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We consider the conflict-resolution problem arising in the allocation of commercial advertisements to tele-

vision program breaks. Due to the competition-avoidance requirements issued by advertisers, broadcasters

aim to allocate any pairs of commercials promoting highly conflicting products to different breaks. Hence,

the problem consists of assigning commercials to breaks, subject to time capacity constraints, with the aim

of maximizing a total measure of the conflicts among commercials assigned to different breaks.

Since the existing formulation can hardly be solved via exact methods, we introduce three new and

efficient (mixed-)integer programming formulations of the problem. Our computational study is based on

two sets of test problems, one from the literature and another more challenging data set that we generate.

Numerical results show the excellent performance of the proposed formulations in terms of solution quality

and computation times, when compared against an existing formulation and an effective heuristic approach.

In particular, for the existing data set, all three formulations significantly outperform the existing formulation

and heuristic, and moreover, for the new data set, our best formulation outperforms the heuristic on 76%

of the test examples in terms of solution quality. We also provide theoretical evidence to demonstrate why

some of our new formulations should outperform the existing formulation.
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1. Introduction

The Conflict Resolution Problem (CRP), first introduced in Gaur et al. (2009) along the guidelines

of Bollapragada and Garbiras (2004), arises in the allocation of commercials to TV breaks, as

broadcasters have to account for competition-avoidance requirements issued by advertisers, whose

aim is to have commercials promoting highly conflicting (i.e., competing) products assigned to

different breaks. The same requirement somehow holds for those commercials that need to be aired

several times over a given time horizon, and indeed it is generally preferred to make a distinction

between a commercial and an insertion, the latter referring to an instance of a commercial assigned

to a break. Hence, given a set of insertions (some insertions may represent the same commercial)

and a set of TV program breaks, CRP consists of assigning each insertion to at most one break, so

that a total measure of the conflicts among insertion-pairs assigned to different breaks is maximized.

We briefly review four streams of literature related to the planning of TV commercial airings and

the conflict resolution problem. The first stream of papers is related to scheduling commercials.

Bollapragada et al. (2002) consider the problem of constructing a “sales plan” for the National

Broadcasting Company. They formulate the problem as an integer goal-programming problem,

and solve it by a tabu search algorithm. Bollapragada and Garbiras (2004) study the problem of

scheduling commercials and formulate it as a goal programming problem, but solved by a two-stage

heuristic method. Bollapragada et al. (2004) investigate another interesting scheduling problem

faced by television networks, where they aim to have the airings of the same commercial as uni-

formly spread as possible. They introduce a mixed integer programming formulation of the problem

and a branch-and-bound algorithm. In Brusco (2008) an improved version of the branch-and-bound

of Bollapragada et al. (2004) is presented that returns optimal solutions for some of the problems

previously unsolved. Moreover, a simulated-annealing method is presented that has the advantage

of finding new best-known values for some of the problems considered in Bollapragada et al. (2004).

In Zhang (2006) a slightly different model is considered. The author proposes a two-step hierarchi-

cal approach involving a Dantzig-Wolfe decomposition scheme and a column generation algorithm.
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Finally, in Gaur et al. (2009) the above-mentioned Conflict Resolution Problem is introduced, as

an extension of the commercial scheduling problem presented in Bollapragada and Garbiras (2004).

While in Bollapragada and Garbiras (2004) each insertion-pair is associated to a 0-1 conflict-weight,

i.e., each pair of insertions either does have a conflict or does not, in Gaur et al. (2009) a non-

negative conflict-weight is associated to each insertion-pair, and a local-search heuristic is then

presented to solve the problem.

The second literature stream arises in the area of revenue management. In Bai and Xie (2006)

and Kimms and Muller-Bungart (2006), an admission control (accept/reject incoming adver-

tisement requests to maximize revenues) and scheduling problem is considered. In Araman and

Popescu (2010) and Bollapragada and Mallik (2008) the allocation of advertising capacity between

upfront/forward contracts and the spot/scatter market is considered, with the aim of maximizing

profits subject to contractual and operational constraints. In Reddy et al. (1998) a prime-time TV

programs allocation problem is considered, where the company wants to maximize the difference

between revenue and cost.

The third literature stream is more related to the quadratic semi-assignment problem (Burkard

et al. 2009). It is straightforward to show that both task allocation problems and CRP are special

cases of the quadratic semi-assignment problem. An uncapacitated task allocation problem is stud-

ied in Billionnet et al. (1992) and is solved via a branch-and-bound method based on Lagrangian

relaxations. A heuristic method is proposed in Hadj-Alouane et al. (1999) for solving a capaci-

tated task allocation problem. In Ernst et al. (2006), several exact approaches including a column

generation method are developed for solving both uncapacitated and capacitated task allocation

problems. It turns out that CRP is harder than the task allocation problem because CRP is equiv-

alent to a max-cut problem, which is NP-hard, when there are only two breaks.

The fourth literature stream is about graph partitioning problems. Gaur et al. (2009) point

out that CRP amounts to partitioning the nodes of a graph into k subsets of given sizes (not

necessarily equal), so that the sum of edge weights across all pairs of subsets is as large as possible.
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From this viewpoint, CRP can be seen as a generalization of the graph partitioning problem (see

Wolkowicz and Zhao (1999)), and particularly of the capacitated max k-cut problem (see Gaur

et al. (2008)). Graph partitioning problems have gained a lot of interest in the last 20 years,

following the development of the semidefinite programming (SDP) relaxation paradigm and its

application to enhancing approximation algorithms. Such an approach dates back to Goemans

and Williamson (1995), where the SDP relaxation is introduced for the MAXCUT (i.e., max

2-cut) problem, and to Frieze and Jerrum (1997), where an extension to the max k-cut problem

is proposed. Recent enhancements for the max k-cut are proposed in Anjos et al. (2013), where

the SDP relaxation is tackled by a Lagrangian dual approach and solved via bundle methods.

