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Abstract

We introduce a regression-based nested Monte Carlo simulation method for the estimation
of financial risk. An outer simulation level is used to generate financial risk factors and an inner
simulation level is used to price securities and compute portfolio losses given risk factor outcomes.
The mean squared error (MSE) of standard nested simulation converges at the rate k−2/3, where
k measures computational effort. The proposed regression method combines information from
different risk factor realizations to provide a better estimate of the portfolio loss function. The
MSE of the regression method converges at the rate k−1 until reaching an asymptotic bias level
which depends on the magnitude of the regression error. Numerical results consistent with our
theoretical analysis are provided and numerical comparisons with other methods are also given.

1. Introduction

Financial risk measurement is an important tool for monitoring the financial stability of banks and
other financial institutions. When risks are found to be too large, banks may need to hold additional
capital to reduce the chance of financial distress. Risk measurement is also used to recognize and
evaluate the financial risks in portfolios of securities at mutual funds, hedge funds, endowments,
corporations and other non-financial institutions. Portfolio risk arises because the values of the
constituent securities change over time in response to changes in risk factors, e.g., interest rates,
exchange rates, stock prices, commodity prices, etc. In a large bank, risk assessment requires
re-valuing portfolios consisting of potentially hundreds of thousands of securities at a future date
(called the risk horizon) under possibly thousands of realizations of risk factors. In many cases
portfolios contain derivative securities (e.g., options, swaps, mortgage-backed instruments, etc.)
whose valuation can entail the simulation of cashflows and risk factors over time horizons extending
to thirty years. The need to revalue a large number of securities, especially derivative securities,
over a large number of risk factor realizations, makes the risk measurement problem extremely
computationally challenging.
∗This work was supported by NSF grants DMS–0914539 and CMMI–1235023.
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Previous approaches have addressed the computational challenges of risk measurement by sac-
rificing either accuracy or speed. For example, the delta-gamma method (see, e.g., Rouvinez, 1997;
Britten-Jones and Schaefer, 1999; Duffie and Pan, 2001) approximates the portfolio loss function
using first and second derivative information and is often combined with normal distribution as-
sumptions for risk factor changes. This method allows faster risk calculations at the expense of
accuracy and convergence. At the other extreme is nested simulation (see, e.g., Lee, 1998; Lee and
Glynn, 2003; Gordy and Juneja, 2008, 2010), which proceeds in two stages. The first, or outer,
scenario generation stage uses Monte Carlo simulation to generate possible scenarios of financial
risk factors until the given risk horizon. The second, or inner, portfolio revaluation stage also uses
Monte Carlo simulation in order to generate financial risk factors and security cashflows until the
maturity of the securities, conditioned on an outer scenario. The nesting of Monte Carlo simula-
tion is computationally burdensome, but has the advantage of converging to the true risk measure
(where “true” refers to the exact value given a financial model for risk factors and security valua-
tion). The mean squared error (MSE) of standard nested simulation converges at the rate k−2/3,
where k measures computational effort.

Several approaches to speed the convergence of the nested simulation method have been pro-
posed. The adaptive method of Broadie et al. (2011) exploits outer stage information to generate
a non-uniform number of inner stage samples. Computational effort is saved by spending less
revaluation effort at outer stage scenarios that represent less portfolio risk. This adaptive method
converges at the improved rate k−4/5. Gordy and Juneja (2010) achieve a similar improvement
through the jackknife method. Local spatial methods combine information from nearby scenarios
to better approximate the portfolio loss function. Examples include the kernel regression method
of Hong and Juneja (2009) and the stochastic kriging method of Liu and Staum (2010). While
these methods lead to better convergence in low dimensions, they can suffer from the curse of
dimensionality in higher dimensions.

In this paper we propose a global spatial method based on regression. Similar to kernel regression
and stochastic kriging, the global regression method combines information from different outer stage
scenarios to better approximate the portfolio loss function. We provide a specific theoretical analysis
of the regression approach in the context of nested simulation for risk estimation. The MSE of the
regression method converges at the rate k−1 until reaching an asymptotic bias level, which depends
on the size of the regression error. Theoretical analysis is provided to highlight and quantify the
effect of model error, i.e., we analyze the case when the regression basis functions do not span
the true portfolio loss function, and contrast the results with a complete set of basis functions.
In this regression approach, the convergence rate is independent of the problem dimension, so the
curse of dimensionality can be bypassed if well-chosen regression basis functions can be identified.
Another advantage of the regression approach is that it can be easily and directly applied to a wide
range of risk measures (e.g., expected shortfall or conditional value at risk, value at risk, spectral
risk measures, and others). The regression method is practically implementable and we provide
numerical results that illustrate the computational savings on a range of examples. Specifically, we
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make the following main contributions in this paper:

1. We propose a method for nested simulation based on regression.

The method proceeds as in standard nested simulation, but it uses a linear combination
of regression basis functions, instead of sample averages, to more accurately approximate
portfolio losses. Since the entire distribution of portfolio losses is estimated by this method,
it can be easily applied to compute a large range of risk measures.

2. We provide a theoretical analysis of the performance of our method.

We characterize the asymptotic behavior of the regression-based risk estimator. A novel
analysis shows that the MSE of the regression-based risk estimator converges at the rate
n−1+δ, for all positive δ, where n is the number of outer stage scenarios, plus a non-diminishing
bias term that is determined by the magnitude of the regression error. The performance of
the regression estimator does not depend on the dimension of a problem except through the
quality of the regression basis functions. With well-chosen basis functions, the regression
method performs significantly better than the standard nested simulation method.

3. The theoretical analysis shows the asymptotically optimal trade off between inner and outer
sampling in the regression method.

Given a fixed computational budget of inner stage samples k = mn, where n is the number of
outer stage scenarios and m is the number of inner stage samples per scenario, our analysis
shows that the asymptotically minimum mean squared error is achieved when m = 1 and
n = k in the regression method. That is, the regression method works best with one inner
stage sample per outer stage scenario. With this asymptotically optimal choice, the regression
method recovers the k−1 convergence rate of non-nested simulation, until the MSE reaches
an asymptotic bias level determined by the regression model error.

Note that this result is surprising and counter-intuitive when compared to other risk esti-
mation methods. For example, in nested simulation, the asymptotically optimal choice of
samples is n ∝ k−2/3 and m ∝ k−1/3. Our intuition for this is as follows: in nested simu-
lation, each outer stage scenario is considered independently. The non-linearity of the risk
function creates a bias in each scenario that can only be eliminated by taking an asymptoti-
cally increasing number of inner stage samples in that scenario. With regression, on the other
hand, information from other scenarios can be used to reduce error in a particular scenario,
and additional inner stage sampling is ultimately not necessary.

4. We provide numerical examples that compare the performance of the regression method with
other methods.

We compare the mean squared error of the regression estimator with other methods used
in the literature and in practice. Numerical results are provided that are consistent with
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the theoretical analysis and demonstrate the advantage of the regression method over other
approaches.

5. We propose a weighted variation of the regression method that offers improved asymptotic
bias.

Weighted regression emphasizes certain scenarios as more important to the calculation of the
resulting risk measure via a weight function. We describe and analyze a weighted regression
algorithm for risk estimation. We establish that the asymptotic bias of this algorithm is
determined by the choice of weight function. We describe an idealized “optimal” choice of
weight function, along with a practically implementable variation. We provide numerical
results that demonstrate an improvement consistent with theory.

One persistent challenge in the nested estimation of risk is the presence of bias. So far as
we know, all methods for risk estimation in the present setting are biased. For example, the
delta-gamma method is biased, and there is no way to estimate or bound the bias. The situation
is somewhat better for nested simulation. It is also biased, but Gordy and Juneja (2008, 2010)
develop a theoretical bound on the bias that scales with the number of samples. This is analogous
to the bound we establish that bias scales with the model error. Note that in both of these cases, it
is not possible to practically estimate bias in a particular problem instance. However, the bounds
are nevertheless useful — the Gordy and Juneja (2008, 2010) result illustrates how bias can be
reduced by adding samples, while our result illustrates how bias can be reduced by adding basis
functions. Further, we show that bias can be reduced by allowing for regression weights. Estimation
of the bias in a individual problem instance remains an interesting direction of future research; we
highlight the work of Lan et al. (2010) as an important early contribution.

We also note that, while the idea of using regression in risk estimation may not seem novel,
our paper provides the first thorough analysis to our knowledge. Our analysis provides intuition
on how regression should be applied, for example, by demonstrating that the regression method
works best with one inner stage sample for each outer stage sample, or by suggesting a choice for
regression weights. Moreover, our results illustrate how the method offers faster convergence, and
how the ultimate accuracy depends on problem parameters such as the quality and number of basis
functions, and the smoothness of the risk functional.

To our knowledge, among practitioners, the dominant method of choice is the delta-gamma
method. This is because, since there are already so many modeling assumptions in risk estimation,
that precise accuracy of numerical methods is considered to be less important than computational
speed. We provide compelling theoretical and numerical evidence that, with a small number of
samples and a quadratic basis, our regression method dominates delta-gamma. Because of the k−1

convergence rate, on a wide range of financial models and risk measures, our method outperforms
other methods and is state-of-the-art except when a very precise risk estimate is desired and a very
large computational budget is available (which is not the case in practical applications).

Though not tested, we note that the global regression method can be combined with other local
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methods and further improved using standard simulation variance reduction techniques.

1.1. Literature Review

The standard nested simulation estimator with uniform inner stage sampling has been analyzed by
Lee (1998), Lee and Glynn (2003) and Gordy and Juneja (2008, 2010). If the underlying scenario
space is continuous, the optimal asymptotic MSE of the standard nested estimator diminishes at
rate k−2/3. Convergence is slower than the k−1 rate typical of non-nested simulation estimators.
The reduced convergence rate occurs because risk measures are typically nonlinear functions of the
portfolio loss, and noisy estimates of portfolio losses introduce bias in the estimator, which slows
convergence. Sun et al. (2011) consider nested simulation in the context of variance estimation. As
in our setting, they establish that the number of inner stage scenarios need not go to infinity.

Overviews of the delta-gamma approximation method are given in Rouvinez (1997), Britten-
Jones and Schaefer (1999), and Duffie and Pan (2001). This method uses quadratic approximation
to model the portfolio loss with its first (i.e., delta) and second (i.e., gamma) derivative information.
Importance sampling and stratification techniques are used in Glasserman et al. (2000) to accelerate
the computation in the delta-gamma method. More details are provided in Section 2.2.

Recently, nested simulation has been combined with kernel smoothing and stochastic kriging
methods. Hong and Juneja (2009) use kernel smoothing with nested simulation, and show the
resulting estimator converges at rate k−min(1, 4

d+2 ), where d is the problem dimension. This method
improves on standard nested simulation for low dimensional problems, where d ≤ 3. Liu and Staum
(2010) use stochastic kriging, an interpolation-based meta-modeling approach, to estimate expected
shortfall.

When the dimension (i.e., the number of risk factors) is large, “local” methods that rely on
combining information from nearby outer stage scenarios to get accurate estimates of portfolio loss
become inefficient. This “curse of dimensionality” arises because, in high dimension, any particular
scenario will have very few neighboring scenarios. The regression approach we propose uses spatial
information globally instead of locally, and thus it does not directly depend on the dimension
of a problem. With a good choice of basis functions, the regression method initially converges
at the same k−1 rate as non-nested simulation. Regression has also been used by Tsitsiklis and
Roy (2001) and Longstaff and Schwartz (2001) in the context of simulation-based estimation of
American option prices. While the precise formulations and theory are different, analogous to
our proposed algorithm, these least squares Monte Carlo (LSM) methods also involve estimating
security values via a regression over basis functions. In practice, such LSM methods sample in a
way that is consistent with what we present here: there, for the purposes of regression, continuation
values in a state are typically estimated with a single point estimate. This is analogous to using a
single inner stage sample (m = 1) in our setting. Moreover, LSM methods face many of the same
issues as in the present paper, for example, the selection of good basis functions for regression. We
refer the reader to the monograph of Glasserman (2004) for a survey on this topic.
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2. Problem Formulation: Nested Simulation

We are interested in the loss of a portfolio at a future time τ , relative to its value at time 0. The
time τ is called the risk horizon. The portfolio loss at time τ depends on a collection of financial risk
factors that are realized between times 0 and τ . Examples of such risk factors include stock prices,
commodity prices, interest rates, and exchange rates. Denote by Ω ⊂ RN the set of all possible
realizations of the risk factors at time τ . We assume that each ω ∈ Ω is a sufficient statistic1 to
determine the values of all securities in the portfolio at time τ . Hence, we will refer to ω as a state
or scenario. The portfolio loss, which we will denote by L(ω), is thus a function of ω.

We assume that there exists a probability space such that ω is distributed according to the
real-world distribution of the risk factors over the state space Ω, and that L(·) is a measurable
function, so that L(ω) is distributed according to the real-world distribution of portfolio losses. A
risk measure associates the real-world distribution of the portfolio loss L with a single scalar α.
Specifically, we consider risk measures of the form

(1) α , E [f (L (ω))] ,

for some function f : R → R, where we assume that L(·) and f(·) are functions such that the
expectation in (1) exists. Examples of such risk measures include the following:

• Probability of a large loss. Given a loss threshold c ∈ R, define

f(L) , I{L≥c}.

In this case, the risk measure α is the probability that the portfolio loss exceeds the level c.

• Expected excess loss. Given a loss threshold c ∈ R, define

f(L) , (L− c)+ .

In this case, α is the expected value of losses in excess of the level c.

• Squared tracking error. Given a target level c ∈ R, define

f(L) , (L− c)2 .

In this case, α is the squared error of the portfolio loss relative to the target c.

Note that many common risk measures are not explicitly in the class defined by (1), for example,
value at risk, conditional value at risk, expected shortfall, etc. However, all of risk measures are
functionals of the distribution of portfolio losses, and expectations of the form (1) are the most

1Our formulation includes path dependent portfolios and portfolios with cash flows in the interval [0, τ ] as special
cases. In such instances, the state ω can be augmented with additional information so that the portfolio value at
time τ is uniquely determined as a function of ω.
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basic questions to ask about a loss distribution. In many cases, more complex risk measures can
be computed indirectly from expectations of the form (1). For example, the value at risk is the
threshold level c such that the probability of a loss exceed c reaches a specified level. The ability to
accurately compute the probability of a loss exceeding an arbitrary threshold can be an important
step towards computing the value at risk. Similarly, the ability to accurately compute the expected
excess loss can be an important subroutine in the computation of the conditional value at risk or
expected shortfall. Hence, while our methods are broadly useful, in order to simplify the analysis,
we will focus on this particular class where risk measures can be expressed as in (1).

