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Abstract

With the increasing penetration of renewable energy into the power grid system, the volatil-

ity of real-time electricity prices increases significantly. This brings challenges for independent

power producers to provide optimal bidding strategies. The traditional approaches of only at-

tending the day-ahead market might not be profitable enough without taking advantage of real-

time price volatility. In this paper, we study the optimal bidding strategies for the independent

power producers utilizing self-scheduling strategies to participate in the real-time market con-

sidering real-time electricity price volatility, with the objective of maximizing the total expected

profit. Considering the correlations of renewable energy generation outputs among different time

periods, the correlations of real-time prices are captured in our modeling framework, in which

we explore a multistage stochastic scenario tree to formulate the price uncertainties. Accord-

ingly, the derived multistage stochastic self-scheduling unit commitment problem is transformed

as a deterministic equivalent mixed-integer linear programming formulation. To overcome the

curse of dimensionality, we develop strong valid inequalities for the derived stochastic unit com-

mitment polytope to speed up the algorithms to solve the problem. In particular, we derive

strong valid inequalities that can provide the convex hull descriptions for the two-period case

and a special class of the three-period cases with rigorous proofs provided. Furthermore, strong

valid inequalities, including facet-defining proofs, for multistage cases are proposed to further

strengthen the model. Finally, numerical experiments verify the effectiveness of our derived

strong valid inequalities by incorporating them in a branch-and-cut framework.
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1 Introduction

The current deregulated wholesale electricity markets in U.S. mostly contain day-ahead and real-

time markets for electricity trading, plus an auxiliary service market to help maintain system

reliability [1]. For the day-ahead market, the independent power producers (IPPs) and consumers

submit generation (selling) and load (buying) offers respectively to an Independent System Operator

(ISO), which clears the market within a market-clearing procedure [12] to ensure power balance.

During this procedure, locational marginal prices (LMPs) are taken as the basis of settlements [11]

such that generation is compensated and demands are charged by LMPs [30]. Similarly, for the real-

time market, the ISO takes real-time generation offers and clears the real-time market accordingly

by accommodating the load discrepancy between day-ahead and real-time markets.

An IPP can participate in the day-ahead market, real-time market, and auxiliary service market

independently or combinations of two or all three of them. Meanwhile, there are different ways to

submit offers to the ISO to participate in the electricity wholesale markets. One common approach

is through submitting a three-part offer (e.g., ERCOT and MISO) that includes start-up cost,

minimum load cost, and energy bid. For this approach, after marketing clearings (day-ahead or

real-time), the ISO notifies each IPP, whose offer is awarded, of the unit commitment status (for day-

ahead) and generation amount (for real-time) at each time period. This approach could potentially

lead to the inefficient commitment of conventional units as described in [31]. Considering this, the

wholesale electricity market also allows IPPs to submit offers in the forms of “self-commitment” or

“self-scheduling” [1]. For the self-commitment approach, IPPs decide the unit commitment and let

the ISO decide the generation amount for each time period; for the self-scheduling approach, IPPs

decide both the unit commitment and the generation amount for each time period. In practice,

depending on the physical characteristics of each generator including minimum-up/down time,

ramp rate, capacity limits, etc., offer submission strategies can be different. For instance, most

coal-fired generators have larger minimum-up/down times and more restrictive start-up ramp rates

and thus are not very flexible. It is common to submit a three-part offer to the ISO for these

types of generators. On the other hand, most gas-fired generators are more flexible to start-up

and shut-down due to their smaller minimum-up/down times and larger ramp rates. Meanwhile,

due to increasing penetration of intermittent renewable energy generation following Obama’s new

energy plan [27], unexpected outage of generators and transmissions, and fluctuating electricity

demand [29], the real-time electricity prices can be significantly volatile, which provides an option

for gas-fired generators to participate in the real-time market utilizing the self-scheduling mode
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with the expectation to earn more profit.

In this paper, we study the optimal bidding strategy for an IPP (e.g., a gas-fired generator) to

maximize its own profit by participating in the real-time market using the self-scheduling mode,

under which the market prices are purely input. With this price-based decision making, our goal

is to derive a best generation schedule to participate in the market subject to physical constraints

of the generator. This is typically defined as the price-based unit commitment (PBUC) problem in

the literature (see, e.g., [34, 20]).

Due to price uncertainty, stochastic optimization approaches have been utilized to enhance the

self-scheduling process in the last decade. For instance, two-stage stochastic self-scheduling models

have been developed in [3] and [32] by considering different market settings. In addition, a midterm

two-stage stochastic hydrothermal scheduling model using the self-scheduling mode is developed in

[39] and solved by using Monte Carlo scenario generation and reduction techniques described in

[13]. Similar to [39], a two-stage stochastic self-scheduling unit commitment problem is studied in

[21]. As compared to [3] and [32], [39] and [21] consider risk constraints that are reformulated by

using auxiliary binary variables. Recently, a two-stage stochastic programming model to obtain the

optimal bidding strategies for the day-ahead market in the Iberian Electricity Market is proposed

in [17], and a two-stage stochastic PBUC model with chance constraints is proposed in [37], for

which a sample average approximation method is introduced to solve the problem.

As compared to two-stage stochastic programming approaches, scenario-tree based multistage

stochastic programming approaches allow incorporation of multistage forecasting information with

varying accuracy, e.g., from one day to several hours ahead (see, e.g., [5], [4] and [35]). This provides

more efficient decisions because the real-time electricity price forecast becomes more accurate as the

time horizon shrinks. In addition, scenario-tree based multistage stochastic optimization approaches

allow us to model the dependencies between consecutive time periods, reflecting current practices of

dependencies between consecutive time periods of renewable energy outputs. Multistage stochastic

unit commitment (MSUC) formulations were originally proposed for the power system operators in

the 1990s [8, 36]. In these early studies, load uncertainty is considered and transmission constraints

are ignored. For instance, in [36], an MSUC is introduced to model load uncertainty and is solved by

using an augmented Lagrangian decomposition framework. Recently, an MSUC with transmission

constraints is formulated and studied in [38]. In addition, in [10], a multistage stochastic self-

scheduling model is proposed for the power producers participating in the day-ahead and auxiliary

service markets.
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For both two-stage and multistage stochastic self-scheduling unit commitment approaches men-

tioned above, an IPP needs to solve a stochastic unit commitment problem to obtain the expected

profit, which leads to two-stage and multistage stochastic integer programs. Cutting plane ap-

proaches have been proven one of the most efficient approaches to speed up the branch-and-cut

algorithms to solve the related problems [28], in particular, when a finite number of scenarios are

taken and a deterministic equivalent formulation is obtained. There has been significant research

progress on developing efficient cutting planes for two-stage stochastic integer programs. For in-

stance, an early attempt utilizing cutting planes to solve two-stage variants appears in [19], for

which an L-shaped method is proposed. In [7], lift-and-project cuts are applied to solve the deter-

ministic equivalent of 0-1 stochastic mixed integer programs with possible integer variables in the

first stage. In [2], a branch-and-bound algorithm for two-stage stochastic integer programs with

mixed-integer first-stage variables and pure integer second-stage variables is proposed. In [33], a

decomposition-based algorithm is developed for the two-stage stochastic mixed-integer linear pro-

grams (MILPs) emphasizing decomposition among the integer variables that appear in the first and

second stages. Recently, cutting plane methods have also been developed to solve the stochastic

programs in which probabilistic constraints are considered [24, 25]. The cutting planes and decom-

position based algorithms for two-stage chance-constrained stochastic programs are further studied

in [22, 40]. However, there has been only limited research on developing efficient algorithms to

solve multistage stochastic integer programs. Along this direction, an efficient heuristic approach is

proposed in [23], which combines the progressive hedging algorithm with a tabu search. A decom-

position method based Lagrangian relaxation is described in [6] and a branch-and-price method

is investigated in [26]. The value function approach is investigated in [18] to solve the multistage

stochastic capacity planning problem. For the cutting plane approaches, in [15], strong valid in-

equalities are proposed to solve multistage stochastic uncapacitated lot-sizing problems, whereas

a generalized procedure for generating cutting planes for multistage stochastic integer programs is

explored in [14]. Among the inequalities derived for the chance constrained and multistage stochas-

tic integer programs [15, 14, 25, 40], a part of them are cross-scenario inequalities, which can be

derived following mixing procedure [16].

In this paper, we propose a scenario-tree based multistage stochastic self-scheduling unit com-

mitment model for IPPs to participate in the real-time market, taking the self-scheduling mode

with the consideration of price uncertainty. We explore efficient cutting plane algorithms to solve

the corresponding large-sized deterministic equivalent formulations. Our contributions can be sum-
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marized as follows:

1. We introduced a multistage stochastic optimization model to help IPPs optimally submit an

offer to the real-time market for a gas-fired generator so as to maximize the total expected

profit, which can capture price uncertainty better than the deterministic PBUC models (cf.,

[34, 20]).

2. We derived strong valid inequalities that can describe the convex hulls for the two-period

and three-period multistage stochastic self-scheduling problems. For each case, the number

of inequalities is polynomial in terms of the number of scenarios.

3. We derived further cross-scenario strong valid inequalities for the general multistage formula-

tion, so as to strengthen the original polytope. These cross-scenario inequalities are derived

by utilizing the special physical structures of gas-fired generators, which are different from

those in the literature. The number of this family of inequalities is also polynomial in terms

of the number of scenarios.

4. Our proposed efficient cutting planes for the stochastic self-scheduling unit commitment poly-

tope can be applied for other instances in which the corresponding polytope is embedded.

For instance, the cutting planes can help speed up the branch-and-cut algorithms for the day-

ahead and look-ahead reliability unit commitment runs. Meanwhile, our study will enrich the

literature for solving multistage stochastic integer programs.

The remaining part of this paper is organized as follows. Section 2 provides the notation and

formulation that describe the multistage stochastic self-scheduling problem. Then, in Sections 3

and 4, we derive the convex hull descriptions for the two-period case and a special case of the

three-period problems, respectively. Furthermore, in Section 5, several families of cross-scenario

facet-defining inequalities are derived. After that, in Section 6, we perform computational studies

that verify the effectiveness of the proposed strong valid inequalities. Finally, in Section 7, we

summarize our research.

2 Notation and Formulation

We assume electricity prices in the real-time market follow a discrete-time stochastic process evolv-

ing in a finite probability space. To describe the evolving process, a scenario tree T = (V, E) with

T time periods is utilized to describe the possible realizations of the uncertain electricity prices,
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as shown in Figure 1. Each node i ∈ V at time t of the tree provides the state of the system that

can be distinguished by information available up to time t (corresponding to a scenario realization

from time 1 to time t). Accordingly, corresponding to each node i ∈ V, we let t(i) be its time

period, P(i) be the set of nodes along the path from the root node (denoted as node 0) to node

i, and pi be the probability associated with the state represented by node i. In addition, each

node i in the scenario tree, except the root node, has a unique parent i−, and could have multiple

children, denoted as set C(i). We let V(i) represent the set of all descendants of node i, including

itself. Finally, we let Hr(i) =
{
k ∈ V(i) : 0 ≤ t(k) − t(i) ≤ r − 1

}
be the set of nodes used to

describe minimum-up and minimum-down time constraints (e.g., in Figure 1, r = t(j)− t(i)). The

decisions corresponding to each node i are assumed to be made after observing the realizations of

the problem parameters along the path from the root node to this node i, but are nonanticipative

with respect to future realizations.

0 i

j

k V(k)

C(j)

Hr(i)

Time t(i) Time t(j)Time 1 Time T

Figure 1: Multistage stochastic scenario tree

For the multistage stochastic self-scheduling problem, following the notation described above,

we let qi denote the electricity price at node i. Meanwhile, we should have the physical constraints

for the gas-fired generator to be satisfied. The physical characteristics can be described as follows:

we let L (`) represent its minimum-up (down) time, C (C) denote its upper (lower) generation

limit if the generator is online, V + (V −) denote its ramp-up (down) rate limit (indicating the

maximum generation amount increment (decrement) between two consecutive time periods when

the generator is online), Ū (U) denote its start-up (shut-down) cost, and a nondecreasing convex
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function f(·) denote the fuel cost as a function of its electricity generation amount.

The decision variables of this problem include the “turn on” and “turn off” decisions, the

“online” and “offline” statuses, and the generation amounts at different time periods corresponding

to each node in the scenario tree. Accordingly, for each node i, we let binary variables (yi, ui, vi)

denote the unit commitment decisions: (1) yi represents if the generator is online or offline at node

i (i.e., yi = 1 if yes; yi = 0 otherwise), (2) ui represents if the generator starts up or not at node i

(i.e., ui = 1 if yes; ui = 0 otherwise), and (3) vi represents if the generator shuts down or not at

node i (i.e., vi = 1 if yes; vi = 0 otherwise). We also let continuous variable xi denote the electricity

generation amount at node i.

Based on the notation described above, the formulation for this problem can be described as

follows:

max
∑
i∈V

pi

(
qixi −

(
Ūui + Uvi + f(xi)

))
(1a)

s.t. yi − yi− ≤ yk, ∀i ∈ V \ {0}, ∀k ∈ HL(i), (1b)

yi− − yi ≤ 1− yk, ∀i ∈ V \ {0}, ∀k ∈ H`(i), (1c)

yi − yi− ≤ ui, ∀i ∈ V \ {0}, (1d)

vi = yi− − yi + ui, ∀i ∈ V \ {0}, (1e)

Cyi ≤ xi ≤ Cyi, ∀i ∈ V, (1f)

xi − xi− ≤ V +yi− + C(1− yi−), ∀i ∈ V \ {0}, (1g)

xi− − xi ≤ V −yi + C(1− yi), ∀i ∈ V \ {0}, (1h)

yi ∈ {0, 1}, ∀i ∈ V; ui, vi ∈ {0, 1}, ∀i ∈ V \ {0}. (1i)

In the above formulation, the objective is to maximize the expected total profit, which is equal

to the revenue minus the total cost, while the total cost includes start-up, shut-down, and fuel

costs. Constraints (1b) represent the minimum-up time for the generator. That is, if the generator

starts up at node i, then it should be kept online for all the nodes in HL(i). Similarly, constraints

(1c) represent the minimum-down time limits. If the generator shuts down at node i, then it

should be kept offline for all the nodes in H`(i). Constraints (1d) describe the turn on decision and

constraints (1e) define the relationship among u, v, and y. Constraints (1f) describe the upper and

lower bounds of electricity generation amount if the generator is online at node i. Constraints (1g)

and (1h) describe the ramp-up rate and ramp-down rate limits, respectively. Typically the fuel

cost function can be approximated by a piecewise linear function [9]. With this approximation, the
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deterministic equivalent formulation above can be reformulated as an MILP formulation.

Note here that v can be expressed by y and u, so we replace vi by yi− − yi + ui in the objective

function and remove v variables and constraints (1e). Moreover, we can observe that constraints

(1b)-(1d) allow ui = 1 when yi = yi− , or, yi− = 1 and yi = 0. To eliminate these cases and keep

consistent with the feasible region of the original problem, we add the following constraints into

the formulation:

ui ≤ min{yi, 1− yi−}, ∀i ∈ V \ {0}. (2)

Thus, the final formulation for the problem, defined as MSS, can be expressed as

max

{∑
i∈V

pi(qixi − (Ūui + U(yi− − yi + ui) + f(xi))) : (x, y, u) ∈ P

}
,

where P = {(x, y, u) ∈ R|V| × B|V| × B(|V|−1) : (1b) − (1d), (1f) − (1h), and (2)}. In the following

sections, we derive strong valid inequalities for this polyhedral structure.

3 Strengthening the Two-period Formulation

We start with deriving strong formulations for the two-period case of MSS. That is, we consider

a case in which there is only one root node with several scenarios in the second period, each with

a corresponding given probability. The corresponding figure is shown as below, which is a special

case of the general structure as shown in Figure 1.

i−

1

i

n

Period 1 Period 2

Figure 2: Two-period scenario tree

For Figure 2, we let N = {1, 2, · · · , n} represent the set of scenario nodes in the second period,

and they share the same parent node i− = 0 (∀i ∈ N ). Since there are only two periods, without

loss of generality, we assume L = ` = 1 and accordingly, the minimum-up/down time constraints

(1b) and (1c) can be omitted here. Thus, the corresponding MSS can be described as follows:

P2 :=
{

(x, y, u) ∈ Rn+1
+ × Bn+1 × Bn : yi − yi− − ui ≤ 0, ∀i ∈ N , (3a)

ui − yi ≤ 0, ∀i ∈ N , (3b)
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ui + yi− ≤ 1, ∀i ∈ N , (3c)

Cyi ≤ xi ≤ Cyi, ∀i ∈ N ∪ {i−}, (3d)

xi − xi− ≤ V +yi− + C(1− yi−), ∀i ∈ N , (3e)

xi− − xi ≤ V −yi + C(1− yi), ∀i ∈ N
}
. (3f)

Note here that in P2, there is no start-up decision (i.e., u variable) in the first period for the

root node. Thus, the derived inequalities can be applied for each node in the scenario tree (e.g., as

shown in Figure 1) and can be applied recursively. For notation brevity, we denote the convex hull

of the set of feasible points in P2 as conv(P2). We let ε be an arbitrarily small positive real number

and [a, b]Z represent [a, b]∩Z for integers a and b (i.e., {a, a+ 1, · · · , b}). If b < a, then [a, b]Z = ∅.

