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Abstract

The basic optimization problem of road design is quite challenging due to a
objective function that is the sum of nonsmooth functions and the presence of
set constraints. In this paper, we model and solve this problem by employing
the Douglas–Rachford splitting algorithm. This requires a careful study of new
proximity operators related to minimizing area and to the stadium norm. We
compare our algorithm to a state-of-the-art projection algorithm. Our numerical
results illustrate the potential of this algorithm to significantly reduce cost in
road design.
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1 Introduction

1.1 The road design problem

We set

(1) X = Rn
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and write x = (x1, . . . , xn) for a vector in X. Now fix

(2) t = (t1, . . . , tn) ∈ X such that t1 < · · · < tn.

For every x in X, there is a unique corresponding piecewise linear function — or linear spline
— l(t,x) : [t1, tn]→ R given by

(3) l(t,x)(s) := xi + (xi+1 − xi)
s− ti

ti+1 − ti
, for s ∈ [ti, ti+1], i ∈ {1, . . . , n− 1}.

In civil engineering, such a spline may represent the vertical profile of a road design. In this
context, ti is the horizontal distance between a station i ∈ {1, . . . , n− 1} along the road, and
the starting station i = 1 of the same road. The station value ti, together with the eleva-
tion value xi form a point of vertical intersection (ti, xi), where two vertical tangents intersect.
Vertical curves are placed beneath or above these points to allow for a smooth ride.

The most basic problem in road design is to satisfy the following three types of con-
straints:

• interpolation constraints: For a subset J of {1, . . . , n}, we have xj = yj, where
y ∈ RJ is given.

• slope constraints: each slope sj := (xj+1 − xj)/(tj+1 − tj) satisfies |sj| ≤ σj where
j ∈ {1, ..., n− 1} and σ ∈ Rn−1

++ is given.
• curvature constraints: γj ≥ sj+1 − sj ≥ δj, for every j ∈ {1, . . . , n − 2}, and for

given γ and δ in Rn−2.

The interpolation constraint fixes a point of vertical intersection (ti, xi) to a given elevation
xi. This allows for the construction of an intersection with an existing road that crosses
the new road at ti. The slope constraint is required for safety reasons and to ensure good
traffic flow. The curvature constraints limits the grade change of the incoming and outgoing
tangents. This limits the curvature of vertical smoothing curves, which is very important for
the visibility of oncoming traffic. It also limits the vertical acceleration on a vehicle, which
contributes to a more comfortable ride.

The engineer is first and foremost concerned with meeting these constraints. In [4], it is
shown how the engineer’s problem can be translated into a feasibility problem involving six
sets in X:

(4) find x ∈ C1 ∩ C2 ∩ · · · ∩ C6.

Of the infinitude of possible solutions for this problem, the engineer may be particularly
interested in those that are optimal in some sense. For instance, in road design, it is desirable
to find a solution that may be close to a given fixed vector , a solution that minimizes the
amount of earth work (cut and fill), a solution that balances cut and fill, or variants and
combinations thereof. If more than one objective function is of interest, it is common to
additively combine these functions, perhaps by scaling the functions to give different levels
of importance to them. In summary, we are faced with the problem

(5) minimize F(x) subject to x ∈ C1 ∩ · · · ∩ C6,
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where F itself may be a sum of (scaled) objective functions. The function F is typically
nonsmooth which prevents the use of standard optimization methods. This is the abstraction
of the road design optimization problem.

1.2 Objective and outline of this paper

The objective of this paper is to present a framework for solving the problem (5) based on
the Douglas–Rachford splitting algorithm. This involves the introduction and computation
of new proximity operators to deal with the objective function. Once all required operators
are obtained in closed form, we test the algorithm numerically.

The Douglas-Rachford algorithm itself will be reviewed in Section 7. The projection op-
erators and proximity operators are obtained in Sections 2–6. We report on numerical exper-
iments in Section 8, which also contains some concluding remarks.

1.3 Notation

We write N for the nonnegative integers {0, 1, 2, . . .} and R for the real numbers. We also set
R+ =

{
x ∈ R

∣∣ x ≥ 0
}

, R++ =
{

x ∈ R
∣∣ x > 0

}
, R− = −R+, and R−− = −R++. Notation

not explicitly defined follows [2].

2 Proximity operators, projectors, and norms

2.1 Projectors

Let C be a nonempty closed convex subset of X. It is well known (see, e.g., [2, Theorem 3.14])
that every point x in X has exactly one nearest point in C, denoted by PC(x) and called the
projection of x onto C. The induced operator

(6) PC : X → X

is called the projection operator or projector of C.

The following two projectors are simple but useful.

Example 2.1 Let α, β, and x be in R such that α < β. Then

(7) P[α,β](x) = max
{

α, min{β, x}
}
= min

{
β, max{α, x}

}
=


α, if x < α;

x, if α ≤ x ≤ β;

β, if β < x.

Moreover, β− P[α,β](x) = P[0,β−α](β− x); in particular,

(8) 1− P[0,1](x) = P[0,1](1− x).
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Lemma 2.2 (projector of a line segment) Let a and b be distinct vectors in X, let x ∈ X, and set
q = 〈a− x, a− b〉 /‖a− b‖2. Then

(9) P[a,b](x) = (1− λ)a + λb, where λ = P[0,1](q) =


0, if q < 0;

q, if q ∈ [0, 1];

1, if q > 1.

Alternatively, and more symmetrically,

(10) P[a,b](x) = P[0,1]

( 〈b− x, b− a〉
‖b− a‖2

)
a + P[0,1]

( 〈a− x, a− b〉
‖a− b‖2

)
b.

Proof. This follows by discussing the minimization of the quadratic function

(11) λ 7→ ‖x− ((1− λ)a + λb)‖2 = (1− λ)‖x− a‖2 + λ‖x− b‖2 − λ(1− λ)‖a− b‖2,

which has the derivative 2λ‖a− b‖2 − 2 〈a− x, a− b〉. To obtain (10), use (8) and (9). �

2.2 Proximity operators

Let f : X → ]−∞,+∞] be a function that is convex, lower semicontinuous, and proper1. Fix
x ∈ X. Then it well known (see, e.g., [2, Section 12.4]) that the function

(12) X → ]−∞,+∞] : y 7→ f (y) + 1
2‖x− y‖2

has a unique minimizer which we denote by P f (x). The induced operator

(13) P f : X → X

is called the proximal mapping or proximity operator (see [18]) of f . These operators are im-
portant building blocks in algorithms for solving optimization problems with nonsmooth
objective functions; see, e.g., [2], [11], and the references therein. Note that if f is the indica-
tor function of C, i.e.,

(14) ιC : X → ]−∞,+∞] : x 7→

0, if x ∈ C;

+∞, otherwise,

then P f = PC; thus, proximity operators are generalizations of projectors.

We also point out that some algorithms utilize P f ∗ , the proximity operator of the Fenchel
conjugate f ∗ of f , which is defined by f ∗(x∗) = supx∈X(〈x∗, x〉− f (x)) at x∗ ∈ X. If γ ∈ R++,
then (see [2, Theorem 14.3(ii)])

(15) (∀x ∈ X) x = γ Pγ−1 f (γ
−1x) + Pγ f ∗(x).

1See, e.g., [19] and [2] for relevant material in Convex Analysis.
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Lemma 2.3 Let f : X → R be convex and positively homogeneous, let α ∈ R++, let γ ∈ R++, let
w ∈ X, and set

(16) h : X → R : x 7→ α f (x− w).

Let x ∈ X. Then

(17) Pγh(x) = w + γα P f
( x−w

γα

)
= x− γα P f ∗(

x−w
γα )

and

(18) Pγh∗(x) = x− γw− α P f
( x−γw

α

)
= α P f ∗(

x−γw
α ).

