) + 2(0)

= F7(0). (8)

2.4. Dynamic shortest paths. A flow particle entering a pat® = (e, e, ..., ex)
at timed will reach the endpoint of the path at the time

() =To, 00 Tey (6), ©)

Thus, denotingP,, the set of alls-w paths inG, the earliest time at which a particle
starting froms at time# can reachw is given by

Cw(0) = min £7(0). (10)

These functions correspond to shortest paths with edgs tust consider the
gueueing delays along the path at the appropriate timewmgtalkto account the
time it takes to reach every edge. We refer to themd@samic shortest paths
Since theT,’s are absolutely continuous and non-decreasing, the safds For
their compositiong”” and therefore also for th&,’s (see L2, Ch.3] or§7). The
monotonicity of T, together with the non-deficit constraints and the fact that t
sum of latencies on any cycle is positive, imply that dynastiortest paths do not
contain cycles and therefor&() can also be computed by solving

0 forw=s
ly(0) = { min  T,.(4,(0)) forw # s. (11)
e=vwed~ (w)

The #-shortest-path graplis defined as the acyclic graghy = (V, Ej) con-
taining all the shortest paths at tifle An edgee = vw is in Ej if and only if
T.(€,(0)) < £,(0), or equivalentlyT,(¢,(0)) = £,(8), in which case it is said to
beactive Note that an inactive edge h#s(¢,(0)) > ¢,,(6) so by continuity it re-
mains inactive nearby. We also denéigthe set of all time® at whiche is active.
Note thatEy, and©. depend on the given flow-over-timfe
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2.5. Dynamic equilibrium. A feasibles-t flow-over-time can be interpreted as a
dynamic equilibrium by looking at each infinitesimal infloaricle as a player that
travels from the source to the sink along @& path that yields the least possible
travel time. The following definition makes this notion pisec

Definition 2 (Dynamic equilibrium) A feasible flow-over-tim¢ is adynamic equi-
librium if for eache = vw € E we havef; (¢) = 0 for aimost all¢ € ¢,(R\O,).

REMARK. In [10], Koch and Skutella consider a slightly different notionhieh
we call strong dynamic equilibriumrequiring thate ¢ Ej, = f.(¢,(0)) =0 for
eache = vw € FE and almost alb. This condition implies dynamic equilibrium
(since’, is absolutely continuous and maps null sets into null setsd, it is in
fact strictly stronger as illustrated in the example bel@ve point is that the com-
position f.F(¢,(6)) does not allow to identify functiong," that coincide almost
everywhere. Indeed, sin€g(-) may be constant over a nontrivial interval, a simple
modification of /" at a single point may spoil tredmost everywhereondition with
respect t@. Definition 2 avoids this difficulty.

ExAMPLE. Consider the simple network in Figutewith inflow function
{2 if0<o<1

0 if1<6<2
1 if 2<80.

FIGURE 1. Dynamic equilibrium in a simple network.

The inflow of linka is f;(8) = u(#) so that a queue builds up in the interval 1]
and is emptied durindll, 2] after which it stays empty with constant unit throughput.
The outflow isf; () = 1;4>1, SO that linksh and c can process all incoming flow
without queueing. Since. > 7, it follows thatc is never active and a dynamic
equilibrium must send all the flow along the pattb. A dynamic equilibrium is
found by setting."(6) = £, (0) = 0, f,7(6) = Lig>1y and f; (0) = Lyp>ay, With
corresponding earliest-time functiods(d) = 6 and¢,(0) = ¢,(9) + 1 where

1+6 for 6 € (—o0,0] U [2,00)
,(0) =< 1+20 for 6¢€l0,1]

3 for 6 € [1,2].

This is in fact a strong dynamic equilibrium. However, if wstjmodify . by
taking f;7(3) > 0 we still have a dynamic equilibrium, byt"(¢,.(6)) > 0 on the
interval [1, 2] and strong equilibrium fails.
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It is worth noting that at equilibrium all edges with pos#tigueue must be active.
Namely, letE; denote the set of links with positive queue

Ey ={e=vw e E: z({,(0)) > 0}. (12)

Proposition 3. If f is a dynamic equilibrium the’; C Ej, and we have
Ey, = {e=vwe E:ly(0)>0,00)+ 7}, (13)
E; = {e=vweE:l,(0)>0,(0)+ T} (14)

Proof. Letec E; and consider the largegt< 6 at whiche was active. Equilibrium
implies f.F(£) =0 for almost all¢ € (¢,(0"), £,(6)], so the queue must be nonempty
throughout this interval andr) gives 7. (¢) = 0 almost everywhere. Henck is
constant in this interval so that

Tewv(e)) = Tewvw/)) = Ew(ﬂ/) < gw(g)

which yieldse € Ej, proving the inclusiorEj; C Ej.
To show (L3) we note that foe € Ej, we have

gw(e) = Te(ev(g)) = KU(Q) + Te

where the inequality follows from definition &f. and the non-deficit constraints.
Conversely, suppose that(0) > £,(6) + 7. If z.(¢,(0)) = 0 this yieldst,, (0) >
T.(¢,(0)) so thate € Ej, while in the casex(¢,(¢)) > 0 the same conclusion
follows since we already proved thaf C Ej,.

A similar argument proveslf). Fore € E}; we havez.(¢,(6)) > 0 ande € Ej,
so thatl,,(0) = T.(4,(6)) > €,(0) + 7.. Conversely, if¢,(0) + 7. < ¢,(0) the
inequalityZ,,(8) < T.(¢,(0)) and the definition of, yield z.(¢,(#)) > 0. O

Intuitively, at equilibrium all the flow routed through angek = vw up to time
¢,(6) should reachv before the optimal timé,, (). This is in fact an equivalent
characterization of dynamic equilibrium.