Our challenge in computing the risk measure α is that, given a scenario ω, often the portfolio loss
L(ω) is not directly computable. In many financial applications, the portfolio may include complex
securities whose values cannot be determined analytically. Hence, the loss L(ω) may also need to
be numerically computed. A common way to compute the portfolio loss in a given scenario is via
Monte Carlo simulation. In what follows, we will describe two common approaches for estimating
the risk of portfolios that are valued via Monte Carlo simulation.

2.1. Standard Nested Simulation

Standard nested simulation is the method of estimating the risk measure α by first approximating
the expectation in (1) via a Monte Carlo simulation. In particular, consider a set of n scenarios
ω(1), . . . , ω(n) that are independent and identically distributed according to the real-world distribu-
tion of the risk-factors ω. These samples are referred to as the outer stage of the simulation.

Given a scenario ω(i), the portfolio loss L
(
ω(i)) will be estimated via an inner stage of Monte

Carlo simulation. Specifically, suppose that T is the longest maturity time of all of the securities in
the portfolio. The value of the portfolio at the risk horizon τ is equal to the expected discounted
cashflows of the portfolio over the interval [τ, T ], under the risk-neutral distribution conditioned
on the scenario ω(i). This can be approximated by the sample average of m independent and
identically distributed samples of the discounted cashflows. In other words, the portfolio loss
L
(
ω(i)) is estimated by a quantity L̂

(
ω(i), ζ(i)). Here, ζ(1), . . . , ζ(n) are independent random variables

that capture the randomness of the inner stage simulation, and are identically distributed.2 This
procedure is illustrated in Figure 1.

We make the following standard assumption:

Assumption A1. The second moment of the portfolio loss L (ω) is finite, i.e., E[L(ω)2] < ∞. The
estimated loss L̂ (ω, ζ) satisfies

(2) E
[
L̂(ω, ζ)

∣∣∣ω] = L (ω) ,

2Our assumption that {ζ(i)} are identically distributed over outer stage scenarios is without loss of generality. In
particular, this does not imply that the estimated losses are identically distributed across scenarios. This is because
any heteroscedasticity in ζ(i) can be absorbed into the functional form of L(ω, ζ). For example, in Section 5 we take
each ζ(i) to be a collection of independent Brownian motion processes. These processes drive the Itō processes which
determine asset prices. The overall loss estimate in each scenario is a function of the scenario ω(i) in combination
with ζ(i), and the loss estimates have different distributions across scenarios.
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ω(1)
...
ω(i)
...

ω(n)

inner stage sample 1
...

inner stage sample m
ζ(i)

Time t
0 τ T

Figure 1: Illustration of two-stage sampling. The outer stage generates n scenarios ω(1), . . . , ω(n).
Conditional on each scenario ω(i), m inner stage samples are generated, which determine the cashflows
of the portfolio from time τ to time T . Notice that the outer scenarios are generated according to
the real-world distribution, and the inner stage samples are generated according to the risk-neutral
distribution.

and

(3) Var
(
L̂(ω, ζ)

∣∣∣ω) = v (ω)
m

<∞.

Also, the conditional variance v(ω) satisfies

(4) E [v (ω)] <∞.

Notice that (2) states that the portfolio loss estimate is unbiased. Equation (3) implies that
the conditional variance of the portfolio loss estimate decays at the rate m−1 as a function of the
number of inner stage samples m, with a scenario-dependent constant v(ω). Equation (4) implies
that the portfolio loss estimate has finite second moment.

We approximate the risk measure α according to the empirical distribution of the portfolio
loss estimates that arise from this two-stage, nested simulation procedure. Specifically, given loss
estimates

L̂
(
ω(1), ζ(1)), . . . , L̂(ω(n), ζ(n)),

the standard nested estimator is defined by

(5) α̂SN(m,n) ,
1
n

n∑
i=1

f
(
L̂
(
ω(i), ζ(i))).

Standard nested simulation has been studied by a number of authors, e.g., Lee (1998), Lee and
Glynn (2003), Gordy and Juneja (2008), Gordy and Juneja (2010), and Hong and Juneja (2009).
The analysis is based on two criteria: computational effort and accuracy. We summarize these
results as follows.

The computational effort to compute the estimator α̂SN(m,n) is determined by the choice of
the two parameters: n, the number of scenarios, and m, the number of inner stage samples per
scenario. Given a choice of (m,n), there are a total of n outer stage scenarios and mn inner stage
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samples are required. Generally, the computational effort is dominated by the time required for
inner stage samples. This is because, in practice, the time horizon (0, τ ] corresponding to the
outer stage of simulation is much shorter than the time horizon (τ, T ] corresponding to the inner
stage. For example, if we are interested in a daily risk measure of a mortgage portfolio, the outer
stage time horizon is a single day, while the inner stage time horizon may be as long as 30 years.
Moreover, the inner stage involves not only the simulation of future risk factors, but also the
computation of security payoffs. The computation of discounted payoffs may involve the evaluation
of complicated rules or models, for example, as in the case of a mortgage portfolio. This may also
require significant computational effort. Therefore, as a proxy for the total computational effort,
we use the total number of inner stage samples,3 denoted by k , mn.

The accuracy of the estimator also depends on the choice of (m,n). We measure the accuracy
according to the mean squared error (MSE) of the estimator. The MSE α̂SN(m,n) can be decomposed
into the variance and the squared bias, i.e.,

(6) E
[(
α̂SN(m,n) − α

)2
]

= E
[(
α̂SN(m,n) − E

[
α̂SN(m,n)

])2
]

︸ ︷︷ ︸
variance

+
(
E
[
α̂SN(m,n) − α

])2

︸ ︷︷ ︸
bias2

.

Under appropriate technical assumptions, the asymptotic variance depends only on the number of
outer stage scenarios n and decays as n−1, and the asymptotic bias depends only on the number
of inner stage samples per scenario m and decays as m−1 (see, e.g., Hong and Juneja, 2009).

Given a fixed computational budget k, we can choose the parameters (m,n) so as to minimize
the MSE of the estimator. Thus, an optimal estimator can be found by solving the optimization
problem

(7)
minimize

m,n
E
[(
α̂SN(m,n) − α

)2
]

subject to mn = k,

m, n ≥ 0.

Using the decomposition (6) and the asymptotic rates of decay of variance and bias, it follows that
the asymptotically optimal choice m∗ is of order k1/3, and the optimal choice of n∗ of order k2/3.
With these choices, the asymptotically optimal MSE of α̂SN(m,n) decays as a function of the total
number of inner stage samples k at rate k−2/3.

To interpret this result, it is instructive to compare with traditional Monte Carlo simulation,
which only needs a single stage of simulation. There, the MSE decays as a function of the number
of scenarios k at rate k−1. The rate for nested simulation is slower because of the inner stage
Monte Carlo estimates of portfolio loss. Although these estimators are unbiased relative to the
true portfolio loss L, the risk measure α may not be a linear function of L, so that an additional
bias is introduced. This slows down the convergence.

3This line of analysis can be easily extended to also account for the computational effort required for the n outer
stage scenarios, but we will not do so here.
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Remark 1. Although we know the asymptotic orders of magnitudes of m∗ and n∗, their asymptotic
coefficients are difficult to derive. Therefore, in general cases, it is not clear how to solve (7) given
a finite k, which makes the optimal performance of α̂SN(m,n) unachievable. To address this, Broadie
et al. (2011) suggest a method to adaptively estimate (m∗, n∗) in the context of a sequential nested
simulation.

2.2. Delta-Gamma Approximation

The delta-gamma approximation takes an alternative approach to estimate the portfolio loss L(ω)
in a scenario ω. Here, L(ω) is approximated by a quadratic function of underlying risk factors
ω, using a second order local approximation. This method is discussed, for example, by Rouvinez
(1997) and Glasserman et al. (2000). Consider a single representative scenario ω∗. For example, the
scenario ω∗ can be selected to be the expected value of ω under the real-world distribution at time
τ . If L(·) is a twice differentiable function in a neighborhood of ω∗, then a quadratic approximation
can be made as

(8) L̃DG(ω) , L(ω∗) +∇L(ω∗)> (ω − ω∗) + 1
2 (ω − ω∗)>∇2L (ω∗) (ω − ω∗) .

Given L̃DG, the risk measure α can be estimated by

(9) α̂DG , E
[
f
(
L̃DG(ω)

)]
.

This is referred to as the delta-gamma estimator.
Note that this quadratic approximation requires the knowledge of the portfolio loss L(ω∗) as

well as the delta (i.e., the gradient) ∇L(ω∗) and the gamma (i.e., the Hessian matrix) ∇2L(ω∗)
at the representative scenario ω∗. In general, these quantities may be analytically unavailable in
closed form. However, since they are only needed in a single scenario, they can be computed to
arbitrary accuracy without excessive computational effort. For the purposes of our discussion, we
assume they are known exactly.

Further, given the quadratic approximation L̃DG, we need to evaluate the expectation in (9).
Observe that, for any scenario ω, evaluating L̃DG(ω) is easy since it involves only basic vector
operations, and, in particular, requires no simulation. Thus, with a modest computational effort,
we can perform a single stage Monte Carlo simulation to approximate the estimator α̂DG to a high
degree of accuracy. For the purpose of discussion, we assume the expectation in (9) can be exactly
evaluated.

3. The Regression Algorithm

We now introduce a method that is based on regression. The idea is to approximate the portfolio
loss L(·) by an approximation that is easy to evaluate. This is reminiscent of delta-gamma approx-
imation. However, delta-gamma approximation has two major restrictions. First, it uses only a
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quadratic approximation. We allow higher order approximations, and allow approximations that
can be tailored based on knowledge of the portfolio. Second, the delta-gamma approximation com-
putes a local approximation around some representative scenario. There is no reason to expect that
such an approximation will accurately describe the portfolio loss across a broad set of scenarios.
On the other hand, we will attempt to find an approximation that is globally good.

In particular, consider a set of d real-valued functions φ1(·), . . . , φd(·) on the state space Ω,
which we will call basis functions. The basis functions can be written as a row vector

Φ (ω) ,
(
φ1 (ω) , . . . , φd (ω)

)
∈ Rd,

for each scenario ω. We seek to approximate the portfolio loss function L(·) by a linear combination
of these basis functions. In other words, we would like to find a column vector r ∈ Rd so that for
each scenario ω,

L(ω) ≈ Φ(ω)r ,
d∑
`=1

φ`(ω)r`.

We will then estimate the risk measure α using this approximation.
There are two requirements for this procedure to be effective:

(i) The basis functions should incorporate features of the state space relevant to determining the
portfolio loss, so that a linear combination of these functions can accurately approximate the
portfolio loss.

(ii) The basis functions should be fast to evaluate. Then, when using an approximation defined by
the basis functions, the outer stage expectation in the risk measure can be computed quickly.

In general, a generic choice of basis functions can always be made (e.g., all low order polynomials).
However, the intelligent selection of basis functions is problem-dependent. For example, given a
portfolio of exotic derivatives, the values of corresponding plain vanilla derivatives (which can be
obtained via closed form analytical expressions) might be used to construct basis functions. We
will see examples of this in the numerical case studies of Section 5.

Given the basis functions Φ, a global approximation to the portfolio loss L can be found by
solving minimum mean squared error problem

(10) r∗ ∈ argmin
r∈Rd

E
[(
L (ω)− Φ (ω) r

)2]
.

We can then approximate the risk measure by E [f (Φ (ω) r∗)]. Given the optimal regression coef-
ficients r∗, for each scenario ω, define M (ω) to be the model error of the approximation Φ (ω) r∗,

(11) M (ω) , L (ω)− Φ (ω) r∗.

Here, M (·) represents the residual error under the best approximation afforded by the basis func-
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tions Φ. Further, define ε (ω, ζ) by

(12) ε (ω, ζ) , L̂ (ω, ζ)− L (ω) = L̂ (ω, ζ)− Φ (ω) r∗ −M (ω) .

This quantity measures the discrepancy between the Monte Carlo estimate of portfolio loss in the
scenario ω and the true portfolio loss.

In order for this regression procedure to be well defined, we make the following assumption:

Assumption A2. The second moments of φ1(·), . . . , φd(·) are finite, i.e., E
[
φ`(ω)2] < ∞ for each

` = 1, . . . , d. Further, φ1(·), . . . , φd(·) are linearly independent, i.e., when n ≥ d,

P

rank


Φ
(
ω(1))
...

Φ
(
ω(n))

 = d

 = 1.

Without loss of generality, we can assume that the functions φ1 (·) , . . . , φd (·) are orthonormal, i.e.,
we assume that E

[
Φ (ω)>Φ(ω)

]
is the identity matrix.

Assumption A2 ensures that the basis functions are linearly independent. If this is the case,
given finite second moments, there is no loss of generality in assuming that they are orthonormal.
Otherwise, one could construct an equivalent orthonormal basis through the Gram-Schmidt pro-
cedure. We will assume the orthonormality for the rest of this paper, as it greatly simplifies the
exposition.

Given Assumptions A1 and A2, the optimal solution r∗ to the optimization problem (10) exists
and is unique. However, it is not possible to directly compute r∗, since we cannot evaluate L(·)
in general. Instead, our method seeks to solve an analog of the optimization problem (10) that
is obtained by nested simulation. In particular, in order to get a tractable problem, we will first
replace the expectation in (10) with a sample average over scenarios. Then, the portfolio loss
in each scenario can be estimated by inner stage Monte Carlo simulation. As in Section 2.1,
suppose there are n scenarios ~ω ,

(
ω(1), . . . , ω(n))>. In each scenario ω(i), let ζ(i) be an i.i.d.

random variable that captures the randomness of the corresponding m inner stage samples, so that
L̂
(
ω(1), ζ(1)), . . . , L̂(ω(n), ζ(n)) are the nested Monte Carlo portfolio loss estimates across scenarios.

Define the vector ~ζ ,
(
ζ(1), . . . , ζ(n))>. Given (~ω, ~ζ), we solve the optimization problem

(13) r̂ ∈ argmin
r∈Rd

1
n

n∑
i=1

(
L̂
(
ω(i), ζ(i))− Φ

(
ω(i))r)2

.