Proof. Using (15), we have

Pγh(x) = argmin
y∈X

(1
2‖y− x‖2 + (γα) f (y− w)

)
(19a)

= argmin
y∈X

(
1
2‖

y−w
γα − x−w

γα ‖2 + f ( y−w
γα )

)
(19b)

= w + γα argmin
z∈X

(
1
2‖z− x−w

γα ‖2 + f (z)
)

(19c)

= w + γα P f (
x−w
γα )(19d)

= w + γα
(

x−w
γα − P f ∗(

x−w
γα )

)
(19e)

= x− γα P f ∗(
x−w
γα ),(19f)

which proves (17). To obtain (18), combine (17) with (15). �

2.3 Primal and dual norms

Recall that a norm f on X is a convex function such that (∀α ∈ R) f (αx) = |α| f (x) and f
vanishes only at the origin. Associated with the norm f are its primal and dual closed unit
balls which are defined by

(20) B = B( f ) =
{

x ∈ X
∣∣ f (x) ≤ 1

}
and B∗ = B∗( f ) =

{
x∗ ∈ X

∣∣ sup 〈x∗, B〉 ≤ 1
}

,

respectively.

Lemma 2.4 (dual ball) Let f : X → R be a norm. Then the dual ball is given by

(21) B∗ = conv
{
∇ f (x)

∣∣ f (x) = 1 and x ∈ dom∇ f
}

,

where dom∇ f is the sets of points at which f is differentiable.

Proof. Set S :=
{

x ∈ Rn
∣∣ f (x) = 1

}
. Since f is a norm, we have ∂ f (0) = B∗. Moreover,

0 /∈ dom∇ f and (∀x ∈ dom∇ f ) ∇ f (R++x) = ∇ f (x). It follows that{
∇ f (x)

∣∣ x ∈ S ∩ dom∇ f
}
⊆
{

lim∇ f (xk)
∣∣ 0← xk ∈ dom∇ f

}
(22a)
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⊆
{
∇ f (x)

∣∣ x ∈ S ∩ dom∇ f
}

;(22b)

consequently,

(23)
{

lim∇ f (xk)
∣∣ 0← xk ∈ dom∇ f

}
=
{
∇ f (x)

∣∣ x ∈ S ∩ dom∇ f
}

Hence, using [19, Theorem 25.6 and Theorem 17.2], we deduce that

B∗ = ∂ f (0)(24a)

= conv
{

lim∇ f (xk)
∣∣ 0← xk ∈ dom∇ f

}
(24b)

= conv
{

lim∇ f (xk)
∣∣ 0← xk ∈ dom∇ f

}
(24c)

= conv
{
∇ f (x)

∣∣ x ∈ S ∩ dom∇ f
}

,(24d)

as claimed. �

Remark 2.5 (dual norm) Let f : X → R be a norm. It follows from [19, Section 15] that the
dual norm f∗ can be found by

(25) (∀x∗ ∈ X) f∗(x∗) = sup
{
〈x∗, x〉

∣∣ f (x) = 1
}

.

Moreover, if S is a subset of X such that conv S is equal to the unit ball of f , then

(26) (∀x∗ ∈ X) f∗(x∗) = sup
{
〈x∗, x〉

∣∣ x ∈ S
}

.

We conclude this section with a proximity operator formula that will be useful later.

Lemma 2.6 Let f : X → R be a norm, and denote its dual ball by B∗. Let α and γ be in R++, let
w ∈ X, and set h : X → R : x 7→ α f (x− w). Then

(27) (∀x ∈ X) Pγh(x) = x− γα PB∗(
x−w
γα ) and Pγh∗(x) = α PB∗(

x−γw
α ).

Proof. This follows from Lemma 2.3 because f ∗ = ιB∗ (see, e.g., [2, Proposition 14.12]) and
PιB∗ = PB∗ . �

2.4 A menagerie of proximity operators

In this section we collect various proximity operators that relevant for road design opti-
mization. We provide a user friendly table, taking into account a scaling parameter and the
Fenchel conjugate.

Theorem 2.7 Let x ∈ X, let w ∈ X, let α ∈ R++, let γ ∈ R++, and let ν ∈ {1, . . . , n}. Then the
formulae in the following table hold2:

2Here ‖x‖1 = ∑n
ν=1 |xν| denotes the `1-norm.
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Function f (x) Proximity operators Pγ f and Pγ f ∗

ιC(x) Pγ f (x) = PC(x).

Pγ f ∗(x) = x− γ PC(x/γ).

α‖x− w‖2 Pγ f (x) = (1 + 2αγ)−1(x + 2αγw).

Pγ f ∗(x) = x− γ(γ + 2α)−1(x + 2αw).

α‖x− w‖ Pγ f (x) =


x + αγ

w− x
‖w− x‖ , if ‖w− x‖ > αγ;

w, otherwise.

Pγ f ∗(x) =


α

x− γw
‖x− γw‖ , if ‖x− γw‖ > α;

x− γw, otherwise.

α‖x− w‖1
(

Pγ f (x)
)

ν
=


xν + αγ

wν − xν

|wν − xν|
, if |wν − xν| > αγ;

wν, otherwise.

(
Pγ f ∗(x)

)
ν
=


α

xν − γwν

|xν − γwν|
, if |xν − γwν| > α;

xν − γwν, otherwise.

α |〈x∗, x− w〉| Pγ f (x) = x− (γα)P[−1,1]

(
〈x∗,x−w〉
γα‖x∗‖2

)
x∗.

Pγ f ∗(x) = α P[−1,1]

(
〈x∗,x−γw〉

α‖x∗‖2

)
x∗.

Proof. Case 1: f (x) = ιC.
The formula for Pγ f is obvious, and the one for Pγ f ∗ follows from (15).

Case 2: f (x) = α‖x− w‖2.
Observe that γ f (x) = (2αγ)‖x − w‖2/2. Hence [11, Table 10.1.xi] yields Pγ f (x) = (1 +

2αγ)−1(x + 2αγw). and Pγ−1 f (γ
−1x) = (1 + 2αγ−1)−1(γ−1x + 2αγ−1w) = (γ + 2α)−1(x +

2αw). It now follows from (15) that Pγ f ∗(x) = x − γ Pγ−1 f (γ
−1x) = x − γ(γ + 2α)−1(x +

2αw).

Case 3: f (x) = α‖x− w‖.
Since the dual ball of the Euclidean ball is the same as the (primal) ball, denoted by B, we
conclude from Lemma 2.6 that

(28) Pγ f (x) = x− γα PB
( x−w

γα

)
and Pγ f ∗(x) = α PB

( x−γw
α

)
.

The formulae now follow because PB(y) = y/‖y‖ for every y ∈ X r B.
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Case 4: f (x) = α‖x− w‖1.
This follows from Case 3 (applied with X = R) and [2, Proposition 23.16].

Case 5: f (x) = α| 〈x∗, x− w〉 |.
Set f0 := |〈x∗, ·〉|. Then f0 is convex and positively homogeneous, and

(29) f (x) = α f0(x− w).

Set D := [−x∗, x∗] =
{

tx∗
∣∣ t ∈ [−1, 1]

}
. Then f ∗0 = ιD,

(30) P f ∗0 (x) = PD(x) = P[−1,1]

(
〈x,x∗〉
‖x∗‖2

)
x∗,

and the result follows from Lemma 2.3. �

3 The area between two line segments in R2

Let τ > 0, and let (x1, x2) ∈ R2. Consider the two line segments [(0, 0), (τ, 0)] and [(0, x1), (τ, x2)]
in the Euclidean plane. We will derive a formula for the area A(x1, x2) between these two
line segments (see Figure 1).

3.1 Area and stadium norm

(0, 0) (τ, 0)

(τ, x2)

(0, x1)

(0, 0) (τ, 0)

(τ, x2)

(0, x1)

h1

h2

Figure 1: Area between two line segments: the two alternatives

We consider two cases.

Case 1: x1x2 ≥ 0. Then it is obvious that

(31) A(x1, x2) =
τ

2
(
|x1|+ |x2|

)
.

Case 2: x1x2 < 0. Then the area consists of two triangles (see Figure 1) with heights

(32) h1 =
|x1|τ

|x1|+ |x2|
and h2 =

|x2|τ
|x1|+ |x2|

.
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Therefore,

(33) A(x1, x2) =
h1|x1|

2
+

h2|x2|
2

=
τ

2

( x2
1 + x2

2
|x1|+ |x2|

)
.