3.1 Short Commitment Interval Case

We first study the case in which C − C − V + − V − > 0, which corresponds to the industrial

practices when the time interval of decision making is smaller than an hour (e.g., ERCOT real-time

electricity prices are settled every 15 minutes1, which can be used as the length of each time unit

for the corresponding self-scheduling unit commitment). Observing the fact that start-up decisions

in the second period affect the upper limit of the difference between generation amounts in two

nodes, we derive the following proposition.

Proposition 1 For each pair of nodes (i, j) ∈ N such that i 6= j, the following inequalities

xi − xi− ≤ (C + V +)yi − Cyi− + (C − C − V +)ui, (4)

xi− − xi ≤ Cyi− − (C − V −)yi + (C − C − V −)ui, (5)

xi − xj ≤ (C + V + + V −)yi − (C − V + − V −)yj + (C − C − V + − V −)(yi− + ui + uj), (6)

are valid for conv(P2).

Proof: The detailed proofs are shown in E-companion A.1.

Now, utilizing inequalities (4), (5), and (6), we introduce the following linear programming

formulation of conv(P2) through adding trivial inequalities:

Q2 :=
{

(x, y, u) ∈ Rn+1 × Rn+1 × Rn :

(3a), (3b), (3c), (3d), (4), (5), (6),

1ERCOT real-time market description available at http://www.ercot.com/mktinfo/rtm.
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ui ≥ 0, ∀i ∈ N
}
, (7)

for which we notice that xi ≥ 0 is guaranteed by (3b), (3d), and (7). Then we show that Q2

describes the convex hull of P2. That is, Q2 = conv(P2). We first provide the following preliminary

results.

Proposition 2 Q2 is full-dimensional.

Proof: The detailed proofs are shown in E-companion A.2.

Proposition 3 Each inequality in Q2 is facet-defining for conv(P2).

Proof: The detailed proofs are shown in E-companion A.3.

Proposition 4 The inequalities in Q2 dominate those in P2.

Proof: The detailed proofs are shown in E-companion A.4.

In the following part, we prove that all the extreme points of Q2 are integral in y and u. To

show this, we first provide the following Lemma.

Lemma 1 For the following two-period MSS

z∗ = max

n∑
i=0

aixi +

n∑
i=0

biyi +

n∑
i=1

ciui (8)

s.t. (x, y, u) ∈ P2,

where (a, b, c) ∈ R3n+2, there exists at least one optimal solution satisfying one of the following five

conditions:

(1) x0 = 0, xi ∈ {0, C, C} for each i = 1, · · · , n, and binary variables y and u are uniquely

decided following the constraints in P2;

(2) x0 = C, xi ∈ {0, C, C +V +} for each i = 1, · · · , n, and binary variables y and u are uniquely

decided following the constraints in P2;

(3) x0 = C + V −, xi ∈ {0, C, C + V + + V −} for each i = 1, · · · , n, among which there must

exist at least one scenario node k such that xk = C, and binary variables y and u are uniquely

decided following the constraints in P2;
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(4) x0 = C − V +, xi ∈ {0, C, C − V + − V −} for each i = 1, · · · , n, among which there must

exist at least one scenario node k such that xk = C, and binary variables y and u are uniquely

decided following the constraints in P2;

(5) x0 = C, xi ∈ {0, C −V −, C} for each i = 1, · · · , n, and binary variables y and u are uniquely

decided following the constraints in P2.

Proof: The detailed proofs are shown in E-companion A.5.

Proposition 5 All the extreme points of Q2 are integral in y and u.

Proof: The detailed proofs are shown in E-companion A.6.

Theorem 1 Q2 = conv(P2).

Proof: First, we have both P2 and Q2 bounded from their formulation representations. Since all

the inequalities in Q2 are valid and facet-defining for conv(P2) based on Propositions 1 and 3, we

have Q2 ⊇ conv(P2). Meanwhile, we have that the inequalities in Q2 dominate those in P2 based

on Proposition 4 and any extreme point in Q2 is binary in y and u based on Proposition 5. Thus

Q2 = conv(P2).

Example 1 Considering a two-period case as shown in Figure 2, in which there are two nodes

in the second period, with variables (x0, y0) corresponding to the root node and (x1, y1, u1) and

(x2, y2, u2) corresponding to two scenario nodes respectively, plus the physical characteristics of the

generator C = 10, C = 2, V + = 3, V − = 4, and L = ` = 1, we have

conv(P2) = Q2 :=
{

(x, y, u) ∈ R3 × R3 × R2 :

y0 − y1 + u1 ≥ 0; y0 − y2 + u2 ≥ 0; y1 − u1 ≥ 0; y2 − u2 ≥ 0;

y0 + u1 ≤ 1; y0 + u2 ≤ 1; u1 ≥ 0; u2 ≥ 0; 2yi ≤ xi ≤ 10yi, i = 0, 1, 2;

xi − x0 ≤ 5yi − 2y0 + 5ui, i = 1, 2; x0 − xi ≤ 10yi − 6y0 + 4ui, i = 1, 2;

x1 − x2 ≤ y0 + 9y1 − 3y2 + u1 + u2; x2 − x1 ≤ y0 + 9y2 − 3y1 + u1 + u2

}
.

3.2 Hourly Commitment Interval Case

Our study can be extended to the cases in which C − C − V + − V − > 0 does not hold, which

corresponds to some hourly commitment interval cases. We describe the convex hull representations

corresponding to different parameter settings as follows:
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• For a two-period MSS with C − C − V + − V − ≤ 0, C − C − V + > 0, C − C − V − > 0,

the corresponding convex hull can be described as Q1
2 = {(x, y, u) ∈ Rn+1 × Rn+1 × Rn :

(3a)− (3d), (4), (5), (7)}.

• For a two-period MSS with C −C − V + ≤ 0 and C −C − V − > 0, the corresponding convex

hull can be described as Q2
2 = {(x, y, u) ∈ Rn+1 × Rn+1 × Rn : (3a)− (3d), (5), (7)}.

• For a two-period MSS with C −C − V + > 0 and C −C − V − ≤ 0, the corresponding convex

hull can be described as Q3
2 = {(x, y, u) ∈ Rn+1 × Rn+1 × Rn : (3a)− (3d), (4), (7)}.

• For a two-period MSS with C −C − V + ≤ 0 and C −C − V − ≤ 0, the corresponding convex

hull can be described as Q4
2 = {(x, y, u) ∈ Rn+1 × Rn+1 × Rn : (3a)− (3d), (7)}.

The proofs are similar to those for the case in which C −C −V +−V − > 0 and thus omitted here.

4 Strengthening the Three-period Formulations

We extend our study to the three-period case in this section. We derive the convex hull results for

a special case and strong valid inequalities for the general three-period problems.

4.1 A Special Structure

We first consider a special structure in which the uncertainty is only explored in the third period.

Note here that the inequalities derived for this substructure can also be applied for the whole

problem. As shown in Figure 3, the problem parameters in the first two periods are realized.

Meanwhile, several possible realizations of uncertain parameters, denoted as set N = {1, 2, · · · , n},

in the third period are explored. In addition, we let i−0 = i, i−1 = i−, and i−k be the unique parent

node of i−k−1, for k ≥ 2. In other words, we define i−k be the k-fold parent of node i. To illustrate

the main results and for notation brevity, we assume the ramp-up and ramp-down rates are the

same (i.e., V + = V − = V ) for three and later on multi-period cases. The derived results can be

easily extended to the general cases in which V + 6= V −.

4.1.1 Short Commitment Interval Case

For this special case, we first study the case in which C − C − 2V > 0. We consider different

combinations of L and `, including (1) L = ` = 1, (2) L = 2, ` = 1, (3) L = 1, ` = 2, and (4)

L = ` = 2. For L = ` = 1, the mathematical formulation of MSS can be described as follows:

P 1
3 :=

{
(x, y, u) ∈ Rn+2

+ × Bn+2 × Bn+1 :
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i−2 i−

1

i

n

t(i−2 ) t(i−) t(i), i ∈ N

Figure 3: Three-period scenario tree: a special case

yi − yi− − ui ≤ 0, ∀i ∈ N ∪ {i−}, (9a)

ui − yi ≤ 0, ∀i ∈ N ∪ {i−}, (9b)

ui + yi− ≤ 1, ∀i ∈ N ∪ {i−}, (9c)

Cyi ≤ xi ≤ Cyi, ∀i ∈ N ∪ {i−2 , i
−}, (9d)

xi − xi− ≤ V yi− + C(1− yi−), ∀i ∈ N ∪ {i−}, (9e)

xi− − xi ≤ V yi + C(1− yi), ∀i ∈ N ∪ {i−}
}
. (9f)

We can observe that P 1
3 possesses the similar polyhedral structure as P2 in Section 3. Accord-

ingly, the linear description of conv(P 1
3 ), i.e., Q1

3, can be described in a similar way. We describe

the convex hull representation Q1
3 as follows.

Theorem 2 For a three-period MSS as shown in Figure 3 in which L = ` = 1, the corresponding

convex hull conv(P 1
3 ) can be described as follows:

Q1
3 :=

{
(x, y, u) ∈ Rn+2 × Rn+2 × Rn+1 : (9a), (9b), (9c), (9d),

ui ≥ 0, ∀i ∈ N ∪ {i−}, (10a)

xi − xi− ≤ (C + V )yi − Cyi− + (C − C − V )ui, ∀i ∈ N ∪ {i−}, (10b)

xi− − xi ≤ Cyi− − (C − V )yi + (C − C − V )ui, ∀i ∈ N ∪ {i−}, (10c)

xi − xi−2 ≤ (C + 2V )yi − Cyi−2 + (C − C − 2V )(ui− + ui), ∀i ∈ N , (10d)

xi−2
− xi ≤ Cyi−2 − (C − 2V )yi + (C − C − 2V )(ui− + ui), ∀i ∈ N , (10e)

xi − xj ≤ (C + 2V )yi − (C − 2V )yj + (C − C − 2V )(yi− + ui + uj), ∀i, j ∈ N , j 6= i
}
.(10f)

Proof: The proofs are similar to those in Section 3 for Theorem 1 and thus omitted here.

Example 2 Consider a three-period MSS as shown in Figure 3 with two scenario nodes in the third

period. Let variables (x0, y0) correspond to the root node i−2 , (x1, y1, u1) correspond to node i−, and
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(x2, y2, u2) and (x3, y3, u3) correspond to two scenario nodes i and j respectively. The generator

data are C = 9, C = 2, V + = V − = V = 3, and L = ` = 1. Then we have

conv(P 1
3 ) = Q1

3 :=
{

(x, y, u) ∈ R4 × R4 × R3 : y1 − u1 ≥ 0; y2 − u2 ≥ 0; y3 − u3 ≥ 0;

y0 − y1 + u1 ≥ 0; y1 − y2 + u2 ≥ 0; y1 − y3 + u3 ≥ 0;

y0 + u1 ≤ 1; y1 + u2 ≤ 1; y1 + u3 ≤ 1;

2yi ≤ xi ≤ 9yi, i = 0, 1, 2, 3; ui ≥ 0, i = 1, 2, 3;

x1 − x0 ≤ 5y1 − 2y0 + 4u1; xi − x1 ≤ 5yi − 2y1 + 4ui, i = 2, 3;

x0 − x1 ≤ 9y0 − 6y1 + 4u1; x1 − xi ≤ 9y1 − 6yi + 4ui, i = 2, 3;

xi − x0 ≤ 8yi − 2y0 + u1 + ui, i = 2, 3; x0 − xi ≤ 9y0 − 3yi + u1 + ui, i = 2, 3;

x2 − x3 ≤ y0 + 8y2 − 3y3 + u2 + u3; x3 − x2 ≤ y0 + 8y3 − 3y2 + u2 + u3

}
.

Remark 1 Note here that P 1
3 , in which L = ` = 1, is equivalent to the problem without minimum-

up/down time constraints. It then can be considered as a relaxation for the cases in which the

minimum-up/down times are larger than 1. Thus, the derived inequalities in Q1
3 are valid for the

cases in which the minimum-up/down times are larger than 1. This claim also holds for the general

multi-period cases.

Now we extend our study to three other combinations: (1) L = ` = 2, (2) L = 2, ` = 1, and

(3) L = 1, ` = 2, under the setting of Figure 3. We start with L = ` = 2, and the corresponding

mathematical formulation for the original polytope can be described as follows:

P 2
3 :=

{
(x, y, u) ∈ Rn+2

+ × Bn+2 × Bn+1 :

ui− + ui − yi ≤ 0, ∀i ∈ N , (11a)

yi−2
+ ui− + ui ≤ 1, ∀i ∈ N , (11b)

yi − yi− − ui ≤ 0, ∀i ∈ N ∪ {i−}, (11c)

Cyi ≤ xi ≤ Cyi, ∀i ∈ N ∪ {i−2 , i
−}, (11d)

xi − xi− ≤ V yi− + C(1− yi−), ∀i ∈ N ∪ {i−}, (11e)

xi− − xi ≤ V yi + C(1− yi), ∀i ∈ N ∪ {i−}
}
. (11f)

Proposition 6 For a three-period MSS as shown in Figure 3 in which L = ` = 2, the following

inequalities

(10a), (10b), (10c), (10d), (10e), (10f),
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xi − xj ≤ Cyi − Cyj − (C − C − 2V )ui− , ∀i, j ∈ N , j 6= i, (12)

xi−2
− xi− + xi ≥ Cyi−2 − (C + V )yi− + Cyi, ∀i ∈ N , (13)

xi−2
− xi− + xi ≤ Cyi−2 − (C − V )yi− + Cyi, ∀i ∈ N , (14)

xi−2
+ xi − xj ≥ Cyi−2 + Cyi − (C + 2V )yj − (C − C − 2V )uj , ∀i, j ∈ N , j 6= i, (15)

xi−2
+ xi − xj ≤ Cyi−2 + Cyi − (C − 2V )yj + (C − C − 2V )uj , ∀i, j ∈ N , j 6= i, (16)

xi−2
− xi− + xi − xj ≥ Cyi−2 − (C − V )yi− + (C − 2V )yi − (C + 2V )yj

− (C − C − 2V )(ui− + ui + uj), ∀i, j ∈ N , j 6= i, (17)

xi−2
− xi− + xi − xj ≤ Cyi−2 − (C + V )yi− + (C + 2V )yi − (C − 2V )yj

+ (C − C − 2V )(ui− + ui + uj), ∀i, j ∈ N , j 6= i, (18)

are valid and facet-defining for conv(P 2
3 ).

Proof: The detailed proofs are shown in E-companion B.1.

Based on the above analysis, we can further obtain the convex hull description of P 2
3 , i.e., Q2

3,

as follows.

Theorem 3 For a three-period MSS as shown in Figure 3 in which L = ` = 2, the corresponding

convex hull conv(P 2
3 ) can be described as follows:

Q2
3 :=

{
(x, y, u) ∈ Rn+2 × Rn+2 × Rn+1 :

(10a)− (10f), (11a)− (11d), (12)− (18)
}
.

Proof: The proofs are similar to those in Section 3 for Theorem 1 and thus omitted here.

Example 3 Consider the same case in Example 2 except L = ` = 2. In the following, we only

illustrate inequalities (11a), (11b), and (12) - (18) in Q2
3 because other inequalities are the same as

those described in Example 2.

u1 + ui ≤ yi, i = 2, 3; y0 + u1 + ui ≤ 1, i = 2, 3;

xi − xj ≤ 9yi − 2yj − u1, i, j = 2, 3, i 6= j;

x0 − x1 + xi ≥ 2y0 − 5y1 + 2yi, i = 2, 3;

x0 − x1 + xi ≤ 9y0 − 6y1 + 9yi, i = 2, 3;

x0 + xi − xj ≥ 2y0 + 2yi − 8yj − uj , i, j = 2, 3, i 6= j;

14



x0 + xi − xj ≤ 9y0 + 9yi − 3yj + uj , i, j = 2, 3, i 6= j;

x0 − x1 + xi − xj ≥ 2y0 − 6y1 + 3yi − 8yj − u1 − ui − uj , i, j = 2, 3, i 6= j;

x0 − x1 + xi − xj ≤ 9y0 − 5y1 + 8yi − 3yj + u1 + ui + uj , i, j = 2, 3, i 6= j.

We can follow the similar procedure to derive the convex hull results for the rest two combi-

nations: L = 2, ` = 1 and L = 1, ` = 2, as described below. The proofs are similar to those in

Section 3 for Theorem 1 and thus omitted here.

Theorem 4 For a three-period MSS as shown in Figure 3 in which L = 1, ` = 2, the corresponding

convex hull conv(P 1,2
3 ) can be described as follows:

Q1,2
3 :=

{
(x, y, u) ∈ Rn+2 × Rn+2 × Rn+1 :

(9a)− (9b), (11b), (9d), (10a)− (10f)
}
.

Theorem 5 For a three-period MSS as shown in Figure 3 in which L = 2, ` = 1, the corresponding

convex hull conv(P 2,1
3 ) can be described as follows:

Q2,1
3 :=

{
(x, y, u) ∈ Rn+2 × Rn+2 × Rn+1 :

(10a)− (10f), (11a), (9c), (11c)− (11d), (12)− (18)
}
.