Note that this is a standard ordinary least squares problem. Given the coefficient vector r̂, we
estimate the risk measure α by

(14) α̂REG(m,n) , E
[
f (Φ(ω)r̂)

∣∣∣ ~ω, ~ζ ] .
We define α̂REG(m,n) to be the regression estimator. Given Assumptions A1 and A2, the optimal
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solution r̂ in (13) exists and is unique almost surely. Hence, our estimator is well defined.

Remark 2. Observe that the expectation in (14) can be estimated via a single stage Monte Carlo
simulation that only requires evaluation of the basis functions. Since we assume that the basis func-
tions are fast to compute, it will be possible to approximate α̂REG(m,n) to a high degree of accuracy,
given modest computational effort. Indeed, if we sample n′ additional outer stage scenarios, and
we estimate (14) with

(15) 1
n′

n′∑
i=1

f
(
Φ(ω′i)r̂

)
,

the MSE between (14) and (15) is in the order of (n′)−1. We will see that this is asymptotically
negligible compared to the MSE of the estimator α̂REG(m,n) (e.g., Corollary 2). Therefore, while the
estimator (15) would typically be employed in practice,4 for the purposes of discussion and analysis,
we assume (14) can be exactly computed.5

Remark 3. The regression model has been specified with portfolio loss as dependent variable. An
alternative is to specify and estimate a distinct linear model for the value of each of the instruments
that constitute the portfolio. This alternative6 could have important practical advantages. For
example, portfolios can change rapidly, but the set of instruments in which an entity trades trades
tends to persist for long periods. For each instrument, we can estimate a linear model just once,
and possibly use the same model in risk-measurement exercises in the future. By contrast, because
of changes in portfolio composition, a portfolio-level model calibrated to the current portfolio will
not (in general) be useful in the future. Note that if the same set of basis functions is used, there
is no difference between the models obtained by regression at the portfolio level and by regression at
the instrument level, hence our present formulation is without loss of generality.

The regression of (13) is unweighted in that each scenario is equally weighted. One can imagine
weighted variations as well, e.g.,

r̂ ∈ argmin
r∈Rd

1
n

n∑
i=1

h(ω(i))
(
L̂(ω(i), ζ(i))− Φ(ω(i))r

)2
,

where h(·) is a weight function. Note that this is a standard weighted least squares problem.
Flexibility in choosing a weight function can allow emphasis in fitting the loss accurately in scenarios

4One might consider using both the initial n outer state scenarios as well as the additional n′ scenarios to estimate
(14) via 1

n+n′

(∑n

i=1 L̂
(
ω(i), ζ(i))+

∑n′

i=1 f
(
Φ(ω′(i)r̂

))
. However, for reasons discussed in Section 2.1, we assume that

it is much easier computationally to sample outer stage scenarios than inner stage scenarios. In this case, n′ � n,
and hence we will not consider such a hybrid estimator.

5In addition to the nested sampling, additional computation is required for the regression step, i.e., the computation
of (13). From standard results on least squares optimization (e.g., Golub and Van Loan, 2012), the computational
effort required to compute the regression coefficients r̂ is a linear function of the number of outer stage scenarios
n, i.e., the extra computational burden is O(n). This burden is asymptotically proportional to (if m is O(1)) or
dominated by (if m → ∞) the total required computation requirement O(k) for the generation of nested samples.
Therefore, the additional computational requirement for computing regression weights (13) is ignored in our analysis.

6We thank an anonymous referee for this suggestion.
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which have the greatest impact on the overall risk calculation. We will describe and analyze
weighted generalizations of our regression estimator in Section 6. More generally, there is no
reason the outer stage scenarios need to be generated by simulation at all. Instead, they could
be considered as points specified in a designed experiment. We will not explore this alternative
further, but it is an interesting direction for future research.

4. Analysis

In this section, we provide theoretical analysis of the regression method presented in Section 3.
Here we are interested in the asymptotic squared error of the regression method, as the number of
scenarios n tends to infinity. Our analysis consists of two separate cases, with different assumptions
on the loss function f(·).

In Section 4.1 we consider the first case, where the function f (·) is assumed to be twice differ-
entiable. Our analysis here relies on existing results in econometrics for the asymptotic analysis of
linear regression (White, 2001), including the asymptotic normality of regression estimates and the
delta method. We establish that the squared error converges in probability at the rate n−1, until it
reaches an asymptotic bias level at which the error ceases to improve. In Section 4.2 we consider the
second case, where the function f (·) is assumed to be Lipschitz continuous. This line of analysis is
quite different and builds on theory for the asymptotic analysis of sample average approximations
in optimization Shapiro et al. (2009). Here, under different probabilistic assumptions, we establish
that, in fact, the squared error converges in mean at the rate n−1+δ, for any δ > 0, until it reaches
an asymptotic bias level. Moreover, we establish bounds on the mean squared error for finite n.

In both cases, the asymptotic level of bias is bounded by the model error associated with the
basis functions. While the exact assumptions and conclusions differ in the two analyses, taken
together, the spirit of these results is to suggest that our regression approach will converge at the
same rate as traditional non-nested Monte Carlo simulation over a large range, given a suitably
good choice of basis functions.

All proofs for this section are provided in the online supplement.

4.1. Differentiable Case

In the first case, we make the following differentiability assumption:

Assumption F1. The function f (·) is twice differentiable with bounded second derivative, so that
there exists a scalar Udiff with

(16)
∣∣f ′′ (L)

∣∣ ≤ Udiff, for any L ∈ R.

In order to characterize the asymptotic distribution of the regression estimator, we make the
following technical assumption:
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Assumption A3. The matrix E
[
v (ω) Φ (ω)>Φ (ω)

]
is positive definite, and

E
[
φ`(ω)2M(ω)2

]
<∞,

for each ` = 1, . . . , d.

Assumption A3 is a technical assumption standard in regression theory (see, e.g., White, 2001).
To begin our analysis, we have the following lemma that characterizes the convergence7 of coeffi-
cients of the regression estimator. This lemma is based on the asymptotic normality of ordinary
least squares estimators, applied to the present setting. In what follows, denote by N(·) the cumu-
lative distribution function for the normal distribution.

Lemma 1. Suppose Assumptions A1, A2, and A3 hold. As the number of scenarios n→∞,

√
n (r̂ − r∗) d→ N

(
0,ΣM + Σv

m

)
,

where

(17) ΣM , E
[
M2 (ω) Φ (ω)>Φ (ω)

]
, Σv , E

[
v (ω) Φ (ω)>Φ (ω)

]
.

Therefore, as n→∞,
‖r̂ − r∗‖2 = OP (1)√

n
.

According to Lemma 1, as the number of scenarios n→∞, the estimated coefficients r̂ converge
to the optimal coefficients r∗ at the rate n−1/2 in probability. However, we are interested in not only
the convergence of regression coefficients, but also in the convergence of the resulting estimated
risk measure. To this end, we have the following result, which is based on the multivariate delta
method of establishing asymptotic normality applied to the present setting:

Theorem 1. Suppose that Assumptions F1, A1, A2, and A3 hold. Then there exists a sequence of
random variables {BM,n}, for n = 1, 2, . . . , satisfying

BM,n
P→ B∗M , E

[
f (Φ(ω)r∗)

]
− α,

so that
√
n
(
α̂REG(m,n) − α−BM,n

)
d→ N

(
0,E

[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

(18)

7Let ξ1, ξ2, . . . be a sequence of random vectors. If there exists a vector ξ∗ such that for every b > 0,
P
(
‖ξn − ξ∗‖2 < b

)
→ 1 as n → ∞, then ξn converges to ξ∗ in probability. We write this as ξn

P→ ξ∗ or
‖ξn − ξ∗‖2 = OP (1). If we denote by Fξn and Fξ∗ the cumulative distribution functions of random variables ξn
and ξ∗, and if limn→∞ Fξn = Fξ∗ at all continuity points of Fξ∗ , then ξn converges to ξ∗ in distribution. We write
this as ξn

d→ ξ∗.
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where ΣM and Σv are defined by (17). Further, the asymptotic bias B∗M satisfies

(19)
∣∣B∗M − E

[
f ′ (L (ω))M (ω)

]∣∣ ≤ Udiff
2 E

[
(M (ω))2

]
.

Theorem 1 establishes three points: First, observe that the quantity B∗M is the asymptotic bias
of the regression estimator. The bounds in (19) indicate that the asymptotic bias B∗M is controlled
by the model error M(·), i.e., the quality of the best approximation under the basis functions. In
particular, if the basis functions are chosen so that the model error is small, the asymptotic bias
will also be small. Second, (18) suggests that the error of the regression estimator decreases at the
rate n−1/2 in probability until it reaches a level term that converges to a level that is dominated
by the asymptotic bias, at which point the estimator ceases to improve. Third, for large n, the
quantity α̂REG(m,n) + BM,n, which is the regression estimate with bias corrected, is approximately
normal with mean α and variance

1
n

E
[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>
.

Given a fixed number of inner stage samples k = mn, Theorem 1 suggests that the choice of m and
n do not impact the asymptotic bias, but do affect the asymptotic variance. Hence, it is clear that
the asymptotically minimum squared error is achieved when m = 1 and n = k.

In order to further interpret Theorem 1, consider, as a special case, the following corollary:

Corollary 1. Suppose that Assumptions F1, A1, A2, and A3 hold. When m = 1, n = k, and the
portfolio loss L is in the span of the basis functions Φ, then M (ω) ≡ 0, and we have

(20)
√
k
(
α̂REG(m,n) − α

) d→ N
(
0,E

[
f ′ (L (ω)) Φ (ω)

]
Σv
(
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

as k →∞.
Moreover, suppose that the conditional variance of inner samples does not depend on the sce-

nario, i.e., v (ω) ≡ v, for every scenario ω. Then, there exists a constant scalar v∗ defined by

v∗ , vE
[
f ′ (L (ω)) Φ (ω)

] (
E
[
f ′ (L (ω)) Φ (ω)

])> ≤ vE
[(
f ′ (L (ω))

)2]
,

such that, as k →∞, √
k
(
α̂REG(m,n) − α

) d→ N (0, v∗) .

According to Corollary 1, the error scales as k−1/2 in probability as a function of the total number
of inner samples k. By applying the continuous mapping theorem, we have that, as k → ∞, the
quantity k(α̂REG(m,n) − α)2 converges to a random variable. This is the same rate of convergence
as the convergence rate in the case of non-nested Monte Carlo simulation.
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4.2. Lipschitz Continuous Case

Section 4.1 established theoretical results when f (·) has bounded second derivative everywhere.
Since many risk measures of interest arise when f(·) is not twice differentiable, in this section,
we investigate the convergence of the regression estimator under the alternative assumption of
Lipschitz continuity:

Assumption F2. The function f (·) is Lipschitz continuous, i.e., there exists a scalar ULip, such
that

(21)
∣∣f (L′)− f (L′′)∣∣ ≤ ULip

∣∣L′ − L′′∣∣ , for any L′, L′′ ∈ R.

Under this assumption, we can bound the asymptotic squared error of the regression estimator
α̂REG(m,n) as follows:

Theorem 2. Suppose that Assumptions F2, A1, A2, and A3 hold. Then as the number of scenarios
n→∞, (

α̂REG(m,n) − α
)2
≤ U2

LipE
[
(M (ω))2

]
+OP

( 1
n

)
.

According to Theorem 2, the squared error is bounded above by a random variable that decays
at the rate n−1 in probability plus a constant that is a function of the model error, i.e., the quality
of the basis functions. This is analogous to the conclusion of Theorem 1, as discussed earlier. As
in that case, given a computational budget k = mn on the total number of inner stage samples,
the bound on the asymptotic squared error is minimized when m = 1 and n = k.

The result of Theorem 2 provides an asymptotic bound on the convergence of the squared error
in probability. This can be strengthened to bounding the mean squared error of the regression
estimator α̂REG(m,n), both asymptotically and for finite n. In order to do so, we will apply the
methodology of Shapiro et al. (2009). To this end, we make the following technical assumptions:

Assumption A4. The moment generating functions of ‖Φ (ω)‖22, (M (ω))2, and (ε (ω, ζ))2 are finite-
valued in a neighborhood of zero.

In our problem, define
G (r, ω, ζ) ,

(
L̂ (ω, ζ)− Φ (ω) r

)2
,

and
g (r) , E [G (r, ω, ζ)] .

In other words, G (r, ω, ζ) is the squared error of the regression estimate with coefficient vector r
versus the standard nested estimate in a single scenario, and g (r) is the mean squared error across
all scenarios. For any ρ > 0, define the set

(22) Rρ ,
{
r ∈ Rd : ‖r − r∗‖22 ≤ ρ

}
,

which is a compact and convex neighborhood of r∗.
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Assumption A5. For any ρ > 0, there exists a constant λ > 0 such that for any r′, r′′ ∈ Rρ, the
moment generating function Ψr′,r′′ (t) of the random variable

(
G
(
r′, ω, ζ

)
− g

(
r′
))
−
(
G
(
r′′, ω, ζ

)
− g

(
r′′
))

satisfies, for any t ∈ R,
Ψr′,r′′ (t) ≤ exp

(
ρλ2t2

)
.

Informally, Assumption A5 requires that (G (r′, ω, ζ)− g (r′)) − (G (r′′, ω, ζ)− g (r′′)) has sub-
Gaussian tails. Given the assumptions above, we have the following lemma:

Lemma 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold. Let ρ > 0 be an arbitrary
constant. Then for any positive integer n,

P (r̂ /∈ Rρ) ≤
(

2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
,

where λ is defined in Assumptions A5, C ′ and C ′′ are universal constants (i.e., constants that do
not depend on the problem), and

Λρ , (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
.

Lemma 2 bounds the probability that the estimated regression coefficients r̂ are not in the
fixed neighborhood Rρ of the optimal coefficients r∗, and demonstrates that this probability decays
exponentially as n→∞. Lemma 2 is not only an asymptotic result, but a finite-sample result that
holds for every n. Given Lemma 2, we can establish the following theorem:

Theorem 3. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
positive constant. Then for any positive integer n,

E
[
(Φ (ω) (r̂ − r∗))2

]
= E

[
‖r̂ − r∗‖22

]
≤ 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

)
= O

(
n−1+δ

)
.

Theorem 3 establishes that the squared error between our approximation of the loss function
and the best possible approximation using the same basis functions decays at the rate n−1+δ for
any δ > 0. A corollary of Theorem 3 is our main result, which establishes the rate of convergence
of the MSE of the risk estimator:

Corollary 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
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positive constant. Then, for any positive integer n,

E
[(
α̂REG(m,n) − α

)2
]

≤ U2
Lip

(
2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

))
+ U2

Lip

(
E
[
(M (ω))2

]
+ n−1+δ

)
= U2

LipE
[
(M (ω))2

]
+O

(
n−1+δ

)
.