Theorem 4. Let f be a feasibles-t flow-over-time. The following are equivalent
(a) f is adynamic equilibrium,
(b) for eache = vw and all@ we haveF;" (¢,(0)) = F. (£,(0)),

e

(c) for eache = vw and almost alb we havee ¢ Ej, = f(4,(0))¢,(0) = 0.

Proof. For each consider the intervaly = (¢’, 6] with 8’ < 6 the largest time such
that7.(¢,(0")) = £,,(0) (itis well defined sincé,,(0) < T.(¢,(#))). We claim that
©¢ coincides with the union of thg’s. Indeed, for each € ©¢ we haved’ < § and
therefored € Iy so thatoc C Uyly. Conversely, fol” € Iy we have by definition
of ¢’ thatT,(¢,(0")) > £,(6) > £,(8") so thatd” € ©¢ and thenJyly C OF.
Now, invoking @), for eachd we have
£,(0)

FHGO) ~F () = [ g o0 (15)
with equality iff f.~ vanishes almost everywhere @y (6'), £,,(8)] = ¢, (1). Lemma
22 then shows that (b) holds iff." (¢) = 0 for almost allé € Ugl,(Ip) = £,(0%),
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proving (b)}=(a). Similarly, a change of variablesf(§7) allows to rewrite {5) as

€ €

0
F(6(0)) — Fe (€u(0)) = ; f (0u(2)),(2) dz > 0,

with equality iff £ (¢,(2))¢,(2) =0 for aimost allz € Iy. By Lemma22, (b) holds
iff this map vanishes almost everywhere ogply = ©¢, proving (b)=(c). O

Definition 5 (Cumulative flow) Thecumulative flowinduced by a dynamic equi-
librium f is defined as:(0) = (x¢(0))cer With x.(0) = F.F (£,(0)) = F. (£, (6)) for
alle=vw € Fandf € R.

Integrating the flow conservation constrainty ¢ver the interval0, £, (0)], it fol-
lows that for eaclt € R the cumulative flow:(6) is ans-t flow of valueU (9),

U(9) forv=s
Z 7e(f) = Z ze(0) = { 0 forve V\ {s,t}. (16)

ecdt(v) e€d(v)

Differentiating, for almost alb we get that’(6) is ans-t flow of valueu(6) with
z,(0) =0fore ¢ Ej.

2.6. Path formulation of dynamic equilibrium. SinceGy is acyclic, denoting?
the set of simple-¢ paths we may find a decompositiai) = > . hp () into
non-negative path-flowsp(6) > 0 with

2, (0) =) hp(6).

P>e

Indeed, start withy = 2/(#) and consider the path3 € P in a given order, setting
hp(f#) = mineepye and updatingy. < ye. — hp(0) for e € P. This yields a
measurable decompositidnr € Fy(R) such thathp(6) > 0 only for paths that
belong to the&-shortest-path grap@y.

It is appealing to take the latter as the definition of dynaeqailibrium. The
difficulty is to properly defineshortest pattsince this requires the exit-time func-
tionsT, which in turn require an appropriate flow-over-tirfi¢o be associated with
h = (hp)pep. Sincef depends on how the floiw propagates along the paths, both
f andT, must be determined simultaneously. Thetwork loadingprocess typi-
cally requires additional conditions to be well defined,lsas an acyclic network
structure or when link travel times are bounded away frono xgnich is a natural
and mild assumption (seg. [15, 21, 22]). Since we will not require network
loading until§5, we defer its discussion to that section.

3. DERIVATIVES OF DYNAMIC EQUILIBRIA: NORMALIZED THIN FLOWS

The functionse, and/,, are absolutely continuous and can be recovered by inte-
grating their derivatives. In this section we charactetimse derivatives, yielding a
constructive method to find an equilibrium. Our charactgin is closely related
to the notion ofthin-flow with resettingntroduced by Koch and Skutella ().
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Recall that for almost al the derivativex’(9) is ans-t flow of sizeu(6) with
z,(0)=0 for e ¢ Ej. On the other hand, clear{(§) = 1 while forw # s we may
combine (1) and (/) to get almost everywhere

0,(0) = min_ TL(C,(0))6,(0) = min_ pe(C,(0), z,(0)),

e=vweE) e=vweE)

where for eacle = vw € Ej we set

AN L /ve ifeec Ej
pelly,Te) = { max{l,,z,/v.} ifedEj;.

SinceE}, is acyclic, this allows to computé, (¢) by scanning the nodes in topo-
logical order.
This motivates the next definition. Let > 0 and(E*, E’) a pair such that

(H) FE*CFE CFEwith E" acyclic and for alb € V there is ars-v path inE’.

We denoteK (E’, ug) the nonempty, compact and convex set of all statidlows
x' = (2)eer > 0 0f sizeug with 2, = 0 for e ¢ E'. To eacht’ € K(E', uy) we as-
sociate the unique labels given as abové'by: 1 and?., = mine—ywepr pe(ll, L)
for w # s. Note that the map’ — ¢ is continuous.

Definition 6 (Normalized Thin Flow) A flowz’ € K (E’, uy) is called anormalized
thin flow (NTF) of valueu, with resetting onE* C F’ iff / = 0 for every edge
e =vw € E' such thatt}, < p.(¢,z.).