Different versions of the graph partitioning problem also exist. When the goal is to minimize the

total weight of the edges joining nodes belonging to the same partition, the problem is called

minimum k-partition. For such a problem the SDP relaxation is proposed in Eisenblatter (2002),

and next it is embedded into a branch-and-cut approach in Ghaddar et al. (2011). The capacitated

version of the minimum k-partition typically requires that each partition contains the same number

of nodes, this problem being referred to as the k-way equipartition problem. Unlike such well

known versions of the problem, the capacitated generalization of CRP refers to associating different

weights (i.e., length) to the nodes (i.e., insertions) of the graph, and to considering subset-sizes

that are expressed in terms of node-weights. For this problem, to the best of our knowledge, there

is no SDP relaxation approach available in the literature. In this paper, we choose an approach

based on linear programming reformulations.

Our contribution to the CRP literature is to propose three new and efficient integer linear

programming formulations of CRP. Heuristic methods are proposed as solution approaches both

in Bollapragada and Garbiras (2004), where the problem was first studied, and in Gaur et al.

(2009), where the problem was formally stated. We provide theoretical evidence to demonstrate

why some of our new formulations should outperform the one introduced in Gaur et al. (2009).

Furthermore, we present a computational study to evaluate the efficiency of the new formulations,
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solved via an exact method, when compared against the local-search heuristics introduced in Gaur

et al. (2009). We have tested the computational behaviour of the new formulations on two sets of

test examples. On the first set, obtained in the literature, we have obtained quite surprising results,

as the three formulations can solve all the examples at optimality in a negligible amount of time,

outperforming the available heuristics in terms of both solution quality and computation time. For

a more challenging test set that we generated, computational results show that with a time budget

of 60 seconds, our best formulation is never worse than the existing heuristic on all examples in

terms of the objective function value, although the heuristics has uniformly better results in terms

of computation time. In order to evaluate the role played by the computational time limit, we have

evaluated the performance of our best formulation with different time budgets. The encouraging

results show that our best formulation outperforms the heuristics on 76% of the examples in terms

of the objective function value.

The rest of this paper is organized as follows. In Section 2, the conflict resolution problem is

formally defined. In Section 3 we propose three (mixed-)integer linear programming formulations

for CRP. In Section 4, we provide a theoretical justification for the merit of our formulations and

we present computational results. Some concluding remarks are presented in Section 5.

2. Integer Programming Formulations of CRP

Consider the conflict resolution problem introduced in Gaur et al. (2009), which is to allocate a

given number of insertions to a given number of breaks. A break is a time window of a few minutes

placed inside a TV program, or between two consecutive TV programmes, that is used for showing

a sequence of advertisements. An insertion is a commercial advertisement with a fixed duration,

that is scheduled in a break. We report in Table 1 the notation for problem data.

Note that we do not assume that fij = fji. This possible asymmetric property of conflict-weights

reflects different views of conflicts by the owners of insertions i and j. For example, the owner of

insertion i may not aim to have insertions i and j aired in different breaks, whereas the owner of

insertion j, due to either a lower quality or a higher price of products for insertion j, may prefer

to have i and j assigned to different breaks.
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Table 1 Problem notation.

I set of all available TV insertions, indexed by i, j, and k, with I = |I|
M set of all program breaks, indexed by m and n, with M = |M|
Am time capacity of each program break m∈M
ai duration of each TV insertion i∈ I
fij conflict-weight from TV insertion i to insertion j, i, j ∈ I

The conflict resolution problem (CRP) is to assign each insertion to at most one break so that

the sum of the conflict weights across all pairs of program breaks is maximized. Let xim denote a

binary decision-variable that is set to 1 if and only if insertion i is assigned to break m. We observe

that any feasible assignment of insertions to break must fulfil the following constraints

∑
m∈M

xim ≤ 1, ∀i∈ I, (1)∑
i∈I

aixim ≤ Am, ∀m∈M (2)

xim ∈ {0,1}, ∀i∈ I,∀m∈M, (3)

where constraint (1) states that each insertion is assigned to at most one program break, while con-

straint (2) specifies the capacity restriction for each program break. Hence, CRP can be formulated

as an extension of the generalized quadratic assignment problem:

max
x∈X

∑
i,j∈I,i6=j

∑
m,n∈M,m 6=n

fijximxjn

where X , {x : (1), (2), (3) hold}, while the main difference with the generalized quadratic assign-

ment problem is that each insertion is not necessarily assigned to a program break. We note that

the objective function calculates the total conflict-weight among the pairs that are assigned to dif-

ferent breaks, and that the assignment of an insertion to a break having enough capacity does not

reduce the conflict-weight between the insertions that have already been assigned. The inequality

used in the semi-assignment constraint (1) allows the model to deal with problem examples where

the total capacity is not enough to assign all the insertions. Such constraint structure has some

significant consequences that are highlighted in the following remark.
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Remark 1. CRP cannot be trivially recast into the minimization of conflicts arising between

insertions assigned to the same break, although such an approach would seem more natural. In

fact, since the following equality holds:

∑
i,j∈I,i6=j fij1(i and j are assigned to different breaks)

=
∑

i,j∈I,i6=j fij −
∑

i,j∈I,i6=j fij1(i and j are assigned to the same break)

−
∑

i,j∈I,i6=j fij1(i or j is not assigned to a break), (4)

an equivalent minimization version of CRP should also account for conflicts involving unassigned

insertions. In other words, the minimization version must explicitly prevent the model from achiev-

ing the goal by simply leaving insertions unassigned.