Combining these two possibilities, we find that

(34) A(x1, x2) =


τ

2

(
x2

1 + x2
2 + 2 max{0, x1x2}
|x1|+ |x2|

)
, if (x1, x2) 6= (0, 0);

0, otherwise.

Because τ is fixed, our interest will be in the following function:

Definition 3.1 (stadium norm) The stadium norm is defined by

(35) f : R2 → R : (x1, x2) 7→


x2

1 + x2
2 + 2 max{0, x1x2}
|x1|+ |x2|

, if (x1, x2) 6= (0, 0);

0, otherwise.

In fact, one can check that for every α > 0, the level set
{

x ∈ R2
∣∣ f (x) = α

}
has the geo-

metric shape of a stadium (see Figure 2). This motivates the name “stadium norm”; for the
formal proof that f is indeed a norm, see Section 4 below.

x1

x2

-1 1

-1

1
f (x) =

1

Figure 2: A level set of the stadium norm.

3.2 Upper approximations of the area

Since working with the true area (34) can be challenging (see Section 5.2 below), we are
also interested in simpler approximations. Using the setting of Figure 1, we consider two
approximations: the classical `1-approximation

(36) A`(x) =
τ

2
`(x) where `(x) := ‖x‖1 = |x1|+ |x2|;
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and the hexagonal stadium3 approximation

(37) A`(x) =
τ

2
h(x1, x2) where h(x1, x2) := max

{
|x1|, |x2|, |x1 + x2|

}
.

Both A` and Ah are upper approximations, overestimating the true area A: A` ≥ Ah ≥ A (see
Figure 3).

A = A` = Ah

x1

x2

(a) x1x2 ≥ 0

A1 A3

A2A4

x1

x2

A = A1 + A2,
Ah = max{A1 + A3, A2 + A4},
A` = A1 + A2 + A3 + A4.

(b) x1x2 < 0

Figure 3: A` and Ah are upper approximations for the area A.

In fact, the relationships among A`, Ah, and A reflect those among f , `, and h, which we
turn to now:

Lemma 3.2 (upper approximations of the stadium norm) Consider the stadium norm f from
(35), the norm ` = ‖ · ‖1 from (36), and the hexagonal stadium norm h from (37). Let x = (x1, x2) ∈
R2. Then

(38a) f (x) ≤ h(x) ≤ `(x)

and

(38b) f (x) = h(x) = `(x) ⇔ x1x2 ≥ 0.

Moreover,

(39) `(x)− f (x) ≥ 2
(
h(x)− f (x)

)
and the constant 2 is optimal.

Proof. (38a): The second inequality is clear. To prove the first one, we consider two cases.
Case 1: x1x2 ≥ 0. Then f (x) = |x1|+ |x2| = |x1 + x2| = max{|x1|, |x2|, |x1 + x2|} = h(x) =

`(x). Case 2: x1x2 < 0. Then f (x) = x2
1+x2

2
|x1|+|x2| ≤ max{|x1|, |x2|} ≤ h(x).

(38b): This follows easily from the definitions.

(39): In view of (38b), the inequality is trivial when x1x2 ≥ 0. Thus, we assume that
x1x2 < 0. Set M := max{|x1|, |x2|} and m := min{|x1|, |x2|}. Then f (x) = (m2 + M2)/(m +
M), h(x) = M and `(x) = m + M. Hence if β ∈ R++, then

(40) `(x)− f (x) = m + M− m2 + M2

m + M
=

2mM
m + M

3The level set of the function h is a hexagon (see Figure 5).
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and

(41) β
(
h(x)− f (x)

)
= β

(
M− m2 + M2

m + M

)
=

βm(M−m)

m + M
.

This implies (39) and we also conclude that the constant 2 is optimal. �

3.3 The signed area between two line segments

We will now derive a formula for the signed area Sτ(x1, x2) between two line segments
[(0, 0), (τ, 0)] and [(0, x1), (τ, x2)] (see Figure 4). Consider, e.g., the case when x1 > 0 and
x2 < 0. Using (32), we have

(42) Sτ(x1, x2) =
h1|x1|

2
− h2|x2|

2
=

τ

2
x2

1 − x2
2

|x1|+ |x2|
=

τ

2
(
|x1| − |x2|

)
=

τ

2
(x1 + x2).

The remaining cases can be dealt with analogously; altogether, we then obtain the following
simple formula for the signed area between the two line segments:

(43) Sτ(x1, x2) =
τ

2
(x1 + x2).

(0, 0) (τ, 0)

(τ, x2)

(0, x1)

h1

h2

⊕

	

Figure 4: Signed area between the two line segments

4 The stadium norm and its approximations

We now justify our naming convention by showing that the stadium norm is actually a norm.
(For further recent results on checking convexity of piecewise-defined functions, see [5].)

Theorem 4.1 (stadium norm is indeed a norm) Set

(44) f : R2 → R : (x1, x2) 7→


x2

1 + x2
2 + 2 max{0, x1x2}
|x1|+ |x2|

, if (x1, x2) 6= (0, 0);

0, otherwise,

11



and let Ω1 = R+ ×R+, Ω2 = R− ×R+, Ω3 = R− ×R−, and Ω4 = R+ ×R− denote the
four closed quadrants in the Euclidean plane. Then f is a norm, called the stadium norm, and
continuously differentiable at every point (x1, x2) ∈ R2 r {(0, 0)} with

(45) ∇ f (x1, x2) =



(1, 1), if (x1, x2) ∈ Ω1;(−x2
1 + 2x1x2 + x2

2
(x1 − x2)2 ,

−x2
1 − 2x1x2 + x2

2
(x1 − x2)2

)
, if (x1, x2) ∈ Ω2;

(−1,−1), if (x1, x2) ∈ Ω3;(
x2

1 − 2x1x2 − x2
2

(x1 − x2)2 ,
x2

1 + 2x1x2 − x2
2

(x1 − x2)2

)
, if (x1, x2) ∈ Ω4.

Proof. It is clear that f is continuous and that f is positively homogeneous. The identity (45)
follows easily from the definition of f . Let x = (x1, x2) ∈ R2 r {(0, 0)}. If x ∈ Ω1 ∪Ω3, then
f (x) = |x1|+ |x2|; thus, f |Ω1 and f |Ω3 are obviously convex. If x ∈ int Ω2, then the Hessian
of f at x,

(46) ∇2 f (x) =
4

(x2 − x1)3

(
x2

2 −x1x2

−x1x2 x2
1

)
,

is positive semidefinite. It follows that f |int Ω2 is convex and so is f |Ω2 by using the continuity
of f (see, e.g., [2, Proposition 17.10 and Proposition 9.26]). The proof of the convexity of f |Ω4
is similar.

Now let y ∈ R2 and assume that (0, 0) /∈ [x, y]. Then there exist points (not necessarily
distinct) points u and v in R2 such that

(47) [x, y] = [x, u] ∪ [u, v] ∪ [v, y],

with [x, u] ⊆ A1, [u, v] ⊆ A2, and [v, y] ⊆ A3, where {A1, A2, A3} ⊆ {Ω1, Ω2, Ω3, Ω4}. Note
that f is differentiable on [x, y]. We claim that

(48) 〈∇ f (x), y− u〉 ≤ 〈∇ f (u), y− u〉 .

Indeed, (48) is obvious when x = u. If u 6= x, then, since f is convex in A1, we have

〈∇ f (x), y− u〉 = ‖y−u‖
‖u−x‖ 〈∇ f (x), u− x〉(49a)

≤ ‖y−u‖
‖u−x‖ 〈∇ f (u), u− x〉 = 〈∇ f (u), y− u〉 .(49b)

Analogously, we see that

(50) 〈∇ f (u), y− v〉 ≤ 〈∇ f (v), y− v〉 .

Employing (48), (50), and the convexity of f |Ai , we deduce

〈∇ f (x), y− x〉 = 〈∇ f (x), u− x〉+ 〈∇ f (x), y− u〉(51a)
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≤ f (u)− f (x) + 〈∇ f (u), y− u〉(51b)
= f (u)− f (x) + 〈∇ f (u), v− u〉+ 〈∇ f (u), y− v〉(51c)

≤
(

f (u)− f (x)
)
+
(

f (v)− f (u)
)
+ 〈∇ f (v), y− v〉(51d)

≤
(

f (v)− f (x)
)
+
(

f (y)− f (v)
)

(51e)

= f (y)− f (x).(51f)

To summarize, we have proven

(52) (0, 0) /∈ [x, y] ⇒ 〈∇ f (x), y− x〉 ≤ f (y)− f (x).