Remark 2 We can observe that the convex hull descriptions of Theorems 2 and 4 are similar, with

one inequality difference by replacing (9c) with (11b). It similarly happens between Theorems 3

and 5. This indicates that increasing ` does not increase the number of inequalities to describe the

convex hull, while increasing L increases the number of inequalities required to define the convex

hull dramatically, e.g., see comparison between Theorems 3 and 4.

4.1.2 Hourly Commitment Interval Case

Our study can be simlarly extended to the cases in which C − C − 2V > 0 does not hold. For the

cases in which C −C − 2V ≤ 0 and C −C − V > 0, we can obtain the convex hull representations

corresponding to different values of L and ` as follows:

• For L = ` = 1, the corresponding convex hull can be described as Q̂1
3 = {(x, y, u) ∈ Rn+2 ×

Rn+2 × Rn+1 : (9a)− (9d), (10a)− (10c)}.

• For L = 1 and ` = 2, the corresponding convex hull can be described as Q̂1,2
3 = {(x, y, u) ∈

Rn+2 × Rn+2 × Rn+1 : (9a)− (9b), (11b), (9d), (10a)− (10c)}.
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• For L = ` = 2, the corresponding convex hull can be described as Q̂2
3 = {(x, y, u) ∈ Rn+2 ×

Rn+2 × Rn+1 : (10a)− (10c), (11a)− (11d), (13)− (14)}.

• For L = 2 and ` = 1, the corresponding convex hull can be described as Q̂2,1
3 = {(x, y, u) ∈

Rn+2 × Rn+2 × Rn+1 : (10a)− (10c), (11a), (9c), (11c)− (11d), (13)− (14)}.

For the cases in which C−C−V ≤ 0, we can obtain the convex hull representations corresponding

to different values of L and ` as follows:

• For L = ` = 1, the corresponding convex hull can be described as Q̄1
3 = {(x, y, u) ∈ Rn+2 ×

Rn+2 × Rn+1 : (9a)− (9d), (10a)}.

• For L = 1 and ` = 2, the corresponding convex hull can be described as Q̄1,2
3 = {(x, y, u) ∈

Rn+2 × Rn+2 × Rn+1 : (9a)− (9b), (11b), (9d), (10a)}.

• For L = ` = 2, the corresponding convex hull can be described as Q̄2
3 = {(x, y, u) ∈ Rn+2 ×

Rn+2 × Rn+1 : (10a), (11a)− (11d)}.

• For L = 2 and ` = 1, the corresponding convex hull can be described as Q̄2,1
3 = {(x, y, u) ∈

Rn+2 × Rn+2 × Rn+1 : (10a), (11a), (9c), (11c)− (11d)}.

The proofs are similar to those in Section 3 for Theorem 1 and thus omitted here.

Remark 3 From the representations of the convex hulls described so far, we can observe that there

are no inequalities containing variables corresponding to three or more scenario nodes. It follows

that the number of inequalities in the convex hull is a polynomial function (e.g., O(n2)) of the

number of scenario nodes.

4.2 The General Structure

Now, we consider a general three-period MSS problem, as shown in Figure 4. That being said,

several scenarios are explored in the second period to form the second stage and each node in the

second stage is followed by several scenarios to form the third stage. For instance, in Figure 4,

node i in the third stage (the third period for this case) has a unique parent i− in the second stage

and share a two-fold parent i−2 (i.e., the root node) with another node in the same third period,

node j, whose parent node is node j−. Without loss of generality, in this research, we assume the

number of branches for each non-leaf node is fixed at n. Then, there are 1 + n+ n2 nodes in total

in Figure 4, and we focus on the polyhedral results of the corresponding set P3 := {(x, y, u) ∈

Rn2+n+1 × Bn2+n+1 × Bn2+n : (1b)− (1d), (1f)− (1h), and (2)}.
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Figure 4: A generic three-period scenario tree

First, we consider the relationship among the generation amounts for three nodes linked through

a cross-scenario path. We define a cross-scenario path as a path between two non-root nodes not

belonging to the same scenario (i.e., these two non-root nodes are not in the same path from the

root node to any non-root node). For instance, nodes i, i−2 , and j− in Figure 4 are linked through

the cross-scenario path from node i to node j− by passing through the root node i−2 . The electricity

generation amounts at these three nodes, i.e., xi, xi−2
and xj− , are correlated through ramp rate

constraints (1g) - (1h). Through exploring the effect of unit commitment and start-up status of

each node on this cross-scenario path, we can explore the relationships among xi, xi−2
and xj− , and

two families of facet-defining inequalities (19) and (20) are derived as follows.

Proposition 7 For a general three-period MSS with any pair of nodes (i, j) ∈ V such that t(i) =

t(j) = T , i− 6= j−, and C − C − 2V > 0, the following inequalities

xi − xi−2 + xj− ≤ (C + 2V )yi − Cyi−2 + (C − C − 2V )(ui− + ui) + (C − V )yj− + V uj− , (19)

xi−2
− xi − xj− ≤ Cyi−2 − (C − 2V )yi + (C − C − 2V )(ui− + ui)− (C + V )yj− + V uj− , (20)

are valid and facet-defining for conv(P3).

Proof: The detailed proofs are shown in E-companion B.2.

Next, we investigate the difference of electricity generation amounts at any two nodes (e.g., i

and j− in Figure 4) that are not on the same path (scenario), but instead, these two nodes are

linked through a cross-scenario path from node i to node j− by passing through the root node i−2 .
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Proposition 8 For a general three-period MSS with any pair of nodes (i, j) ∈ V such that t(i) =

t(j) = T , i− 6= j−, and C − C − 3V > 0, the following inequalities

xi − xj− ≤ (C + 3V )yi − (C − 3V )yj− + (C − C − 3V )(yi−2
+ ui− + ui + uj−), (21)

are valid and facet-defining for conv(P3).

Proof: The detailed proofs are shown in E-companion B.3.
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(x0, y0)

(x1, y1, u1)

(x2, y2, u2)

(x3, y3, u3)

(x4, y4, u4)

(x5, y5, u5)

(x6, y6, u6)

Figure 5: Example 4

Example 4 Consider a three-period MSS in which each node contains two branches as shown in

Figure 5. The generator data are C = 12, C = 2, and V + = V − = V = 3. Then the following

inequalities in the forms of (19) - (21) are valid and facet-defining:

xi − x0 + x2 ≤ 8yi − 2y0 + 9y2 + 4u1 + 3u2 + 4ui, i = 3, 4;

xj − x0 + x1 ≤ 8yj − 2y0 + 9y1 + 3u1 + 4u2 + 4uj , j = 5, 6;

x0 − xi − x2 ≤ 12y0 − 6yi − 5y2 + 4u1 + 3u2 + 4ui, i = 3, 4;

x0 − xj − x1 ≤ 12y0 − 6yj − 5y1 + 3u1 + 4u2 + 4uj , j = 5, 6;

xi − x2 ≤ y0 + 11yi − 3y2 + u1 + u2 + ui, i = 3, 4;

x2 − xi ≤ y0 + 11y2 − 3yi + u1 + u2 + ui, i = 3, 4;

xj − x1 ≤ y0 + 11yj − 3y1 + u1 + u2 + uj , j = 5, 6;

x1 − xj ≤ y0 + 11y1 − 3yj + u1 + u2 + uj , j = 5, 6.

Remark 4 In practice, the two-period and three-period cases explored in the previous and current

sections can be utilized by IPPs as recourses when they submit self-scheduling offers for the real-time
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market. For instance, when an IPP submits a generation amount for a particular time period in

real time, the two-period and three-period scenario trees generated based on the price forecast can

be served as recourses to help make the real-time decision. This procedure can be applied recursively

for making decisions for each time period.

5 Strengthening the Multi-period Formulations

As described earlier, the inequalities derived in Sections 3 and 4 can be applied to solve the general

multi-period problems, since we do not have a start-up decision variable for the root node. In this

section, we further strengthen the general MSS formulation by exploring the inequalities covering

multi-period nodes, which are additional to those described in Sections 3 and 4. We first consider

the flower-structure scenario tree setting in Figure 6 in which branches in the last period are

considered. We let N = {1, · · · , n} denote the set of scenario nodes, and these nodes share the

ancestors until to the root node of the whole scenario tree as shown in Figure 1. Therefore, we

consider the original formulation as follows:

P 0
T =

{
(x, y, u) ∈ Rn+T−1

+ × Bn+T−1 × Bn+T−2 : (1b)− (1d), (1f)− (1h), and (2)
}
.

For this setting, we derive strong valid inequalities containing two and three continuous variables

in the same and different paths (scenarios), respectively.

j−T−1

= 0
j−k j−

1

j

n

t(j−T−1) = 1 t(j−k ) = T − k t(j−) = T − 1 t(j) = T

Figure 6: Multi-period scenario tree (T ≥ 3)

First, we consider deriving strong valid inequalities to bound the difference of electricity gen-

eration amounts for any pair of two nodes in the tree. We consider the cases in which these two

nodes are on the same path (scenario) and difference paths, respectively. For the case in which

these two nodes are on the same path (scenario), e.g., i−k and i for any i ∈ N , the difference is

bounded from above and below by the combination of generation bound constraints (1f) and ramp

rate constraints (1g) - (1h). Through additionally considering the start-up status of each node on
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this path between these two nodes, i.e., ui−k−1
, · · · , ui, we derive the explicit formulas of upper and

lower bounds of xi−k
−xi in inequalities (22) and (23), respectively, both of which are facet-defining

for conv(P 0
T ).

Proposition 9 For each i ∈ N ∪{j−, · · · , j−T−1−k}, when C −C − kV > 0 and k ∈ [1, T − 1]Z, the

inequalities

xi−k
− xi ≤ Cyi−k − (C − kV )yi + (C − C − kV )

k−1∑
r=0

ui−r (22)

xi−k
− xi ≥ Cyi−k − (C + kV )yi − (C − C − kV )

k−1∑
r=0

ui−r (23)

are valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.1.

For the case in which these two nodes, e.g., nodes i and j, are on different paths (scenarios),

the relationship between electricity generation amounts at these two nodes is linked through their

common ancestors. Through investigating the start-up statuses of their ancestors and considering

the minimum-up time restrictions, the difference of electricity generation amounts at these two

nodes, i.e., xi− xj , can be bounded from above as shown in inequality (24), which is facet-defining

for conv(P 0
T ).

Proposition 10 For each pair i, j ∈ N and i 6= j, when L ≥ 2 and C −C − 2V > 0, the following

inequality

xi − xj ≤ Cyi − Cyj − (C − C − 2V )

L−1∑
k=1

ui−k
(24)

is valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.2.

Note here that L ≥ 2 ensures that xi and xj are correlated if there is a start-up in node i−. For

instance, if there is a start-up in node i−, then all three nodes i, j, and i− are online due to this

L ≥ 2 minimum-up time restriction, and accordingly xi− xj is no larger than 2V , which is smaller

than C − C.

Next, we consider deriving strong valid inequalities to explore the relationships of generation

amounts among three nodes in the tree. Similarly, we discuss the cases in which the nodes are on
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the same path (scenario) and difference paths, respectively. For the case in which these three nodes

are on the same path (scenario), e.g., i−k+1, i−k , and i for any i ∈ N , from ramp rate constraints (1g)

- (1h) and generation bound constraints (1f), we have the upper (lower) bounds of xi−k+1
− xi−k and

xi respectively. After considering the effect of start-up status of i−k , i.e., ui−k
, we can get a tighter

upper (resp. lower) bound for xi−k+1
− xi−k + xi in the following inequality (25) (resp. (26)) instead

of simply summing up the upper (resp. lower) bounds of xi−k+1
− xi−k and xi from (1h) (resp. (1g))

and (1f). That being said, (25) is tighter than xi−k+1
− xi−k + xi ≤ V yi−k

+ C(1 − yi−k ) + Cyi since

V yi−k
+ C(1 − yi−k ) + Cyi − RHS of (25) = C − Cyi−k+1

− (k − 1)V ui−k
≥ C(1 − yi−k+1

− ui−k ) ≥ 0,

where the first inequality holds because C > (k − 1)V from Proposition 11 and u is nonnegative,

and the second inequality holds because 1− yi−k+1
− ui−k ≥ 0. The similar arguments hold for (26).

Proposition 11 For each i ∈ N ∪{j−, · · · , j−T−k−2}, when C−C−kV > 0, k ∈ [1,min{L−1, T −

2}]Z, and L ≥ 2, the following inequalities

xi−k+1
− xi−k + xi ≤ Cyi−k+1

− (C − V )yi−k
+ Cyi + (k − 1)V ui−k

(25)

xi−k+1
− xi−k + xi ≥ Cyi−k+1

− (C + V )yi−k
+ Cyi − (k − 1)V ui−k

(26)

are valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.3.

The same logic can be applied to the three nodes, e.g., i−k , i− and i, on the same path (scenario)

by considering the start-up status of i (not i−k as described above). In this way, based on the upper

(resp. lower) bounds of xi−k
and xi−xi− for any i ∈ N obtained from (1f) and (1g) (resp. (1h)), we

can get a tighter inequality to bound xi−k
− xi− + xi from above (resp. below). Thus, the following

two families of inequalities can be derived.

Proposition 12 For each i ∈ N ∪{j−, · · · , j−T−k−1} when C−C−(k−1)V > 0, k ∈ [2,min{L, T−

1}]Z, and L ≥ 2, the following inequalities

xi−k
− xi− + xi ≤ Cyi−k − (C − (k − 1)V )yi− + (C − (k − 2)V )yi + (k − 2)V ui (27)

xi−k
− xi− + xi ≥ Cyi−k − (C + (k − 1)V )yi− + (C + (k − 2)V )yi − (k − 2)V ui (28)

are valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.4.
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Note here that inequalities (27) and (28) are different from (25) and (26), except for the case

in which k = 2 in Proposition 12 and k = 1 in Proposition 11.

For the case in which these three nodes are in different paths (scenarios), e.g., two scenario nodes

in the last period plus their k-fold parent node, since the electricity generation amounts at any two

scenario nodes in N , e.g., i and j, are correlated through their ancestors while the generation

amount at each scenario node is related to their ancestors through ramp rate constraints (1g) -

(1h), we can derive facet-defining inequalities in Propositions 13 and 14 by incorporating these two

relationships simultaneously.

Proposition 13 For each pair i, j ∈ N , i 6= j when C −C − kV > 0, k ∈ [2,min{L, T − 1}]Z, and

L ≥ 2, the following inequalities

xi−k
+ xi − xj ≤ Cyi−k + Cyi − (C − kV )yj − (k − 2)V

k−1∑
r=1

ui−r + (C − C − kV )uj (29)

xi−k
+ xi − xj ≥ Cyi−k + Cyi − (C + kV )yj + (k − 2)V

k−1∑
r=1

ui−r − (C − C − kV )uj (30)

are valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.5.

Proposition 14 For each pair i, j ∈ N , i 6= j when C −C − kV > 0, k ∈ [2,min{L, T − 1}]Z, and

L ≥ 2, the following inequalities

xi−k
+ xi − xj ≤ Cyi−k + (C − (k − 2)V )yi − (C − 2V )yj + (k − 2)V (yi− + ui) + (C − C − 2V )uj (31)

xi−k
+ xi − xj ≥ Cyi−k + (C + (k − 2)V )yi − (C + 2V )yj − (k − 2)V (yi− + ui)− (C − C − 2V )uj (32)

are valid and facet-defining for conv(P 0
T ).

Proof: The detailed proofs are shown in E-companion C.6.

Note here that inequalities (31) and (32) are different from (29) and (30), except for the case

in which k = 2 in Propositions 13 and 14.

Finally, we extend the study to the complete scenario tree setting as described in Figure 7.

For this setting, we only introduce the extra strong valid inequalities which are not described in

the previous flower-structure scenario tree setting. For any two nodes i and j in Figure 7, we

let p = argmax{t(k) : k ∈ P(i) ∩ P(j)}. This indicates that the path from nodes i to j passing
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through node p as the node with the smallest time period is the shortest path from node i to node

j in the scenario tree. We define P(i, p) = P(i) \ P(p) and the distance between node i and node

j, dist(i, j) = |P(i, p)| + |P(j, p)|. Through investigating the relationships between xi and xj by

incorporating the effects of node p, we have the following facet-defining inequality.

0 p

i− i

j− j

t(p) t(i−) t(i)

Figure 7: Scenario tree

Proposition 15 For any pair of nodes (i, j) ∈ V such that i /∈ P(j) and j /∈ P(i), when C − C −

kV > 0 with k = dist(i, j), the following inequality

xi − xj ≤ (C + kV )yi − (C − kV )yj + (C − C − kV )(yp +
∑

s∈P(i,p)∪P(j,p)

us) (33)

is valid and facet-defining for conv(P ).

Proof: The detailed proofs are described in E-companion C.7.

Note here that inequality (33) generalizes the results described in (10f) and (21) from two- and

three-period cases to the general multi-period setting.