A natural question arising at this stage is whether an optimal solution of the problem might

leave some insertions unassigned even though enough residual capacity is available. It is easy to

see that an optimal solution cannot leave a cross-conflicting insertion unassigned if there is one

break having enough residual capacity. In fact, take a feasible solution such that one break m̃

has enough residual capacity to allocate at least one unassigned cross-conflicting insertion ı̃; then,

unless the insertion ı̃ has zero conflict-weight with all the insertions assigned to breaks other than

m̃, the assignment (̃ı, m̃) would increase the total conflict-weight between the insertions that have

been already assigned. The interesting case to explore is when the residual capacity is fragmented

among several breaks. The following example shows that under particular circumstances an optimal

solution may leave few insertions unassigned.

Example 1. Let M = 2, with capacities A1 =A2 = 3, and I = 5 with lengths a1 = . . .= a4 = 1 and

a5 = 2, where break capacities and insertion lengths are measured in number of time slots. The

conflict-weights between insertions are f13 = f24 = 4, f12 = f14 = f23 = f34 = 0, and f15 = f25 = f35 =

f45 = 1. We assume that fij = fji for all i and j. Clearly, in an optimal solution, insertions 1 and

3 are assigned to different breaks and insertions 2 and 4 are assigned to different breaks, with a

conflict value of 16 and residual capacity of one slot for both breaks. Hence, on one hand, insertion
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5 cannot be assigned to any regular break due to fragmentation of residual capacity; on the other

hand, any feasible solution where insertion 5 is assigned cannot have a conflict value greater than

14, even though its assignment would allow allocation of the whole available capacity.

In Gaur et al. (2009), CRP is recast into an integer linear program, and reformulated as the

following capacitated generalization of the max k -cut problem

max
x,y

∑
i,j∈I,i6=j

∑
m,n∈M,n6=m

fijyimjn (5)

s.t. x∈X (6)

yimjn ≤
1

2
(xim +xjn) ∀i 6= j ∈ I,∀m 6= n∈M (7)

yimjn ∈ {0,1}, ∀i, j ∈ I,∀m,n∈M. (8)

where yimjn is set to 1 if and only if insertion i is assigned to break m, and insertion j 6= i is

assigned to break n 6= m. In fact, constraint (7) restricts the conflict variable yimjn to be zero

unless insertions i and j are assigned to different program breaks. We observe that CRP can also

be formulated on an undirected graph, where each edge e = (i, j) is assigned a conflict weight

Fe = fij +fji, since both fij and fji contribute the objective value whenever i and j are assigned to

different partitions (breaks). Nonetheless, since some of our formulations, next denoted as CRP2

and CRP3, make explicit use of the directed graph structure, we will keep adopting the structure

of having both fij and fji.

We remark that the CRP formulation (5)-(8) contains O(M 2 × I2) variables and O(M 2 × I2)

constraints. Hence it does not look well-suited to be solved by exact methods as soon as the problem

scale gets slightly larger. Therefore, heuristic methods are proposed in Gaur et al. (2009), as well as

earlier in Bollapragada and Garbiras (2004), to solve the problem. In the next section we introduce

three new formulations of CRP, which not only reduce the order of magnitude of the number of

variables and constraints, but also improve computational efficiency.
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Table 2 Insertion index subsets.

Jim(x) = {j ∈ I | j 6= i, xjm = 1} set of insertions other than i that are assigned to
the regular break m

J im(x) = {j ∈ I | j 6= i, xjm = xj0 = 0} set of insertions other than i that are assigned to
any regular break other than m

Ji0(x) = {j ∈ I | j 6= i, xj0 = 1} set of insertions other than i that are assigned to
the null break

3. Three New (Mixed-)Integer Linear Programming Formulations of CRP

We reformulate CRP by adopting different ways of conflict-weight aggregation between insertions.

All formulations share a common modeling feature, that we adopt in order to explicitly deal with

unassigned insertions. In fact, we introduce a new program break, indexed by 0, to which all

unassigned insertions are allocated. We refer to such a break as a null break, while any scheduled

break is called regular. Assuming that the capacity for the null break is A0 =∞, and letting

M=M∪{0}, we next reformulate constraints (1)-(3). First, we update the definition of the x-

variables as xim ∈ {0,1}, ∀i∈ I, ∀m∈M, where xi0 = 1 has the obvious meaning that insertion i is

not assigned to any regular break. Then, we define the set of feasible insertion-to-break assignments

as

X ,

x :
∑
m∈M

xim = 1 ∀i∈ I,
∑
i∈I

aixim ≤Am ∀m∈M, xim ∈ {0,1} ∀i∈ I ∀m∈M

 . (9)

For later notational convenience, letting i∈ I and m∈M be fixed, we also introduce in Table 2

three subsets of I dependent on any x∈X .

3.1. An Integer Linear Programming Formulation Based on Inter-Break Conflicts

Our first formulation of CRP is a pure zero-one mathematical program whose structure is based

on implicitly aggregating conflict-weights between insertions assigned to different breaks. This

formulation derives the total conflicts based on the right-hand side of (4). To this end, we introduce

variables yij and zij for calculating the right-hand side of (4), and linear constraints that link

variables yij and zij and assignment variables xim such that yij and zij are precisely defined

mathematically. In detail, we have
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• yij ∈ {0,1}, ∀i, j ∈ I, set to 1 if and only if at least one of insertions i and j is assigned to the

null break;

• zij ∈ {0,1}, ∀i, j ∈ I, set to 1 if and only if insertions i and j are both assigned to the same

regular break.

We then have the following two-index formulation CRP1:

max
x,y,z

∑
i,j∈I

fij(1− zij − yij) (10)

s.t. x∈X (11)

yij ≤ xi0 +xj0, ∀i 6= j ∈ I (12)

yij ≥ xi0, ∀i 6= j ∈ I (13)

yij ≥ xj0, ∀i 6= j ∈ I (14)

zij ≥ xim +xjm− 1, ∀i 6= j ∈ I,∀m∈M (15)

yij, zij ∈ {0,1}, ∀i, j ∈ I (16)

The objective function in (10) represents the total amount of conflict-weights between the inser-

tions that are assigned to different regular breaks. In fact, it is obtained by subtracting from the

total conflict-weight, the intra-(regular)break conflicts and the null-break-related conflicts. Link-

ing constraints (12), (13), and (14) show that yij = 1 if and only if at least one of insertions i

and j must be assigned to the null break. Constraint (15) states that zij must be equal to one if

both insertions i and j are assigned to the same regular break m. Notice that the maximization

goal forces us to choose correct values for zij even though the corresponding constraints do not

necessarily completely characterize the definition for zij.