Now let x and y be in R2 such that x 6= y, let λ ∈ [0, 1], and set z = (1− λ)x + λy. It
remains to show that

(53) f (z) ≤ (1− λ) f (x) + λ f (y).

Case 1: (0, 0) /∈ [x, y].
Then (0, 0) /∈ [x, z] and (0, 0) /∈ [z, y]. Applying (52) twice, we obtain

(54) 〈∇ f (z), x− z〉 ≤ f (x)− f (z) and 〈∇ f (z), y− z〉 ≤ f (y)− f (z).

It follows that (1−λ) 〈∇ f (z), x− z〉 ≤ (1−λ)( f (x)− f (z)) and λ 〈∇ f (z), y− z〉 ≤ λ( f (y)−
f (z)), which after adding and re-arranging turns into (53).

Case 2: (0, 0) ∈ [x, y].
Let w be a unit vector perpendicular to [x, y], let ε ∈ R++, and set

(55) xε = x + εw, yε = y + εw, and zε = z + εw.

It is clear that (0, 0) 6∈ [xε, yε]. So, applying Case 1 to [xε, yε], we deduce that

(56) f (zε) ≤ (1− λ) f (xε) + λ f (yε).

Taking the limit as ε→ 0+ and using the continuity of f , we obtain (53). �

Proposition 4.2 (dual stadium norm) Consider the norm

(57) g : R2 → R : (x1, x2) 7→ 1
2 |x1 − x2|+ 1√

2
‖(x1, x2)‖.

Then the stadium norm f given by (44) is the norm dual to g.

Proof. Let us sketch the derivation4. It is easy to check that g is indeed a norm. Denote the
norm dual to g by g∗. By If g(ξ, η) = 1, then solving for η yields two solutions, namely

(58) η±(ξ) = −ξ ± 2
(√

2± 2ξ − 1
)
, where ξ ∈ [−1, 1].

4We note in passing that g was not found until after we computed the projection onto the dual ball of f (see
Subsection 5.2 below) and “guessed” the formula for g.
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Now let (x1, x2) ∈ R2. Hence, using (25), we have

g∗(x1, x2) = sup
{

x1ξ + x2η
∣∣ g(ξ, η) = 1

}
(59a)

= max
{

max
ξ∈[−1,1]

(
x1ξ + x2η+(ξ)

)
, max

ξ∈[−1,1]

(
x1ξ + x2η−(ξ)

)}
.(59b)

This reduces the problem to one-dimensional calculus. If x1 6= x2, then the the critical points
of the functions ξ 7→ x1ξ + x2η+(ξ) and ξ 7→ x1ξ + x2η−(ξ) are ∓(x2

1 − 2x1x2 + x2
2)/(x1 −

x2)
2; otherwise the critical points are the endpoints ∓1. Substituting the critical points into

(59) yields indeed g∗ = f . �

Let us summarize our finding in the following result:

Theorem 4.3 (the three norms) The following table summarizes the dual norms found for the three
planar norms of interest (see also Figure 5).

Norm f Formula for f (x) Formula for f∗(x)

` = ‖ · ‖1 |x1|+ |x2|. max
{
|x1|, |x2|

}
hexagonal stadium max

{
|x1|, |x2|, |x1 + x2|

}
max

{
|x1|, |x2|, |x1 − x2|

}
stadium

x2
1 + x2

2 + 2 max{0, x1x2}
|x1|+ |x2|

1
2 |x1 − x2|+ 1√

2
‖(x1, x2)‖

Proof. Case 1: f = ` = ‖ · ‖1.
Of course, this case is well known, we include the details because it is short and for com-
pleteness. Note that its unit ball is conv{±(1, 0),±(0, 1)}. Again (26) yields

f∗(u1, u2) = max
{

u1x1 + u2x2
∣∣ (x1, x2) ∈ {±(1, 0),±(0, 1)}

}
(60a)

= max
{
± u1,±u2

}
(60b)

= max
{
|u1|, |u2|

}
(60c)

= ‖(u1, u2)‖∞.(60d)

Case 2: Hexagonal stadium norm.
Here f (x) = max{|x1|, |x2|, |x1 + x2|}. Considering the unit sphere f (x) = 1, we compute
that the unit ball is conv{±(−1, 1),±(1, 0),±(0, 1)}. Now let (u1, u2) ∈ R2. It follows from
(26) that

f∗(u1, u2) = max
{

u1x1 + u2x2
∣∣ (x1, x2) ∈ {±(−1, 1),±(1, 0),±(0, 1)}

}
(61a)

= max
{
± (u2 − u1),±u1,±u2

}
(61b)

= max
{
|u1|, |u2|, |u1 − u2|

}
.(61c)

Case 3: f is the stadium norm — see Theorem 4.1 and Proposition 4.2. �
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x1

x2

f (x) = 1

h(x) = 1

`(x) = 1

1

−1

1

−1

x1

x2

f∗(x) = 1

h∗(x) = 1

`∗(x) = 1

1−1

1

−1

Figure 5: Primal and dual balls of the stadium norm f , the hexagonal stadium norm h, and
classical ` = ‖ · ‖1.

5 Proximity operators of some planar norms

5.1 Projectors onto the dual balls for two polyhedral norms

The following result is well known.

Proposition 5.1 (dual ‖ · ‖1 ball projector) Let ‖ · ‖1 : (x1, x2) → |x1|+ |x2| be the `1 norm on
R2, denote its dual ball [−1, 1]× [−1, 1] by B∗, and let x = (x1, x2) ∈ R2. Then

(62) PB∗(x1, x2) =
(

P[−1,1](x1), P[−1,1](x1)
)
.

Proposition 5.2 (dual hexagonal stadium ball projector)
Let (x1, x2) 7→ max{|x1|, |x2|, |x1 + x2|} be the hexagonal stadium norm, denote its dual ball by
B∗, and let x = (x1, x2) ∈ R2. Then

(63) PB∗(x) =



x, if x ∈ B∗;(
P[0,1](x1), P[0,1](x2)

)
, if (x1, x2) ∈ (R+ ×R+)r B∗;

P[(−1,0),(0,1)](x), if (x1, x2) ∈ (R− ×R+)r B∗;(
P[−1,0](x1), P[−1,0](x2)

)
, if (x1, x2) ∈ (R− ×R−)r B∗;

P[(0,−1),(1,0)](x), if (x1, x2) ∈ (R− ×R+)r B∗.
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Alternatively (and better suited to programming), we have

(64) PB∗(x) =


x, if f∗(x) ≤ 1;(

P[−1,1](x1), P[−1,1](x2)
)
, else if x1x2 ≥ 0;

sgn(x1)
(1

2 ,−1
2

)
+ P[−1,1](x1 + x2)

(1
2 , 1

2

)
, else.

Proof. Formula (63) follows from observing that

(65) B∗ = conv
{
± (1, 0),±(0, 1),±(1, 1)

}
,

and by considering each quadrant. To obtain (64), consider cases and use (9). �

5.2 Projector onto the dual ball of the stadium norm

In this section, we derive the projector onto the dual ball of the stadium norm. This will
require significantly more work than the two polyhedral norms just discussed. We start by
setting

(66a)

(66b)

Γ0 :
[
− π

2 , 0
]
→ R2

t 7→
(cos2 t− 2 sin t cos t− sin2 t

(cos t− sin t)2 ,
cos2 t + 2 sin t cos t− sin2 t

(cos t− sin t)2

)
.

and

(67) R = ran Γ0.

In view of Lemma 2.4 and (45), it follows that

(68) B∗ = conv
(

R ∪ (−R)
)
.