Theorem 7. Let f be a dynamic equilibrium anél € R such that the right deriva-
tivesug = 44 (0), £, = 95+ (9) andz, = 2= (9) exist. Then’ is an NTF of value
up With resetting onE; C Ej), with corresponding label§'.

Proof. Differentiating (L6) it follows thatz’ is ans-t flow of valuewy. Moreover,
if e ¢ Ej thene remains inactive on some interal 6 + ¢), so the chain rule (see
§7) and equilibrium imply that on this interval, (&) = f(¢,(¢))¢,(¢) = 0 a.e., so
z¢(-) is constant and, = 0. This proves that’ € K(Ej, uo).

Let us show that’ are the corresponding labels. Cleafly= 1. For the rest of
the argument we distinguish two more subset&ff Ef contains the links which
have a queue or are about to build one wittt) > 0 on a small interva(d,  + ¢),
while E’. includes the links without queue at tinfdebut which are active along a
strictly decreasing sequenég | 6. Fore € E' we havel,,(6,,) = T.(£,(6,)) >
0y(0n) + e and £y, (0) = £,(0) + 7. so thatl,,(6,,) — £, () > £,(6,) — £,(0) and
dividing by 6,, — 0 with n — oo we gett,, > ¢,. Similarly, fore € Ej \ E} we
may taked,, | 6 with z.(¢,(6,)) = 0 so thatt,,(0,,) < T.(¢,(0n)) = £y(0y) + Te
and we get, < ;. Also, fore = vw € EJ, the capacity constraint gives fét > ¢

Ly (07)

£o(0') — 2.(9) = / F7(6) dE < (b (0') — £.(6))

Ly (0)
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which implies?,, > . /v., with equality ife € E7%. In summary

@ ¢,>1¢ fore =vw € F',

(b)y ¢, < fore =vw € E) \ E}
(c) ¢,>al/v. fore=vwe Ej

d) ¢,=2./v. fore=ovwe E}.

Combining (b) and (d) we géf, < mine_yye ) pe (L, z.) with equality if there is
somee = vw € Ej. To prove the equality when no edge frdnj is incident onw,
choose any,, | 6 and a sequence of active edggsc E{gn, and take a subsequence
with e, = vw constant so that = vw € FE’,. Then (a) and (c) combined give
0, > pe(C,, ). Altogether this proveg, = mine_yye ) pe(ll,, ) for w # s.

Let us finally show that’ is an NTF. Suppose, > 0 on somee = vw € Ej
with 2, < pc(¢,,z.). The latter and (d) imply ¢ Ej, while 2/, > 0 gives
ze(0") > z(0) for all ' > 6 soe must be active on a sequenggl 6 ande € F/, .
Then (a) and (c) yield the contradictidf) > p. (¢, z.). O

vy e

Theorem? derives the existence of NTF's from a dynamic equilibriuno. pfo-
ceed in the other direction we study the existence of NTHd,taen by integration
we reconstruct a dynamic equilibrium.

Theorem 8. Letu >0 and (E* E’) satisfying(H ). Then there is an NTF of value
ug With resetting onE* C F’.

Proof. Let K = K (F’,uy) and observe that the NTF’s are precisely the fixed-points
of the set-valued map : K — 2% with nonempty convex compact values given by

I'(z')={y € K:y.=0foralle € E' suchthat, < p.(¢,,z.)}

with ¢’ the labels corresponding i and E*. Sincex’ — ¢’ is continuous it follows
thatT" is upper-semi-continuous and the existence of a fixed pdirt I'(z') is
guaranteed by Kakutani’'s Fixed Point Theorem. d

This result shows that finding an NTF belongs to the complentdss PPAD. It
also suggests a finite (exponential time) algorithm to capn NTF: we guess the
setE|, of links e € E’ that satisfy/,, = p.(¢,, z.), and then solve

vy e

(mazx) {PXwev by 1 &' € K(E{,u); 0, = 154, < mine—ypepr pe(l), zl) }

fE’, /

The latter can be restated as a mixed integer linear progndmalved in finite time.

By considering all possible subsdily C E’ the method eventually finds an NTF.
In general there may exist different NTF’s, each one witlcdasresponding la-

bels. We show next that the labels in all of them coincide.

Theorem 9. Letu >0 and (E* E’) satisfying(H ). Then the labelg’ are the same
for all NTF’s of valueu, with resetting onE* C E’.

Proof. Letz’ andy’ be two NTF's with different label§ +# 1/, and suppose without
loss of generality that = {v € V : £/, > k] } is nonempty. Consider the net flow
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across the boundary &f. sincez’ andy’ satisfy flow conservation, settirg = uq,
by = —ugp andb, = 0forv € V'\ {s,t}, we get

2'(67(5)) = 2'(07(8)) = Xyesbo =¥/ (67(8)) —y/(67(5)). (A7)
Fore = vw € §7(S) we havex! < y. since otherwise:’, > v/ impliesz, > 0
and?l, = p(€,,xz.) > pe(hl,y.) > hl, contradictingw ¢ S. Similarly, 2, > .
foralle = vw € §(S) sincey, > z impliesy, > 0 andhl, = p.(hl,y.) >
pe(l,,z.) > ¢, contradictingw € S. These inequalities and.{) imply z/, = y.
forall e € §(S), withy, = 0 for e € §=(S) sincey, > 0 yields a contradiction
as before. Sincé’ is acyclic, we may findv € S with all edgese = vw € £’
belonging tod~(S). Now, ¢/, > hl, > 0 andz, = 0 implies thate ¢ E* for all
these edges, and thep(?,, z.) = ¢, as well asp.(h!,,y.) = hl, from which we

v e

get the contradictioh,, = min,,ecp hl, > ming,ep £, = £, O

4. EXISTENCE AND UNIQUENESS OF DYNAMIC EQUILIBRIA

Koch and Skutella]0] describe a method to extend an equilibrium for the case of
a constant inflow rate(6) = . Given a feasible flow-over-timg¢ which satisfies
the equilibrium conditions iff0, 6|, the equilibrium is extended as follows:

(1) Findz" an NTF of valueug with resetting onzj C Ej , and let’ denote the
corresponding labels.