According to Corollary 2, first, the MSE of the regression estimator α̂REG(m,n) decays at the rate
n−1+δ for any δ > 0 until it hits an asymptotic bias level, which is a function of the model error;
this is reminiscent of Theorem 2 except that we have δ in the exponent of n−1+δ here. Second,
Corollary 2 holds for any arbitrary n, which is a finite-sample result rather than an asymptotic
result in Theorem 2. Third, Corollary 2 implies the convergence of the MSE, which is stronger
than the convergence of the squared error in probability in Theorem 2.

5. Numerical Results

In this section we use several examples to compare the relative performance of standard nested
simulation, the delta-gamma approximation, and our regression method. In Section 5.2, we present
a simple example where there is only one underlying asset. In Section 5.3, we have four examples
with portfolios of multiple assets.

5.1. Experimental Setting

Our examples involve portfolios consisting of one or more underlying assets as well as derivatives
based on them. We assume that all underlying asset prices follow geometric Brownian motion
processes, and that option prices are determined according to the standard single-asset Black-
Scholes model and its multi-asset generalization.

Specifically, assume risk factors ω , (ω1, . . . , ωQ) ∈ Ω ⊂ RQ are distributed according to a
multivariate Gaussian distribution with mean zero, variance one, and correlations specified by a
given correlation matrix. Given ω and the risk horizon τ , define Sτ (ω) to be the prices of underlying
assets at time τ , with

Sτ (ω) , (S1,τ (ω), . . . , SQ,τ (ω)) ,

where
Sj,τ (ω) = Sj,0 exp

((
µj − σ2

j /2
)
τ + σj

√
τωj

)
.

Here Sj,0 is the price of the jth asset at time 0, µj is the drift of the jth asset under the real-
world distribution, and σj is the annual volatility of the jth asset. In this setting, asset prices are
lognormally distributed and there is exactly one risk factor per asset.
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To estimate the portfolio loss at time τ we use Monte Carlo simulation of the inner stage sample
paths under the risk-neutral distribution to generate asset cashflows between times τ and T . For
the jth security and for each inner stage sample path p = 1, . . . ,m, define W (p)

j,t to be a Brownian
motion for t ∈ [τ, T ] with W (p)

j,τ = 0. Notice that there is no correlation between W (p′)
j′,t and W (p′′)

j′′,t if
p′ 6= p′′, i.e., the m inner stage sample paths are independent; on the other hand, there could exist
correlation between securities on the same path. The set

ζ ,
{
W

(p)
j,t , for t ∈ [τ, T ] , j = 1, . . . , Q, p = 1, . . . ,m

}
represents all of the inner stage uncertainty given the outer stage scenario ω. Specifically, condi-
tional on ω, we assume that the risk-neutral asset prices on the pth sample path are given by

S
(p)
j,t (ω, ζ) = Sj,τ (ω) exp

((
rf − σ2

j /2
)

(t− τ) + σjW
(p)
j,t

)
,

for t ∈ [τ, T ] and j = 1, . . . , Q, where rf is the continuously compounded riskless rate of interest.
For each p = 1, . . . ,m, the discounted portfolio cashflows along the pth sample path may, in

general, depend on asset prices at all times between τ and T . Typically, however, portfolio cashflows
only depend on prices at a finite number of times, so only these essential points are simulated. The
portfolio loss estimate L̂ (ω, ζ) is determined by the average over the m sample paths. We focus on
the expected excess loss risk measure:

E
[
(L (ω)− c)+

]
,

where c is a threshold that will be specified in each example.
In each of the following examples, we compare the accuracy of a number of methods that

estimate the risk measure. The closed form expression for the portfolio losses L (ω) given a risk
factor scenario ω is known in all of the examples except example EX5H. In these cases, we will
precisely compute the risk measure α by using non-nested Monte Carlo simulation in the outer
stage. Similarly, the delta-gamma estimator8 α̂DG and the regression estimator α̂REG(m,n) provide
approximations of portfolio losses, and also require non-nested simulation in the outer stage to
estimate the risk measure. For all of these non-nested simulations, we employ either stratified
sampling or a Sobol sequence (see, e.g., Sobol, 1967; Glasserman, 2004).

Note that, for the regression estimator α̂REG(m,n), consistent with the theory we have developed,
a single inner stage sample is used for each outer stage scenario (m = 1), and the outer stage
scenarios that used to estimate risk are independent of those used to estimate regression coefficients.
For standard nested simulation estimation, the asymptotically optimal choices of the numbers of
outer stage scenarios and the inner stage scenarios are given by n = βk2/3 and m = k1/3/β,
where β is a constant. In all cases except Example EX5H, the optimal standard nested estimator
corresponds to the choice of β that minimizes the asymptotic MSE, this is determined by trying

8In the delta-gamma approximation, we will approximate the loss as a quadratic function of Sτ (ω) instead of a
quadratic function of ω.
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many different values of β. This would not usually be feasible in practice, and hence these results
for the “optimal” standard nested estimator may be optimistic. Example EX5H was meant to be a
real world example, hence the standard nested estimator in that case is computed with β = 1, i.e.,
n = k2/3 and m = k1/3, without further search for the optimal β.

Details are given in what follows.

5.2. Single Asset Example

• Model: There is one asset with initial price S0 = 100, real-world drift µ = 8%, and volatility
σ = 20%. The interest rate is rf = 3%.

• Portfolio: The portfolio consists of three barrier options9 that mature at time T = 1/12 year.
The risk horizon is τ = 1/52 year.10

1. Long one down-and-out put option with strike K1 = 101 and barrier H1 = 91.

2. Long one down-and-out put option with strike K2 = 110 and barrier H2 = 100.

3. Short one down-and-out put option with strike K3 = 114.5 and barrier H3 = 104.5.

The loss threshold is set to c = 0.3608, the 95th percentile of L (ω).

• Basis functions: We test several sets of basis functions. For simplicity, denote the asset price
at time τ by Sτ (ω).

Φ(1): This basis set includes quadratic functions of the asset price Sτ (ω). Specifically, Φ(1)(ω)
consists of φ1(ω) = 1, φ2(ω) = Sτ (ω), and φ3(ω) = (Sτ (ω))2.

Φ(2): This basis set includes all elements in Φ(1) as well as φ4(ω) = (Sτ (ω)−H1)+, φ5(ω) =
(Sτ (ω)−H2)+, φ6(ω) = (Sτ (ω)−H3)+, and φ7(ω), φ8(ω), φ9(ω) defined as the squares
of φ4(ω), φ5(ω), φ6(ω), respectively.

Φ(3): This basis set includes all elements of Φ(2) as well as φ10(ω) = L(ω), the exact expression
for the loss determined using analytical formulas to value the derivatives.

• Risk estimation: We estimate the true risk measure α with a non-nested simulation using 106

stratified samples. The delta-gamma estimator α̂DG and the regression estimator α̂REG(m,n)

are estimated with non-nested simulations using 104 samples.

The first basis set Φ(1) was chosen because the regression method with this set is directly
comparable to the delta-gamma approximation — the approximation employed in the delta-gamma
method is within the span of this basis. The second basis set Φ(2) was chosen to illustrate the benefit

9All barrier options are partial-time barrier options (see, e.g., Section 4.17.4, Haug, 2006) that can be knocked in
or out only between times τ and T .

10Along each sample path, the cashflow of a barrier option depends only on minimum underlying asset price and
the final asset price. We simulate these two quantities instead of sampling the entire sample path. Details can be
found in Hui (1997) and Metwally and Atiya (2002).
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Figure 2: Illustration of the mean squared error in the single asset example. The vertical axis shows
the mean squared error, and the horizontal axis represents the total number of inner stage samples. For
the standard nested estimator, the optimized parameter value β = 0.076 was used.

of introducing basis functions chosen based on problem specific knowledge. Here, the portfolio loss
is known to depend on the barrier levels, and the additional basis functions can capture such a
dependence in a piece-wise linear way. The third basis set Φ(3) represents the ideal case where the
basis functions span the true portfolio loss function and there is no model error.

For each method, we simulate 1,000 independent trials to estimate the MSE of the estimator.
Results are given in Figure 2. The MSE of the standard nested estimator decays at k−2/3, which
is consistent with the discussion in Section 2.1. Observe that the delta-gamma estimator is the
least accurate of the five estimators. Figure 3 shows the local delta-gamma approximation around
Sτ (ω∗) does not provide a good global approximation. The regression method with basis set Φ(1)

fits a quadratic function globally and leads to a better risk estimate than the local approximation
used in the delta-gamma approach.

In Figure 2, the MSE of the regression method with basis set Φ(1) initially decays at the rate
k−1, but then stops decreasing when the MSE reaches the asymptotic bias level determined by
the regression model error. Basis sets Φ(2) and Φ(3) perform much better, with MSEs decaying at
the rate k−1 over the current range in Figure 2. In fact, over the current range of simulation, the
regression method with basis set Φ(2), which is the basis set chosen more intelligently than Φ(1),
does about as well as the regression method with Φ(3), while Φ(3) contains the actual loss function
in the basis set. Although the MSE of the regression method with Φ(2) decays over a larger range
than the one with Φ(1), eventually, according to our theoretical results, the MSE of the regression

22



c = 0.3608

Sτ (ω∗) = 100.1540

90 92 94 96 98 100 102 104 106 108 110

−1

0

1

2

3

4

5

Underlying Asset Price Sτ (ω)

Po
rt

fo
lio

Lo
ss
L

(ω
)

True Loss
Delta-Gamma

Regression with Basis Set Φ(1)

Regression with Basis Set Φ(2)

Figure 3: Illustration of approximations in the single asset example. The vertical axis shows the
portfolio loss, either true or estimated, and the horizontal axis represents the underlying asset price
Sτ (ω) at time τ .

method with Φ(2) will also flatten out.

5.3. Multiple Asset Examples

In this section we test four multi-asset examples. Common properties of these four examples are
summarized here. Asset prices, denoted by Sj,t(ω), follow independent geometric Brownian motion
processes unless otherwise stated. Initial asset prices are all Sj,0 = 100. Assets share common
real-world drifts of µ = 8% and annual volatilities of σ = 30%. The interest rate is rf = 5%.
Derivatives all have strikes K = 100 and a common maturity T = 0.1 year unless otherwise stated.
The risk horizon is τ = 0.04 year. We consider the following four examples:

Example EX10. Ten underlying assets and a portfolio of derivatives with discontinuous payoff
functions.

• Portfolio: The portfolio consists of three derivatives on each of the 10 assets: (a) short 10
down-and-out call options with barrier H = 95; (b) short 5 cash-or-nothing put options; and
(c) an amount of underlying asset that delta hedges the two derivatives above.

The loss threshold is c = 306.8763, the 99th percentile of L(ω).

• Basis functions:
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Φ(1): This basis set includes quadratic functions of Sj,τ (ω). Specifically, Φ(1)(ω) consists of
φ`(ω) for ` = 1, . . . , 21, where φ1(ω) = 1, φ1+ι(ω) = Sι,τ (ω) and φ11+ι(ω) = (φ1+ι(ω))2

for ι = 1, . . . , 10.

Φ(2): This basis set includes fifth order polynomials of Sj,τ (ω)’s and fifth order polynomials
of (Sj,τ (ω)−H)+ for j = 1, . . . , 10. Specifically, Φ(1) (ω) consists of φ` (ω) for ` =
1, . . . , 101, where φ1 (ω) = 1, φ1+ι (ω) = Sι,τ (ω) and φ11+ι (ω) = (Sι,τ (ω)−H)+ for ι =
1, . . . , 10, and φ21+ι (ω) = (φ1+ι (ω))2, φ41+ι (ω) = (φ1+ι (ω))3, φ61+ι (ω) = (φ1+ι (ω))4,
and φ81+ι (ω) = (φ1+ι (ω))5 for ι = 1, . . . , 20.

Φ(3): This basis set includes all elements in Φ(2) as well φ102(ω) = L(ω), the exact expression
for the loss determined using the analytical formulas to value the derivatives.

• Risk estimation: We estimate the true risk measure α, the delta-gamma estimator α̂DG, and
the regression estimator α̂REG(m,n) using non-nested simulations with 215 Sobol points.

Example EX10E. Ten underlying assets with a portfolio consisting of exchange options whose payoffs
depend on pairs of underlying assets.

• Portfolio: Short 10 exchange options on each of five asset pairs j and j + 5, for j = 1, . . . , 5.
The payoff of the jth exchange option is max(0, Sj,T − Sj+5,T ).

The loss threshold is c = 278.8783, the 99th percentile of L(ω).

• Basis functions:

Φ(1): This basis set consists of bi-variate quadratic functions of Sj,τ (ω) and Sj+5,τ (ω) for
j = 1, . . . , 5. Specifically, Φ(1)(ω) contains φ`(ω) for ` = 1, . . . , 26, where φ1(ω) = 1,
φ1+ι(ω) = Sι,τ (ω), φ6+ι(ω) = Sι+5,τ (ω), φ11+ι(ω) = (Sι,τ (ω))2, φ16+ι(ω) = Sι,τ (ω) ·
Sι+5,τ (ω), and φ21+ι(ω) = (Sι+5,τ (ω))2 for ι = 1, . . . , 5.

Φ(2): This basis set includes bi-variate fifth order polynomials of Sj,τ (ω) and Sj+5,τ (ω) for
j = 1, . . . , 5. Specifically, Φ(1)(ω) consists of φ`(ω) for ` = 1, . . . , 101, where φ`(ω) for
` = 1, . . . , 26 are defined as in Φ(1)(ω), and for the third-, fourth- and fifth-order terms,
we have the corresponding powers of Sj,τ (ω) for j = 1, . . . , 10 as well as the cross terms
of Sj,τ (ω) and Sj+5,τ (ω) for j = 1, . . . , 5.

Φ(3): This basis set includes all elements in Φ(2) as well as φ102(ω) = L(ω), the exact expression
for the loss determined using the analytical formulas to value the derivatives.

• Risk estimation: We estimate the true risk measure α, the delta-gamma estimator α̂DG, and
the regression estimator α̂REG(m,n) using non-nested simulations with 215 Sobol points.