3.2. A Mixed-Integer Linear Programming Formulation Based on Inter-Break Conflicts

Now we present the second formulation of CRP, a mixed-integer linear program that makes an

explicit evaluation of inter-break conflicts by means of continuous variables. This formulation

derives the total conflicts based on the left-hand side of (4). For that purpose, we introduce for
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each insertion/regular-break pair (i,m) three auxiliary continuous variables uim, vim, and wim

representing different conflict-weights:

• uim is the total amount of conflict-weight from insertion i to all other insertions that are assigned

to regular breaks other than m, if insertion i is assigned to m, hence

uim =


∑

j∈J im(x)

fij if xim = 1,

0 otherwise;

• vim is the total amount of conflict-weight from insertion i to all other insertions that are assigned

to regular break m, if insertion i is assigned to a regular break other than m, hence

vim =


∑

j∈Jim(x)

fij if xim = xi0 = 0,

0 otherwise;

• wim is the total amount of conflict-weight from insertion i to the insertions that are assigned to

the null break, if insertion i is assigned to a regular break other than m, or is the total amount

of conflict-weight from insertion i to the insertions that are assigned to either the regular break

m or the null break, if insertion i is assigned to the null break, hence

wim =



∑
j∈Ji0(x)

fij if xim = xi0 = 0,

∑
j∈Jim(x)∪Ji0(x)

fij if xi0 = 1,

0 otherwise.

We notice that wim is associated with conflict-weights between two insertions at least one of

which is assigned to the null break. As a consequence, such variables do not contribute the objective

function, their role being only limited to establish a conflict-weight balance equation.

In Table 3, we summarize explicit formulas for uim, vim and wim when insertion i is assigned

to break m, a break other than m, and the null break, respectively. We then have the following

two-index mixed-integer linear formulation CRP2, where δi is a sufficiently large scalar for each

i∈ I (e.g., δi =
∑

j 6=i fij).
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Table 3 Explicit formulas for uim, vim, and wim.

uim vim wim

xim = 1
∑

j∈J im(x) fij 0 0

xim = 0, xi0 = 0 0
∑

j∈Jim(x) fij
∑

j∈Ji0(x)
fij

xi0 = 1 0 0
∑

j∈Jim(x)∪Ji0(x)
fij

max
x,u,v,w

∑
i∈I

∑
m∈M

1

2
(uim + vim) (17)

s.t. x∈X (18)

uim ≤ δixim, ∀i∈ I,∀m∈M (19)

vim ≤ δi(1−xim), ∀i∈ I,∀m∈M (20)

wim ≤ δi(1−xim), ∀i∈ I,∀m∈M (21)

vim ≤
∑

j 6=i,j∈I

fijxjm, ∀i∈ I,∀m∈M (22)∑
m∈M

uim ≤ δi(1−xi0), ∀i∈ I (23)∑
m∈M

vim ≤ δi(1−xi0), ∀i∈ I (24)

uim− vim−wim =
∑

j∈I,j 6=i

fij(xim−xjm−xj0), ∀i∈ I,∀m∈M (25)

uim, vim,wim ≥ 0, ∀i∈ I,∀m∈M. (26)

The objective function in (17) calculates the total conflict-weight between all the pairs of inser-

tions that are assigned to different regular breaks. Indeed, we observe that uim and vim never

contain the conflict-weight from insertion i to any insertion that is assigned to the null break, and

that the sum of all uim, or of all vim, gives the total conflict-weight between the insertions that are

assigned to regular breaks. Constraint (19) implies that uim = 0 when insertion i is not assigned

to the regular break m. Constraint (20) and (21) force vim and wim to zero when insertion i is

assigned to the regular break m. Constraint (22) gives an upper bound for vim, which is equal to

the total amount of conflict-weights between i and the insertions that are assigned to the regular

break m. Constraints (23) and (24) ensure that uim and vim are equal to zero for all regular breaks

when insertion i is assigned to the null break. Constraint (25) is a conflict-weight balance equation
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which links variables u, v and w together. A deeper insight into the latter constraint can be gained

by comparing its structure with formulas listed in Table 3. For an example, assume that xim = 1 for

some insertion/regular-break pair (i,m), then it is easy to see from (25) that uim =
∑

j∈J im(x) fij,

since vim =wim = 0 due to (20)-(21).

3.3. A Mixed-Integer Linear Programming Formulation Based on Intra-Break Conflicts

Our third formulation is based on conflicts between insertions assigned to the same regular break.

In particular, we derive the total conflicts based on the right-hand side of (4), which is similar to

CRP1, and we employ continuous variables to represent conflict-weights, which is similar to CRP2.

To this end, we introduce variables qim to calculate the right-hand side of (4), and linear constraints

that link variables qim and assignment variables xim. For each insertion/regular-break pair (i,m)

we introduce a set of auxiliary continuous variables qim representing intra-break conflict-weights:

• qim is the total amount of conflict-weight from insertion i to all other insertions assigned either

to regular break m or to the null break, if insertion i is assigned to m, hence

qim =


∑

j∈Jim(x)∪Ji0(x)

fij if xim = 1,

0 otherwise.

We now have the third two-index formulation CRP3:

max
x,q

∑
i∈I

∑
j∈I,j 6=i

(1−xi0)fij −
∑
i∈I

∑
m∈M

qim (27)

s.t. x∈X (28)

qim ≥
∑

j∈I,j 6=i

fij(xjm +xj0 +xim− 1), ∀i∈ I,∀m∈M (29)

qim ≥ 0, ∀i∈ I,∀m∈M. (30)

We observe that the objective function (27) still represents the total conflict-weight between all

the pairs of insertions that are assigned to different regular breaks. In fact, the first term is the

total conflict-weight between every insertion assigned to a regular break with all other insertions.