Remark 5 Due to the structure of the linearly independent points constructed to prove the inequal-

ities (22) - (32) to be facet-defining for conv(P 0
T ), it can be observed that these inequalities (i.e.,

inequalities (22) - (32)) are also facet-defining for the general polytope conv(P ). Meanwhile, the

number of all facet-defining inequalities is a polynomial function of the input size of the scenario

tree, e.g., in the order of O(|V|2).
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6 Computational Experiments

In this section, we report computational studies on testing the effectiveness of the strong valid

inequalities, through implementing branch-and-cut algorithms on randomly generated instances.

All the computational experiments were implemented on a computer with Intel Dual Core 2.60

GHz and 4 GB memory. Default CPLEX 12.5 in C++ via Concert Technology was applied to

solve the instances.

6.1 Instance Generation for the Stochastic Self-Scheduling Problem

In our computational experiments, instances of gas-fired thermal generators for the MSS instances

were generated based on the modified IEEE 118-bus system available online at motor.ece.iit.

edu/data/SCUC_118. Three different generators were selected, and the detailed characteristics are

shown in the following Table 1.

Table 1: Generator Data

G C (MW) C (MW) V + = V − (MW/h) Ū ($)

1 35 160 38 80

2 61 300 58 100

3 130 620 150 300

For the electricity price, we assume it is uncertain and within the interval [1, 31] at each node

in the scenario tree. To test the variations of the proposed instances, we consider three types

of minimum-up/down times, i.e., L = ` = 2, 3, and 4. In addition, we test different structures

of the scenario tree by considering variant numbers of branches for each non-leaf node. We let

K represent the number of branches for each non-leaf node in the derived scenario tree. In our

experiments, we consider (1) a binary tree (i.e., K = 2), (2) a ternary tree (i.e., K = 3), and (3) a

quadtree (i.e., K = 4), with each non-leaf node containing two-four branches, each with the same

probability. For K = 2, we let the number of time periods T = 10, 11, and 12 for the cases in which

the minimum-up/down times L = ` = 2, 3, and T = 9, 10, and 11 when L = ` = 4. For K = 3, we

let T = 7 and 8. For K = 4, we let T = 6 and 7. Thus, various instances are generated based on

different combinations of K,T , and L(`). For each combination of G, K, T , and L(`), we test three

instances and report the average value, with one hour time limit per run.
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6.2 Results for the Stochastic Self-Scheduling Problem

We first test the performance of our cutting planes in tightening the LP relaxations for different

MSS instances at the root node, and report the results in Table 2. In the table, the column labelled

“LP Gap (%)” represents the LP relaxation gap of the original formulation MSS with respect to

the best integer solution we obtained from default CPLEX and our branch-and-cut scheme. “LP

Gap (%)” is defined as (ZLP − ZMILP)/ZLP, where ZLP represents the objective value of the LP

relaxation problem and ZMILP represents the objective value of the best integer solution. Similarly,

the column labelled “Cut (%)” represents the LP relaxation gap after adding our cutting planes.

We can observe that the LP relaxation gap decreases dramatically after adding our developed

strong valid inequalities as cutting planes in the root node to tighten the original formulation. The

degree of such reduction is shown in the column labelled “Percentage (%),” which provides how

much the gap is reduced based on the “LP Gap (%).” That is, Percentage(%)= (LP Gap(%) -

Cut(%))/LP Gap(%). From the table, we can observe that approximately 70% reduction can be

achieved, indicating the tremendous effect of our cutting planes.

Then, we test the performance of our cutting planes in speeding up the branch-and-cut algo-

rithms to solve the instances. We test the instances for L = ` = 2 , L = ` = 3, and L = ` = 4,

respectively, and the corresponding computational results are reported in Tables 3, 4, and 5. In our

experiment, we compare the performance of default CPLEX MIP solver (e.g., “Default CPLEX”)

with the branch-and-cut algorithm we developed with the derived cutting planes embedded as User

Cuts. In the tables, the column labelled “Gap (%)” reports the final optimality gap obtained

within the given time limit. Meanwhile, the number in the square bracket indicates the number of

instances not solved to default optimality (i.e., 0.01%) within the time limit. Accordingly, in the

tables, we report the final optimality gap as the average value over those of the instances not solved

to default optimality. The column labelled “CPU secs” represents the solution time taken to solve

the problem. We report the average value over those of the instances solved to default optimality,

whereas 3600 is reported for the cases when all three instances are not solved to default optimality.

Besides the “Gap (%)” and “CPU secs” columns, the column labelled “# of Nodes” provides the

number of branch-and-bound nodes that CPLEX explored, and the last column labelled “# of

Cuts” represents the number of derived cutting planes utilized in the branch-and-cut algorithm to

solve the instances.

From Tables 3, 4, and 5, we can observe that the performance of our branch-and-cut algorithm

is much better than that of the default CPLEX. For the cases when both default CPLEX and
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Table 2: Results for the Root Node

G K T
L = ` = 2 L = ` = 3

T
L = ` = 4

LP Gap
(%)

Cut
(%)

Percent
-age (%)

LP Gap
(%)

Cut
(%)

Percent
-age (%)

LP Gap
(%)

Cut
(%)

Percent
-age (%)

1

2

10 8.76 2.52 71.23 15.16 4.74 68.72 9 17.79 5.87 67.01

11 8.26 2.39 71.06 15.02 4.72 68.58 10 17.47 5.85 66.51

12 8.06 2.34 71.01 14.76 4.54 69.24 11 17.67 6.09 65.54

3
7 11.39 3.49 69.36 18.39 6.04 67.15 7 20.53 6.99 65.95

8 10.58 3.25 69.29 18.59 6.38 65.69 8 19.92 7.17 64.01

4
6 10.24 3.40 66.78 13.60 4.13 69.60 6 16.30 5.22 67.96

7 10.09 3.27 67.59 14.20 4.65 67.26 7 15.50 4.58 70.47

2

2

10 10.53 3.01 71.45 10.89 3.48 68.04 9 22.91 7.51 67.21

11 10.19 2.78 72.72 11.40 3.78 66.86 10 23.72 7.34 69.06

12 9.95 2.79 71.94 11.67 3.79 67.51 11 23.88 7.52 68.51

3
7 11.90 4.01 66.28 13.99 4.89 65.05 7 17.98 5.73 68.15

8 11.33 3.86 65.93 15.08 5.46 63.79 8 16.87 4.94 70.72

4
6 11.54 4.98 56.84 10.02 2.94 70.70 6 18.91 6.55 65.37

7 11.24 4.73 57.89 11.15 3.25 70.82 7 13.54 2.26 83.27

3

2

10 7.91 2.15 72.85 15.44 4.91 68.19 9 17.35 5.88 66.11

11 8.36 2.43 70.94 15.42 5.21 66.2 10 18.02 6.09 66.21

12 7.66 1.85 75.85 13.08 4.85 62.92 11 15.78 5.74 63.62

3
7 11.75 3.71 68.42 18.82 6.22 66.95 7 20.79 6.97 66.47

8 11.01 3.55 67.77 16.12 5.28 67.25 8 16.75 6.06 63.83

4
6 10.43 3.62 65.3 13.73 4.13 69.94 6 16.57 5.24 68.39

7 10.36 2.61 74.81 13.16 4.81 63.44 7 16.22 5.46 66.32

our branch-and-cut scheme can solve the instances into default optimality, our approach takes

a much shorter time and explores a much smaller number of branch-and-bound nodes than the

default CPLEX does. For the cases when only the default CPLEX cannot solve the instances into

default optimality, our branch-and-cut algorithm shows its advantage by solving the corresponding

instances into default optimality. Meanwhile, for these instances, our approach does not take a

long time to solve them and explores a much smaller number of branch-and-bound nodes. For the

cases when both the default CPLEX and our branch-and-cut scheme cannot solve the instances into

default optimality, our approach derives a much smaller optimality gap than the default CPLEX

does.

6.3 Results for the Stochastic Network-Constrained Unit Commitment

We further report the performance of strong valid inequalities by testing the stochastic network-

constrained unit commitment problem in which MSS is embedded. To differentiate generators, we
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Table 3: Results for the Branch-and-cut Scheme (L = ` = 2)

G K T
Default CPLEX Branch-and-cut

Gap (%) # Nodes CPU secs Gap (%) # Nodes CPU secs # Cuts

1

2

10 0.00 1721 33.4 0.00 95 6.2 448

11 0.00 11149 822.3 0.00 399 15.6 874

12 0.17[2] 30195 2553 0.00 2337 115.5 1485

3
7 0.00 5224 43.1 0.00 80 9.1 565

8 0.05[3] 73172 3600 0.00 3006 151.5 1362

4
6 0.00 8626 67.7 0.00 239 13.4 811

7 0.24[2] 18084 348.6 0.00 3302 281.9 2625

2

2

10 0.00 3367 31.9 0.00 76 4.3 529

11 0.07[1] 97208 139.9 0.00 422 10.7 1023

12 0.15[3] 148936 3600 0.00 2357 79 1354

3
7 0.00 11228 137.6 0.00 133 5.4 692

8 0.25[3] 168255 3600 0.00 4203 131.5 1932

4
6 0.00 4531 47.1 0.00 143 8.3 880

7 0.30[3] 118651 3600 0.16[1] 41480 118 3260

3

2

10 0.00 2202 36.3 0.00 67 6.4 442

11 0.03[1] 35512 109.1 0.00 380 14.3 881

12 0.14[2] 59686 2424.2 0.00 1977 175.8 1548

3
7 0.00 4109 51.6 0.00 107 11.3 570

8 0.26[3] 59977 3600 0.00 1986 129.5 912

4
6 0.00 8203 71.1 0.00 274 14.7 802

7 0.37[3] 27958 3600 0.13[1] 9327 243.9 3009

add superscript k to each decision variable/parameter defined for generators. In addition, we let B

and A represent the sets of buses and transmission lines, and K (Kb) represent the set of generators

(at bus b). We let Cmn and Kb
mn represent the capacity of the transmission line (m,n) and the

line flow distribution factor for the flow on the transmission line (m,n) contributed by the net

injection at bus b, respectively. We let Db
i denote the load of bus b at node i. The formulation can

be described as follows:

min
∑
i∈V

pi

(∑
k∈K

(
Ūkuki + Uk(yki− − y

k
i + uki ) + fk(xki )

))
(34)

s.t. (1b)− (1i) with superscript k added,∑
k∈K

xki =
∑
b∈B

Db
i , ∀i ∈ V, (35)

−Cmn ≤
∑
b∈B

Kb
mn

(∑
k∈Kb

xki −Db
i

)
≤ Cmn, ∀i ∈ V, ∀(m,n) ∈ A, (36)

yki ∈ {0, 1}, xki ≥ 0, ∀i ∈ V, ∀k ∈ K and uki ∈ {0, 1}, ∀i ∈ V \ {0}, ∀k ∈ K, (37)
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Table 4: Results for the Branch-and-cut Scheme (L = ` = 3)

G K T
Default CPLEX Branch-and-cut

Gap (%) # Nodes CPU secs Gap (%) # Nodes CPU secs # Cuts

1

2

10 0.00 5398 80.2 0.00 236 16 678

11 0.21[3] 76132 3600 0.00 3660 121.3 958

12 0.47[3] 32607 3600 0.00 10761 417.4 2050

3
7 0.00 48355 889.6 0.00 1671 28.7 877

8 1.14[3] 38510 3600 0.31[2] 28787 1610.7 2215

4
6 0.00 36373 867.8 0.00 532 23.9 1030

7 0.69[3] 24577 3600 0.12[1] 9947 1004 3361

2

2

10 0.00 13373 156.5 0.00 221 8.4 759

11 0.11[3] 198128 3600 0.00 6433 160.4 1107

12 0.52[3] 77355 3600 0.00 11780 529.7 2229

3
7 0.00 20696 240.2 0.00 1229 19.7 815

8 0.76[3] 6487 3600 0.28[1] 17333 189.3 2135

4
6 0.00 1466 22.6 0.00 123 11 1194

7 0.42[3] 36665 3600 0.00 2736 390.3 3439

3

2

10 0.00 10085 97.9 0.00 664 23.2 690

11 0.16[3] 159498 3600 0.00 3742 154.2 991

12 0.55[3] 26642 3600 0.00 9517 459.1 2136

3
7 0.00 55416 984.8 0.00 2580 40.6 874

8 0.77[3] 67590 3600 0.27[1] 19668 176.5 2430

4
6 0.00 42823 904.2 0.00 364 20.8 1041

7 0.80[3] 24550 3600 0.29[2] 17430 221.9 4103

where constraints (35) ensure the power balance and constraints (36) represent the capacity limit

of each transmission line (m,n).

We test the instances randomly generated from a modified IEEE 118-bus system based on

the one given online at motor.ece.iit.edu/data/SCUC_118. We let the number of generators

|K| = 15, 20, 25, and 30 respectively, and the uncertain system load is within the interval [0, 2D̄]

where D̄ is proportional to the total generation capacity. The computational results are reported

in Tables 6 and 7. From Table 6, we can observe that our proposed strong valid inequalities are

effective because approximately 50% LP Gap reduction can be achieved by adding our proposed

strong valid inequalities, as compared to default CPLEX.

From Table 7, we can observe that similar performance maintains for the branch-and-cut ap-

proach. For instance, our approach takes a shorter time when both default CPLEX and our

branch-and-cut scheme can solve the instances into default optimality. There also exist instances

for which the default CPLEX cannot obtain the optimal solution within the time limit while our
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Table 5: Results for the Branch-and-cut Scheme (L = ` = 4)

G K T
Default CPLEX Branch-and-cut

Gap (%) # Nodes CPU secs Gap (%) # Nodes CPU secs # Cuts

1

2

9 0.00 2648 13.7 0.00 263 10.3 320

10 0.00 73314 1429.2 0.00 2708 35 728

11 0.26[3] 94806 3600 0.11[1] 31253 1087.2 1047

3
7 0.09[1] 102170 34.4 0.00 984 34.5 762

8 0.88[3] 23498 3600 0.21[2] 16822 230.3 2251

4
6 0.00 182 28.4 0.00 6 29.8 1438

7 0.47[3] 20869 3600 0.00 4274 783.1 3169

2

2

9 0.00 4232 29.2 0.00 178 5.7 382

10 0.50[2] 177313 179 0.00 5857 142 577

11 1.34[3] 55291 3600 0.60[2] 35652 70 1545

3
7 0.07[1] 128965 33.7 0.00 8641 136.3 929

8 0.79[3] 35275 3600 0.04[1] 26088 271.3 2226

4
6 0.00 2181 40.1 0.00 604 31.6 1226

7 0.75[2] 31866 3007.6 0.00 1459 387.5 3495

3

2

9 0.00 2562 14.4 0.00 327 9.6 321

10 0.00 66079 984.6 0.00 2904 38.1 714

11 0.56[3] 70682 3600 0.00 38442 1838.8 1060

3
7 0.00 21832 589.9 0.00 813 29.8 765

8 0.65[3] 29610 3600 0.18[2] 17072 206.4 2234

4
6 0.00 236 32.5 0.00 4 29.1 1413

7 0.53[3] 18942 3600 0.25[1] 3562 524.1 3091

Table 6: Results for the Root Node

K T
|K| = 15 |K| = 20

LP Gap (%) Cut (%) Percentage (%) LP Gap (%) Cut (%) Percentage (%)

2
9 0.7 0.38 45.7 0.66 0.31 53.07

10 0.82 0.5 39.41 0.6 0.32 46.84

3
6 0.83 0.37 54.95 0.74 0.36 51.22

7 1.09 0.53 51.75 1.74 1.04 40.48

K T
|K| = 25 |K| = 30

LP Gap (%) Cut (%) Percentage (%) LP Gap (%) Cut (%) Percentage (%)

2
9 0.54 0.28 47.83 0.89 0.53 40.59

10 0.47 0.25 46.9 0.93 0.49 46.76

3
6 0.64 0.32 49.13 1.11 0.64 42.53

7 0.86 0.49 43.45 1.08 0.67 37.56

approach can. For the cases when both approaches cannot solve the instances into default optimal-

ity, our approach obtains a smaller optimality gap than the default CPLEX does. We also notice

that the improvement is less significant for the stochastic network-constrained unit commitment
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than the MSS problem due to the introduction of constraints (35) and (36).

Table 7: Results for the Branch-and-cut Scheme

|K| K T
Default CPLEX Branch-and-cut Scheme

Gap (%) # of Nodes CPU secs Gap (%) # of Nodes CPU secs # of Cuts

15

2
9 0.00 1203 465.5 0.00 777 260.1 97

10 0.32 [2] 798 1075.5 0.07 [1] 906 1895.5 169

3
6 0.07 [3] 91172 3600 0.02 [1] 86303 2905.9 117

7 0.10 [1] 803 1427.3 0.04 [1] 1056 2064.5 129

20

2
9 0.05 [1] 6133 984.2 0.00 8899 816.4 106

10 0.07 [3] 701 3600 0.03 [2] 1372 1521.3 135

3
6 0.06 [3] 53070 3600 0.05 [1] 18616 3035.4 203

7 0.72 [3] 1800 3600 0.25 [3] 1334 3600 168

25

2
9 0.03 [1] 4503 681.2 0.00 2717 575.3 82

10 0.04 [3] 704 3600 0.00 920 2517.1 182

3
6 0.04 [2] 37296 1660.7 0.00 17623 2021.8 205

7 0.31 [2] 579 2578.6 0.02[1] 483 2963.5 241

30

2
9 0.00 703 801.6 0.00 657 521.6 352

10 0.14 [3] 586 3594.5 0.08 [3] 140 3593.1 314

3
6 0.09 [3] 24990 3606.9 0.07 [2] 14662 3609.5 381

7 0.72 [3] 589 3607.7 0.63 [1] 166 2592.9 442

Finally, we report the performance of our approach by testing a 24 time period instance also

based on the modified IEEE 118-bus system as described above. We generate a scenario tree with

24 time periods and 64 scenarios, with the number of branches at each node generated from [1, 3]Z.