Using trigonometric identities, we see that for every t ∈ [−π/2, 0] we have

(69) Γ0(t) =
(cos 2t− sin 2t

1− sin 2t
,

cos 2t + sin 2t
1− sin 2t

)
=
(√2 cos(2t + π

4 )

1− sin 2t
,

√
2 sin(2t + π

4 )

1− sin 2t

)
.

By changing variables, we thus see that

(70a)

(70b)

(70c)

Γ1 :
[
− 3π

4 , π
4

]
→ R2

t 7→
( √

2 cos t
1− sin(t− π/4)

,

√
2 sin t

1− sin(t− π/4)

)
=

√
2

1 + cos(t + π/4)
(

cos t, sin t
)
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satisfies

(71) R = ran Γ1.

In polar coordinates (r, ω), the parametrizations of Γ1 and −Γ1 become

(Γ1) : r =
√

2
1 + | cos(ω + π/4)| =

√
2

1 + cos(ω + π/4)
, ω ∈

[
− 3π

4 , π
4

]
;(72a)

(−Γ1) : r =
√

2
1 + | cos(ω + π/4)| =

√
2

1− cos(ω + π/4)
, ω ∈

[
π
4 , 5π

4

]
.(72b)

Now set

A1 :=
{
(x1, x2) ∈ R2 ∣∣ x1 ≥ 1, x2 ≥ 1

}
,(73a)

A2 :=
{
(x1, x2) ∈ R2 ∣∣ x1 > −1, x2 < 1, x2 < x1

}
.(73b)

Then, for every x = (r cos ω, r sin ω) ∈ R2, we have

(74) PB∗(x) =



(1, 1), if x ∈ A1;

(−1,−1), if x ∈ −A1;

x, if r ≤
√

2
1 + | cos(ω + π/4)| ;

PR(x), if x ∈ A2 and r >
√

2
1 + cos(ω + π/4)

;

P−R(x) = −PR(−x), if x ∈ −A2 and r >
√

2
1− cos(ω + π/4)

.

For a sketch, see Figure 6.

x1

x2

x

PR(x)

A1

A2−A1

−A2

R
−R

Figure 6: Projection onto the dual stadium ball
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Now suppose that

(75) x ∈ A2 and r >
√

2
1 + cos(ω + π/4)

.

Since x ∈ A2, we have ω ∈ ]−3π/4, π/4[ and thus cos(ω + π/4) > 0. Denote the squared
distance from x = (r cos ω, r sin ω) to Γ1(t), where t ∈ [−3π/4, π/4] (see (70a)) by

F(t) =
( √

2 cos t
1+cos(t+π/4) − r cos ω

)2
+
( √

2 sin t
1+cos(t+π/4) − r sin ω

)2
(76)

= 2
(

cos t
1+cos(t+π/4) − r cos ω√

2

)2
+ 2
(

sin t
1+cos(t+π/4) − r sin ω√

2

)2
(77)

We now claim that

(78)

 F is a convex function on [−3π/4, π/4], and

F′(t) = 0 has a unique solution in ]−3π/4, π/4[.

The critical number t will then yield the projection PR(x) = Γ1(t). We start by computing
the derivative of F: Indeed,

F′(t) = 4
(

cos t
1+cos(t+π/4) − r cos ω√

2

)− sin t(1+cos(t+π/4))+sin(t+π/4) cos t
(1+cos(t+π/4))2(79a)

+ 4
(

sin t
1+cos(t+π/4) − r sin ω√

2

)
cos t(1+cos(t+π/4))+sin(t+π/4) sin t

(1+cos(t+π/4))2(79b)

= 4
(

cos t
1+cos(t+π/4) − r cos ω√

2

) − sin t+sin(π/4)
(1+cos(t+π/4))2(79c)

+ 4
(

sin t
1+cos(t+π/4) − r sin ω√

2

)
cos t+cos(π/4)
(1+cos(t+π/4))2(79d)

= 4
(1+cos(t+π/4))2

(
sin(t+π/4)

1+cos(t+π/4) +
r(sin(t−ω)−sin(ω+π/4))√

2

)
(79e)

Setting

(80) u := t + π
4 ∈

[
−π

2 , π
2

]
and θ := ω + π

4 ∈
]
−π

2 , π
2

[
,

we see that

F′(t) = 4
1+cos u

(
sin u

(1+cos u)2 +
r√
2

sin(u−θ)−sin θ
(1+cos u)

)
(81a)

= 4
1+cos u

(
sin u

(1+cos u)2 +
r√
2

sin u cos θ−cos u sin θ−sin θ
(1+cos u)

)
(81b)

= 4
1+cos u

(
sin u

(1+cos u)2 +
r√
2

sin u cos θ
(1+cos u) − r sin θ√

2

)
.(81c)

Furthermore, set

(82) s := tan(u/2) ∈ [−1, 1], α := r√
2

cos θ > 0, and β := r√
2

sin θ.

Then 1
1+cos u = 1

2 cos2(u/2) =
1+s2

2 and

F′(t) = 4
2 cos2(u/2)

(
2 sin(u/2) cos(u/2)

4 cos4(u/2) + 2α sin(u/2) cos(u/2)
2 cos2(u/2) − β

)
(83)
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= 2(1 + s2)
(

1
2 s(1 + s2) + αs− β

)
(84)

= (1 + s2)
(
s3 + (1 + 2α)s− 2β

)
.(85)

Let

(86) G : [−1, 1]→ R : s 7→ (1 + s2)
(
s3 + (1 + 2α)s− 2β

)
and consider the equation

(87) G(s) = 0.

Since x = (x1, x2) ∈ A2, we have x1 = r cos ω > −1 and x2 = r sin ω < 1. Hence

α− β = r√
2
(cos θ − sin θ) = −r sin ω > −1,(88a)

α + β = r√
2
(cos θ + sin θ) = r cos ω > −1;(88b)

consequently,

(89) G(1) = 2(2 + 2α− 2β) > 0 and G(−1) = 2(−2− 2α− 2β) < 0.

Since G is clearly continuous, it follows that (87) has a solution in ]−1, 1[. We now compute

(90) G′(s) = 5s4 + 6(1 + α)s2 − 4βs + (1 + 2α)

and observe that the discriminant of the quadratic polynomial 6(1+ α)s2− 4βs + (1+ 2α) is
∆ := 16β2 − 24(1 + α)(1 + 2α). Because |β| < 1 + α < 1 + 2α (by (88)), it is clear that ∆ < 0.
Hence 6(1 + α)s2 − 4βs + (1 + 2α) > 0 and therefore G′ is strictly positive on ]−1, 1[. We
deduce that G is strictly increasing on [−1, 1]. So the solution of (87) is unique. In turn, this
implies that F′ strictly increases on [−3π/4, π/4]. It follows that F is a convex function on
[−3π/4, π/4] and that F′(t) = 0 has a unique solution in ]−3π/4, π/4[. Therefore, F has a
unique minimizer in ]−3π/4, π/4[, which establishes our claim (78).

Now let s be the unique solution of (87), which implies that s is a real solution of

(91) s3 + (1 + 2α)s− 2β = 0.

This real solution is unique because viewed as function in s, the derivate of the left-hand
side of (91) is 3s2 + (1 + 2α) > 0 since α > 0. Cardano’s formula gives

(92) 3

√
β +

√
β2 + (1+2α

3 )3 +
3

√
β−

√
β2 + (1+2α

3 )3

as a solution to (91). This solution is a real number, again since α > 0. Hence s is equal to
(92). Let us summarize what we have found out so far: If

(93a) x = r(cos ω, sin ω) ∈ A2 and r >
√

2
1 + cos(ω + π/4)

,
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and

α = r√
2

cos(ω + π/4), β = r√
2

sin(ω + π/4),(93b)

s = 3

√
β +

√
β2 + (1+2α

3 )3 +
3

√
β−

√
β2 + (1+2α

3 )3 ∈ ]−1, 1[ ,(93c)

t = 2 arctan(s)− π
4 ∈

]
−3π

4 , π
4

[
,(93d)

then

(93e) PR(x) =
√

2
1 + cos(t + π/4)

(cos t, sin t).