The second term in the objective function is the total amount of conflict-weights between every
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insertion assigned to a regular break and all the insertions assigned either to the same regular

break or the null break. Constraint (29) defines a lower bound for qim when insertion i is indeed

assigned to a regular break m or to the null break.

4. Computational Analysis

In this section we report on the computational performance of our three formulations CRP1, CRP2,

and CRP3. In particular, we focus on evaluating the behavior of our formulations when solved via

an exact (possibly truncated) method, and on comparing such performance against the subset-

swapping heuristics (next referred to as GKK–H) and the CRP formulation (5)-(8) (next referred

to as GKK), both presented in Gaur et al. (2009). With this aim, we have first analyzed the

experimental plan proposed in Gaur et al. (2009), which includes 1800 test problems (next referred

to as TS-0) where the number of program breaks ranges from 2 to 10, and the insertion lengths

belong to two classes, all equal lengths (e.g., 15 seconds) or short and long insertions (e.g., 15 and

30 seconds). There are two configurations of program breaks, depending on whether the break may

allocate five short insertions, or four short insertions plus one long insertion. A test problem with

M program breaks has 5M insertions and no excess capacity. As for the generation of conflict-

weights, insertions can be assumed as partitioned into M subsets I1, . . . , IM (corresponding to the

M breaks) of appropriate size. The conflict-weights are then set to zero for each insertion-pair

belonging to the same subset. The remaining conflict-weights are instead generated by sampling

from a uniform distribution in [0,1], changing the result to 100 (next referred to as strong conflict)

with probability p = 0.05, in order to generate insertions that must appear in different program

breaks. Such a procedure allows to obtain examples whose obvious optimal value is known, being

the sum of all the conflict-weights. For every choice of M , and each of the two break configurations,

the random generation process is repeated 100 times.

As for the execution of the swapping-subset heuristics, in Gaur et al. (2009) the authors propose

to randomly shuffle the optimal insertion-to-break assignments in order to generate a starting

feasible solution that is significantly different from the optimal one. Then, the computational
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analysis presented in Gaur et al. (2009) refers to the best results obtained over 50 runs of GKK–H

on each test instance, where each run adopts a different starting solution.

We have implemented the subset-swapping algorithm GKK–H following the guidelines given in

Gaur et al. (2009). Letting t denote the number of insertions that are exchanged between pairs

of breaks at each step of the algorithm, at this stage of our testing we have adopted t = 1, also

allowing feasible swaps between a long insertion in one subset and a pair of short insertions in

another subset. We wrote the code in JAVA and executed tests on an Intel Core I7 CPU at 3.50GHz

with 12GB RAM. The results of our experiments confirm the excellent performance of GKK-H

on the test set TS-0, as described in Gaur et al. (2009). In fact, the so-called performance ratio,

i.e., the ratio between the objective value returned by the algorithm upon termination and the

optimal value
∑

i,j∈I,i6=j fij, is never lower than 93% (Gaur et al. 2009, Figure 3), while the average

running time across the 50 random restarts is 0.3 seconds per instance, which is much shorter than

the average running time reported in Gaur et al. (2009) due to the different computing facilities

adopted.

Our computational experiments involving formulations CRP1, CRP2, CRP3, and GKK have

been carried out by means of the MIP solver of IBM ILOG CPLEX 12.6 on the same machine. In

the following, we briefly report on the obtained results in terms of solution quality and computation

time (for simplicity of our presentation we do not report the related tables). We measure the

solution quality in terms of performance ratio and of the number of resolved strong conflicts (i.e., the

number of insertion-pairs, having fij = 100, that result assigned to different breaks). Formulations

CRP1, CRP2, and CRP3 outperform GKK-H in terms of solution quality as they can solve all the

1800 examples of TS-0 at optimality, returning 100% performance ratio (against a performance

ratio of GKK-H between 93% and 100%), and obviously resolving all strong conflicts. On the

contrary, formulation GKK has poor performance compared against GKK-H since GKK can solve

all the 1800 examples of TS-0 at optimality only in case M = 2, with an average running time of

0.02 seconds per instance, while as soon as the size increases, i.e., M ≥ 3, the CPLEX MIP solver
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can never find the optimal solution for GKK in less than 10 minutes. Formulations CRP1, CRP2,

and CRP3 perform very well also in term of computation time, as the worst-case performance are

obtained by adopting CRP2, that returns the optimal solution within an average running time of

0.15 seconds per instance, while the best-case performance are obtained by adopting CRP3, whose

average running time is 0.02 seconds per instance.

All the above remarks have motivated us to understand the role played by the structure of TS-0

examples, as we clarify in the following proposition.

Proposition 1. Assume that an optimal assignment x∗ of insertions to breaks exists for a given

instance, such that (A1) every insertion is assigned to some regular break (i.e., no insertion is

assigned to the null break), and (A2) the optimal value equals the sum of all conflict-weights (i.e.,

if i and j are assigned to the same break then fij = 0). Then (a) the linear relaxation GKK-LP

of problem GKK has an optimal value equal to (M − 1)
∑

i,j∈I,i6=j fij, (b) the linear relaxations

CRP1-LP and CRP3-LP of problems CRP1 and CRP3, respectively, have optimal values equal to∑
i,j∈I,i6=j fij.

Proof. The assumptions imply that the insertions can be partitioned into M subsets I1, . . . , IM

such that conflict-weights between insertion-pairs belonging to the same subset are zero. Hence the

optimal assignment x∗ is such that x∗im = 1 if and only if i∈ Im, for every m∈M.