Example EX100. There are 100 underlying assets with non-zero correlations.
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• Model: The assets are divided into 10 groups of 10 assets each. The correlation is 20%
between assets in the same group and is 0% otherwise. The assets in the first three groups
have a volatility of 50%, those in the next four groups have a volatility of 30%, and those in
the last three groups have a volatility of 10%.

• Portfolio: Short 10 at-the-money calls and 10 at-the-money puts on each of the 100 underlying
assets.

The loss threshold is c = 876.8636, the 99th percentile of L(ω).

• Basis functions:

Φ(1): This basis set includes quadratic functions of Sj,τ (ω) for j = 1, . . . , 100. Specifically,
Φ(1)(ω) consists of φ`(ω) for ` = 1, . . . , 201, where φ1(ω) = 1, φ1+ι(ω) = Sι,τ (ω) and
φ101+ι(ω) = (φ1+ι(ω))2 for ι = 1, . . . , 100.

Φ(2): This basis set includes fifth order polynomials of Sj,τ (ω) for j = 1, . . . , 100. Specifi-
cally, Φ(1)(ω) consists of φ`(ω) for ` = 1, . . . , 501, where φ1(ω) = 1, φ1+ι(ω) = Sι,τ (ω),
φ101+ι(ω) = (φ1+ι(ω))2, φ201+ι(ω) = (φ1+ι(ω))3, φ301+ι(ω) = (φ1+ι(ω))4, φ401+ι(ω) =
(φ1+ι(ω))5 for ι = 1, . . . , 100.

Φ(3): This basis set includes all elements in Φ(2) as well as φ502(ω) = L(ω), the exact expression
for the loss determined using the analytical formulas to value the derivatives.

• Risk estimation: We estimate the true risk measure α, the delta-gamma estimator α̂DG, and
the regression estimator α̂REG(m,n) using non-nested simulations with 215 Sobol points.

Example EX5H. Five underlying assets with a portfolio consisting of one Himalayan option (see,
e.g., Gharavi, 2010) whose payoffs depend on these five underlying assets.

• Portfolio: Long one Himalayan option based on a basket of five underlying assets. The
maturity is T = 0.5 year. The risk horizon is τ = 0.04 year. The payoff times are t1 = 0.1,
t2 = 0.2, t3 = 0.3, t4 = 0.4, and t5 = 0.5 year. At payoff time tj , for j = 1, . . . , 5, the
underlying asset with the largest return in the basket, denoted by Smj ,tj (ω), is noted and
removed from the basket. At the maturity, the basket is emptied and the payoff is

5∑
j=1

max
(
Smj ,tj (ω)− Smj ,0(ω)

Smj ,0(ω) , 0
)
,

where Smj ,0(ω) = 100, for j = 1, . . . , 5, as assumed at the beginning of Section 5.3.

The loss threshold is set to be c = 1.622× 10−1, which is estimated as the 99th percentile of
L(ω).
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• Basis functions:11

Φ(1): This basis set includes quadratic functions of Smj ,τ (ω) for j = 1, . . . , 5. Specifically,
Φ(1)(ω) consists of φ`(ω) for ` = 1, . . . , 11, where φ1(ω) = 1, φ1+ι(ω) = Smι,τ (ω) and
φ6+ι(ω) = (φ1+ι(ω))2 for ι = 1, . . . , 5.

Φ(2): This basis set includes fifth order polynomials of Smj ,τ (ω) for j = 1, . . . , 5. Specifically,
Φ(1)(ω) consists of φ`(ω) for ` = 1, . . . , 26, where φ1(ω) = 1, φ1+ι(ω) = Smι,τ (ω),
φ6+ι(ω) = (φ1+ι(ω))2, φ11+ι(ω) = (φ1+ι(ω))3, φ16+ι(ω) = (φ1+ι(ω))4, φ21+ι(ω) =
(φ1+ι(ω))5 for ι = 1, . . . , 5.

• Risk estimation: Since analytic expressions for the value of Himalayan options are not known,
we estimate the true risk measure α using an exhaustive nested simulation with n outer stage
scenarios generated using Sobol points and mn overall inner stage samples where n = 224

and m = 212. We estimate the the delta-gamma estimator α̂DG and the regression estimator
α̂REG(m,n) using non-nested simulations with 215 Sobol points.

The first three examples are from the paper of Glasserman et al. (2000). The last example,
EX5H, is meant to illustrate the performance of the methods in a more realistic setting where
analytic pricing formulas are unavailable and simulation-based methods are the only option.

As in the single asset case, in each of these examples, the first basis set Φ(1) was chosen because
the regression method with this set is directly comparable to the delta-gamma approximation. The
second basis set Φ(2) was chosen to illustrate the potential benefit of introducing basis functions
chosen based on problem specific knowledge. Better choices of basis functions, e.g., using the
analytical expressions for vanilla derivative prices and powers of these expressions, are clearly
possible and may lead to smaller asymptotic bias levels. In Examples EX10, EX10E, and EX100, the
third basis set Φ(3) represents the ideal case where the basis functions span the true portfolio loss
function and there is no model error.

For each method, we simulate 100 independent trials to estimate the MSE of the estimator.
Results are given in Figures 4–7. In each example the MSE of the standard nested estimator decays
at k−2/3, as expected. The delta-gamma estimator is fast to compute but not very accurate, since
the local approximation does not capture important features of the portfolio loss functions. The
regression method with basis set Φ(3) works the best in each applicable example, with the MSE
decaying at rate k−1. With more realistic basis sets Φ(1) and Φ(2), the MSEs decay at the rate k−1

until hitting the asymptotic bias levels, which is often beyond the scale of the figures. MSE results
for the k = 5,000,000 case are summarized in Table 1.

11In previous examples, Φ(3) is the basis set including the exact expression for the loss determined with the analytical
formulas, while in Example EX5H, there is no analytical formula for Himalayan options, and thus only two sets of
basis functions Φ(1) and Φ(2) are presented.
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Example Estimator MSE MSE (normalized)

Single asset example

optimal standard nested estimator 1.0·10−5 333.9
delta-gamma 1.5·10−1 4,807,400.0

regression with basis set Φ(1) 3.9·10−4 12,414.1
regression with basis set Φ(2) 7.7·10−8 2.5
regression with basis set Φ(3) 3.1·10−8 1.0

Example EX10

optimal standard nested estimator 1.4·10−2 1,107.9
delta-gamma 3.0·10−1 24,704.7

regression with basis set Φ(1) 3.5·10−1 28,761.4
regression with basis set Φ(2) 1.7·10−5 1.4
regression with basis set Φ(3) 1.2·10−5 1.0

Example EX10E

optimal standard nested estimator 1.4·10−3 311.7
delta-gamma 2.1·10−2 4,713.3

regression with basis set Φ(1) 1.9·10−3 411.2
regression with basis set Φ(2) 8.1·10−6 1.8
regression with basis set Φ(3) 4.5·10−6 1.0

Example EX100

optimal standard nested estimator 1.5·10−2 268.5
delta-gamma 4.8·102 8,605,300.0

regression with basis set Φ(1) 3.9·10−1 7,016.0
regression with basis set Φ(2) 7.1·10−5 1.3
regression with basis set Φ(3) 5.5·10−5 1.0

Example EX5H

standard nested estimator 9.6·10−10 48.6
regression with basis set Φ(1) 1.3·10−9 65.7
regression with basis set Φ(2) 2.0·10−11 1.0

Table 1: MSE results for the five examples. The results are computed over independent trials (1,000 in
the single asset example and 100 in the other three), each with a total simulation budget of k = 5,000,000.
The last column contains MSE results normalized relative to the regression estimator with the most
sophisticated basis set (Φ(2) or Φ(3)).
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Figure 4: Illustration of the mean squared error in Example EX10. The vertical axis shows the mean
squared error, and the horizontal axis represents the total number of inner stage samples. For the
standard nested estimator, the optimized parameter value β = 0.357 was used.

6. The Weighted Regression Method

This section follows the ideas of Section 3 and develops a risk estimation procedure via a weighted
regression algorithm. Weighted regression uses spatial information across scenarios to build a global
approximation to the loss function, but also emphasizes some scenarios that are more important
to the calculation of the resulting risk measure via a weight function.

In what follows, we will describe and analyze a weighted regression algorithm. We will establish
that, as in the unweighted case, the weighted regression estimation has an asymptotically non-
diminishing bias term. The bias term is determined in part by the choice of weight function. We
will describe an idealized “optimal” choice of weight function and then numerically demonstrate a
practically implementable variation in order to illustrate the benefits of weighted regression.

6.1. The Weighted Regression Algorithm

When computing the regression estimator α̂REG(m,n), all outer stage scenarios are weighted uni-
formly in the sample mean squared error objective of (13). This is reasonable if we seek a globally
good approximation over the entire scenario space Ω. However, when dealing with the estimation
of a specific risk measure, the portfolio loss estimates in some scenarios may deserve more precise
estimation than those in other scenarios. For example, when estimating the expected excess loss,
scenarios with large losses contribute substantially to the estimator. Scenarios with large profits,
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Figure 5: Illustration of the mean squared error in Example EX10E. The vertical axis shows the mean
squared error, and the horizontal axis represents the total number of inner stage samples. For the
standard nested estimator, the optimized parameter value β = 0.1.674 was used.

on the other hand, do not directly impact the risk calculation, so the accuracy of their estimates is
not as important. Since scenarios are not equally important, a weighted regression scheme where
larger weights are assigned to more important scenarios is logical.

Suppose h : Ω→ R+ is a non-negative weight function on the set of scenarios. In order to define
the weighted regression algorithm, we will make the following two assumptions, which are analogs
of Assumptions A1 and A2, respectively.

Assumption A6. The second moment of
√
h (ω)L (ω) is finite, i.e., E[h(ω)L(ω)2] < ∞. The esti-

mated loss L̂ (ω, ζ) satisfies
E
[
L̂(ω, ζ)

∣∣∣ω] = L (ω) ,

and
Var

(
L̂(ω, ζ)

∣∣∣ω) = v (ω)
m

<∞.

Also, h (ω) and v(ω) satisfy
E [h(ω)v (ω)] <∞.

Assumption A7. The second moments of
√
h (·)φ1(·), . . . ,

√
h(·)φd(·) are finite, i.e.,

E
[
h(ω)φ`(ω)2

]
<∞,
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Figure 6: Illustration of the mean squared error in Example EX100. The vertical axis shows the mean
squared error, and the horizontal axis represents the total number of inner stage samples. For the
standard nested estimator, the optimized parameter value β = 0.1.674 was used.

for ` = 1, . . . , d. Further,
√
h(·)φ1(·), . . . ,

√
h(·)φd(·) are linearly independent, i.e., when n ≥ d,

P

rank


√
h
(
ω(1))Φ(ω(1))

...√
h
(
ω(n))Φ(ω(n))

 = d

 = 1.

Moreover, we assume that the functions φ1 (·) , . . . , φd (·) are orthonormal, i.e., we assume that
E
[
Φ (ω)>Φ(ω)

]
is the identity matrix.

Using h(·) as the weight function, we define the optimal weighted regression coefficients accord-
ing to

(23) r∗ (h) ∈ argmin
r∈Rd

E
[
h(ω)

(
L(ω)− Φ(ω)r

)2]
.

For any h(·) that satisfies Assumptions A6 and A7, the optimal solution r∗ (h) to (23) exists and
is unique.

As before, the solution to (23) is not directly computable, since the loss function L(·) cannot
be exactly evaluated. Instead, we will seek to approximate a solution to (23) by nested simulation.
Given n outer stage scenarios ~ω ,

(
ω(1), . . . , ω(n))>, we will assign weight h

(
ω(i))

)
to the ith

scenario, and define the vector of weights ~h ,
(
h(ω(1)), . . . , h(ω(n))

)>. As in (13), we use the
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Figure 7: Illustration of the mean squared error in Example EX5H. The vertical axis shows the mean
squared error, and the horizontal axis represents the total number of inner stage samples. For the
standard nested estimator, the unoptimized parameter value β = 0.1.674 was used.

Monte Carlo portfolio loss estimates L̂(ω(1), ζ(1)), . . . , L̂(ω(n), ζ(n)) based on m inner stage samples
in each scenario, and estimate the regression coefficients according to the weighted least squares
problem

(24) r̂(~h) ∈ argmin
r∈Rd

1
n

n∑
i=1

h(ω(i))
(
L̂(ω(i), ζ(i))− Φ(ω(i))r

)2
.

Given the estimated regression coefficients r̂(~h), weighted regression estimator of the risk measure
α is given by

(25) α̂REG(m,n,h) , E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ] .
For any h(·) that satisfies Assumptions A6 and A7, the optimal solution r̂(~h) to (24) exists and
is unique almost surely when n ≥ d, so our estimator α̂REG(m,n,h) is well defined. By the same
reasoning as in Remark 2, we assume the expectation in (25) and hence the estimate α̂REG(m,n,h)

can be exactly computed.

Remark 4. Notice that the scale of h (·) has no impact on r̂(~h), i.e., if we multiply h (·) by a constant
positive factor, α̂REG(m,n,h) will not change.

Remark 5. Note that an alternative way to interpret the objective in (23) is as the mean squared
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error under a new probability distribution over outer stage scenarios ω, namely the probability
distribution which Radon-Nikodym derivative given by a normalized version of the weight function
h(·). In this way, instead of estimating the regression coefficients through the sampled weighted
least squares problem (24), one could solve an ordinary least squares problem where the outer stage
scenarios are drawn according from the new distribution. Analogous to importance sampling, if
efficient sampling from this new distribution is possible, it may lead to more efficient algorithms.

Remark 6. One implication of Lemma 1 is that, given a fixed number of inner stage samples k = mn,
the asymptotic distribution of r̂ has minimum variance when m = 1 and n = k. We will apply this
fact in our analysis and numerical experiments.

6.2. Analysis

Consider the MSE of the weighted regression estimator α̂REG(m,n,h):

(26) E
[
(α̂REG(m,n,h) − α)2

]
= E

[(
E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ]− E
[
f
(
L(ω)

)])2
]
.

We will analyze the performance of the weighted regression estimator following the analysis of
the unweighted Lipschitz continuity case of Section 4.2. We start with the following technical
assumption, which is an analog of Assumption A4:

Assumption A8. The moment generating functions of h(ω) ‖Φ(ω)‖22, h(ω) (M (ω))2, and
h(ω) (ε (ω, ζ))2 are finite-valued in a neighborhood of zero.

Define

(27) G (r, ω, ζ, h) , h (ω)
(
L̂ (ω, ζ)− Φ (ω) r

)2
,

and

(28) g (r, h) , E [G (r, ω, ζ, h)] .