(2) Computdy 1 = 6, + a with a > 0 the largest value with
ly(O0k) + b, — 0,(0)) — bl < Te forall e = vw & Ey, (18)
Cw(0r) + bl — 0,(01) — all, > 7o forall e = vw € Ep, (19)
(3) Extend the earliest-time functions and the flow-overetias
0,(0) = £,(0k) + (0 — 0r)., forv eV andd € [0, Oki1]
£ =L/t for e = vw € E andé € [£,(6k), £u(6s1))
fe(§) = e/, fore =vw € E and € [(y(0r), Cw(Ok+1))

Theorems3 and9 imply thatz’ in step (1) exists and is unique. Moreover there
are finitely many¢’, each one corresponding to a different pdiiy, £;). Thea
computed in (2) is strictly positive so that each iteratiotteads the earliest-time
functions to a strictly larger interval. The conditioris3) and (L9) correspond re-
spectively to the maximum ranges on which the inactive edg@sin inactive, and
the positive queues remain positive. Hence,&og [0, 0;11) the pair(E}, Ey)
remains constant while &j..; this pair changes and we must recompute the NTF.
Note that wher?,, = 0 the update off;~ does not extend its domain of definition,
and similarly forf; when?,, = 0. As shown in L0] the extension maintains at all
times the conditions for dynamic equilibrium in the stromgpse (see Remark after
Definition 2).

This extension procedure can be used to establish the mogstaf a dynamic
equilibrium. Starting from the intervgl-oo, 6y] with 6, = 0 and zero flows, the
extension can be iterated as long as required to find a newah{éy, 6; 1] with
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Or+1 > 0O at every stegk. Eventually,f,, may have a finite limit: in this case,
since the label functions are non-decreasing and have eduthefivatives, we can
define the equilibrium &t as the limit point of the label functiors and restart the
extension process. A standard argument using Zorn’s Lerhmassthat a maximal
solution is defined over alk ;. Note that thef constructed above is right-constant.

Definition 10. A functiong : R — R is calledright-constanif for eachd € R there
is ane > 0 such thatg is constant ori6, 0 + ¢€). Similarly, g is right-linearif for
eachd it is affine on a small intervap, 6 + ¢).

The extension method works even if the inflow rate functiopiecewise con-
stant, so we have the following existence result.

Theorem 11. Suppose that the inflow is piecewise constant, i.e, there is an in-
creasing sequencgr)ren With £y = 0 such thatu(-) is constant on each interval
[€k, Ek+1)- Then, there exists a strong dynamic equilibriginvhich is right-constant
and whose label functioriare right-linear.

Dynamic equilibria are not unique in general. For instagossider the network
in Figure 1 but with 7. = 7, so that any splitting of the outflovi; (6) = L1}
among these two links yields a dynamic equilibrium. Newedhs, using Theorem
9 one can prove that the earliest-time functions in all sudfidy regular dynamic
equilibria are the same and coincide with those given by émstructive procedure.

Theorem 12. Suppose that the inflow is piecewise constant. Then, the earliest-
time functions(¢,),cy are the same for all dynamic equilibriA which are right-
continuous.

Proof. When f is right continuous it follows that the queue length$0), the exit-
time functionsT,(-) and the earliest-time functions, (¢) are right-differentiable
everywhere with right-continuous derivatives. Theorénmplies that %i () are

an NTF and Theorer® shows that these derivatives are unique. Since they can
take only finitely many values, continuity from the right imphat %1 (+) is right-
constant and, (-) is right-linear. It follows that any two right-continuougrmic
equilibria must have the same earliest-time functions.eéull if these functions
coincide up to time, their right derivatives a#l coincide and since they are right-
linear they will also coincide on a nontrivial intenvidl, # + ¢]. This implies that in

fact the functions must coincide throughdiut O

5. EXISTENCE OF EQUILIBRIA FOR INFLOW RATES INL?

The previous sections studied dynamic equilibria for alsimgigin-destination
with piecewise constant inflows. We consider next more gdneflow rates and
then extend the results to multiple origin-destinationse pbceed as ing] using
a variational inequality for a path-flow formulation of dyni& equilibrium. The
analysis is non-constructive and exploits the followingtipalar case of the exis-
tence resultd, Theorem 24]. Let X, || - ||) be a reflexive Banach space apd) the
canonical pairing betweel and its dualX™*. If A: K — X* is a weak-strong con-
tinuous map defined on a nonempty, closed, bounded and cenbmetK’ C X,
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then the following variational inequality has a solution
VI(K, A) Findz € K such that Az,y —z) > 0forally € K.