(a) Observe that the objective function of GKK (and GKK-LP) can be written as

∑
i,j∈I,i6=j

fij
∑

m,n∈M,m 6=n

yimjn.

Summing up constraints (7) of GKK-LP we obtain for every i, j ∈ I, i 6= j, that

∑
m,n∈M,m 6=n

yimjn ≤
1

2

∑
m,n∈M,m6=n

(xim +xjn) =
1

2
(M − 1)

(∑
m∈M

xim +
∑
n∈M

xjn

)
≤M − 1

where the latter inequality follows from (1). As a consequence, an upper bound for the objective

function of GKK-LP is given by (M−1)
∑

i,j∈I,i6=j fij. It remains to prove the existence of a feasible

solution whose objective value equals such bound for instances fulfilling assumptions (A1) and (A2).
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Recall that I1, . . . , IM are given such that fij = 0 for every insertion-pair (i, j) for which there is an

index m ∈ {1, . . . ,M} with i, j ∈ Im. As a consequence, it will suffice to focus on those insertion-

pairs (i, j) such that there exist break indexes m̃ 6= ñ, with i∈ Im̃ and j ∈ Iñ, i.e., x∗im̃ = x∗jñ = 1. Let

(x∗, y∗) denote the optimal solution of GKK, and observe that y∗im̃jñ = 1 since x∗im̃ = 1 and x∗jñ = 1.

Observe, next, that the (i, j)-term in the summation can be written as follows:

fij
∑

m,n∈M,m 6=n

yimjn = fij

yim̃jñ +
∑

m∈M\{m̃},n∈M\{ñ},m 6=n

yimjn +
∑

m6=m̃,ñ

yimjñ +
∑

n 6=m̃,ñ

yim̃jn

 .

Now, focusing on constraint (7) of GKK, we construct a feasible solution (x̄, ȳ) of GKK-LP whose

value is (M − 1)
∑

i,j∈I,i6=j fij. In fact, let x̄= x∗ and, focusing for simplicity only on the insertion-

pair (i, j), let the (i, j)-terms of ȳ be such that ȳim̃jñ = 1, and
ȳimjñ = 1

2
(x̄im + x̄jñ) = 1

2
(0 + 1) = 1

2
, ∀m 6= m̃, ñ

ȳim̃jn = 1
2
(x̄im̃ + x̄jn) = 1

2
(1 + 0) = 1

2
, ∀n 6= m̃, ñ

ȳimjn = 1
2
(x̄im + x̄jn) = 1

2
(0 + 0) = 0, ∀(m,n) 6= (m̃, ñ), m 6= n.

Then, the corresponding (i, j)-term in the objective function of GKK-LP can be expressed as

fij
∑

m,n∈M,m 6=n

ȳimjn = fij

(
1 + 0 +

1

2
(M − 2) +

1

2
(M − 2)

)
= (M − 1)fij,

from which the thesis easily follows.

(b) We focus only on problem CRP3-LP, as a similar proof holds for CRP1-LP. We observe that

the objective function (27) of CRP3-LP can be written as

∑
i,j∈I,j 6=i

fij −
∑
i∈I

xi0

∑
j∈I,j 6=i

fij −
∑
i∈I

∑
m∈M

qim

hence the upper bound for its value is given by
∑

i,j∈I,j 6=i fij. Since the optimal assignment x∗ is

such that x∗i0 = 0 (see assumption (A1)) and q∗im = 0 (see assumption(A2)), for every i ∈ I and

m∈M, x∗ is also optimal for CRP3-LP, as its objective value attains the upper bound. �

Remark 2. From Proposition 1 it follows that, for instances satisfying assumptions (A1) and

(A2), on one hand a nonzero optimality gap exists between GKK and GKK-LP if M > 2, while
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GKK-LP is a tight relaxation of GKK if M = 2. On the other hand, there is no optimality gap

between CRP1/CRP3 and their linear relaxations (independent of M), while it still remains an

open issue to find a related result about CRP2.

Remark 3. From the proof of Proposition 1 it can be seen that (M − 1)
∑

i,j∈I,i6=j fij and∑
i,j∈I,i6=j fij are upper bounds for GKK and CRP1/CRP3, respectively, independent of assump-

tions (A1) and (A2).

We observe that all the test problems TS-0 satisfy the assumptions of Proposition 1. In view

of the theoretical results of Proposition 1, then, it is not a surprise that high-level computational

performance is obtained by solving CRP1 and CRP3, as every instance is actually solved at the

root node of the branch-and-bound tree by simply solving its linear relaxation. Furthermore, it can

be easily understood that GKK has the same performance as CRP3 whenever M = 2, and that

performance can only worsen as soon as the number of breaks gets larger.

Summarizing, the test set TS-0 looks not challenging at all if tackled by means of our formu-

lations, as both the theoretical and computational results show very clearly. Moreover, a natural

question arises about the extent to which the good performance of GKK–H depend on the structure

of the test examples.

To address all such issues, we have prepared a slightly different test-set to gain an insight into the

computational performance of our formulations compared against the subset-swapping heuristics

GKK–H. In particular, in preparing the new test problems we have got rid of assumption (A2)

of Proposition 1. Moreover, in order to allow the execution of GKK–H on the new examples, we

have structured the test problems such that there exist feasible solutions where every insertion is

assigned.

The main difference between the new set of examples TS-1 and TS-0 is related to the conflict-

weights generation. In fact, the conflict-weights are obtained by randomly sampling every fij from

a uniform distribution between 0 and 1, thus preventing the assumption (A2) of Proposition 1

from being satisfied. Similar to TS-0, fij is then changed to 100 with probability 5%, in order
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to represent strong conflicts arising between insertions that must be placed in different breaks.