We let the time limit per run be two hours since we are solving larger instances. We also test

|K| = 15, 20, 25, and 30 cases and report the average value of three randomly generated instances

for each case in Tables 8 and 9. We can also observe that around 50% LP Gap reduction at the

root node and our branch-and-cut algorithm outperforms default CPLEX.

Table 8: Results for the Root Node

|K| LP Gap (%) Cut (%) Percentage (%) |K| LP Gap (%) Cut (%) Percentage (%)

15 0.55 0.23 57.13 25 0.44 0.22 50.73

20 0.74 0.44 39.96 30 0.53 0.31 41.88

7 Conclusions

In this paper, we proposed a multistage stochastic self-scheduling unit commitment model for an

IPP to participate in the real-time market using the self-scheduling mode, so as to achieve the

maximum expected total profit. The proposed model can help the IPP to optimally decide the
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Table 9: Results for the Branch-and-cut Scheme

|K|
Default CPLEX Branch-and-cut Scheme

Gap (%) # of Nodes CPU secs Gap (%) # of Nodes CPU secs # of Cuts

15 0.00 166 3470.5 0.00 339 2259.4 441

20 0.00 280 4398.6 0.00 63 2706.6 466

25 0.02 [1] 1733 4659.6 0.00 958 5108.4 352

30 0.06 [3] 3767 7200 0.07 [1] 3838 5826.7 397

unit commitment status and economic dispatch amount at each time period, based on the prob-

abilistic forecast of real-time prices. The proposed optimal decisions are dynamic, following the

evaluation of real-time prices, which result in a higher total expected profit as compared to that

derived by the two-stage stochastic optimization approach. By exploring the possible realizations

of uncertain prices, a scenario-tree based multistage stochastic integer programming formulation

was obtained and accordingly strong cutting planes were developed for the derived large-scale

deterministic equivalent formulation. By exploring the scenario-tree structure and the unit com-

mitment physical constraints characteristics, we developed strong valid inequalities to speed up the

algorithms to solve the deterministic equivalent formulation. In particular, we derived strong for-

mulations that can describe the convex hull for the two-period case. This study was also extended

to provide the convex hull description for a special case of the three-period case. For the general

multistage setting, our derived inequalities are cross-scenario and facet-defining for the whole sce-

nario tree. The final numerical experiments on various data settings demonstrated the effectiveness

of our proposed cutting planes, embedded in a branch-and-cut framework.
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Appendix A Two-period Convex Hull Proofs

A.1 Proof for Proposition 1

Proof: To prove the validity of inequality (4), we discuss the following four cases in terms of

possible values of yi− and yi:

(i) If yi− = yi = 0, then xi− = xi = 0 due to constraints (3d) and ui = 0 due to constraints (3b).

Thus, inequality (4) is valid.

(ii) If yi− = 0 and yi = 1, then ui = 1 following constraints (3a) and xi− = 0 due to constraints

(3d). Then, inequality (4) converts to xi ≤ C, which is valid because of (3d).

(iii) If yi− = 1 and yi = 0, then xi = 0 following constraints (3d) and ui = 0 due to constraints

(3b). Thus, inequality (4) converts to xi− ≥ C, which is valid because of (3d).

(iv) If yi− = yi = 1, then ui = 0 due to constraints (3c). Inequality (4) converts to xi−xi− ≤ V +,

which is valid because of (3e).

By symmetry, inequality (5) can be proven to be valid in a similar way.

To prove the validity of inequality (6), we discuss the following four cases in terms of possible

values of yi and yj :

(i) If yi = yj = 0, then xi = xj = 0 due to constraints (3d) and ui = uj = 0 due to constraints

(3b). Thus, inequality (6) is valid because of the assumption that (C −C −V +−V −)>0 and

the nonnegativity of yi− .

(ii) If yi = 0 and yj = 1, then xi = 0 due to constraints (3d) and ui = 0 due to constraints (3b).

Since i− is equivalent to j−, inequality (6) converts to xj ≥ Cyj − (C −C − V +− V −)(yj− +

uj − yj), which is valid due to constraints (3d) and (3a).

(iii) If yi = 1 and yj = 0, then xj = 0 due to constraints (3d) and uj = 0 due to constraints (3b).

Inequality (6) converts to xi ≤ Cyi + (C − C − V + − V −)(yi− + ui − yi), which is valid due

to constraints (3d) and (3a).
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(iv) If yi = yj = 1, inequality (6) converts to xi − xj ≤ (V + + V −) + (C − C − V + − V −)(yi− +

ui + uj − 1). If yi− = 0, then ui = uj = 1 because of constraints (3a). Hence (6) is further

simplified to be xi−xj ≤ C−C, which is valid due to constraints (3d). Otherwise, if yi− = 1,

then ui = uj = 0 due to constraints (3c). Moreover, the difference between xi and xj is

maximized when one of them increases by V + from xi− and another one decreases by V −

from xi− following the ramp-up and ramp-down rate limits. Thus xi − xj ≤ V + + V − and it

follows that (6) holds.

Therefore, inequalities (4), (5), and (6) are valid for conv(P2) as desired.

A.2 Proof for Proposition 2

Proof: We prove that dim(Q2) = 3n + 2, because there are 3n + 2 decision variables in Q2. We

generate 3n+ 3 affinely independent points in Q2. We sort the scenario nodes in the second period

in the order as 1, 2, · · · , n and label the node i− as index 0 so that we have n + 1 nodes, i.e.,

0, 1, 2, · · · , n. Since 0 ∈ Q2, we generate other 3n+ 2 linearly independent points in Q2. First, we

create (x̄i, ȳi, ūi) ∈ Q2 for each i ∈ [0, n]Z, where

x̄is =

{
C, s ∈ [0, i]Z
0, s ∈ [i+ 1, n]Z

, ȳis =

{
1, s ∈ [0, i]Z
0, s ∈ [i+ 1, n]Z

, and ūis = 0, s ∈ [1, n]Z.

Second, we create (x̂i, ŷi, ûi) ∈ Q2 for each i ∈ [0, n]Z, where

x̂is =

{
C, s ∈ [0, i]Z
0, s ∈ [i+ 1, n]Z

, ŷis =

{
1, s ∈ [0, i]Z
0, s ∈ [i+ 1, n]Z

, and ûis = 0, s ∈ [1, n]Z.

Third, we create (x̃i, ỹi, ũi) ∈ Q2 for each i ∈ [1, n]Z, where

x̃is =

{
0, s ∈ [0, i− 1]Z
C, s ∈ [i, n]Z

, ỹis =

{
0, s ∈ [0, i− 1]Z
1, s ∈ [i, n]Z

, and ũis =

{
0, s ∈ [0, i− 1]Z
1, s ∈ [i, n]Z

.

It is clear that (x̄i, ȳi, ūi)ni=0, (x̂
i, ŷi, ûi)ni=0, and (x̃i, ỹi, ũi)ni=1 are linearly independent and there-

fore the statement is proved.

A.3 Proof for Proposition 3

Proof: For each inequality, we generate 3n+ 2 affinely independent points in conv(P2) that satisfy

the inequality at equality. In the following proof, we follow the notation described in Proposition

2. Since 0 ∈ conv(P2), we generate the remaining 3n + 1 linearly independent points in conv(P2)

for each inequality. In the following proofs, we use the superscript of (x, y, u), e.g., r in (xr, yr, ur),

to indicate the index of different points in conv(P2).
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For inequalities (3a) yi − yi− − ui ≤ 0, ∀i ∈ N :

We create five groups of points as follows:

(i) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =


C + V −, s = 0
C, s = i
0, ∀s ∈ [1, n]Z \ {i}

, ýs =

{
1, ∀s ∈ {0, i}
0, ∀s ∈ [1, n]Z \ {i}

, and ús = 0, ∀s ∈ [1, n]Z.

(ii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =

{
C, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and ūrs = 0,∀s.

(iii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such

that

x̂rs =

{
C, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and ûrs = 0,∀s.

(iv) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
0, s = 0
C, o.w.

, ẏs =

{
0, s = 0
1, o.w.

, and u̇s = 1, ∀s.

(v) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z \ {i}
0, o.w.

.

Finally, these five groups of points are collected in Table 10, from which we can observe that (x̂, ŷ, û),

(ẋ, ẏ, u̇), and (x̃, ỹ, ũ) are linearly independent because they can construct a lower-triangular matrix

based on the values of y and u after Gaussian elimination on the u part. Moreover, (x́, ý, ú) and

(x̄, ȳ, ū) are further linearly independent with them because all of these five groups of points can

construct a lower-triangular matrix after Gaussian elimination operation on the x (i.e., x̄ and

x̂) part in the two groups of points (x̄, ȳ, ū) and (x̂, ŷ, û) since C > C. Thus, we have created

1 + n+ n+ 1 + (n− 1) = 3n+ 1 linearly independent points in conv(P2) as desired.

In the following proofs, we follow the similar way as described above to create linearly in-

dependent points in conv(P2) by firstly generating several groups of points that can construct a

lower-triangular matrix in terms of the values of x and y (e.g., (x́, ý, ú), (x̄, ȳ, ū), and (x̂, ŷ, û)

for inequalities (3a) above) and then generating several groups of points that can construct an

upper-triangular matrix in terms of the value of u (e.g., (ẋ, ẏ, u̇) and (x̃, ỹ, ũ) for inequalities (3a)

above).
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Group
x y u

xi− xix1· · ·xi−1xi+1· · ·xn yi−yiy1· · · yi−1yi+1· · · yn uiu1· · ·ui−1ui+1· · ·un

(x́, ý, ú) C + V −C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̂, ŷ, û)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) 0 C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table 10: 3n+ 1 linearly independent points for (3a)

For inequalities (3b) ui − yi ≤ 0, ∀i ∈ N :

We create 3n+ 1 linearly independent points in conv(P2) in the following five groups.

(i) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =

{
C, ∀s ∈ [0, r]Z \ {i}
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z \ {i}
0, o.w.

, and
ūrs = 0,
∀s ∈ [1, n]Z

.

(ii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such

that

x̂rs =

{
C, ∀s ∈ [0, r]Z \ {i}
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z \ {i}
0, o.w.

, and
ûrs = 0,
∀s .
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(iii) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z ∪ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z ∪ {i}
0, o.w.

.

(iv) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, s = i
0, o.w.

, ýs =

{
1, s = i
0, o.w.

, and ús =

{
1, s = i
0, o.w.

.

(v) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
C, s = i
0, o.w.

, ẏs =

{
1, s = i
0, o.w.

, and u̇s =

{
1, s = i
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 11.

Group
x y u

xi−x1· · ·xi−1xi+1· · ·xnxi yi−y1· · · yi−1yi+1· · · ynyi u1· · ·ui−1ui+1· · ·unui

(x̄, ȳ, ū)

C 0 · · · 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0

C C · · · 0 0 · · · 0 0 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C · · · C 0 · · · 0 0 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0

C C · · · C C · · · 0 0 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0

(x̂, ŷ, û)

C 0 · · · 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0

C C · · · 0 0 · · · 0 0 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C · · · C 0 · · · 0 0 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0

C C · · · C C · · · 0 0 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0

(x̃, ỹ, ũ)

0 C · · · C C · · · C C 0 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · C C · · · C C 0 0 · · · 1 1 · · · 1 1 0 · · · 1 1 · · · 1 1

0 0 · · · 0 C · · · C C 0 0 · · · 0 1 · · · 1 1 0 · · · 0 1 · · · 1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 · · · C C 0 0 · · · 0 0 · · · 1 1 0 · · · 0 0 · · · 1 1

(x́, ý, ú) 0 0 · · · 0 0 · · · 0 C 0 0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1

(ẋ, ẏ, u̇) 0 0 · · · 0 0 · · · 0 C 0 0 · · · 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1

Table 11: 3n+ 1 linearly independent points for (3b)
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For inequalities (3c) ui + yi− ≤ 1, ∀i ∈ N :

These 3n + 1 linearly independent points for (3c) are the same as the linearly independent points

for (3b).

For inequalities (3d) Cyi ≤ xi ≤ Cyi, ∀i ∈ N ∪ {i−} :

Here we only prove the left side of (3d), i.e., xi ≥ Cyi, as the proof for the right side follows the

similar way. For the root node i− indexed as 0, we create 3n + 1 linearly independent points in

conv(P2) in the following three groups.

(i) For each r ∈ [0, n]Z (totally there are n + 1 points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =

{
C, ∀s ∈ [0, r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z
0, o.w.

, and
ūrs = 0,
∀s ∈ [1, n]Z

.

(ii) For each r ∈ [1, n]Z (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such that

x̂rs =

{
C, ∀s ∈ [r, n]Z
0, o.w.

, and ŷrs = ûrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

.

(iii) For each r ∈ [1, n]Z (totally there are n points), we create (x̃r, ỹr, ũr) ∈ conv(P2) such that

x̃rs =

{
C, ∀s ∈ [r, n]Z
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 12.

For a fixed node i ∈ N , we create 3n+1 linearly independent points in conv(P2) in the following

six groups.

(i) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, s = 0
0, o.w.

, ýs =

{
1, s = 0
0, o.w.

, and
ús = 0,
∀s ∈ [1, n]Z

.

(ii) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
C, s = 0
0, o.w.

, ẏs =

{
1, s = 0
0, o.w.

, and
u̇s = 0,
∀s .

(iii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =

{
C, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ūs = 0,
∀s .
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Group
x y u

xi−x1x2· · ·xn yi−y1y2· · · yn u1u2· · ·un

(x̄, ȳ, ū)

C 0 0 · · · 0 1 0 0 · · · 0 0 0 · · · 0

C C 0 · · · 0 1 1 0 · · · 0 0 0 · · · 0

C C C · · · 0 1 1 1 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 1 1 1 · · · 1 0 0 · · · 0

(x̂, ŷ, û)

0 C C · · · C 0 1 1 · · · 1 1 1 · · · 1

0 0 C · · · C 0 0 1 · · · 1 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C 0 0 0 · · · 1 0 0 · · · 1

(x̃, ỹ, ũ)

0 C C · · · C 0 1 1 · · · 1 1 1 · · · 1

0 0 C · · · C 0 0 1 · · · 1 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C 0 0 0 · · · 1 0 0 · · · 1

Table 12: 3n+ 1 linearly independent points for Cyi− ≤ xi− , i ∈ N

(iv) We create a point (x̀, ỳ, ù) ∈ conv(P2) (totally one point) such that

x̀s =

{
0, s = 0
C, o.w.

, ỳs =

{
0, s = 0
1, o.w.

, and
ùs = 1,
∀s .

(v) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̂r, ŷr, ûr) ∈ conv(P2)

such that

x̂rs =

{
C, ∀s ∈ [r, n]Z \ {i}
0, o.w.

, and ŷrs = ûrs =

{
1, ∀s ∈ [r, n]Z \ {i}
0, o.w.

.

(vi) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z \ {i}
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 13.

For inequalities (4) xi − xi− ≤ (C + V +)yi − Cyi− + (C − C − V +)ui, ∀i ∈ N :

We create 3n+ 1 linearly independent points in conv(P2) in the following five groups.

(i) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, s = 0
0, o.w.

, ýs =

{
1, s = 0
0, o.w.

, and
ús = 0,
∀s ∈ [1, n]Z

.
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Group
x y u

xi−xix1· · ·xi−1xi+1· · ·xn yi−yiy1· · · yi−1yi+1· · · yn uiu1· · ·ui−1ui+1· · ·un

(x́, ý, ú) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̀, ỳ, ù) 0 C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1

(x̂, ŷ, û)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table 13: 3n+ 1 linearly independent points for Cyi ≤ xi, i ∈ N

(ii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =


C, ∀s ∈ [0, r]Z \ {i}
C + V +, s = i
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ūrs = 0,
∀s .

(iii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such

that

x̂rs =


C − V +, s = 0

C, ∀s ∈ [1, r]Z ∪ {i}
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ûrs = 0,
∀s .

(iv) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
0, s = 0

C, o.w.
, ẏs =

{
0, s = 0
1, o.w.

, and
u̇s = 1,
∀s .
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(v) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, s ∈ [r, n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, s ∈ [r, n]Z \ {i}
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 14.

Group
x y u

xi− xi x1· · ·xi−1xi+1· · ·xn yi−yiy1· · · yi−1yi+1· · · yn uiu1· · ·ui−1ui+1· · ·un

(x́, ý, ú) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C + V + 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C + V +C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C + V +C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C + V +C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C + V +C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̂, ŷ, û)

C − V + C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C − V + C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C − V + C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C − V + C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C − V + C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) 0 C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table 14: 3n+ 1 linearly independent points for (4)

For inequalities (5) xi− − xi ≤ Cyi− − (C − V −)yi + (C − C − V −)ui, ∀i ∈ N :

We create 3n+ 1 linearly independent points in conv(P2) in the following five groups.