Given r, the function G (r, ω, ζ, h) is the weighted squared error of a regression estimate Φ (ω) r
versus the Monte Carlo estimate in scenario ω, and the function g (r, h) is the mean over scenarios
of the weighted squared error. For any ρ > 0, recall the neighborhood Rρ defined by (22). We
make the following additional assumption, which is an analog of Assumption A5:

Assumption A9. For any ρ > 0, there exists a constant λ > 0 such that for any r′, r′′ ∈ Rρ, the
moment generating function Ψr′,r′′ (t) of the random variable

(
G
(
r′, ω, ζ, h

)
− g

(
r′, h

))
−
(
G
(
r′′, ω, ζ, h

)
− g

(
r′′, h

))
satisfies

Ψr′,r′′(t) ≤ exp(ρλ2t2),
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for any t ∈ R.

We have the following result, whose proof is given in Section C:

Theorem 4. Given a weight function h(·), if Assumptions F2, A6, A7, A8, and A9 hold, then

(29) lim
n→∞

E
[
(α̂REG(m,n,h) − α)2

]
=
(
E
[
f
(
Φ(ω)r∗(h)

)]
− E

[
f
(
L(ω)

)])2
.

As the number of outer stage scenarios n→∞, Theorem 4 shows that the MSE of α̂REG(m,n,h)

diminishes until reaching the level of the asymptotic bias, and does not vanish in the limit. If the
portfolio loss L is not in the span of the basis functions Φ, even with large m and n, the bias
induced by the regression method exists in general, which leaves the limit of (29) non-zero.

We will seek to minimize the asymptotic limit of (29), i.e., the squared bias term, by picking a
good weight function h(·). We make the following assumption:

Assumption F3. The function f (·) has first derivative for almost every value of L(ω).

Given Assumption F3, applying Jensen’s inequality and heuristically applying a Taylor approx-
imation,

(E [f (Φ (ω) r∗ (h))]− E [f (L (ω))])2 ≤ E
[
(f (Φ (ω) r∗ (h))− f (L (ω)))2

]
≈ E

[(
f ′ (L (ω))

)2 (Φ (ω) r∗ (h)− L (ω))2
]
.(30)

Instead of finding the choice of weighting function that minimizes the limit of (29), for reasons of
tractability, we consider optimizing the upper bound given by (30). Here, we seek to find regression
approximations that are close to the true portfolio loss emphasizing scenarios ω where f ′ (L (ω))
is large. With (30) as our objective, we have the following optimization problem, to determine a
choice of weight function:

(31)
minimize

h
E
[
(f ′ (L (ω)))2 (Φ (ω) r∗ (h)− L (ω))2

]
subject to E [h (ω)] > 0,

h (ω) ≥ 0, ∀ω ∈ Ω.

In the following theorem, we find a globally optimal solution to the problem (31).

Theorem 5. Suppose that Assumption F3 holds. Define the weight function hopt(·) by

(32) hopt(ω) =
(
f ′
(
L(ω)

))2
,

and assume that E
[(
f ′
(
L(ω)

))2]
> 0. Then, hopt(·) is a globally optimal solution to the optimization

problem (31).
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Proof. With r∗ defined by (23), for any h in the domain of (31),

E
[(
f ′
(
L(ω)

))2 (Φ(ω)r∗(hopt)− L(ω)
)2] = E

[
hopt(ω)

(
Φ(ω)r∗(hopt)− L(ω)

)2](33)

≤ E
[
hopt(ω)

(
Φ(ω)r∗(h)− L(ω)

)2](34)

= E
[(
f ′
(
L(ω)

))2 (Φ(ω)r∗(h)− L(ω)
)2]

,(35)

where (33) and (35) follow from (32), and (34) follows from (23).
�

Theorem 5 suggests a specific good choice of weight function, in particular, that the weight
h(ω) of each scenario ω should be proportional to

(
f ′
(
L (ω)

))2.
6.3. Numerical Results

In this section, we use numerical examples to demonstrate the benefits of the regression method.
The standard nested simulation method and the unweighted regression method are also imple-
mented as competing methods. We follow the same experimental setting as in Section 5.1.

In particular, given a loss threshold c ∈ R, consider the expected excess loss risk measure

(36) α = E [f (L (ω))] = E
[
(L (ω)− c)+

]
.

From (32), the optimal weight function is given by

(37) hopt (ω) =
(
f ′ (L (ω))

)2 = I{L(ω)≥c}.

This weighting is intuitively reasonable, as scenarios that have losses larger than the threshold c

are assigned with more weight. In practice, however, the portfolio loss L(ω) is unobservable, so
we propose a practically implementable two-pass procedure that does not depend on knowledge
of L(ω). In particular, we will first approximate L(ω) with an unweighted regression and obtain
r̂; from r̂, we will construct an approximation to hopt(·) to be used in a weighted regression. The
details of this two-pass procedure are described in Section A of the online supplement.

We consider two examples. First, we consider a one-dimensional problem as follows:

• Model. There is one asset with initial price S0 = 100. The drift under the real-world distri-
bution is µ = 8%. The annual volatility is σ = 20%. The continuously compounded riskless
rate of interest is rf = 3%.

• Portfolio. The portfolio consists of a long position in a single put option with strike K = 95
and maturity T = 0.25 years. The risk horizon is τ = 1/52 years. The threshold c = 0.859 is
the 90th percentile of the portfolio loss distribution.

Our second example is a multi-dimensional, delta-hedged example as follows:
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• Model. There are 10 i.i.d. assets each with initial price S0 = 100. The drift under the
real-world distribution is µ = 8%. The annual volatility is σ = 30%. The continuously
compounded riskless rate of interest is rf = 5%.

• Portfolio. The portfolio consists of three types of securities. All derivatives in the portfolio
have strike K = 100 and maturity T = 0.1 years. The risk horizon is τ = 0.04 years. The
three types are: (a) short 10 down-and-out call options on asset i with barrier H = 95, for
i = 1, . . . , 10; (b) short 5 cash-or-nothing put options on asset i, for i = 1, . . . , 10; and (c) an
amount of asset i so that the portfolio delta with respect to asset i is zero, for i = 1, . . . , 10.

The threshold c = 144.007 is the 90th percentile of the portfolio loss distribution.

We test the following estimators12 for both examples:

• Optimal standard nested estimator. This is the estimator α̂SN(m,n) with the parameters m
and n chosen optimally according to (7). Due to the fact described in Remark 1, we test a
large number of choices of the parameter pair (m,n), and choose the one with the minimum
MSE among them. Note that in practice, this optimal choice is not achievable.

• Unweighted quadratic regression. The estimator α̂REG(m,n) with these basis functions:

– In the one-dimensional problem, the underlying asset has price Sτ (ω) at time τ . The
basis function set Φ consists of φ1 (ω) = 1, φ2 (ω) = Sτ (ω), and φ3 (ω) = (Sτ (ω))2.

– In the multi-dimensional problem, the underlying assets have price Sj,τ (ω) for j =
1, . . . , 10 at time τ . The basis function set Φ includes quadratic functions of each Sj,τ (ω)
and quadratic functions of each (Sj,τ (ω)−H)+ for j = 1, . . . , 10. Specifically, Φ consists
of φ` (ω) for ` = 1, . . . , 41, where φ1 (ω) = 1, φ1+ι (ω) = Sι,τ (ω) and φ11+ι (ω) =
(Sι,τ (ω)−H)+ for ι = 1, . . . , 10, and φ21+ι (ω) = (φ1+ι (ω))2 for ι = 1, . . . , 20. There
are 41 basis functions.

• Two-pass weighted quadratic regression. This is the estimator α̂REG(m,n,h) with basis functions
as in the unweighted quadratic regression method above and a weight function that is de-
termined through a first-pass unweighted regression, are described in Section A of the online
supplement.

Results for the MSE of the various estimators are given in Figures 8 and 9. We interpret these
results as follows:

• Optimal standard nested estimator. As the total number of inner stage samples k increases,
the MSE converges at the rate k−2/3, consistent with theoretical results.

12Following Remark 6, we use m = 1 with the estimators of unweighted quadratic regression and two-pass weighted
quadratic regression.

35



∝ k−2/3

∝ k−1

104 105 106 107
10−8

10−7

10−6

10−5

10−4

10−3

Total number of inner stage samples k

M
SE

Optimal Standard Nested Estimator
Unweighted Quadratic Regression
Two-Pass Weighted Quadratic Regression

Figure 8: Illustration of the mean squared error in the one-dimensional example. The vertical axis shows
the mean squared error, and the horizontal axis represents the total number of inner stage samples.
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Figure 9: Illustration of the mean squared error in the 10-dimensional example. The vertical axis shows
the mean squared error, and the horizontal axis represents the total number of inner stage samples.
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Figure 10: Illustration of approximations in the one-dimensional example. The vertical axis shows the
portfolio loss, either true or estimated, and the horizontal axis represents the underlying asset price
Sτ (ω) at time τ .

• Unweighted quadratic regression. The MSE of this estimator converges at the rate k−1 until
reaching an asymptotic bias level which depends on the size of the regression model error
M(·), or, equivalently, the quality of the basis functions.

• Two-pass weighted quadratic regression. When k is small, the MSE of the two-pass weighted
quadratic regression method is close to that of the unweighted quadratic regression method.
With large k, the MSE of the two-pass weighted quadratic regression method works about
one order of magnitude better than the unweighted quadratic regression method.

Figure 10 shows the approximations via different regression methods for large values of n in the
one-dimensional example. Here, the unweighted quadratic regression method does not approximate
the true portfolio loss in regions with large losses. On the other hand, the two-pass weighted
quadratic regression method, with the same basis functions, fits the true portfolio loss much better
in the large loss region.

7. Conclusion

Risk computation for realistic portfolios of derivatives securities presents an important and chal-
lenging computational problem. In addition to the usual estimator error due to random sampling,
the nonlinearity of portfolio loss functions introduces bias into the estimation of risk measures.
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Nested simulation can be used to minimize both estimator bias and variance, but the additional
computation time of the “simulation within a simulation” leads to a convergence rate of k−2/3,
where k represents the computation time.

In this paper we propose a new risk estimation method based on Monte Carlo simulation and
regression. Given n outer stage scenarios and mn inner stage samples, we show that the optimal
choice of m and n are m∗ = 1 and n∗ = k. With these choices, our theoretical results show
that the mean squared error diminishes at a rate close to k−1 until a non-diminishing bias level is
reached. The proposed regression method outperforms standard nested simulation and the delta-
gamma method when used with a “good” set of basis functions as long as k is not too large.
More importantly, before hitting the bias level, the proposed method recovers the standard k−1

convergence rate of non-nested unbiased simulation estimators. Further, weighted variations of
our method offer improved asymptotic bias. Numerical results show that the regression method
significantly outperforms other methods and illustrated consistency with the theoretical results.

References
M. Britten-Jones and S. M. Schaefer. Non-linear value-at-risk. European Finance Review, 2(2):161–187,

1999.

M. Broadie, Y. Du, and C. C. Moallemi. Efficient risk estimation via nested sequential simulation. Manage-
ment Science, 57(6):1172–1194, June 2011.

D. Duffie and J. Pan. Analytical value-at-risk with jumps and credit risk. Finance and Stochastics, 5(2):
155–180, 2001.

R. K. Gharavi. Himalayan option. In Encyclopedia of Quantitative Finance. John Wiley & Sons, Ltd., 2010.

P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2004.

P. Glasserman, P. Heidelberger, and P. Shahabuddin. Variance reduction techniques for estimating value-
at-risk. Management Science, 46:1349–1364, 2000.

G. H. Golub and C. F. Van Loan. Matrix Computations. JHU Press, third edition, 2012.

M. B. Gordy and S. Juneja. Nested simulation in portfolio risk measurement. FEDS 2008-21, Federal Reserve
Board, April 2008.

M. B. Gordy and S. Juneja. Nested simulation in portfolio risk management. Management Science, 56(10):
1833–1848, October 2010.

E.G. Haug. The Complete Guide to Option Pricing Formulas. McGraw-Hill, 2nd edition, 2006.

L. J. Hong and S. Juneja. Estimating the mean of a non-linear function of conditional expectation. In
Proceedings of the 2009 Winter Simulation Conference, pages 1223–1236, Piscataway, NJ, 2009. IEEE
Press.

C. H. Hui. Time-dependent barrier option values. The Journal of Futures Markets, 17(6):667–688, 1997.

H. Lan, B. L. Nelson, and J. Staum. A confidence interval procedure for expected shortfall risk measurement
via two-level simulation. Operations Research, 58(5):1481–1490, 2010.

S.-H. Lee. Monte Carlo Computation of Conditional Expectation Quantiles. Ph.D. thesis, Stanford University,
1998.

38



S.-H. Lee and P. W. Glynn. Computing the distribution function of a conditional expectation via Monte
Carlo: Discrete conditioning spaces. ACM Transactions on Modeling and Computer Simulation, 13(3):
238–258, July 2003.

M. Liu and J. Staum. Stochastic kriging for efficient nested simulation of expected shortfall. Journal of
Risk, 12(3):3–27, 2010.

F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least-squares approach.
The Review of Financial Studies, 14(1):113–147, 2001.

S. A. K. Metwally and A. F. Atiya. Using Brownian bridge for fast simulation of jump-diffusion processes
and barrier options. The Journal of Derivatives, 10(1):43–54, 2002.

C. Rouvinez. Going Greek with VaR. Risk, 10(2):57–63, February 1997.
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A. The Weighted Regression Method: Practical Implementation

In this section, we describe the practically implementable variation of the weighted regression
method that is demonstrated in the numerical results of Section 6.3. In this two-pass procedure, we
will first approximate L(ω) with an unweighted regression and obtain r̂; from r̂, we will construct
an approximation to the weight function hopt(·) of (37) to be used subsequently in a weighted
regression.

Following Remark 6, let m = 1 and n = k. As k → ∞, Lemma 1 and (11) imply that, for a
fixed scenario ω,

(A.1)
√
k (Φ (ω) r̂ +M (ω)− L (ω)) d→ N

(
0,Φ (ω) (ΣM + Σv) Φ (ω)>

)
.