Aiming to evaluate performance on larger examples, we have pushed the instance-size of TS-1 up

to M = 20. For simplicity of our presentation we report here on the results obtained by setting M =

4,8,12,16,20, since the computational behavior looks proportionately similar for other intermediate

values ofM as well. Once the number of breaksM is given, each instance is generated by considering

4M short insertions and M long insertions, i.e., I = 5M . Then, the random generation of conflict-

weights involves every pair of insertions, and is repeated 20 times for each value of M , returning

100 examples partitioned into 5 groups. A summary of the main features of the new test set can

be found in Table 4, where for each instance group we report the number of breaks (M), the

number of insertions (I), the range of the sum of all conflict-weights (
∑
fij), and the number of

insertion pairs that have strong conflict (# strong cfts). Of course, unlike TS-0,
∑
fij is no longer

the optimal value of the problem, i.e., the optimal value of each instance is not known in advance.

Table 4 Test sets TS-1.

TS group M I
∑

fij # strong cfts

TS-1.1 4 20 [1286.74, 2782.30] [11, 26]

TS-1.2 8 40 [6831.00, 9447.94] [61, 87]

TS-1.3 12 60 [17988.90, 21159.60] [163, 195]

TS-1.4 16 80 [31876.30, 37177.40] [289, 342]

TS-1.5 20 100 [49190.30, 57004.90] [445, 523]

We report in Table 5 a summary of the results for the test-set TS-1 obtained by solving the four

formulations CRP1, CRP2, CRP3, and GKK, adopting a CPU time limit of 60 seconds (we keep

such limit quite low aiming to avoid unfair comparison against the heuristic method). In particular,

the results are grouped in 5 rows, one for each group of examples, whose structure is the following.

For each formulation there are four columns containing statistical results, expressed in terms of

minimum-, average-, and maximum-value, returned by CPLEX at the expiration of time limit (or

possibly when optimality is reached): the first column contains the incumbent value ρ, expressed

as a percentage of the best incumbent value returned by CPLEX over CRP1, CRP2, CRP3, and
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Table 5 CRP1, CRP2, CRP3, and GKK results on test set TS-1.

CRP1 CRP2 CRP3 GKK

TS-1. ρ gap cpu cfs res ρ gap cpu cfs res ρ gap cpu cfs res ρ gap cpu cfs res
(% best) (%) (s) (%) (% best) (%) (s) (%) (% best) (%) (s) (%) (% best) (%) (s) (%)

min 100.00 0.00 2.20 100.00 99.99 0.09 60.00 100.00 100.00 0.00 8.22 100.00 99.46 0.71 60.00 100.00
1 avg 100.00 0.00 10.62 100.00 100.00 0.37 60.00 100.00 100.00 0.03 28.77 100.00 99.81 0.86 60.00 100.00

max 100.00 0.00 38.83 100.00 100.00 0.56 60.00 100.00 100.00 0.22 60.00 100.00 99.93 0.99 60.00 100.00

min 99.83 0.81 60.00 100.00 99.94 0.94 60.00 100.00 99.97 0.80 60.00 100.00 85.61 6.43 60.00 84.51
2 avg 99.90 0.86 60.00 100.00 99.99 0.97 60.00 100.00 100.00 0.90 60.00 100.00 89.52 6.87 60.00 89.42

max 99.96 0.89 60.00 100.00 100.00 0.99 60.00 100.00 100.00 0.96 60.00 100.00 94.83 7.24 60.00 96.34

min 93.14 0.99 60.00 94.05 99.91 0.97 60.00 100.00 99.99 0.92 60.00 100.00 - - - -
3 avg 95.75 1.00 60.00 96.55 99.96 0.98 60.00 100.00 100.00 0.96 60.00 100.00 - - - -

max 97.95 1.00 60.00 98.86 100.00 0.99 60.00 100.00 100.00 0.98 60.00 100.00 - - - -

min 92.76 1.00 60.00 92.21 99.65 0.99 60.00 99.67 100.00 0.98 60.00 100.00 - - - -
4 avg 94.79 1.00 60.00 94.57 99.94 0.99 60.00 99.97 100.00 0.98 60.00 100.00 - - - -

max 96.84 1.00 60.00 96.72 100.00 0.99 60.00 100.00 100.00 0.99 60.00 100.00 - - - -

min 93.31 1.00 60.00 92.80 99.46 0.99 60.00 99.40 100.00 0.99 60.00 100.00 - - - -
5 avg 95.74 1.00 60.00 95.47 99.80 1.00 60.00 99.80 100.00 0.99 60.00 100.00 - - - -

max 97.42 1.00 60.00 97.30 100.00 1.00 60.00 100.00 100.00 0.99 60.00 100.00 - - - -

GKK; the second column contains the percentage optimality gap returned by CPLEX; the third

column contains the computation time in seconds; the fourth column contains the percentage of

resolved strong conflicts (i.e., a value of 100 means that in the final solution returned by CPLEX

there are no breaks containing insertion-pairs with strong conflict).

Table 6 GKK-H results on test set TS-1, with t = 1, . . . ,4.

GKK-H (t= 1) GKK-H (t= 2) GKK-H (t= 3) GKK-H (t= 4)

TS-1. ρ cpu cfs res ρ cpu cfs res ρ cpu cfs res ρ cpu cfs res
(% best) (s) (%) (% best) (s) (%) (% best) (s) (%) (% best) (s) (%)

min 99.51 0.00 100.00 99.57 0.14 100.00 99.57 0.30 100.00 99.57 0.64 100.00
1 avg 99.69 0.05 100.00 99.76 0.22 100.00 99.77 0.43 100.00 99.77 0.74 100.00

max 99.83 0.11 100.00 99.94 0.31 100.00 99.94 0.55 100.00 99.94 0.91 100.00

min 97.51 0.39 97.56 98.37 2.33 98.51 98.37 8.34 98.51 98.37 32.14 98.51
2 avg 99.04 0.52 99.29 99.36 2.81 99.62 99.41 9.34 99.68 99.41 32.80 99.68