Our next goal is to simplify (93) by eliminating the trigonometric functions. To this end,
let (x1, x2) = r(cos ω, sin ω) ∈ A2. We translate (93) to a form that is free of trigonometric
functions. Observe first that

r cos(ω + π/4) = 1√
2
r cos ω− 1√

2
r sin ω = 1√

2
(x1 − x2) > 0(94a)

and r sin(ω + π/4) = 1√
2
r cos ω + 1√

2
r sin ω = 1√

2
(x1 + x2).(94b)

Hence (93b) turns into

(95) α = 1
2(x1 − x2) and β = 1

2(x1 + x2).

Furthermore, since

(96)

√
2

r
(
1 + cos(ω + π/4)

) =

√
2

r + r cos(ω + π/4)
=

2√
2(x2

1 + x2
2) + x1 − x2

,

we see that the inequality in (93a) is equivalent to

(97)
√

2(x2
1 + x2

2) + x1 − x2 > 2.

Next, let s and t be as in (93c)–(93d). Using

(98) cos(arctan s) =
1√

1 + s2
and sin(arctan s) =

s√
1 + s2

,

we have

cos(t + π/4) = cos(2 arctan s) = cos2(arctan s)− sin2(arctan s) =
1− s2

1 + s2 ,(99a)

sin(2 arctan s) = 2 sin(arctan s) cos(arctan s) =
2s

1 + s2 .(99b)

It follows that

cos t = 1√
2

(
cos(2 arctan s) + sin(2 arctan s)

)
=

1 + 2s− s2
√

2(1 + s2)
,(100a)
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sin t = 1√
2

(
sin(2 arctan s)− cos(2 arctan s)

)
=
−1 + 2s + s2
√

2(1 + s2)
.(100b)

Finally, (93e) turns into

(101) PR(x) =
√

2

1 + 1−s2

1+s2

(
1 + 2s− s2
√

2(1 + s2)
,
−1 + 2s + s2
√

2(1 + s2)

)
=

(
1 + 2s− s2

2
,
−1 + 2s + s2

2

)
.

Since P−R(x) = −PR(−x), we can handle the case when −x ∈ A2 analogously.

We are now in a position to summarize this section in the following result:

Theorem 5.3 (dual stadium ball projector) Let

(102) f : R2 → R : (x1, x2) 7→


x2

1 + x2
2 + 2 max{0, x1x2}
|x1|+ |x2|

, if (x1, x2) 6= (0, 0);

0, otherwise,

be the stadium norm, denote its dual ball by B∗, and let x = (x1, x2) ∈ R2. Set

(103a) α := 1
27

(
1 + |x1 − x2|

)3, β := 1
2 sgn(x1 − x2)(x1 + x2),

and

(103b) s := 3

√
β +

√
β2 + α +

3

√
β−

√
β2 + α.

Then
(104)

PB∗(x) =



(1, 1), if x1 ≥ 1 and x2 ≥ 1;

(−1,−1), if x1 ≤ −1 and x2 ≤ −1;

(x1, x2), if
√

2(x2
1 + x2

2) + |x1 − x2| ≤ 2;

sgn(x1 − x2)

(
1 + 2s− s2

2
,
−1 + 2s + s2

2

)
, otherwise.

5.3 Proximity operators

Combining Lemma 2.6 with the formulae derived with in (62), (63)–(64), and (104), we are
now able to summarize the findings of this section.

Theorem 5.4 (planar proximity operators) Let f : R2 → R be a norm, and denote its dual ball
by B∗. Let α and γ be in R++, let w ∈ X, and set h : X → R : x 7→ α f (x− w). Then

(105) (∀x ∈ X) Pγh(x) = x− γα PB∗(
x−w
γα ) and Pγh∗(x) = α PB∗(

x−γw
α ).
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Let x ∈ R2 r {(0, 0)}. The following table summarizes several choices that will be used later.

Norm f Formula for f (x) Formula for PB∗(x)

` = ‖ · ‖1 |x1|+ |x2|. see (62)

hexagonal stadium max
{
|x1|, |x2|, |x1 + x2|

}
see (63) or (64)

stadium
x2

1 + x2
2 + 2 max{0, x1x2}
|x1|+ |x2|

see (104)

6 Proximity operators in Rn related to area

Let

(106) t = (t1, . . . , tn) ∈ X = Rn such that t1 < · · · < tn.

Fix w = (w1, . . . , wn) ∈ X and let x = (x1, . . . , xn) ∈ X. In this section, we first develop a
formula for the area between the two linear splines l(t,x) and l(t,w) (see (3)) and then provide
related proximity operators. We set

τi := (ti+1 − ti)/2 for i ∈ {1, . . . , n− 1};(107a)

η := (η1, . . . , ηn) ∈ X where

{
η1 := τ1; ηn := τn−1; and
ηi := τi−1 + τi for i ∈ {2, . . . , n− 1}.(107b)

6.1 Area between two linear splines

ti ti+1

2τi

l(t,w) wi

wi+1

l(t,x)

xi

xi+1

Figure 7: Area between two linear splines

Using Section 3.1 and Section 3.2, we estimate the area between the two line segments
[(ti, xi), (ti+1, xi+1)] and [(ti, wi), (ti+1, wi+1)] (see Figure 7) by

(108) Ai(xi, xi+1) = τi · f (xi − wi, xi+1 − wi+1),

where the value of Ai depends on the norm f as shown in the following table:
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Norm f Value of Ai(xi, xi+1)

` = ‖ · ‖1 upper estimate of the area

hexagonal stadium upper estimate of the area

stadium exact area

Then the total (absolute) area between two linear splines l(t,x) and l(t,w) is estimated by

(109) A(x) =
n−1

∑
i=1

Ai(xi, xi+1) =
n−1

∑
i=1

τi · f (xi − wi, xi+1 − wi+1).

Next, we will compute the proximity operators for the area estimate A(x). While we are
able to explicitly compute the proximity operators for each term of A (see Theorem 5.4), the
overall sum A does not appear to admit a simple formula. To deal with A(x), we split it into
two parts,

(110a)
Aodd(x) = τ1 · f (x1 − w1, x2 − w2) + τ3 · f (x3 − w3, x4 − w4) + · · ·

= ∑
i∈{1,...,n−1}∩(1+2N)

τi · f (xi − wi, xi+1 − wi+1),

and

(110b)
Aeven(x) = τ2 · f (x2 − w2, x3 − w3) + τ4 · f (x4 − w4, x5 − w5) + · · ·

= ∑
i∈{1,...,n−1}∩(2N)

τi · f (xi − wi, xi+1 − wi+1),

so that

(111) A = Aodd + Aeven.

As the functions in (110) are decoupled into independent pairs of real variables, the proxim-
ity operators can be computed in parallel. Thus, grouping

(112) X 3 (y1, . . . , yn) =
(
(y1, y2), (y3, y4), · · ·

)
=
(

y1, (y2, y3), (y4, y5), · · ·
)

,

and using Theorem 5.4, we obtain the following result:

Theorem 6.1 (proximity operators for area estimations) Let Ai be given by (108) for every i ∈
{1, . . . , n− 1}, where f is as in the table below. Let Aodd and Aeven be defined by (110), let γ ∈ R++,
let α ∈ R++, and let x ∈ X. Then the proximity operators of Aodd and Aeven are

Pγ(αAodd)
(x) =

(
Pγ(αA1)

(x1, x2), Pγ(αA3)(x3, x4), . . .
)
,(113a)

where the last entry in (113a) is xn if n is odd;

Pγ(αAodd)∗(x) =
(

Pγ(αA1)∗(x1, x2), Pγ(αA3)∗(x3, x4), . . .
)
,(113b)
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where the last entry in (113b) is 0 if n is odd;

(113c) Pγ(αAeven)(x) =
(
x1, Pγ(αA2)(x2, x3), Pγ(αA4)

(x4, x5), . . .
)
,

where the last entry in (113c) is xn if n is even;

(113d) Pγ(αAeven)∗(x) =
(
0, Pγ(αA2)∗(x2, x3), Pγ(αA4)∗(x4, x5), . . .