(i) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, s = 0
0, o.w.

, ýs =

{
1, s = 0
0, o.w.

, and
ús = 0,
∀s ∈ [1, n]Z

.
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(ii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =


C, ∀s ∈ [0, r]Z \ {i}
C − V −, s = i
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ūrs = 0,
∀s .

(iii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such

that

x̂rs =


C + V −, s = 0
C, ∀s ∈ [1, r]Z ∪ {i}
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ûrs = 0,
∀s .

(iv) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
0, s = 0
C, o.w.

, ẏs =

{
0, s = 0
1, o.w.

, and
u̇s = 1,
∀s .

(v) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z \ {i}
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 15.

For inequalities (6) xi− xj ≤ (C + V + + V −)yi− (C − V +− V −)yj + (C −C − V +− V −)(yi− +
ui + uj),∀i, j ∈ N , j 6= i :

Without loss of generality, we let i < j and create 3n + 1 linearly independent points in conv(P2)

in the following eight groups.

(i) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
C, ∀s ∈ {0, i}
0, o.w.

, ẏs =

{
1, ∀s ∈ {0, i}
0, o.w.

, and
u̇s = 0,
∀s ∈ [1, n]Z

.

(ii) We create a point (x̀, ỳ, ù) ∈ conv(P2) (totally one point) such that

x̀s =

{
C − V +, ∀s ∈ {0, i}
0, o.w.

, ỳs =

{
1, ∀s ∈ {0, i}
0, o.w.

, and
ùs = 0,
∀s .

(iii) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, ∀s ∈ {0, j}
0, o.w.

, ýs =

{
1, ∀s ∈ {0, j}
0, o.w.

, and
ús = 0,
∀s .
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Group
x y u

xi− xi x1· · ·xi−1xi+1· · ·xn yi−yiy1· · · yi−1yi+1· · · yn uiu1· · ·ui−1ui+1· · ·un

(x́, ý, ú) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C − V − 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C − V −C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C − V −C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C − V −C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C − V −C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̂, ŷ, û)

C + V − C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C + V − C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C + V − C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C + V − C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

C + V − C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) 0 C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table 15: 3n+ 1 linearly independent points for (5)

(iv) For each r ∈ [0, n]Z \ {i, j} (totally there are n − 1 points), we create (x̄r, ȳr, ūr) ∈ conv(P2)

such that

x̄rs =


C, ∀s ∈ [0, r]Z ∪ {j} \ {i}
C + V + + V −, s = i
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i, j}
0, o.w.

, and
ūrs = 0,
∀s .

(v) For each r ∈ [0, n]Z \ {i, j} (totally there are n − 1 points), we create (x̂r, ŷr, ûr) ∈ conv(P2)

such that

x̂rs =


C, ∀s ∈ [0, r]Z ∪ {i} \ {j}
C − V + − V −, s = j
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z ∪ {i, j}
0, o.w.

, and
ûrs = 0,
∀s .

(vi) We create a point (ẍ, ÿ, ü) ∈ conv(P2) (totally one point) such that

ẍs =


0, s = 0

C, s = i
C, o.w.

, ÿs =

{
0, s = 0
1, o.w.

, and
üs = 1,
∀s .
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(vii) We create a point (x̆, y̆, ŭ) ∈ conv(P2) (totally one point) such that

x̆s =

{
0, ∀s ∈ {0, i}
C, o.w.

, y̆s =

{
0, ∀s ∈ {0, i}
1, o.w.

, and ŭs =

{
0, s = i
1, o.w.

.

(viii) For each r ∈ [1, n]Z \ {i, j} (totally there are n − 2 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z \ {i, j}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z \ {i, j}
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 16.

Group
x y u

xi− xi xj x1x2· · ·xn yi−yiyjy1y2· · · yn uiuju1u2· · ·un

(ẋ, ẏ, u̇) C C 0 0 0 · · · 0 1 1 0 0 0 · · · 0 0 0 0 0 · · · 0

(x̀, ỳ, ù) C − V + C 0 0 0 · · · 0 1 1 0 0 0 · · · 0 0 0 0 0 · · · 0

(x́, ý, ú) C 0 C 0 0 · · · 0 1 0 1 0 0 · · · 0 0 0 0 0 · · · 0

(x̄, ȳ, ū)

C C + V + + V − C 0 0 · · · 0 1 1 1 0 0 · · · 0 0 0 0 0 · · · 0

C C + V + + V − C C 0 · · · 0 1 1 1 1 0 · · · 0 0 0 0 0 · · · 0

C C + V + + V − C C C · · · 0 1 1 1 1 1 · · · 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C + V + + V − C C C · · · C 1 1 1 1 1 · · · 1 0 0 0 0 · · · 0

(x̂, ŷ, û)

C C C − V + − V − 0 0 · · · 0 1 1 1 0 0 · · · 0 0 0 0 0 · · · 0

C C C − V + − V −C 0 · · · 0 1 1 1 1 0 · · · 0 0 0 0 0 · · · 0

C C C − V + − V −C C · · · 0 1 1 1 1 1 · · · 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C − V + − V −C C · · · C 1 1 1 1 1 · · · 1 0 0 0 0 · · · 0

(ẍ, ÿ, ü) 0 C C C C · · · C 0 1 1 1 1 · · · 1 1 1 1 1 · · · 1

(x̆, y̆, ŭ) 0 0 C C C · · · C 0 0 1 1 1 · · · 1 0 1 1 1 · · · 1

(x̃, ỹ, ũ)

0 0 0 C C · · · C 0 0 0 1 1 · · · 1 0 0 1 1 · · · 1

0 0 0 0 C · · · C 0 0 0 0 1 · · · 1 0 0 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · C 0 0 0 0 0 · · · 1 0 0 0 0 · · · 1

Table 16: 3n+ 1 linearly independent points for (6)

For inequalities (7) ui ≥ 0, ∀i ∈ N :

We create 3n+ 1 linearly independent points in conv(P2) in the following five groups.

(i) We create a point (x́, ý, ú) ∈ conv(P2) (totally one point) such that

x́s =

{
C, s = 0
0, o.w.

, ýs =

{
1, s = 0
0, o.w.

, and
úrs = 0,
∀s ∈ [1, n]Z

.
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(ii) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P2) such

that

x̄rs =

{
C, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ūrs = 0,
∀s .

(iii) We create a point (ẋ, ẏ, u̇) ∈ conv(P2) (totally one point) such that

ẋs =

{
C, s = 0
0, o.w.

, ẏs =

{
1, s = 0
0, o.w.

, and
u̇rs = 0,
∀s .

(iv) For each r ∈ [0, n]Z \ {i} (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P2) such

that

x̂rs =

{
C, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, ŷrs =

{
1, ∀s ∈ [0, r]Z ∪ {i}
0, o.w.

, and
ûrs = 0,
∀s .

(v) For each r ∈ [1, n]Z \ {i} (totally there are n − 1 points), we create (x̃r, ỹr, ũr) ∈ conv(P2)

such that

x̃rs =

{
C, ∀s ∈ [r, n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n]Z \ {i}
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table 17.

In summary, all the inequalities in Q2 are facet-defining for conv(P2).

A.4 Proof for Proposition 4

Proof: Considering the fact that (3a) - (3d) are duplicated in P2 and Q2, we only need to consider

the dominance relationships between ((3e), (3f)) in P2 and ((4), (5), (6), (7)) in Q2.

(i) Inequality (3e) for each i ∈ N is dominated by a linear combination of (3a), (3c), and (4)

since RHS (the right hand side) of (4) - RHS of (3e) =
(

(C − V +)yi− −C
)
−
(
Cyi− − (C +

V +)yi − (C − C − V +)ui

)
= C(ui + yi− − 1) + (C + V +)(yi − yi− − ui) ≤ 0, where the last

inequality follows from (3a) and (3c).

(ii) Inequality (3f) for each i ∈ N is dominated by a linear combination of (3c), (7), and (5) since

RHS of (5) - RHS of (3f) =
(
Cyi− − (C − V −)yi + (C − C − V −)ui

)
−
(
− (C − V −)yi + C

)
= C(yi− + ui − 1)− (C + V −)ui ≤ 0, where the last inequality follows from (3c) and the non-

negativity of u.

Thus each inequality in P2 is dominated by one inequality or a combination of inequalities in Q2

and the proposition holds.
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Group
x y u

xi−xix1· · ·xi−1xi+1· · ·xn yi−yiy1· · · yi−1yi+1· · · yn uiu1· · ·ui−1ui+1· · ·un

(x́, ý, ú) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) C 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̂, ŷ, û)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table 17: 3n+ 1 linearly independent points for (7)

A.5 Proof for Lemma 1

Proof: Let A+ = {i ∈ [1, n]Z : ai ≥ 0}, A− = {i ∈ [1, n]Z : ai < 0}. Based on the structure of

Figure 2, we discuss two different cases based on the unit commitment status (“online” or “offline”)

at the root node.

1) The generator is offline at the root node, i.e., x0 = y0 = 0. For this case, we further discuss the

following two situations based on if i ∈ A+ or i ∈ A− for each i ∈ [1, n]Z:

(i) If i ∈ A+, to maximize the objective function (8), the generator at node i should be

scheduled online at its maximum generation amount C following constraints (3d) and (3e)

if aiC+bi+ci ≥ 0 or offline otherwise. It follows that (xi, yi, ui) = (C, 1, 1) if the generator

is online at node i or (xi, yi, ui) = (0, 0, 0) otherwise.
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(ii) If i ∈ A−, to maximize the objective function (8), the generator at node i should be

scheduled online at its minimum generation amount C if aiC + bi + ci ≥ 0 or offline

otherwise. It follows that (xi, yi, ui) = (C, 1, 1) if the generator is online at node i or

(xi, yi, ui) = (0, 0, 0) otherwise.

From the above (i) and (ii), we verified Claim (1).

2) The generator is scheduled online at the root node, i.e., y0 = 1. It follows that ui = 0 for all

i = 1, · · · , n. For notation brevity, we let Ā+(x0) = {i ∈ [1, n]Z : ai ≥ 0, ai min{C, x0 + V +}+

bi ≥ 0} and Ā−(x0) = {i ∈ [1, n]Z : ai < 0, ai max{C, x0 − V −} + bi ≥ 0}. Similar to 1), we

further discuss the following two situations based on if i ∈ A+ or i ∈ A− for each i ∈ [1, n]Z:

(i) If i ∈ A+, to maximize the objective function (8), the generator at node i should be

scheduled online at min{C, x0 + V +} following constraints (3d) and (3e) if i ∈ Ā+(x0) or

offline otherwise. It follows that (xi, yi, ui) = (min{C, x0 + V +}, 1, 0) if the generator is

online at node i or (xi, yi, ui) = (0, 0, 0) otherwise.

(ii) If i ∈ A−, to maximize the objective function (8), the generator at node i should be

scheduled online at max{C, x0 − V −} following constraints (3d) and (3f) if i ∈ Ā−(x0) or

offline otherwise. It follows that (xi, yi, ui) = (max{C, x0 − V −}, 1, 0) if the generator is

online at node i or (xi, yi, ui) = (0, 0, 0) otherwise.

Based on the above (i) and (ii), we can write the optimal objective value of (8) for a given

set of (a0, b0, ai, bi, ci), i = 1, · · · , n, as a function of x0. Denote it as g(x0) = (a0x0 + b0) +∑
i∈Ā+(x0)(ai min{C, x0 +V +}+bi)+

∑
i∈Ā−(x0)(ai max{C, x0−V −}+bi), which is a continuous

function with respect to x0 on [C,C]. Thus, z∗ = max{g(x0) : C ≤ x0 ≤ C}.

To obtain an explicit formula of z∗, we continue considering the following three situations:

(1) If C ≤ x0 ≤ C+V −, it follows that min{C, x0 +V +} = x0 +V + and max{C, x0−V −} = C.

Then we have g(x0) = (a0x0 + b0) +
∑

i∈A+ [ai(x0 + V +) + bi]
+ +

∑
i∈A− [aiC + bi]

+, where

we define [t]+ = max{0, t} for ∀t ∈ R. Thus, g(x0) is a convex function with respect to x0

on [C,C +V −]. It follows that the optimal solutions happen at the points where x0 = C or

C + V −. Now we discuss these two scenarios as follows.

• When x0 = C, xi, i = 1, · · · , n, can be obtained based on (i) and (ii) right above. Thus,

Claim (2) is verified.
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• When x0 = C + V −, there exists at least one xk for some k ∈ {1, · · · , n} such that

xk = C. This can be proven by contradiction argument. If no such xk exists, then xi

can only be either 0 or C + V + + V − based on the calculation (i) and (ii) right above.

Without loss of generality, we let xi = C + V + + V − for each i ∈ N1 ⊆ N and xi = 0

for each i ∈ N \N1. It is easy to observe that this solution (denoted as (x; y;u)) can be

written as a linear combination of two solutions (x̂; ŷ; û) and (x̃; ỹ; ũ), i.e., (x; y;u) =

1
2(x̂; ŷ; û) + 1

2(x̃; ỹ; ũ), where ŷ = ỹ = y, û = ũ = u, x̂0 = x0 + ε, x̃0 = x0 − ε, x̂i = xi + ε

and x̃i = xi − ε for each i ∈ N1, and x̂i = x̃i = xi for each i ∈ N \ N1. This is a

contradiction since (x; y;u) should be an extreme point of conv(P2) if there is only one

optimal solution for (8). Thus, Claim (3) is verified.

(2) If C+V − ≤ x0 ≤ C−V +, it follows that min{C, x0+V +} = x0+V + and max{C, x0−V −} =

x0 − V −. Then we have g(x0) = (a0x0 + b0) +
∑

i∈A+ [ai(x0 + V +) + bi]
+ +

∑
i∈A− [ai(x0 −

V −) + bi]
+, which is a convex function with respect to x0 on [C + V −, C − V +]. Thus, the

optimal solutions happen at the points where x0 = C + V − or C − V +. Here we only need

to discuss the case when x0 = C − V +. Similarly, we can follow the similar argument in (1)

right above to verify Claim (4).

(3) If C−V + ≤ x0 ≤ C, it follows that min{C, x0 +V +} = C and max{C, x0−V −} = x0−V −.

Then we have g(x0) = (a0x0 + b0) +
∑

i∈A+(aiC + bi)
+ +

∑
i∈A− [ai(x0 − V −) + bi]

+, which

is a convex function with respect to x0 on [C −V +, C]. Thus, the optimal solutions happen

at the points where x0 = C − V + or C. We only need to consider the case when x0 = C,

because the other case has been covered in (2) above. For this case, xi, i = 1, · · · , n, can be

defined based on (i) and (ii) right above in 2). Hence, Claim (5) is verified.

This completes the proof.

A.6 Proof for Proposition 5

Proof: First, we prove a claim that every point in the five groups of points described in Lemma

1 satisfies 3n+ 2 linearly independent inequalities in Q2 at equality, which indicates that they are

extreme points of Q2. We prove this claim in five situations:

1) For Group (1) points, we have x0 = y0 = 0 and let xi = 0 for i ∈ [1, r]Z, xi = C for i ∈ [r+1, s]Z,

and xi = C for i ∈ [s+ 1, n]Z for some given r and s. It follows that yi = ui = 0 for i ∈ [1, r]Z,

yi = ui = 1 for i ∈ [r + 1, n]Z. Without loss of generality, we only consider the case in which
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r ≥ 1, s ≥ r+ 1, and n ≥ s+ 1. That is, there exists at least one scenario corresponding to each

possible generation amount xi of 0, C, or C. Then, the following 3n + 2 linearly independent

inequalities, xi − Cyi ≥ 0 (for each i = 0, 1, · · · , s), xi − Cyi ≤ 0 (for each i = s + 1, · · · , n),

(3a) (i = 1), (3b) (for each i = 1, · · · , n), (7) (for each i = 1, · · · , r), and (3c) (for each

i = r + 1, · · · , n) are tight.

2) For Group (2) points, we have x0 = C, y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for

i ∈ [r+ 1, s]Z, and xi = C + V + for i ∈ [s+ 1, n]Z for some given r and s. It follows that ui = 0

for i ∈ [1, n]Z, yi = 0 for i ∈ [1, r]Z, and yi = 1 for i ∈ [r + 1, n]Z. Without loss of generality, we

only consider the case in which r ≥ 1, s ≥ r+ 1, and n ≥ s+ 1. That is, there exists at least one

scenario corresponding to each possible generation amount xi of 0, C, or C+V +. The following

3n + 2 linearly independent inequalities, xi − Cyi ≥ 0 (for each i = 0, 1, · · · , s), (4) (for each

i = s+ 1, · · · , n), (3c) (i = 1), (3b) (for each i = 1, · · · , r), (3a) (for each i = r + 1, · · · , n), and

(7) (for each i = 1, · · · , n) are tight.

3) For Group (3) points, we have x0 = C + V −, y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for

i ∈ [r + 1, s]Z, and xi = C + V + + V − for i ∈ [s + 1, n]Z for some given r and s. Without

loss of generality, we only consider the case in which r ≥ 1, s ≥ r + 1, and n ≥ s + 1. That

is, there exists at least one scenario corresponding to each possible generation amount xi of 0,

C, or C + V + + V −. The following 3n + 2 linearly independent inequalities, (5) (i = r + 1),

xi − Cyi ≥ 0 (for each i = 1, · · · , s), (4) (for each i = s+ 1, · · · , n), (3c) (i = 1), (3b) (for each

i = 1, · · · , r), (3a) (for each i = r + 1, · · · , n), and (7) (for each i = 1, · · · , n) are tight.