max 99.74 0.70 100.00 99.74 3.23 100.00 99.77 10.28 100.00 99.77 33.75 100.00

min 97.27 2.34 97.18 97.77 12.58 97.74 97.77 60.33 97.74 97.77 355.67 97.74
3 avg 98.56 2.73 98.65 98.71 14.64 98.82 98.72 63.38 98.82 98.72 362.35 98.82

max 99.35 3.02 99.49 99.35 16.02 99.49 99.35 66.64 99.49 99.35 370.17 99.49

min 98.07 7.58 98.05 98.07 43.06 98.05 98.07 229.20 98.05 98.07 1928.78 98.05
4 avg 98.42 8.51 98.43 98.54 49.00 98.56 98.54 256.76 98.56 98.54 1974.79 98.56

max 99.26 9.38 99.35 99.27 55.80 99.35 99.27 300.88 99.35 99.27 2044.03 99.35

min 97.98 18.03 97.90 98.15 108.39 98.09 98.15 632.09 98.09 98.15 7166.69 98.09
5 avg 98.47 19.96 98.43 98.55 121.25 98.53 98.55 716.64 98.53 98.55 7431.90 98.53

max 99.15 21.98 99.20 99.15 132.80 99.20 99.15 780.09 99.20 99.15 7784.56 99.20

Next, in Table 6, we report computational results obtained by running, without any time restric-

tion, the GKK–H algorithm using different values for the number of insertions, represented by t,

that are exchanged between pairs of breaks at each step. We adopt as a starting solution for GKK-H

with t= k > 1 the solution returned by GKK-H with t= k−1. The structure of the table is similar
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to Table 5, the first column containing the (minimum-, average-, maximum-) objective value ρ

returned by GKK–H as a percentage of the best incumbent value returned by our formulations.

As before, we analyze the results reported in Tables 5 and 6 in terms of solution quality and

computation time. Focusing first on the solution quality, we observe that CRP3 shows the best

performance, since it can always resolve all strong conflicts independent of the instance size, return-

ing the best objective values for almost every problem. Slightly worse performance than CRP3 is

returned by CRP2, that is anyway always better than GKK-H, for every value of t. Although for

small-size problems CRP1 has similar performance as GKK-H, it behaves worse than GKK-H for

medium- and large-size examples. We finally observe that the GKK formulation does not perform

well compared with other formulations CRP1, CRP2, CRP3 and the heuristics GKK-H. In fact,

only for the small-size group TS-1.1 the solution quality returned by the GKK formulation is some-

how comparable with CRP1, while for TS-1.2 results start to get significantly worse. Then, for

higher-size examples GKK returns no results due to either time expiration without obtaining any

feasible integer solution for TS-1.3, or even insufficient memory to run examples for TS-1.4 and

TS-1.5.

Summarizing, when allotted a time budget of 60 seconds, in terms of objective function value

our best model (CRP3) outperforms the existing heuristic (GKK-H) on 100% of the examples by

an amount ranging from 0.17% to 2.73%, while in terms of strong conflicts CRP3 resolves them all

on 100% of the examples, outperforming GKK-H on 70% of the examples by an amount ranging

from 0.51% to 2.82%.

Now, focusing on the computation time, we remark that GKK-H with t= 1 has uniformly better

performance than all formulations over the whole test set, as it could be expected, being GKK-H a

heuristic method. The results also show that it is not fruitful to run GKK-H with higher values of t.

In fact, only for examples in TS-1.2 the computation time is reasonably small, while for higher-size

examples the computation time gets larger than the time limit of 60 seconds which was used for

solving CRP1, CRP2 and CRP3. Furthermore, for those examples the solution quality does not

improve.



Giallombardo et al.: Conflict resolution in the scheduling of TV commercials
22 Article submitted to Operations Research; manuscript no. OPRE-2015-03-179.R1

In order to evaluate the role played by the computational time limit for the performance of our

formulations, we have first repeated the numerical experiments by reducing the time limit from

60 seconds down to 30 seconds and then 15 seconds, and we have obtained quite the same results

in terms of solution quality (i.e., objective function value and resolved strong conflicts). Second,

to further evaluate the performance of our best formulation, we have adopted as a computational

limit for CRP3 a different value for each group of examples in TS1.x, that is equal to the shortest

execution time of GKK-H over the 20 execution times of TS1.x. The results show that CRP3

outperforms GKK-H with t= 1 on 76% of the examples by an amount ranging from 0.09% to 2.72%

with respect to the objective function value. Moreover, CRP3 resolves 100% of strong conflicts on

45% of the examples, while GKK-H does the same on 30% of the examples.

5. Concluding remarks

The Conflict Resolution Problem arises in the allocation of commercials to TV program breaks,

and originates from the competition-avoidance requirements issued by advertisers, whose aim is to

have conflicting commercials assigned to different breaks. In fact, given a set of commercials and

a set of TV program breaks, the problem consists of assigning each commercial to at most one

break, so that a total measure of the conflicts among commercial pairs assigned to different breaks

is maximized.

We have introduced three new and efficient formulations of CRP, adopting a reduced number of

variables and constraints, based on different ways of aggregating conflict-weights between insertions.

As a new modeling feature we have adopted an artificial break, whose role is to allow representation

of assignment of some insertion to none of the regular breaks, in case this is necessary due to

time capacity limitation of breaks, or convenient in order to better exploit available time to reduce

intra-break conflicts. We have provided theoretical evidence to show why some of our formulations

should outperform one existing formulation, and we have validated the improved efficiency via an

experimental plan based on two sets of problem examples.

Possible future research on CRP involves generating effective valid inequalities in order to reduce

linear programming relaxation gaps, as well as computation times necessary to get closer to optimal
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solutions. Moreover, recalling that CRP is only a specific operational issue in the management

of TV commercial airing, it looks relevant to study how to extend our formulations to a more

complex task like the integrated assignment and scheduling of TV commercials. Another interesting

research direction is to extend our formulations for solving general max-k-cut problems and to

explore semidefinite programming relaxations.
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