5.1. Variational inequality formulation. Let us consider first the case of a single
origin-destination paigt and an inflow rate: € LP(0,7") whereT is a finite horizon
and0 < p < 1. We extendu(#) = 0 outside|[0, 7] so thatu may be seen as a
function in 7y (R). As before, letP be the set of paths connectingo ¢ and denote
by K the nonempty, bounded, closed and convex stéasible path-flowgiven by

K ={he LP(0,T)" : 3 pep hp = uandhp > 0 for all P € P}. (20)

The spaceX = L?(0,T)" is reflexive with dualX* = L9(0,T)” where} + £ =1.
We will show that a dynamic equilibrium can be obtained byisg the variational
inequality VI(K, A) with A: K C X — X* such thatdp(h) € L9(0,T) is the
continuous functiord — ¢5(0) — 6 giving the time required to travel fromto ¢
using pathP. In order to properly define this map, our first task is to shioat every

h € K determines a unique feasible flow-over-tinfiewhich in turn induces link
travel timesZ, and path travel timeg!, This is achieved by the network loading
procedure described in the next subsection§3r8 we establish the weak-strong
continuity of A and then in55.4 we conclude the existence of a dynamic equilib-
rium. Finally, §5.5 extends the existence result to multiple origin-destorei

5.2. Network loading. The following network loading procedure requires> 0

on every linke, which we assume from now on. Lét= (hp)pcp be a given
family of path-flows withhp € Fy(R) for all P € P. A network loadingis a
flow-over-timef = (f*, f~) together with non-negative and measurable link-path
decompositions

fO) = Y pacfie®)

= 21
fe0) = Ypsefpe(9) )
such that for all links: = vw and almost alp € R one has
hp(@)  if eis the first link of P
+ —
Tpe(0) = { f50(8) i ¢ is the link in P just beforee, (22)
together with the link transfer equations
Te(0) 0
th@%zéﬁﬂwﬁ (23)

whereT, is the link travel time induced by through equations4j and €). We
denotew the tuple comprising all the flows™, f5 ., f.", f5. fore € EandP € P.
In order to prove the existence and uniquenesé ofa netWadng we first establish
the following technical lemma.

Lemma 13. Let a link-path decomposition of the inflofy (6) = > 5. fjge(e)

be given over an initial interval—oo, f]. Then there exist unique outfloyig , €

L>((—o00,Te(0)]) satisfying(23), with 0 < f5 (£) < ve forall £ < T.(6).
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Proof. SinceT, maps(—oo, 0] surjectively onta—oo, T (¢)] it is clear that there is

at most on@fgﬁ satisfying €3). To establish the existence ldtC (—oo, 0] be the
set of time9) at which the derivativd.(6) exists and is strictly positive, and set

_ | [p.(0)/Ti8) forge A
fP,e(Te(e))_{ " 0 otherwise.

This unambiguously define§, (&) for all §¢ < T¢.(0) as a non-negative measurable
function. Moreover, fof € A we have

S F (Te(0) = £5(0)/TL0) = £ (Te(0)) < ve
P>e

which implies0 < f,_(§) < v, forall ¢ < T (0) so that thef; s are essentially
bounded. Finally, a change of variables in the integral {3&gives

Te(@) 7] 0
f5.(6) de = /0 F5 (T(E)TL() dé = /0 1.(€) d

0

where we used the equalitfy, . (7e(£))T%(§) = f;r’e(f) which follows from the
definition of fﬁe(g) when¢ € A and from the fact that, almost everywherg) (
implies that if7;(¢) = 0 then f.f (€) = 0 and thereforef (€) = 0. O

Proposition 14. Suppose that, > 0 on all linkse. Then to each path-flow tuple
it corresponds a unique network loading

Proof. Let h = (hp) pep be a given family of path-flows and suppose that we have
a link-path decomposition satisfying1), (22) and @3) over an interval —oo, 6].
For# = 0 this is easy since all flows vanish on the negative axis. By rham
13, the inflow decompositions,"(6) = "5, f.(6) over (—occ, 6], together
with condition @3), determine unique link-path decompositions for the outflo

fe(0) = > pse fp.(0) over the interval(—oc, T (9)]. These intervals include
(—00,8 + €] wheree = min. 7. > 0, and then using?) it follows that the link
inflows and their link-path decompositions have unique rsitens to(—oo, § + <.
Proceeding inductively it follows that the inflows and ouifl) together with their
link-path decompositions, are uniquely defined on alRof O

5.3. Continuity of path travel times. We prove next that the network loading pro-
cedure defines path travel time maps— ¢ which are weak-strong continuous
from K c LP(0,7)7 to the space of continuous functiod¥[0, 7, R) endowed
with the uniform norm. The proof is split into several lemmas

Lemma 15. There exists a constad/ > 0 such that all the flows in the network
loading corresponding to any € K are supported off0, M].

Proof. We claim that the queue lengths are bounded lfy) < z = f(;r u(§) d€.
Indeed, an inductive argument based @8) @nd €3) shows that for each patR
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and each linke € P we have[, f7.(€)d¢ = [ hp(€) d€. Sincez.(8) < FF(6),
using @1) we get ’

0 T
z = + = u .
(0) < FF )= /0 SRS /R B (€) d /0 (6) d

P>e

This bound implies that the time to traverse a linis at mostz /v, + 7.. Denoting
by ¢ the maximum of these quantities over alk E and settingl = T + m¢
wherem is the maximum number of links in all pattis € P then¢?(9) < M for
all P € P andf € [0,T]. This, together withZ2) and @3), implies in turn that all
the flows in a network loading are supported on the intelfyal/]. O

Lemma 16. The mapsf.;t — z. and f.t — T, defined by4) and (6) are weak-
strong continuous fron” (0, M) to C([0, M|, R).