Equation (A.1) suggests that when k is large, it is reasonable to approximate the distribution of
the portfolio loss L (ω) given ~ω and ~ζ by a normal distribution with mean Φ (ω) r̂ + M (ω) and
variance Φ (ω) (ΣM + Σv) Φ (ω)> /k. Given this approximation, we can approximate hopt(·) with
its posterior mean:

(A.2) E
[
hopt (ω)

∣∣∣ ~ω, ~ζ] ≈ N
 √k (Φ (ω) r̂ +M (ω)− c)√

Φ (ω) (ΣM + Σv) Φ (ω)>

 .
(Notice that r̂ depends on ~ω and ~ζ.) If the basis functions are well-chosen, the model error M(ω) is
small in magnitude relative to the unweighted regression approximation Φ(ω)r̂. Further, in practice,
we observe that the denominator of the argument in the right-hand side of (A.2) does not vary by
more than one order of magnitude. These observations suggest an overall approximation for the
globally optimal weight function hopt(·):

(A.3) h (ω) = N

(√
k (Φ (ω) r̂ − c)

Γ

)
,

1
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for some constant Γ > 0. Using the weight function (A.3), we have a two-pass weighted regression
procedure:

• the first pass is an unweighted regression and provides Φ (ω) r̂, an approximation of L (ω)
used to determine weights;

• based on Φ (ω) r̂, the second pass is a weighted regression with weights defined by (A.3).

Notice that this two-pass weighted regression procedure assigns weights with a weight function
inspired by hopt(·), and it does not depend on information of L (ω) or any quantities that are
unknown in practice. The two-pass weighted regression method is compared with the unweighted
regression method in Section 6.3.

B. Proofs for Section 4

This section presents the proofs of the results in Section 4, where the asymptotic analysis of the
regression estimator has been established. First, we show the following lemma, which establishes
the existence and uniqueness of the optimal solutions to (10) and (13).

Lemma 3. Given Assumptions A1 and A2, the function g (·) is strictly convex over Rd, and the
function (1/n)

∑n
i=1G(·, ω(i), ζ(i)) is strictly convex over Rd almost surely.

Proof. As a function of r, the Hessian matrix of (1/n)
∑n
i=1G(·, ω(i), ζ(i)) is

∇2
(

1
n

n∑
i=1

G
(
r, ω(i), ζ(i)

))
= ∇2

(
1
n

n∑
i=1

(
L̂
(
ω(i), ζ(i))− Φ

(
ω(i))r)2

)

= 2
n

n∑
i=1

Φ
(
ω(i))>Φ

(
ω(i)),

which is positive semidefinite almost surely under Assumption A2. Therefore, 1
n

∑n
i=1G(·, ω(i), ζ(i))

is strictly convex almost surely.
The Hessian matrix of g (r, ω) is

∇2 (g (r, ω)) = ∇2
(

E
[(
L̂ (ω, ζ)− Φ (ω) r

)2
])

= ∇2
(
rE
[
Φ (ω)>Φ (ω)

]
r
)

= 2Id.

Therefore, g (r) is strictly convex.
�

Given Assumptions A1 and A2, according to Lemma 3, the optimal solutions to (10) and (13)
exist and are unique almost surely.

We use the following notation: ~ω denotes the n outer stage scenarios,

~ω ,
(
ω(1), . . . , ω(n))>,
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~ζ denotes the inner stage uncertainty,

~ζ ,
(
ζ(1), . . . , ζ(n))>,

Φ (~ω) is an n-by-d matrix,

Φ (~ω) ,


φ1
(
ω(1)) · · · φd

(
ω(1))

... . . . ...
φ1
(
ω(n)) · · · φd

(
ω(n))

 ,

and L̂
(
~ω, ~ζ

)
is an n-by-1 column vector,

L̂
(
~ω, ~ζ

)
,
(
L̂
(
ω(1), ζ(1)), . . . , L̂(ω(n), ζ(n)))> .

From regression theory, the unique optimal solution to (13) takes the form

(B.1) r̂ =
(
Φ (~ω)>Φ (~ω)

)−1
Φ (~ω)> L̂

(
~ω, ~ζ

)
.

Then we estimate the risk measure by

α̂REG(m,n) , E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
.

From Assumption A1, the disturbance term ε (ω, ζ) of (12) satisfies

(B.2) E [ε (ω, ζ)|ω] = 0,

and

(B.3) Var (ε (ω, ζ)|ω) = v (ω)
m

.

We define
ε
(
~ω, ~ζ

)
,
(
ε
(
ω(1), ζ(1)), . . . , ε(ω(n), ζ(n)))> .

From the definition of the model error M (·) in Section 4 and the projection theorem, the basis
functions φ1 (·) , . . . , φd (·) are orthogonal to M (·), i.e.,

(B.4) E [φ` (ω)M (ω)] = 0,

for ` = 1, . . . , d. We define
M (~ω) ,

(
M
(
ω(1)), . . . ,M(

ω(n)))> .
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B.1. Differentiable Case

Lemma 1. Suppose Assumptions A1, A2, and A3 hold. As the number of scenarios n→∞,

√
n (r̂ − r∗) d→ N

(
0,ΣM + Σv

m

)
,

where
ΣM , E

[
M2 (ω) Φ (ω)>Φ (ω)

]
, Σv , E

[
v (ω) Φ (ω)>Φ (ω)

]
.

Therefore, as n→∞,
‖r̂ − r∗‖2 = OP (1)√

n
.

Proof. From Theorem 5.3 in White (2001), we have

(B.5)
(
Cov

(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

))− 1
2 √n(r̂ − r∗) d→ N (0, Id) .

Note that using (B.2) and (B.4),

Cov
(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

)
= 1
n

E
[(

Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))
) (

Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))
)>]

= 1
n

E
[
Φ>(~ω)M(~ω)M>(~ω)Φ(~ω)

]
+ 1
n

E
[
Φ>(~ω)E

[
ε(~ω, ~ζ)ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ]Φ(~ω)
]

+ 2
n

E
[
Φ>(~ω)M(~ω)E

[
ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ]Φ(~ω)
]
.

From (B.3),

E
[
ε(~ω, ~ζ)ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ] =



v(ω(1))
m 0 · · · 0

0 v(ω(2))
m

. . . ...
... . . . . . . 0
0 · · · 0 v(ω(n))

m

 .
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Further,

1
n

E
[
Φ>(~ω)M(~ω)M>(~ω)Φ(~ω)

]

= 1
n


E
[
n∑
i=1

φ2
1(ω(i))M2(ω(i))

]
· · · E

[
n∑
i=1

φ1(ω(i))φd(ω(i))M2(ω(i))
]

... . . . ...

E
[
n∑
i=1

φd(ω(i))φ1(ω(i))M2(ω(i))
]
· · · E

[
n∑
i=1

φ2
d(ω(i))M2(ω(i))

]


=


E
[
φ2

1(ω)M2(ω)
]

· · · E
[
φ1(ω)φd(ω)M2(ω)

]
... . . . ...

E
[
φd(ω)φ1(ω)M2(ω)

]
· · · E

[
φ2
d(ω)M2(ω)

]


= E
[
M2(ω)Φ(ω)>Φ(ω)

]
.

Therefore,

(B.6) Cov
(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

)
= E

[
M2(ω)Φ(ω)>Φ(ω)

]
+ 1
m

E
[
v(ω)Φ(ω)>Φ(ω)

]
.

From (B.5) and (B.6), we have that

(
ΣM + 1

m
Σv

)− 1
2 √

n (r̂ − r∗) d→ N (0, Id) ,

where ΣM and Σv are defined by (17). Based on the result above, we have that

n ‖r̂ − r∗‖22 =
(√
n (r̂ − r∗)

)> (√
n (r̂ − r∗)

)
= OP (1) ,

as n→∞, and the result follows.
�

Theorem 1. Suppose that Assumptions F1, A1, A2, and A3 hold. Then there exists a sequence of
random variables {BM,n}, for n = 1, 2, . . . , satisfying

BM,n
P→ B∗M , E

[
f (Φ(ω)r∗)

]
− α,

so that
√
n
(
α̂REG(m,n) − α−BM,n

)
d→ N

(
0,E

[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

where ΣM and Σv are defined by (17). Further, the asymptotic bias B∗M satisfies

∣∣B∗M − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ Udiff
2 E

[
(M (ω))2

]
.
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Proof. By Taylor’s theorem,

f (Φ (ω) r̂)− f (L (ω)) = f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

+1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2 ,

where θ ∈ (0, 1) is a random variable. Then

α̂REG(m,n) − α = E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
− E [f (L (ω))]

= E
[
f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

∣∣ ~ω, ~ζ](B.7)

+ E
[ 1

2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ] .
For the first term in (B.7),

E
[
f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

∣∣ ~ω, ~ζ] = E
[
f ′ (L (ω)) Φ (ω)

]
(r̂ − r∗)− E

[
f ′ (L (ω))M (ω)

]
.

Further, from Lemma 1, we have that

√
n
(
E
[
f ′ (L (ω)) Φ (ω)

])
(r̂ − r∗)

d→ N

(
0,E

[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

(B.8)

as n→∞.
Combining (B.7) and (B.8), and letting

(B.9)
BM,n , E

[
f ′ (L (ω))M (ω)

]
− E

[ 1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ] ,
equation (18) follows. From Lemma 1,

r̂
P→ r∗,

and then by the continuous mapping theorem,

(B.10) α̂REG(m,n) = E
[
f (Φ(ω)r̂)

∣∣∣ ~ω, ~ζ ] P→ E
[
f (Φ(ω)r∗)

]
.

Also notice that equation (18) implies

(B.11) α̂REG(m,n) − α−BM,n
P→ 0.

Combining (B.10) and (B.11),

(B.12) BM,n
P→ B∗M = E

[
f (Φ(ω)r∗)

]
− α.
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Given (16) and (B.9),

∣∣BM,n − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ ∣∣∣∣E [ 1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ]∣∣∣∣
≤ Udiff

2 E
[
(Φ (ω) r̂ − L (ω))2

∣∣∣ ~ω, ~ζ]
= Udiff

2 E
[
(Φ (ω) r̂ − Φ (ω) r∗)2

∣∣∣ ~ω, ~ζ]+ Udiff
2 E

[
(M (ω))2

]
,(B.13)

where we have used (B.4) in equation (B.13). From Lemma 1, we have

Udiff
2 E

[
(Φ (ω) r̂ − Φ (ω) r∗)2

∣∣∣ ~ω, ~ζ] = Udiff
2 (r̂ − r∗)> E

[
Φ (ω)>Φ (ω)

]
(r̂ − r∗)

= Udiff
2 ‖r̂ − r∗‖22 = OP (1)

n
.(B.14)

From (B.12), (B.13), and (B.14), we have

∣∣B∗M − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ Udiff
2 E

[
(M (ω))2

]
.

�

B.2. Lipschitz Continuous Case

Theorem 2. Suppose that Assumptions F2, A1, A2, and A3 hold. Then as the number of scenarios
n→∞, (

α̂REG(m,n) − α
)2
≤ U2

LipE
[
(M (ω))2

]
+OP

( 1
n

)
.

Proof. Note that

α̂REG(m,n) − α = E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
− E [f (L (ω))] = E

[
f (Φ (ω) r̂)− f (L (ω))| ~ω, ~ζ

]
.

From the Lipschitz continuity condition (21) and Jensen’s inequality,(
α̂REG(m,n) − α

)2
=
(
E
[
f (Φ (ω) r̂)− f (L (ω))| ~ω, ~ζ

])2

≤ E
[(
f (Φ (ω) r̂)− f (L (ω))

)2∣∣∣ ~ω, ~ζ]
≤ U2

LipE
[(

Φ (ω) (r̂ − r∗)−M (ω)
)2∣∣∣ ~ω, ~ζ]

= U2
LipE

[(
Φ (ω) (r̂ − r∗)

)2∣∣∣ ~ω, ~ζ]+ U2
LipE

[
(M (ω))2

]
,

where we have used (B.4). Then, by the orthonormality of Φ(·),(
α̂REG(m,n) − α

)2
≤ U2

LipE
[
(Φ (ω) (r̂ − r∗))2

∣∣∣ ~ω, ~ζ]+ U2
LipE

[
(M (ω))2

]
= U2

Lip ‖r̂ − r∗‖
2
2 + U2

LipE
[
(M (ω))2

]
.(B.15)
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From Lemma 1, as n→∞,
√
n (r̂ − r∗) d→ N

(
0,ΣM + Σv

m

)
.

From the continuous mapping theorem, as n→∞, nU2
Lip ‖r̂ − r∗‖

2
2 converges to a generalized chi-

square distribution. Therefore, for any ε > 0, there exist ∆ε > 0 and Nε > 0, such that for any
n > Nε,

P
(
nU2

Lip ‖r̂ − r∗‖
2
2 > ∆ε

)
< ε,

which implies that
U2

Lip ‖r̂ − r∗‖
2
2 = OP

( 1
n

)
.

With (B.15), the result follows.
�

In order to prove Lemma 2, Theorem 3, and Corollary 2, we need the following lemmas.

Lemma 4. For any r ∈ Rd,
g (r)− g (r∗) = ‖r − r∗‖22 .

Therefore, for any r ∈ Rd and Rρ defined by (22), we have

Rρ =
{
r ∈ Rd : g (r) ≤ g (r∗) + ρ

}
.

Proof. By the projection theorem and the fact that Φ is orthonormal,

g (r) = E
[(
L̂ (ω, ζ)− Φ (ω) r

)2
]

= E
[(
L̂ (ω, ζ)− Φ (ω) r∗ + Φ (ω) r∗ − Φ (ω) r

)2
]

= E
[
(Φ (ω) (r − r∗))2

]
+ E

[(
L̂ (ω, ζ)− Φ (ω) r∗

)2
]

− 2E
[
(Φ (ω) (r − r∗))

(
L̂ (ω, ζ)− Φ (ω) r∗

)]
= ‖r − r∗‖22 + g (r∗)− 2 (r − r∗)> E

[
Φ (ω)>

(
L̂ (ω, ζ)− Φ (ω) r∗

)]
= ‖r − r∗‖22 + g (r∗) .

�

Given Rρ, define

(B.16) r̂ρ ∈ argmin
r∈Rρ

1
n

n∑
i=1

G
(
r, ω(i), ζ(i)

)
,

which is the sample optimal solution of r over Rρ. Under Assumptions A1 and A2, according to
Lemma 3, the optimal solution r̂ρ exists and is unique almost surely.
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Lemma 5. For ρ > 0, r̂2ρ ∈ Rρ if and only if r̂ ∈ Rρ.