)
,

where the last entry in (113d) is 0 if n is even. In these formulas,

Pγ(αAi)
(xi, xi+1) = (xi, xi+1)− γατi PB∗(

xi−wi
γατi

, xi+1−wi+1
γατi

);(114a)

and Pγ(αAi)∗(xi, xi+1) = τi PB∗(
xi−γwi

ατi
, xi+1−γwi+1

ατi
),(114b)

where B∗ is the dual unit ball of the norm f .

Norm f Formula for f (z1, z2) Formula for PB∗

` = ‖ · ‖1 |z1|+ |z2|. see (62)

hexagonal stadium max
{
|z1|, |z2|, |z1 + z2|

}
see (63) or (64)

stadium
z2

1 + z2
2 + 2 max{0, z1z2}
|z1|+ |z2|

see (104)

It turns out that if f = ` = ‖ · ‖1 is used for the estimate A(x), then the proximity
operators become simpler since all variables xi appear separately:

Theorem 6.2 (proximity operators for ` = ‖ · ‖1 area estimation) Let l(t,x) and l(t,w) be linear
splines (see (3)), let

(115) A(x) =
n−1

∑
i=1

Ai(xi, xi+1) =
n−1

∑
i=1

τi · (|xi − wi|+ |xi+1 − wi+1|) =
n

∑
i=1

ηi|xi − wi|

be the ` = ‖ · ‖1 estimation of the area between them (see (107)), let γ ∈ R++, and let α ∈ R++.
Then

(116a)
(

Pγ(αA)(x)
)

i =


xi + γ(αηi)

wi − xi

|wi − xi|
, if |wi − xi| > γαηi;

wi, otherwise,

and

(116b)
(

Pγ(αA)∗(x)
)

i =


(αηi)

xi − γwi

|xi − γwi|
, if |xi − γwi| > αηi;

xi − γwi, otherwise.
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6.2 Signed area between two linear splines

Taking into account the signed area between two line segments (see Section 3.3 and Figure 8),
we obtain the following function of x for the signed area between two linear splines l(t,x) and
l(t,w):

(117) S : X → R : x 7→
n−1

∑
i=1

τi
(
(xi − wi) + (xi+1 − wi+1)

)
=

n

∑
i=1

ηi(xi − wi) = 〈η, x− w〉 ,

where τi and η are given by (107).

ti ti+1

2τi

l(t,w) wi

wi+1

l(t,x)

xi

xi+1⊕

	

⊕
	

⊕

Figure 8: Signed area between two linear splines

Because the signed area function S of (117) is simple, we are able to directly compute the
corresponding proximity operators. In fact, the following result follows readily from Case 5
of Theorem 2.7:

Theorem 6.3 (proximity operators for |S|) Let l(t,x) and l(t,w) be two linear splines (see (3), and
let S be given by (117), i.e., the function corresponding to the signed area between the splines. Let
γ ∈ R++ and let α ∈ R++. Then

(118a) Pγ|αS|(x) = x− (γα)P[−1,1]

( 〈η,x−w〉
γα‖η‖2

)
η

and

(118b) Pγ|αS|∗(x) = α P[−1,1]

( 〈η,x−γw〉
α‖η‖2

)
η.

6.3 Cost functions related to areas in road design problems

In road design problems, one assumes that the original (vertical) ground profile is repre-
sented by the linear spline l(t,w) (see [4] for details). It is required to find a vector x ∈
C1 ∩ · · ·C6 that is as “close” as possible to the vector w. There are several ways to mea-
sure this closeness; of particular interest are the following quantities:

• the amount of earth work (cut and fill) needed. This amount can be interpreted
as the absolute area A(x) between the two linear splines l(t,x) and l(t,w), which is
given by (111) or its polyhedral approximations.
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• the final cut-and-fill balance. In practice, the soil obtained from cutting can be
used later for filling. Therefore, the engineer is also interested in minimizing the
final cut-and-fill balance. This amount is interpreted as the absolute value of the
signed area S(x) (see (117)).

The measures may be combined by taking conical (i.e., positive linear) combinations. Thus,
the problem of interest is to

(119) Minimize αA(x) + β|S|(x) subject to x ∈ C1 ∩ · · · ∩ C6,

where A(x) is given by (111), S(x) is given by (117), and α and β are nonnegative weights.

7 Douglas–Rachford and Cyclic Intrepid Projections algorithms

In this section we briefly review two algorithms we will employ in numerical experiments.
Recall that X = RN and let I be a nonempty finite set of indices.

7.1 Douglas–Rachford Algorithm (DR)

Consider the problem

(120) minimize ∑
i∈I

fi(x) subject to x ∈ X,

where each fi are proper convex lower semicontinuous function on X. The Douglas–Rachford
algorithm, or simply “DR” solves (120) by operating in the product Hilbert space

(121) X := X I ,

with inner product 〈x, y〉 := ∑i∈I 〈xi, yi〉 for x = (xi)i∈I and y = (yi)i∈I . Its precise formula-
tion is as follows (see, e.g., [2, Proposition 27.8]):

Initialize x0 = (x0,i)i∈I = (z, . . . , z) ∈ X, where z ∈ X. Given xk ∈ X, update via

xk :=
1
|I|∑i∈I

xk,i,(122a)

(∀i ∈ I) yk,i := Pγ fi(2xk,i − xk),(122b)

(∀i ∈ I) xk+1,i := xk,i + yk,i − xk,(122c)

to obtain xk+1. Then the monitored sequence (xk)k∈N converges to a solution of (120).

DR finds its roots in the field of differential equations [13]. The seminal work by Lions
and Mercier [17] broad to light the much wider scope of this algorithm. Nowadays, there
are several variants and numerous studies of DR. We do not describe these variants here
because the two modern ones we experimented with (see [6] and [7])5 performed similarly
to the plain vanilla DR.

5These variants also require computing proximity operators of constant multiples of f ∗i ; see the previous
sections for explicit formulas. We mention also that these methods allow for great flexibility due to parameters
that can be specified by the user.
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7.2 Method of Cyclic Intrepid Projections (CycIP)

To describe the method of cyclic intrepid projections, which has its roots in [15], we first
need to develop the notion of an intrepid projector. Suppose that Z is a nonempty closed
convex subset of X and let β ∈ R++. Set C :=

{
x ∈ X

∣∣ dZ(x) ≤ β
}

. Then the corresponding
intrepid projector onto C (with respect to Z and β) is defined by

(123) QC : X → X : x 7→


PZx, if dZ(x) ≥ 2β;

x, if dZ(x) ≤ β;

x +
(

β− dZ(x)
)x− PZx

β
, otherwise.

Consider the convex feasibility problem

(124) find x ∈ C :=
⋂
i∈I

Ci 6= ∅,

where each Ci is a nonempty closed convex subset of X. Define I0 by i ∈ I0 if and only if
i ∈ I and Ti := QCi is an intrepid projector onto Ci; for i ∈ I1 := I r I0, we set Ti := PCi .
Given x0 ∈ X, the method of cyclic intrepid projections (CycIP) generates a sequence (xk)k∈N in
X via

(125) (∀k ∈N) xk+1 =
(
TmTm−1 · · · T2T1

)
xk

Then the monitored sequence (xk)k∈N converges to some point in C (see [3, Theorem 14]).

CycIP is just one of many projection methods for solving (124) (see [1], [8], [9], [10] and
the references therein); however, CycIP performed very well in the context of road design
(see [3] and [4]).

8 Numerical experiments

We now return to the optimization problem (119). In the context of road design and con-
struction, α is an averaged unit cost for excavation and embankment, and β is an averaged
unit cost for hauling. The values for α and β change with soil types and vary by location;
however, setting α := 4 and β := 1 is a reasonable assignment based on actual handling cost.

We will consider Douglas–Rachford algorithm to solve (119) with three different esti-
mates of A(x):

• DRsb: solve problem (119) where A(x) is the exact earth work amount, i.e., using
the stadium norm.
• DRhb: solve problem (119) where A(x) is the upper estimate of earth work amount

using the hexagonal stadium norm.
• DRlb: solve problem (119) where A(x) is the upper estimate of earth work amount

using ` = ‖ · ‖1.
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Note that at the very least, the engineer must solve the road design feasibility problem

(126) find x ∈ C1 ∩ · · · ∩ C6.