Proof. The continuity off,- — T, is immediate from that of " — z.. To show
the latter we recall that Arzela-Ascoli's theorem impliégitt the integration map
I:Lr0,M)— C([0,M],R)defined bylz(6) = fé’x(f)d{‘ is a compact operator,
and hence it is weak-strong continuous. It follows that trErfi™ — vy, given by
Ye(0) = foe[fj(f) — v,]d¢ is weak-strong continuous and then the same holds for
f +— z. since @) gives

e 0) = e 0)— e = Ye ) — mi e

ze(0) ulg[%f;}y( )= ye(u) = ye(6) in, y (u)
and the map, — Hy operating onC'([0, M],R) as Hy(0) = min,¢(o g) ye(u) is
nonexpansive. O

Lemma 17. Let(2 denote the set of all the restrictions [ty M| of the pairs(h, w)
whereh € K andw is the corresponding network loading. Th@nis a bounded
and weakly closed subset b (0, M)* wherek is the dimension of the tuplé, w),
namelyk = |P| + 2|E| + 2|P||E|.

Proof. From Lemmal5we know that all flowgh,w) € Q2 are supported oft), M|,
while (22) and Lemmal3imply that they are uniformly bounded &P (0, M). Let
us take a weakly convergent ngt*, w®) — (h,w) with (%, w®) € Q. Itis clear
that conditions Z1) and @2) are stable under weak limits so thatsatisfies these
equations. In order to show ) it suffices to pass to the limitin

T (0) 0
/ (€ de = / £3(€) de. (24)
0 0

The right hand side convergesf§ fjge(g) d¢ while the integral on the left can be
written as the sum
TE(0) Te(0) TE(0)

fpe(§)ds = ; fpe(§)dE + G)f?;(é)dé-

Te(
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The first term on the right convergesfﬁe(e) flg’e(g) d¢ while the second converges
to zero. Indeed, by Holder’s inequality we have

TX(0

)
fpe(§)dE

< Ifgcllp ¥/1T2(0) — Te(9)]

Te(0)

so the conclusion follows singe< 77 (§) < v. implies||f3 ., < ve VM while
Lemmal6 givesT>(0#) — T.(6). Hence we may pass to the limit i&4) which
proves thatv satisfies 23) and therefordh,w) € Q) as was to be proved. d

Lemma 18. The maps — T, defined by the network loading procedure are weak-
strong continuous fronk ¢ L?(0,7)” to C([0, M],R).

Proof. Take a weakly convergent net — h in K and letw® be the corresponding
network loading. From Lemm&b we know that the net® is bounded in.? (0, M),
while Lemmal7implies that any weak accumulation pointof is a network load-
ing for h. Since the latter is unique it follows that* — w. In particularf®+ — f
weakly in LP(0, M) so that the conclusio®®* — T, strongly inC(]0, M],R) is a
consequence of Lemnis. d

Lemma 19. For eachP € P the maph — ¢ defined by the network loading
procedure is weak-strong continuous frathc LP(0,7)7 to C([0,T],R).

Proof. Let P = (e, e9,...,¢ex). SetM; = T + i with ¢ as in the proof of Lemma
15and consider the restrictiods, : [0, M;_1] — [0, M;] so that for alld € [0, 7]

F0) =Tep 0+ 0 T,y (6). (25)

By Lemmal8 the mapsh — T, are weak-strong continuous, so the conclusion
follows by noting that compaosition is a continuous openatidlore precisely, the
map(f,g) — g o f defined on the spaces

o: C([0, M;—1], [0, M;]) x C([0, M}, [0, M;41]) — C([0, M;—1], [0, M;41]

is a continuos map (with respect to uniform convergence)deda, consider a
strongly convergent nétf®, ¢*) — (f,g). Then for eacld € [0, M;_] we have

g% f(0) — go f(O)] < 1g™(f*(0)) — g(F*(O)] + [9(f*(0)) — 9(f(0))].

The first term on the right can be bounded|fay* — g||~ Which tends to 0, while
the second term also tends to zero uniformlyisinceg is uniformly continuous
and||f* — f|l- tends to zero. O

5.4. Existence of dynamic equilibrium for a single origin-desthation. With these
preliminary results we may now prove that the variationabumality VI( K, A) has
a solution, and the corresponding network loading givesrehyc equilibrium.

Theorem 20. Letu € LP(0,7) with1 < p < oo and assume that. > 0 on every
link e. Then there exists a dynamic equilibrium.
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Proof. According to Lemmad9the maph — A (h) is weak-strong continuous from
K to X* so that the variational inequalityI(K,.4) has a solutioh € K. We
claim that the corresponding flow-over-tinfegiven by Propositiori4 is a dynamic
equilibrium. If not, by Theoremt we may findf > 0 and a linke = vw ¢ Ej,
such that for alk > 0 we havef,(¢,(£))¢,(£) > 0 on a subset of positive measure
in [0, 6 + ¢]. Choose: small enough so tha; decreases off, f + €] and choose
P e Pwithe € Pandhp(§) > 0onasubsef C [0, 0+ ¢] with positive measure.
Take P’ € P with all links in Ej_ _ so thatP’ is optimal at eacl§ € [¢,6 + ¢], and
let’ € K be identical toh except foré € I where we transfer flow fron® to P/,
that ish/>(£) = 0 andh/, (§) = hp(§) + hp(€). Then we have

0< (Ah, W —h) = / (AR(8), W (§) — h(€))dE = /(ﬁt(f) — 7(€)hp(&)de.
(0,7] I

Sincee ¢ Ej it follows thate ¢ £ for £ € I so thatt,(§) < £7(¢) which yields a
contradiction. O

5.5. Extension to multiple origin-destinations. The extension to multiple origin-
destinations is straightforward. For each p#irc N x N letug € LP(0,T) be
the corresponding inflow (possibly zero) and®gt be the set og-t paths assumed
nonempty ifug; is nonzero. A feasible flow-over-time is now a family of inflsw
f& =Y fr andoutflowsf, = -, fo, satisfying the capacity and non-deficit
constraints, together with the flow conservation equatfongachst pair

ust(6) forv=s

+ —_ - =
=3 Lol { 0 frvevigas

e€dt(v) e€d— (v

The definitions of queue lengths, link travel times, and pedliel times remain
unchanged, and we only need to introduce the origin-dagimaptimal times
. P
lst(0) = min £7(0).