Proof. Notice that r̂ ∈ Rρ implies r̂2ρ = r̂, and thus r̂ ∈ Rρ implies r̂2ρ ∈ Rρ.
On the other hand, if r̂2ρ ∈ Rρ and r̂ /∈ Rρ, we must have r̂ /∈ R2ρ. Therefore, we can have

1
n

n∑
i=1

G
(
r̂, ω(i), ζ(i)

)
<

1
n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)
.

Then for any ϕ ∈ (0, 1), by the convexity of (1/n)
∑n
i=1G(·, ω(i), ζ(i)),

1
n

n∑
i=1

G
(
ϕr̂2ρ + (1− ϕ) r̂, ω(i), ζ(i)

)
≤ ϕ 1

n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)

+ (1− ϕ) 1
n

n∑
i=1

G
(
r̂, ω(i), ζ(i)

)
<

1
n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)
,

and thus ϕr̂2ρ + (1− ϕ) r̂ /∈ R2ρ, i.e.,

g (ϕr̂2ρ + (1− ϕ) r̂) > g (r∗) + 2ρ.

However, we know that g (·) is convex and thus continuous, and then

ρ+ g (r∗) ≥ g (r̂2ρ) = lim
ϕ→1

g (ϕr̂2ρ + (1− ϕ) r̂) ≥ g (r∗) + 2ρ,

which is a contradiction.
�

Lemma 6. Suppose that Assumptions F2, A1, A2, A4, and A5 hold. Let ρ > 0 be an arbitrary
constant. Then consider any θ ∈ (0,∞) and suppose that

(B.17) n ≥ C ′λ2

ρ

(
d ln

(
2
√

2C ′′Λ2ρ√
ρ

)
+ ln

(1
θ

))
,

where λ is defined in Assumption A5, C ′ and C ′′ are universal constants, i.e., they do not depend
on the problem, and

Λρ , (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
.

Then,
P (r̂ /∈ Rρ) ≤ θ.

Proof. When θ ≥ 1, the result is trivial. When θ ∈ (0, 1), the result follows from Corollary 5.20 in
Shapiro et al. (2009) and Lemma 5 above. In the setting here, we let r = 2ρ, ε = ρ, δ = 0, and then
a = 2ρ. Also notice that in our problem, γ = 2, c = 1, and D∗a = D∗2ρ = 2

√
2ρ. Further, compared
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to the notation of Shapiro et al. (2009), we use G (·) as F (·), g (·) as f (·), Ψr′,r′′ (·) as Mx′,x (·), n
as N , d as n, and Λ2ρ as L.

Assumption (M5) in Shapiro et al. (2009) is from our Assumption A4, i.e., the moment gener-
ating functions of ‖Φ (ω)‖22, (M (ω))2, and (ε (ω, ζ))2 are finite-valued in a neighborhood of zero.
In particular,

∣∣G (r′, ω, ζ)−G (r′′, ω, ζ)∣∣
=
∣∣∣∣(L̂ (ω, ζ)− Φ (ω) r′

)2
−
(
L̂ (ω, ζ)− Φ (ω) r′′

)2
∣∣∣∣

=
∣∣∣(Φ (ω) r′ + Φ (ω) r′′ − 2L̂ (ω)

)
Φ (ω)

(
r′ − r′′

)∣∣∣
≤
∣∣∣Φ (ω)

(
r′ − r∗

)
+ Φ (ω)

(
r′′ − r∗

)
+ 2Φ (ω) r∗ − 2L̂ (ω)

∣∣∣ ‖Φ (ω)‖2
∥∥r′ − r′′∥∥2

≤
(
‖Φ (ω)‖2

∥∥r′ − r∗∥∥2 + ‖Φ (ω)‖2
∥∥r′′ − r∗∥∥2 + 2

∣∣∣L̂ (ω, ζ)− Φ (ω) r∗
∣∣∣) ‖Φ (ω)‖2

∥∥r′ − r′′∥∥2

≤
(
‖Φ (ω)‖2

√
2ρ+ ‖Φ (ω)‖2

√
2ρ+ 2 |M (ω) + ε (ω, ζ)|

)
‖Φ (ω)‖2

∥∥r′ − r′′∥∥2

=
(
2
√

2ρ ‖Φ (ω)‖22 + 2 |M (ω) + ε (ω, ζ)| ‖Φ (ω)‖2
) ∥∥r′ − r′′∥∥2

≤
(
(2
√

2ρ+ 1) ‖Φ (ω)‖22 + |M (ω) + ε (ω, ζ)|2
) ∥∥r′ − r′′∥∥2

≤
(
(2
√

2ρ+ 1) ‖Φ (ω)‖22 + 2 (M (ω))2 + 2 (ε (ω, ζ))2
) ∥∥r′ − r′′∥∥2 .

Since in a neighborhood of zero, the finiteness of the moment generating functions of ‖Φ (ω)‖22,
(M (ω))2, and (ε (ω, ζ))2 implies the finiteness of the moment generating function of(

2
√

2ρ+ 1
)
‖Φ (ω)‖22 + 2 (M (ω))2 + 2 (ε (ω, ζ))2 ,

Assumption (M5) in Shapiro et al. (2009) is satisfied.
Assumption (M6) in Shapiro et al. (2009) is from the Assumption A5. Notice that Assump-

tion A5 is weaker than Assumption (M6) in Shapiro et al. (2009), but according to the discussion
after Assumption (M6) in Shapiro et al. (2009), Assumption A5 here is sufficient.

�

Lemma 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold. Let ρ > 0 be an arbitrary
constant. Then for any positive integer n,

P (r̂ /∈ Rρ) ≤
(

2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
,

where λ is defined in Assumptions A5, C ′ and C ′′ are universal constants (i.e., constants that do
not depend on the problem), and

Λρ , (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
.
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Proof. Define

θ ,

(
2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
.

Then,

n = C ′λ2

ρ

(
d ln

(
2
√

2C ′′Λ2ρ√
ρ

)
+ ln

(1
θ

))
,

which satisfies (B.17), and thus, by Lemma 6,

P (r̂2ρ /∈ Rρ) ≤
(

2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
.

From Lemma 5,
P (r̂ /∈ Rρ) = P (r̂2ρ /∈ Rρ) .

�

Lemma 7. For any ρ ≥ 2,
Λρ ≤

√
ρ√
2

Λ2.

Proof. Notice that for any ρ ≥ 2,

Λρ = (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
= √ρ

(2 + 1
√
ρ

)
d+

2E
[
(M (ω))2

]
√
ρ

+
2E
[
(ε (ω, ζ))2

]
√
ρ


≤ √ρ

(2 + 1√
2

)
d+

2E
[
(M (ω))2

]
√

2
+

2E
[
(ε (ω, ζ))2

]
√

2


=
√
ρ√
2

((
2
√

2 + 1
)
d+ 2E

[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

])
=
√
ρ√
2

Λ2.

�

Theorem 3. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
positive constant. Then for any positive integer n,

E
[
(Φ (ω) (r̂ − r∗))2

]
= E

[
‖r̂ − r∗‖22

]
≤ 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

)
= O

(
n−1+δ

)
.
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Proof. Notice that

E
[
(Φ (ω) (r̂ − r∗))2

]
= E

[
E
[
(Φ (ω) (r̂ − r∗))2

∣∣∣ ~ω, ~ζ]]
= E

[
(r̂ − r∗)> E

[
Φ (ω)>Φ (ω)

]
(r̂ − r∗)

]
= E

[
‖r̂ − r∗‖22

]
=
∫ ∞

0
P
(
‖r̂ − r∗‖22 > ρ

)
dρ.

=
∫ ∞

0
P (r̂ /∈ Rρ) dρ,(B.18)

where we have used Lemma 4.
Without loss of generality, we consider an arbitrary positive constant δ ∈ (0, 1),

(B.19) E
[
‖r̂ − r∗‖22

]
=
∫ 1

n1−δ

0
P (r̂ /∈ Rρ) dρ+

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ+
∫ ∞

1
P (r̂ /∈ Rρ) dρ.

In order to bound (B.19), we bound each term separately. For the first term in (B.19),

∫ 1
n1−δ

0
P (r̂ /∈ Rρ) dρ ≤

1
n1−δ .

For the second term in (B.19), from Lemma 2 and Lemma 7,

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ ≤
∫ 1

1
n1−δ

(
2
√

2C ′′Λ2√
ρ

)d
exp

(
− ρn

C ′λ2

)
dρ

=
(
2
√

2C ′′Λ2
)d ∫ 1

1
n1−δ

ρ−
d
2 exp

(
− ρn

C ′λ2

)
dρ.

Define ρ′ , n1−δρ, i.e., ρ = ρ′/
(
n1−δ

)
. Then,

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ ≤
(
2
√

2C ′′Λ2
)d 1
n1−δ

∫ ∞
1

(
ρ′

n1−δ

)− d2
exp

(
− ρ
′nδ

C ′λ2

)
dρ′

=
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

∫ ∞
1

(
ρ′
)− d2 exp

(
− ρ
′nδ

C ′λ2

)
dρ′

≤
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

∫ ∞
1

exp
(
− ρ
′nδ

C ′λ2

)
dρ′

≤
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ

∫ ∞
1

exp
(
− ρ
′nδ

C ′λ2

)
d

(
ρ′nδ

C ′λ2

)

=
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ
exp

(
− nδ

C ′λ2

)
.
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For the third term in (B.19), with Lemmas 2 and 7,

∫ ∞
1

P (r̂ /∈ Rρ) dρ ≤
∫ ∞

1

(
2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
dρ

≤
∫ ∞

1

(
2C ′′Λ2

)d exp
(
− ρn

C ′λ2

)
dρ

=
(
2C ′′Λ2

)d ∫ ∞
1

exp
(
− ρn

C ′λ2

)
dρ

=
(
2C ′′Λ2

)d C ′λ2

n
exp

(
− n

C ′λ2

)
.

Therefore, (B.19) becomes

E
[
‖r̂ − r∗‖22

]
≤ 1

n1−δ +
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ
exp

(
− nδ

C ′λ2

)
+
(
2C ′′Λ2

)d C ′λ2

n
exp

(
− n

C ′λ2

)

= 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

)
.

�

Corollary 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
positive constant. Then, for any positive integer n,

E
[(
α̂REG(m,n) − α

)2
]

≤ U2
Lip

(
2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

))
+ U2

Lip

(
E
[
(M (ω))2

]
+ n−1+δ

)
= U2

LipE
[
(M (ω))2

]
+O

(
n−1+δ

)
.

Proof. From (B.15) and Theorem 3, we have that

E
[(
α̂REG(m,n) − α

)2
]

≤ U2
LipE

[
(M (ω))2

]
+ U2

LipE
[
‖r̂ − r∗‖22

]
≤ U2

Lip

(
E
[
(M (ω))2

]
+ 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

))
.

�
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C. Proofs for Section 6

This section presents the proof of Theorem 4 in Section 6.2. In addition to the notation defined in
Section B, we define the following: L (~ω) is an n× 1 column vector,

L(~ω) ,
(
L(ω(1)), . . . , L(ω(n))

)>
,

and ~H is an n× n diagonal matrix,

~H ,


h
(
ω(1)) 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 h

(
ω(n))

 .

We need the following lemma to prove Theorem 4.

Lemma 8. Given a weight function h(·), if Assumptions F2, A6, A7, A8, and A9 hold, then as
n→∞,

E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2] = O

(
n−1+δ

)
,

where δ > 0 is an arbitrary positive constant.

Proof. Following the proof of Theorem 3 for unweighted regression, under appropriate technical
assumptions, as n→∞,

(C.1) E
[
‖r̂ − r∗‖22

]
= O

(
n−1+δ

)
,

where δ > 0 is an arbitrary positive constant.
Substituting L (ω) with

√
h (ω)L (ω), L̂ (ω, ζ) with

√
h (ω)L̂ (ω, ζ), and Φ (ω) with

√
h (ω)Φ (ω),

the assumptions in Theorem 3 become Assumptions F2, A6, A7, A8, and A9 here, and the regression
coefficients r∗ and r̂ become r∗ (h) and r̂(~h). Then we can directly apply (C.1) and derive that, as
n→∞,

E
[∥∥r̂(~h)− r∗(h)

∥∥2
2

]
= O

(
n−1+δ

)
.

Moreover,

E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2] = E

[
E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2∣∣∣ ~ω, ~ζ]]

= E
[
(r̂(~h)− r∗ (h))>E

[
Φ (ω)>Φ (ω)

]
(r̂(~h)− r∗ (h))

]
= E

[∥∥r̂(~h)− r∗ (h)
∥∥2

2

]
= O

(
n−1+δ

)
,

where E
[
Φ (ω)>Φ (ω)

]
= 1 is from the orthonormality assumed in Assumption A7.
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�

Lemma 8 establishes that the mean squared error between our approximation and the best
approximation decays at the rate n−1+δ for any δ > 0. With this lemma, we can establish the
following theorem:

Theorem 4. Given a weight function h(·), if Assumptions F2, A6, A7, A8, and A9 hold, then

lim
n→∞

E
[
(α̂REG(m,n,h) − α)2

]
=
(
E
[
f
(
Φ(ω)r∗(h)

)]
− E

[
f
(
L(ω)

)])2
.

Proof. Decomposing the MSE of α̂REG(m,n,h), we have

E
[(
α̂REG(m,n,h) − α

)2
]

= E
[(

E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))] + E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)2
]

= E
[(

E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))]
)2
]

(C.2)

+ (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))])2

+2E
[
E
[
f (Φ(ω)r̂ (h))− f (Φ (ω) r∗ (h))

∣∣∣ ~ω, ~ζ]] (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)
.

We analyze the three terms in (C.2) separately. The first term in (C.2) satisfies

E
[(

E
[
f
(
Φ(ω)r̂(~h))

∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))]
)2
]
≤ U2

LipE
[(

E
[
Φ(ω)

(
r̂(~h)− r∗ (h)

)∣∣∣ ~ω, ~ζ])2
]

≤ U2
LipE

[(
Φ(ω)(r̂(~h)− r∗(h))

)2]
.

The third term in (C.2) satisfies

2E
[
E
[
f(Φ(ω)r̂(~h))− f (Φ (ω) r∗ (h))

∣∣∣ ~ω, ~ζ]] (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)

≤ 2ULipE
[
E
[∣∣Φ(ω)(r̂(~h)− r∗(h))

∣∣∣∣∣ ~ω, ~ζ]] ∣∣∣E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
∣∣∣

≤ 2ULip

√
E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2]∣∣∣E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]

∣∣∣.
Combining these inequalities with Lemma 8, the result follows. �
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