4) For Group (4) points, we have x0 = C − V +, y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for

i ∈ [r + 1, s]Z, and xi = C − V + − V − for i ∈ [s + 1, n]Z for some given r and s. Without

loss of generality, we only consider the case in which r ≥ 1, s ≥ r + 1, and n ≥ s + 1. That

is, there exists at least one scenario corresponding to each possible generation amount xi of 0,

C, or C − V + − V −. The following 3n + 2 linearly independent inequalities, (4) (i = r + 1),

xi −Cyi ≤ 0 (for each i = 1, · · · , s), (6) (for each i = s+ 1, · · · , n and j = s), (3c) (i = 1), (3b)

(for each i = 1, · · · , r), (3a) (for each i = r+ 1, · · · , n), and (7) (for each i = 1, · · · , n) are tight.

5) For Group (5) points, we have x0 = C, y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for

i ∈ [r+ 1, s]Z, and xi = C − V − for i ∈ [s+ 1, n]Z for some given r and s. It follows that ui = 0

for i ∈ [1, n]Z, yi = 0 for i ∈ [1, r]Z, and yi = 1 for i ∈ [r + 1, n]Z. Without loss of generality, we

only consider the case in which r ≥ 1, s ≥ r+ 1, and n ≥ s+ 1. That is, there exists at least one
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scenario corresponding to each possible generation amount xi of 0, C, or C−V −. The following

3n + 2 linearly independent inequalities, xi − Cyi ≤ 0 (for each i = 0, 1, · · · , s), (5) (for each

i = s+ 1, · · · , n), (3c) (i = 1), (3b) (for each i = 1, · · · , r), (3a) (for each i = r + 1, · · · , n), and

(7) (for each i = 1, · · · , n) are tight.

Lemma 1 and the above claim indicate that

every extreme point of conv(P2) is also an extreme point of Q2. (38)

Combining this with the fact that 0 ≤ y, u ≤ 1 and every inequality in Q2 is facet-defining for

conv(P2) as shown in Proposition 3, we can claim that all the extreme points of Q2 are integral in y

and u. This can be proved by using a contradiction method. First of all, based on inequalities (3a)-

(3d) and Propositions 1 and 4, we have both conv(P2) and Q2 bounded and

conv(P2) ⊆ Q2 ⊆ P̂2, where P̂2 = {(x, y, u) ∈ Rn+1
+ × [0, 1]n+1 × [0, 1]n : (3a)− (3f)}. (39)

Now the argument is as follows: if the claim is not true, i.e., there exists at least one fractional

extreme point v in Q2, then following conv(P2) ⊆ Q2 as stated in (39), we have v /∈ conv(P2),

which means there exists a facet in conv(P2), denoted as H = {(x, y, u) ∈ P2 : π(x, y, u) = π0},

with its induced hyperplane H′ = {(x, y, u) ∈ R3n+2 : π(x, y, u) = π0} separating conv(P2) and

v. Accordingly, there are at least 3n + 2 (linearly independent) extreme points of conv(P2) (also

extreme points of Q2 following (38)) to construct H. Meanwhile, since conv(P2) is bounded, facet

H intersects at least 3n+ 2 facets of conv(P2) (note here that each extreme point among the 3n+ 2

extreme points is the intersection of H and other at least 3n+ 1 facets. Therefore, at least 3n+ 2

facets are required to generate more than one extreme point on H). Now we select these 3n + 2

facets (denoted as set Λ) of conv(P2), and the hyperplanes induced by them (denoted as set Λ′)

should intersect at v. Otherwise, if they cannot intersect at v, then there must exist a facet in

Q2, which is not a facet in conv(P2), intersecting with other facets at v. This contradicts with

Proposition 3.

In the following, we find the contradiction by arguing that v should not be an intersection of the

hyperplanes in Λ′ if v is factional. To approach this, we extend v backwards along each hyperplane

Λ′k ∈ Λ′ to the corresponding facet Λk ∈ Λ, k = 1, · · · , 3n + 2. In this way, along each Λk, there

should exist at least one extreme point v′k ∈ Λ′k∩ conv(P2) and v′k /∈W, where W is defined as the

set of extreme points on the intersection boundaries between H and each facet in Λ. However, we

can claim that there exists at least one Λ′m ∈ Λ′ in which no corresponding v′m exists, which leads

to a contradiction. In the remaining part of this proof, we prove this claim.
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In general, the easiest case to obtain the most possible v′ks is that v contains one fractional entry

and conv(P2) is generated by the intersection ofH and hypercube X = {(x, y, u) ∈ Rn+1×[0, 1]2n+1 :

C ≤ x ≤ C} in which only one vertex in X is cut off. It is due to the following reasons:

(i) When v contains a smaller number of fractional entries, e.g., one fractional entry instead

of two, v lies in more (3n + 1)-faces in X , which makes it easier to extend to the facets in

conv(P2) to obtain the corresponding v′.

(ii) If v has only one fractional entry, then when more vertices in X are removed to construct

conv(P2), less vertices are left in conv(P2) and thus it is less likely to find the corresponding

v′ along Λ′k, 1 ≤ k ≤ 3n+ 2.

Now we consider the easiest case in which v = (x, y, u) has only one fractional entry, e.g.,

denoted as yr with 0 < yr < 1, and conv(P2) is constructed by removing one vertex, denoted as

v̂ = (x̂, ŷ, û), from X . It is easy to observe that v̂ is also separated by H from conv(P2). For this

case, if ŷr = 0, then we cannot find the corresponding v′ along Λ′r with yr = 0. Note here that for

this case 3n + 2 hyperplanes in Λ′ represent all the 3n + 2 (3n + 1)-faces constructing v̂ in which

the hyperplane with the expression yr = 0 is included. Similarly, if ŷr = 1, then we cannot find the

corresponding v′ along Λ
′
r with yr = 1. Therefore, it is a contradiction and the original conclusion

holds.

In summary, we have shown that all the extreme points of Q2 are integral in y and u.

Appendix B Proofs for Three-period Formulations

B.1 Proof for Proposition 6

Proof: The proof for (10a) is trivial and thus omitted here. The validity proofs for (10b) - (10f)

and (12) are similar to those for inequalities (4) - (6) in Q2, because all of them have two continuous

variables and the validity proof arguments for different combinations are similar. In the following,

we first provide the validity proofs for (13) - (16).

For (13), we prove the claim by discussing different cases in terms of the values of yi−2
and yi− :

(i) If yi−2
= yi− = 0, then xi−2

= xi− = 0 due to (11d). Then (13) converts to xi ≥ Cyi, which is

valid because of (11d).

(ii) If yi−2
= 0 and yi− = 1, then ui− = 1 due to (11c) and further yi = 1 due to (11a) and

nonnegativity of ui. Then (13) converts to xi− − xi ≤ V , which is valid because of (11f).
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(iii) If yi−2
= yi− = 1, then (13) converts to xi−2

− xi− + xi ≥ −V + Cyi, which is valid because

xi−2
− xi− ≥ −V due to (11e) and xi ≥ Cyi due to (11d).

(iv) If yi−2
= 1 and yi− = 0, then ui− = ui = 0 due to (11b) and nonnegativity of ui− and ui and

further yi = 0 due to (11c). In addition, yi− = yi = 0 leads to xi− = xi = 0 due to (11d). It

follows that (13) converts to xi−2
≥ Cyi−2 , which is valid because of (11d).

Due to symmetry, the proof for (14) is similar to that for (13) and thus omitted here.

For (15), we prove the claim by discussing different cases in terms of the values of yi−2
and yj :

(i) If yi−2
= yj = 0, then xi−2

= xj = 0 due to (11d) and uj = 0 due to (11a). Then (13) converts

to xi ≥ Cyi, which is valid because of (11d).

(ii) If yi−2
= 0 and yj = 1, then xi−2

= 0 due to (11d). We further discuss two situations: 1) if

yi− = 0, then yj− = yi− = 0 since j− = i− and thus uj = 1 because of (11c). Then (15)

converts to xi − xj ≥ Cyi − C, which is valid because xi ≥ Cyi and xj ≤ C; 2) if yi− = 1,

then ui− = 1 due to (11c) and further ui = uj = 0 because of (11b). Also, we have yi = 1

because of (11a). It follows that (15) converts to xj − xi ≤ 2V , which is valid since xj − xi is

maximized when xj is increased by V and xi is decreased by V from xi− .

(iii) If yi−2
= 1 and yj = 0, then xj = 0 due to (11d) and uj = 0 due to (11a) and nonnegativity

of ui− . Then, (15) converts to xi−2
+ xi ≥ C + Cyi, which is valid because of (11d).

(iv) If yi−2
= yj = 1, we have ui− = ui = uj = 0 due to (11b). Then yi− = yj− = 1 because of

(11c) and i− = j−, and (15) converts to xi−2
+ xi − xj ≥ −2V + Cyi, which is valid because

xi−2
− xj ≥ −2V due to the ramp-up constraints (11e) since yi−2

= yi− = yj = 1 and xi ≥ Cyi.

The proof for (16) is similar to that for (15) due to symmetry and thus omitted here.

Finally, inequalities (12) - (16) are facet-defining for conv(P 2
3 ), which will be provided in Section

5 in the proofs for Propositions 10 - 11 and Proposition 13.

Now we prove the validity of (17). We discuss the following four cases in terms of possible

values of yi−2
and yj :

(i) If yi−2
= yj = 0, then xi−2

= xj = 0 due to constraints (11d), ui− = uj = 0 due to constraints

(11a), and yi− = 0 due to constraints (11c). It follows that yi = ui and (17) converts to

xi ≥ Cyi, which is valid because of (11d).
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(ii) If yi−2
= 0 and yj = 1, we further discuss the following two cases in terms of possible values

of yi− :

1) If yi− = 0, we have uj = yj = 1 and ui = yi due to constraints (11c) and (11a). It follows

that (17) converts to xi − xj ≥ Cyi − C, which is valid because of (11d).

2) If yi− = 1, we have ui− = yi = 1, ui = uj = 0 following (11a) - (11c). It follows that (17)

converts to −xi− +xi−xj ≥ −C −V , which is valid since −xi− +xi ≥ −V following (11f)

and −xj ≥ −C following (11d).

(iii) If yi−2
= 1 and yj = 0, then xj = 0 due to constraints (11d), and ui− = ui = uj = 0, yi− ≥ yi

following (11a) - (11c). We further discuss the following three cases in terms of possible values

of yi− and yi:

1) If yi− = yi = 0, (17) converts to xi−2
≥ C, which is valid due to (11d).

2) If yi− = 1 and yi = 0, (17) converts to xi−2
− xi− ≥ C − C + V , which is valid since

xi−2
− xi− ≥ −V following (11e) and C − C − 2V > 0.

3) If yi− = yi = 1, (17) converts to xi−2
− xi− + xi ≥ C − V , which is valid since xi−2

≥ C

following (11d) and −xi− + xi ≥ −V following (11f).

(iv) If yi−2
= yj = 1, then yi− = 1, ui− = ui = uj = 0 following (11a) - (11c). It follows that (17)

converts to xi−2
− xi− + xi − xj ≥ (C − 2V )yi − C − V . We further discuss the following two

cases in terms of possible values of yi:

1) If yi = 0, (17) converts to xi−2
− xi− − xj ≥ −C − V , which is valid since xi−2

− xi− ≥ −V

following (11e) and −xj ≥ −C following (11d).

2) If yi = 1, (17) converts to xi−2
− xi− + xi− xj ≥ −3V , which is valid since xi−2

− xi− ≥ −V

following (11e) and xj − xi ≤ 2V because xj − xi is maximized when xj increases by V

and xi decreases by V based on xi− .

By symmetry, the validity proof for (18) is similar to that for (17) and therefore is omitted here.

As a result, we also only provide the facet-defining proof for (17) as follows.

Similar to the proof for Proposition 2, we can prove that conv(P 2
3 ) is full-dimensional with

dim(conv(P 2
3 )) = 3n + 5. Thus we prove that inequality (17) is facet-defining for conv(P 2

3 ) by

creating 3n+ 5 affinely independent points in conv(P 2
3 ) that satisfy (17) at equality. For notation

brevity, for Figure 3, we sort all the nodes in the order of i−2 , i
−, 1, 2, · · · , n with node i−2 labelled
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as −1 and node i− labelled as 0. In addition, due to the symmetry of scenario nodes in N , without

loss of generality, we only consider the case in which i = 1 and j = 2. Since 0 ∈ conv(P 2
3 ), we

provide the remaining 3n+ 4 linearly independent points in the following eight groups:

(i) For r = −1 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 2
3 ) such that

x̄rs =

{
C, s = −1
0, ∀s ∈ [0, n]Z

, ȳrs =

{
1, s = −1
0, ∀s ∈ [0, n]Z

, and
ūrs = 0,
∀s ∈ [0, n]Z

.

(ii) For r = 0 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 2
3 ) such that

x̄rs =


C, ∀s ∈ {−1, 1}
C + V, s = 0
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−1, 1]Z
0, o.w.

, and
ūrs = 0,
∀s .

(iii) For r = 1 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 2
3 ) such that

x̄rs =


C, ∀s ∈ {0, 2}
C − V, s = −1
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−1, 2]Z \ {1}
0, o.w.

, and
ūrs = 0,
∀s .

(iv) For each r ∈ [2, n]Z (totally there are n − 1 points), we create (x̄r, ȳr, ūr) in conv(P 2
3 ) such

that

x̄rs =


C, ∀s ∈ {−1, 1}
C + V, s = 0
C + 2V, ∀s ∈ [2, r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−1, r]Z
0, o.w.

, and
ūrs = 0,
∀s .

Note here that Groups (i) to (iv) (totally n + 2 points) construct a lower-triangular matrix

in terms of y, which are sorted horizontally in the order of yi−2
, yi− , y1, y2, · · · , yn. Next, we

construct n linearly independent points through providing different values on x corresponding

to each point (except the first and second ones, i.e., r = −1 and 0) in Groups (i) to (iv)

through keeping y the same, making the constructed points linearly independent with Groups

(i) to (iv).

(v) For r = 1 (totally there is one point), we create (x̂r, ŷr, ûr) in conv(P 2
3 ) such that

x̂rs =


C − V − ε, s = −1

C − ε, s = 0

C, s = 2
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−1, 2]Z \ {1}
0, o.w.

, and
ûrs = 0,
∀s .
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(vi) For each r ∈ [2, n]Z (totally there are n − 1 points), we create (x̂r, ŷr, ûr) in conv(P 2
3 ) such

that

x̂rs =


C + ε, ∀s ∈ {−1, 1}
C + V + ε, s = 0
C + 2V + ε, ∀s ∈ [2, r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−1, r]Z
0, o.w.

, and
ûrs = 0,
∀s .

Note here that the variable u = 0 for all the points in the six groups of points above. Next we

construct the remaining n+2 linearly independent points through creating an upper-triangular

matrix in terms of the variable u.

(vii) For each r ∈ [0, n]Z (totally there are n + 1 points), we create (x̃r, ỹr, ũr) in conv(P 2
3 ) such

that

x̃rs =


C, ∀s ∈ [r, n]Z \ {1}
C − V, s = 1, if r = 0
C, s = 1, if r = 1
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

, and ũrs =


1, s = r, if r ≤ 0
1, ∀s ∈ [r, n]Z, if r ≥ 1
0, o.w.

.

(viii) We create a point (ẋ, ẏ, u̇) in conv(P 2
3 ) (totally one point) such that

ẋs =


C − ε, s = 0

C − V − ε, s = 1

C, ∀s ∈ [2, n]Z
0, o.w.

, ẏs =

{
1, ∀s ∈ [0, n]Z
0, o.w.

, and u̇s =

{
1, s = 0,
0, o.w.

.

In summary, we create 3n + 4 points in conv(P 2
3 ), with a similar structure in Table 16. It

follows that (x̄r, ȳr, ūr)nr=−1, (x̂r, ŷr, ûr)nr=1, (x̃r, ỹr, ũr)nr=0, and (ẋ, ẏ, u̇) are linearly independent.

Therefore, the statement is proved.

For the following proofs, we omit the validity proofs due to the similarities with those provided

in Proposition 1 and Proposition 6, and only provide the facet-defining proofs.

B.2 Proof for Proposition 7

Proof: We prove that (19) is facet-defining and omit the proof for (20) due to symmetry. Following

the breadth-first search rule, we sort the n2 +n+ 1 scenario nodes (from Figure 4) in the following

Figure 8, where the root node is the 0th one and the last one is the (n2 + n)th one. Due to

the symmetry of scenario nodes following their parent node, without loss of generality, we assume

scenario node i− is the 1st child and j− is the 2nd child following the root node i−2 , scenario node i

is the first child following node i−, and node j is the first child following node j−, i.e., node i is the
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(n+1)st one and node j is the (2n+1)st one in the whole tree, as shown in Figure 8. Thus we only

need to prove that xn+1−x0+x2 ≤ (C+2V )yn+1−Cy0+(C−C−2V )(u1+un+1)+(C−V )y2+V u2

is facet-defining for conv(P3).

i−2
0

j−

2

i−

1

i n+ 1

n+ 2

2n

n

n2 + 1

n2 + 2

n2 + n

j 2n+ 1

2n+ 2

3n

t(i−2 ) = 1 t(i−) = 2 t(i) = 3

Figure 8: A generic three-period scenario tree

Now we generate 3n2 + 3n + 2 affinely independent points in conv(P3) that satisfy (19) at

equality. Since 0 ∈ conv(P3), we generate other 3n2 + 3n + 1 linearly independent points in the

following groups.