Dynamic equilibrium holds when for each pair and alle = vw € F we have

-1(&) = 0 for almost all € £,,(R \ ©F) where©; denotes the set of all times
at which linke = vw is active for origins, namely/,,(0) = T, ({s,(0)).

Denoting P the union of all theP,,’s, the network loading procedure §5.2

remains unchanged as it did not depend on having a single-alégtination pair.
Also the results irg5.3 are easily extended by considerig as the set of path-
flows h = (hp)pep € LP(0,T)7 which are non-negative and that satisfy flow
conservation for each pait, that is

Z hP = Ugt-

Pepst

For the bounct = fOT u(&) d¢ of the queue lengths in Lemni& it suffices to take
u as the sum of all ther,;'s. With these preliminaries, the proof of Theor&iti

is readily adapted to establish the existence of a dynamiditeium for multiple

origin-destinations.
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Theorem 21. Letug € LP(0,T) with 1 < p < oo the inflows for multiple origin-
destination pairst € N x N, and assume that. > 0 on every linke. Then there
exists a dynamic equilibrium.

6. CONCLUDING REMARKS

Although dynamic traffic assignment has received considerattention since
the seminal work by Merchant and Nemhausis, [L4], the existence and charac-
terization of dynamic equilibria still poses many challgwpquestions. For a review
of the literature and open problems we refer to Peeta andskibpoulos16]. Sev-
eral of the previous studies have relied on a strict FIFO itimmdthat requires the
exit time functionsT,(-) to be strictly increasing. For instance, Friexzal. [8]
consider a situation in which users choose simultaneousiterand departure time,
with link travel times specified aB. (y.) = a.y. + B wherey, = FF (0) — F. ()
is the total flow on linke at time# anda., 8. are strictly positive constants. Strict
FIFO was shown to hold for such linear volume-delay functjomhich allowed to
characterize the equilibrium by a variational inequalihgugh no existence result
was given. Strict FIFO was also used by ®ual. [21] to investigate the network
loading problem, namely, to determine the link volumes aasgd times that re-
sult from a given set of path flow departure rates. Shortlgrathe existence of
equilibria was established by Zhu and Marcofg][under a strong FIFO condition
that holds for linear volume-delay functions (even in theeea. = 0), assuming in
addition that inflows are uniformly bounded.

Unfortunately, as illustrated by the Example in seci@rb, strict FIFO does not
hold in our framework and these previous results do not apphys is somewhat
surprising since we also consider linear travel times. Tli#ls difference is that
we consider the queue sizg instead of the total volumg. on the link. Note that
the fluid queueing model could be cast into the linear volulakey framework by
decomposing each link into a pure queueing segment witklttewe z. /v, (that is,
a. = 1/v., B = 0), followed by a link with constant travel time (that is,a. = 0,
Be = 1.). Strict FIFO fails precisely because the queueing segimest. = 0. In
this respect it is worth noting that our existence resultsidibrequire strict FIFO,
as long as. > 0, and Theoremi 1 holds even ifr. = 0 on some links.

A general existence result for dynamic network equilibribeyond strict FIFO
was recently presented by Meunier and Wagiét.[ Their model considers both
route choice and departure time choice, and is based on afamalof strict FIFO:
the travel timeT, (-) strictly increases on any interval on which there is somewfl
into the link. This weaker property does hold in our contexd ¢he result applies
provided that the inflow.(-) belongs tal° (R).

An interesting feature of the approaché&ih, compared with previous existence
results, is that it provides a way to construct the equilifori In this respect, our
work owes much to Koch and Skutella(]. There are however several differences.
On the modeling side, we distinguish the notion of dynamigildafium from the
stronger dynamic equilibrium condition (see Remark 1).hBmincepts were used
interchangeably inl[0], although they might differ as shown in the Examplé&nb.
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In particular, our Theorem precises 10, Theorem 1] which characterizes dynamic
equilibria, not strong equilibria. Also, Theorerrs an extension of]0, Theorem

2] that applies to the larger class of dynamic equilibria pralides a sharper con-
clusion by including the normalization condition. The eégixe and uniqueness for
NTF’s in Theorems and9 are new, and so is the subsequent existence and unique-
ness of a dynamic equilibrium in Theoretiikand12. To the best of our knowledge,

the latter uniqueness result has not been observed préviauke literature.

The algorithmic approach g4 raises a number of questions. On the one hand,
it would be relevant to know if the step sizes computed in §8mwf the extension
algorithm are bounded away from 0. In this case s would not accumulate
and the equilibrium would be computed in finitely many stepsahy given horizon
T. A related question is whether a steady state could evéytoalattained with
« = oo at some iteration, in which case the algorithm would be fiddtgveaker but
still difficult conjecture is whether the queue size$) remain bounded as long as
the capacity of anyg-t cut is large enough, for instance larger than the inflow at any
point in time. The difficulty for proving such a claim is thaetflow across a cut can
be arbitrarily larger than the inflow: the queueing processght introduce delay
offsets in such a way that the flow entering the network aedsifit times reaches
the cut simultaneously at a later date, causing a supeiqrosit flows that exceeds
the capacity of the cut. On the other hand, while it is easyve g finite algorithm
to compute thin flows with resetting, the computational ctaxipy of the problem
remains open. A polynomial time algorithm for this would ipphat for piecewise
constant inflows one could compute a dynamic equilibriumdlympomial time (in
input plus output).