Thus, it is important and interesting to see how much earthwork one can save by solving the
optimization problem (119) rather than the mere feasibility problem (126). Indeed, solving
(126) has been extensively studied in [4]. In particular, the experiments in [4] shows that
the method of cyclic intrepid projections (CycIP) is an extremely fast and efficient algorithm
for solving (126) (for further information on CycIP see [3]). Therefore, we will compare the
cost-efficiency of DRsb, DRhb, and DRlb to CycIP.

8.1 Setup and stopping criteria

Because the Douglas–Rachford algorithm requires the proximity operators of all function
involved, we write (119) as

(127) minimize αAodd(x) + αAeven(x) + β|S|(x) +
6

∑
i=1

ιCi(x) over x ∈ X

in order to use the explicit proximity formulas given in Theorems 2.7 and 5.4.

We run the four algorithms described above on 100 test problems: 6 of which are obtained
from real terrain data in British Columbia (Canada), and the rest of which is taken from the
test problems in [4, Section 6]. We set our tolerance at

(128) ε := 5 · 10−3.

Since CycIP is an algorithm aimed at solving the underlying feasibility problem, we stop it
as soon as a term of the monitored sequence (xk)k∈N satisfies6

(129) max
i∈{1,...,6}

‖xk − PCi xk‖∞ < ε.

For DRsb, DRhb, DRlb, the Douglas–Rachford-based optimization algorithms, we terminate
when the first term xk of the monitored sequence (xk)k∈N satisfies

(130) max
i∈{1,...,6}

‖xk − PCi xk‖∞ < ε and ‖xk − xk−1‖∞ < ε.

8.2 Cost savings

Although DRsb, DRhb, and DRlb deal with different cost approximations, we are interested
in comparing the exact earthwork cost: recall that given the ground profile (t, w), the exact
earthwork amount for a road design (t, x) is

(131) F(x) := αA(x) + β|S|(x),

6Recall that the max-norm is given by ‖x‖∞ := max{|x1|, . . . , |xn|} for every x = (x1, . . . , xn) ∈ Rn.
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where A(x) is the exact area between two splines l(t,x) and l(t,w), and S(x) is the signed area
between these two splines (see Sections 6.1 and 6.2).

For each problem, let FCycIP and FDR be the cost of the road designs obtained by CycIP
and DR, respectively. Then the cost saving ratio is given by

(132) ∆DR :=
FCycIP − FDR

FCycIP
.

In the following table, we record the statistics for ∆DRsb, ∆DRhb, and ∆DRlb.

Min 1st Qrt. Median 3rd Qrt. Max Mean Std.dev.

∆DRsb −0.11% 6.38% 12.4% 18.82% 73.58% 14.90% 13.91%

∆DRhb −0.49% 6.02% 11.96% 18.46% 72.23% 14.56% 13.75%

∆DRlb −0.12% 5.30% 11.41% 17.00% 72.73% 13.87% 13.19%

Table 1: Cost savings: DR vs. CycIP (higher is better)

Theoretically, we expect the cost saving of every optimization algorithm to be nonnega-
tive. However, we observe (small) negative savings by either DR algorithms in 8 out of 100
test problems. In fact, because of the ε-tolerance in our stopping criteria, the DR algorithms
might stop before attaining optimality.

8.3 Performance profiles

To compare the performance of the algorithms, we use performance profiles7: for every a ∈ A
and for every p ∈ P , we set

(133) ra,p :=
ka,p

min
{

ka′,p
∣∣ a′ ∈ A

} ≥ 1,

where ka,p ∈ {1, 2, . . . , kmax} is the number of iterations that a requires to solve p and kmax
is the maximum number of iterations allowed for all algorithms. If ra,p = 1, then a uses the
least number of iterations to solve problem p. If ra,p > 1, then a requires ra,p times more
iterations for p than the algorithm that uses the least number of iterations for p. For each
algorithm a ∈ A, we plot the function

(134) ρa : R+ → [0, 1] : κ 7→ card
{

p ∈ P
∣∣ log2(ra,p) ≤ κ

}
cardP ,

where “card” denotes the cardinality of a set. Thus, ρa(κ) is the percentage of problems that
algorithm a solves within factor 2κ of the best algorithms. Therefore, an algorithm a ∈ A is
“fast” if ρa(κ) is large for κ small; and a is “robust” if ρa(κ) is large for κ large.

7 For further information on performance profiles, we refer the reader to [12].
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The following figure shows the performance profiles for the three DR algorithms.
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Figure 9: Performance profiles (by number of iterations)

Note that, the performance profiles only reflect the number of iterations needed, but they
do not take into account the complexity of proximity operator computations.

8.4 Problems with real terrain data of BC

In this section, we present the statistics for the 6 problems that use real terrain data of British
Columbia (Canada). The problems represent 6 different design alternatives for a (hypothet-
ical) high-speed bypass of the city of Merritt, which would connect Highway 97C directly
with the Coquihalla Highway. The bypass starts at the intersection of the Okanagan Con-
nector Hwy 97C with the Princeton-Kamloops Hwy 5A, and follows westwards, joining the
Coquihalla Hwy 5 near the Kane Valley and Coldwater Rd intersection.

As an example, one of the problems is to build a highway alternative that is 27.805 kilo-
meter long and 10.4 meter wide with a design speed of 110 km/h and a maximum slope
of 5%. Starting from the original ground profile (the brown curve in Figure 10), we select
the points (ti, wi)i∈{1,...,n} and create the initial road design l(t,w) (which is the linear spline
generated by the chosen points).
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Figure 10: Initial road design l(t,w) from the original ground profile.

This initial design l(t,w) is usually infeasible, and we use w as the starting point for the algo-
rithms. The following two figures show the so-obtained road designs.
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Figure 11: Road designs obtained by CycIP and DRsb.
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Figure 12: Road designs obtained by DRhb and DRlb.

These road designs are indeed different as seen in the two diagrams below. Figure 13
presents a mass diagram. The mass diagram is a plot of the cut and fill volumes along the
road (where cuts are positive and fills are negative). Hence, a mass diagram that finishes
closer to zero indicates a better balance between cut and fill. Figure 14 shows a cumulative
mass diagram, where cut and fills are both taken as positive.
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Figure 13: Mass diagrams
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Figure 14: Cumulative cut-and-fill amount

We set the cost for cut-and-fill at $5.23 per cubic meter and the cost for handling the final
cut-and-fill balance at $1.31 per cubic meter (notice that the ratio of these two costs is ap-
proximately 4 : 1). From the obtained data we then record the cost for each road design in
the next table.

Algorithms Cut-and-fill (m3) Final balance (m3) Earthwork cost ($) Saving (%)

CycIP 2, 043, 188.4 −15, 273.0 10, 703, 303 0%

DRsb 1, 707, 709.5 −5, 960.7 8, 936, 992 16.50%

DRhb 1, 730, 857.5 −5, 996.8 9, 058, 059 15.37%

DRlb 1, 805, 893.0 −6, 036.3 9, 450, 468 11.71%

Table 2: Earthwork amount and cost saving

8.5 Conclusion

The results suggest the following:

• Employing the cost function may reduce the construction cost significantly. In
our particular problem, DRsb can save approximately 1.76 million dollars (16.5%),
while the savings of DRhb and DRlb are 1.64 and 1.25 millions (15.37% and 11.71%),
respectively.
• Using the exact cost function (i.e., DRsb) may lead to a greater saving.
• Using the hexagonal approximation (i.e., DRhb) is beneficial for programming

purpose while also maintaining a good saving percentage.
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The data for the other 5 problems listed next also support our observations.

Algorithms Prob. 1 Prob. 2 Prob. 3 Prob. 4 Prob. 5

DRsb 7.05% 10.35% 8.88% 18.96% 12.81%

DRhb 7.00% 10.41% 8.49% 18.17% 12.45%

DRlb 6.88% 6.35% 7.7% 16.0% 10.04%

Table 3: Cost savings over CycIP

In summary, the experiments support our belief that the road design optimization prob-
lem can be efficiently solved by employing variants of the Douglas–Rachford algorithm.
Future work may concentrate on refining the model and on testing the algorithms on large-
scale data using graphics processing units.
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