Another interesting question is whether the constructjwer@ach ing4 can be
adapted to deal with more general inflow®). More precisely, lefV (¢, uy) denote
the unique labels in a normalized thin flow of valugwith resetting on the sat*
of all links e = vw with ¢,, > ¢, + 7., andE’ the set of links with,, > ¢, + 7. (see
Proposition3). Recalling Theoremg and9, an equilibrium could be computed by
solving the system of ordinary differential equations

t'(0) = N(£(0),u(0))

with initial condition/,,(0) equal to the minimum-v travel time with empty queues.
The cumulative flowse.(#) could then be recovered by integrating a measurable
selection of the corresponding thin flows. The main diffigiiere is that the map

N is discontinuous irf so that the standard theory and algorithms for ODE’s do
not apply directly. A final open problem is to extend the comgtve approach to
multiple origin-destinations.

7. APPENDIX: THE SPACESLY (R) AND AC6c(R)

We denotell’ (R) the vector space of measurable functignsR — R such that
lg(+)|P is integrable on every bounded interval. Similath(),.(R) is the vector
space of functiong : R — R that are absolutely continuous on every bounded
interval. For a thorough study of absolutely continuouscfioms we refer to 12,
Chapter 3]. Here we just summarize a few facts required iraaatysis:



20 R. COMINETTI, J. R. CORREA, AND O. LARR

e Foralll < p<ocowehaveL! (R)C Ll (R).
e The primitive of anyg € LIOC( ) belongs toAC),.(R). Conversely, every

h € AC)o(R) is differentiable almost everywhere with € L. (R) and

h(60) = h(0) + [y W' (€)de.
o If f,g € AC)(R) then their producy g and minimummin{ f, g} are also
in ACoc(R).
o If f,h € AC1,.(R) we do not necessarily haveo h € AC),.(R), but this
holds if eitherf is Lipschitz orh is monotone. In both cases the following
chain rule holds for almost all € R

(f o h)'(y) = f'(R(y)H (y)-
e In particular, ifh € AC,(R) is monotone ang € Li (R) we have the
change of variable formula

h(b) b
/ g(€)de = / g(h(w)H (4)dy
h(a) a

The following are more specific properties for which we coudd find a reference,
so we include a proof.

Lemma 22. Letg : R — R, be a nonnegative function il (R) and{(a;, b;)}icr

a possibly uncountable family of intervals. Themanishes almost everywhere on
each(a;, b;) iff it vanishes almost everywhere afic;(a;, b;). The statement also
holds with the latter set replaced byc;[a;, b;) or U;cr(a;, bi].

Proof. Assume with no loss of generality that all intervals are mopty. Since
(A) = [, 9(&)d¢ defines a regular measure on the Borel skt R, for © =
User(ai, b;) we have

1(©) = sup{u(K) : K compact K C ©}.
Now, each compadk’ C © has a finite subcovel’ C U}_, (a, , b;, ) so that

<Z/~‘ ((aiy, biy) Z/ £)d¢ = 0.
Wi,

It follows that u(©) = 0 WhICh implies thatg(¢) = 0 for almost all¢ € © and
proves the first statement.

The other claims follow since all three unions differ in ctally many elements.
Indeed, consider for instance the 9ét= U,cs[a;, b;) \ Ujer(ai, b;). Each point
z € N must be an endpoint = a; with the corresponding intervak;, b;) disjoint
from V. It follows that if a; € IV is another such point, the corresponding inter-
vals cannot overlap, and therefore there can be at mostafgynhany. A similar
argument shows that;c;(a;, b;] \ Uier(ai, b;) is countable. O

REMARK. LemmaZ22 does not hold for closed intervalsc;[a;, b;]. In fact, every
function g vanishes almost everywhere on each intefwak| for x € R, but not
necessarily o cgr [z, z] = R.
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Lemma 23. Letz € AC.(R) with z(#) = 0 for # < 0. Then the following are
equivalent

(@) z(0) > 0forall 0,
(b) 2(0) < 0= 2/(#) > 0 for alImost allg,
(€) z(0) < 0= Z/(8) = 0 for aimost allg.

Proof. Let N be a null set such that(f) exists for alld ¢ N.

[(@)<(b)] Under (a), for alld ¢ N with z(f) < 0 we havez(f) = 0 so that
2'(#) > 0 which gives (b). Conversely, suppose that (b) holdsA§a) < 0 for

somef, and consider the smallegtsuch that(-) remains negative of’, 6]. Then
2(0") = 0 while (b) impliesz’(¢) > 0 for almost all¢ € (¢, 6) from which we get
the contradictiord > z(6) = z(0') + f:, 2 (&)dg > 0.

[(c)=(a)] Clearly (c) implies (b) which in turn implies (a). Convengetince (a)
implies (b), it suffices to show that the sét= {6 ¢ N : 2(0) < 0;2/(0) > 0} is

countable. Indeed, for ea¢he A we havez(#) = 0 and we may find > 0 such
thatz(¢’) > 0 forall ¢’ € Iy = (0,6 + €). These intervalgy do not meetd so they
cannot overlap, and therefore there can be at most countzdoty. O
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