(i) For each r ∈ [0, 1]Z (totally there are two points), we create (x́r, ýr, úr) ∈ conv(P3) such that

x́rs =

{
C, ∀s ∈ [0, r]Z
0, ∀s ∈ [r + 1, n2 + n]Z

, ýrs =

{
1, ∀s ∈ [0, r]Z
0, ∀s ∈ [r + 1, n2 + n]Z

, and
úrs = 0,
∀s ∈ [1, n2 + n]Z

.

(ii) For each r ∈ [n + 1, 2n]Z (totally there are n points), we create (x́r, ýr, úr) ∈ conv(P3) such

that

x́rs =


C, s = 0
C + V, s = 1
C + 2V, ∀s ∈ [n+ 1, r]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [0, 1]Z ∪ [n+ 1, r]Z
0, o.w.

, and
úrs = 0,
∀s .

(iii) For each r ∈ [2, n]Z (totally there are n − 1 points), we create (x́r, ýr, úr) ∈ conv(P3) such
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that

x́rs =


C − V, s = 0

C, ∀s ∈ [1, r]Z ∪ [n+ 1, 2n]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [0, r]Z ∪ [n+ 1, 2n]Z
0, o.w.

, and
úrs = 0,
∀s .

(iv) For each r ∈ [2n+1, n2 +n]Z (totally there are n2−n points), we create (x́r, ýr, úr) ∈ conv(P3)

such that

x́rs =


C − V, s = 0

C, ∀s ∈ [1, r]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [0, 1]Z ∪ [n+ 1, r]Z
0, o.w.

, and
úrs = 0,
∀s .

Note here that Groups (i) to (iv) (n2 + n + 1 points) construct a lower-triangular matrix

in terms of y, which are sorted horizontally in the order of y0, y1, yn+1, · · · , y2n, y2, · · · , yn,

y2n+1, · · · , y3n, · · · , yn2+1, · · · , yn2+n. Next, we construct n2 + n linearly independent points

through providing different values on x corresponding to each point (except the first one,

i.e., r = 0) in Groups (i) to (iv) through keeping y the same, making the constructed points

linearly independent with Groups (i) to (iv).

(v) For r = 1 (totally there is one point), we create (x̄r, ȳr, ūr) ∈ conv(P3) such that

x̄rs =


C, s = 0
C + V, s = 1
0, ∀s ∈ [2, n2 + n]Z

, ȳrs =

{
1, ∀s ∈ [0, r]Z
0, ∀s ∈ [r, n2 + n]Z

, and
ūrs = 0,
∀s ∈ [1, n2 + n]Z

.

(vi) For each r ∈ [n + 1, 2n]Z (totally there are n points), we create (x̄r, ȳr, ūr) ∈ conv(P3) such

that

x̄rs =


C − 2V, s = 0

C − V, s = 1

C, ∀s ∈ [n+ 1, r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, 1]Z ∪ [n+ 1, r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(vii) For each r ∈ [2, n]Z (totally there are n − 1 points), we create (x̄r, ȳr, ūr) ∈ conv(P3) such

that

x̄rs =


C − 2V, s = 0

C − V, ∀s ∈ [1, r]Z
C, ∀s ∈ [n+ 1, 2n]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z ∪ [n+ 1, 2n]Z
0, o.w.

, and
ūrs = 0,
∀s .

(viii) For each r ∈ [2n+1, n2 +n]Z (totally there are n2−n points), we create (x̄r, ȳr, ūr) ∈ conv(P3)

such that

x̄rs =


C − 2V, s = 0

C − V, ∀s ∈ [1, n]Z ∪ [2n+ 1, r]Z
C, ∀s ∈ [n+ 1, 2n]Z
0, o.w.

, ȳrs =


1, ∀s ∈ [0, 1]Z
∪[n+ 1, r]Z

0, o.w.
, and

ūrs = 0,
∀s .
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Note here that the variable u = 0 for all the points in the eight groups of points above.

Next we construct the remaining n2 + n linearly independent points through creating an

upper-triangular matrix in terms of the variable u.

(ix) For each r ∈ [1, n]Z (totally there are n points), we create (x̂r, ŷr, ûr) ∈ conv(P3) such that

x̂rs =

{
C, ∀s ∈ [r, n2 + n]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [r, n2 + n]Z
0, o.w.

, and ûrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

.

(x) For each r ∈ [n + 1, n2 + n]Z (totally there are n2 points), we create (x̂r, ŷr, ûr) ∈ conv(P3)

such that

x̂rs =

{
C, ∀s ∈ [n+ 1, r]Z
0, o.w.

, and ŷrs = ûrs =

{
1, ∀s ∈ [n+ 1, r]Z
0, o.w.

.

In summary, we create 3n2 + 3n + 1 points in conv(P3), with a similar structure of Table

16. It follows that (x́r, ýr, úr)n
2+n

r=0 , (x̄r, ȳr, ūr)n
2+n

r=1 , and (x̂r, ŷr, ûr)n
2+n

r=1 are linearly independent.

Therefore, the statement is proved.

B.3 Proof for Proposition 8

Proof: Similar to the proof in E-companion B.2 and following the notation in Figure 8 above, we

only need to prove that x1−x2n+1 ≤ (C+3V )y1−(C−3V )y2n+1+(C−C−3V )(y0+u1+u2+u2n+1)

is facet-defining for conv(P3). In the following we create 3n2 +3n+1 linearly independent points in

conv(P3) that satisfy this inequality at equality. First, we create 2n2 + 2n+ 1 linearly independent

points through constructing a lower-triangular matrix in terms of the values x and y.

(i) For each r ∈ [1, 2n]Z (totally there are 2n points), we create (x́r, ýr, úr) ∈ conv(P3) such that

x́rs =

{
C, ∀s ∈ [0, r]Z
0, ∀s ∈ [r + 1, n2 + n]Z

, ýrs =

{
1, ∀s ∈ [0, r]Z
0, ∀s ∈ [r + 1, n2 + n]Z

, and
úrs = 0,
∀s ∈ [1, n2 + n]Z

.

(ii) For each r ∈ [2n+1, n2 +n]Z (totally there are n2−n points), we create (x́r, ýr, úr) ∈ conv(P3)

such that

x́rs =


C − V, s = 0

C, ∀s ∈ {1} ∪ [n+ 1, 2n]Z
C − 2V, ∀s ∈ [2, n]Z
C − 3V, ∀s ∈ [2n+ 1, r]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [0, r]Z
0, o.w.

, and
úrs = 0,
∀s .

(iii) For each r ∈ [1, 2n]Z (totally there are 2n points), we create (x̄r, ȳr, ūr) ∈ conv(P3) such that

x̄rs =


C − V, ∀s ∈ [0, r]Z \ {1}
C, s = 1
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z
0, o.w.

, and
ūrs = 0,
∀s .
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(iv) For each r ∈ [2n+1, n2 +n]Z (totally there are n2−n points), we create (x̄r, ȳr, ūr) ∈ conv(P3)

such that

x̄rs =


C + 2V, s = 0
C + 3V, ∀s ∈ {1} ∪ [n+ 1, 2n]Z
C + V, ∀s ∈ [2, n]Z
C, ∀s ∈ [2n+ 1, r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [0, r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(v) We create a point (ẋ, ẏ, u̇) ∈ conv(P3) (totally one point) such that

ẋs =

{
C, ∀s ∈ [2, n]Z ∪ {0, 2n+ 1}
0, o.w.

, ẏs =

{
1, ∀s ∈ [2, n]Z ∪ {0, 2n+ 1}
0, o.w.

, and
u̇s = 0,
∀s .

Next, we create the remaining n2 + n linearly independent points through constructing an

upper-triangular matrix in terms of the value u. It is similar to the proof in E-companion B.2.

(vi) For r = 1 (totally there is one point), we create (x̂r, ŷr, ûr) ∈ conv(P3) such that

x̂rs =


C, ∀s ∈ [n+ 1, 2n]Z ∪ {1}
0, s = 0
C, o.w.

, ŷrs =

{
0, s = 0
1, o.w.

, and ûrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

(vii) For each r ∈ [2, n]Z (totally there are n − 1 points), we create (x̂r, ŷr, ûr) ∈ conv(P3) such

that

x̂rs =


C, ∀s ∈ [r, n]Z
∪[2n+ 1, n2 + n]Z
0, o.w.

, ŷrs =


1, ∀s ∈ [r, n]Z
∪[2n+ 1, n2 + n]Z
0, o.w.

, and ûrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

(viii) For each r ∈ [n + 1, n2 + n]Z (totally there are n2 points), we create (x̂r, ŷr, ûr) ∈ conv(P3)

such that

x̂rs =

{
C, ∀s ∈ [n+ 1, r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [n+ 1, r]Z
0, o.w.

, and ûrs =

{
1, ∀s ∈ [n+ 1, r]Z
0, o.w.

It is clear that (x́r, ýr, úr)n
2+n

r=1 , (x̄r, ȳr, ūr)n
2+n

r=1 , (ẋ, ẏ, u̇), and (x̂r, ŷr, ûr)n
2+n

r=1 are linearly inde-

pendent. Therefore, the statement is proved.

Appendix C Proofs for Multi-period Formulations

To simplify the process of generating linearly independent points, we sort the nodes in Figure 6 with

ordered integer numbers and label j−T−1, j
−
T−2, · · · , j− with integers −(T − 1),−(T − 2), · · · ,−1 re-

spectively. Thus, x−(T−1), x−(T−2), · · · , x−1 correspond to xj−T−1
, xj−T−2

, · · · , xj− respectively. Simi-

larly, the scenario nodes in N are ordered and labelled with integers 0, 1, 2, · · · , n− 1, where node
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0 is the first scenario node and node n − 1 is the last scenario node. Therefore, all the n + T − 1

nodes in Figure 6 are labelled in an order with integers from −(T − 1) to n− 1.

For the facet-defining proof for each proposition, i.e., Propositions 9 - 14, we generate 3n+3T−4

affinely independent points in conv(P 0
T ) that satisfy the inequality at equality. Since 0 ∈ conv(P 0

T ),

we generate other 3n+ 3T −5 linearly independent points. Similar to the proofs in Appendices B.2

and B.3, we construct a lower-triangular matrix in terms of the value y and an upper-triangular

matrix in terms of the value u. In the following proofs, we use the superscript of (x, y, u), e.g., r in

(xr, yr, ur), to indicate the index of different points in conv(P 0
T ).

C.1 Proof for Proposition 9

Proof: We only prove that inequality (22) is facet-defining for conv(P 0
T ), because the facet-defining

proof for inequality (23) is similar due to symmetry and thus omitted here. Due to the symmetry

of the scenario nodes in N , without loss of generality, we assume node i to be the last scenario

node in N , i.e., i = n − 1. We create 3n + 3T − 5 linearly independent points in conv(P 0
T ) in the

following groups.

(i) For each r ∈ [−(T − 1),−(k+ 1)]Z (totally there are T −k− 1 points), we create (x́r, ýr, úr) ∈

conv(P 0
T ) such that

x́rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, ∀s ∈ [r + 1, n− 1]Z

, ýrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
úrs = 0,
s ∈ [−(T − 2), n− 1]Z

.

(ii) For each r ∈ [−(T − 1), n − 2]Z (totally there are T + n − 2 points), we create (x̄r, ȳr, ūr) ∈

conv(P 0
T ) such that

x̄rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(iii) For r = n− 1 (totally there is one point), we create (x̄r, ȳr, ūr) ∈ conv(P 0
T ) such that

x̄rs =


C, ∀s ∈ [−(T − 1),−(k + 1)]Z
C − (k + s)V, ∀s ∈ [−k,−1]Z
C − kV, o.w.

,
ȳrs = 1,
∀s , and

ūrs = 0,
∀s .

(iv) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋs =


C + kV, s ∈ [−(T − 1),−(k + 1)]Z
C − sV, s ∈ [−k,−1]Z
C, o.w.

,
ẏs = 1,
∀s , and

u̇s = 0,
∀s .
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(v) For each r ∈ [−(T − 2),−k]Z (totally there are T − k − 1 points), we create (x̂r, ŷr, ûr) ∈

conv(P 0
T ) such that

x̂rs =


C, ∀s ∈ [r,−(k + 1)]Z
C − (k + s)V, ∀s ∈ [−k,−1]Z
C − kV, ∀s ∈ [0, n− 1]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

, and ûrs =

{
1, s = r
0, o.w.

.

(vi) For each r ∈ [−(k − 1), n − 1]Z (totally there are n + k − 1 points), we create (x̂r, ŷr, ûr) ∈

conv(P 0
T ) such that

x̂rs =

{
C, ∀s ∈ [r, n− 1]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

,

and ûrs =


1, s = r, if r ≤ −1
1, ∀s ∈ [r, n− 1]Z, if r ≥ 0
0, o.w.

.

(vii) For each r ∈ [−(k − 1), n − 2]Z (totally there are n + k − 2 points), we create (x̃r, ỹr, ũr) ∈

conv(P 0
T ) such that

x̃rs =


C + ε, ∀s ∈ [r, n− 2]Z
C, s = n− 1
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

,

and ũrs =


1, s = r, if r ≤ −1
1, ∀s ∈ [r, n− 1]Z, if r ≥ 0
0, o.w.

.

From the description above, we can observe that (x̄r, ȳr, ūr)n−1
r=−(T−1) and (x̂r, ŷr, ûr)n−1

r=−(T−2)

are linearly independent because they can construct a lower-triangular matrix based on the values

of y and u after Gaussian elimination on the u part. Moreover, (x́r, ýr, úr)
−(k+1)
r=−(T−1), (ẋ, ẏ, u̇), and

(x̃r, ỹr, ũr)n−2
r=−(k−1) are further linearly independent with them because all of these five groups of

points can construct a lower-triangular matrix after Gaussian elimination on the x part. Thus, we

have created (T + n − 1) + (T + n − 2) + (T − k − 1) + (n + k − 2) + 1 = 3n + 3T − 5 linearly

independent points in conv(P 0
T ) as desired.

C.2 Proof for Proposition 10

Proof: Due to the symmetry of the scenario nodes in N , without loss of generality, we assume

nodes i and j to be the last two scenario nodes in N , i.e., i = n−2, j = n−1. We create 3n+3T−5

linearly independent points in conv(P 0
T ) in the following groups.
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(i) For each r ∈ [−(T − 1), n − 2]Z (totally there are T + n − 2 points), we create (x̄r, ȳr, ūr) in

conv(P 0
T ) such that

x̄rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(ii) For r = n− 1 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 0
T ) such that

x̄rs =

{
0, s = n− 2
C, o.w.

, ȳrs =

{
0, s = n− 2
1, o.w.

, and
ūrs = 0,
∀s .

(iii) For each r ∈ [−(T − 1), n − 3]Z (totally there are T + n − 3 points), we create (x̂r, ŷr, ûr) in

conv(P 0
T ) such that

x̂rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(iv) For each r ∈ [−(T − 2),−L]Z (totally there are T − L − 1 points), we create (x̃r, ỹr, ũr) in

conv(P 0
T ) such that

x̃rs =

{
C, ∀s ∈ [r, n− 3]Z
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n− 3]Z
0, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.

(v) For each r ∈ [−(L−1),−1]Z (totally there are L−1 points), we create (x̃r, ỹr, ũr) in conv(P 0
T )

such that

x̃rs =


C + V, ∀s ∈ [r, n− 3]Z
C + 2V, s = n− 2
C, s = n− 1
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.

(vi) For each r ∈ [0, n − 1]Z (totally there are n points), we create (x̃r, ỹr, ũr) in conv(P 0
T ) such

that

x̃rs =


C, ∀s ∈ [r, n− 2]Z
C, s = n− 1
0, o.w.

, and ỹrs = ũrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

.

(vii) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋs =


C − V, ∀s ∈ [−(L− 1),

n− 3]Z
C, s = n− 2

C − 2V, s = n− 1
0, o.w.

, ẏs =


1, ∀s ∈ [−(L− 1),

n− 1]Z
0, o.w.

, and u̇s =

{
1, s = −(L− 1)
0, o.w.

.

It is clear that (x̄r, ȳr, ūr)n−1
r=−(T−1), (x̂r, ŷr, ûr)n−3

r=−(T−1), (x̃r, ỹr, ũr)n−1
r=−(T−2), and (ẋ, ẏ, u̇) are

linearly independent and therefore the statement is proved.
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C.3 Proof for Proposition 11

Proof: We only prove that inequality (25) is facet-defining for conv(P 0
T ), because the facet-defining

proof for inequality (26) is similar due to symmetry and thus omitted here. Due to the symmetry

of the scenario nodes in N , without loss of generality, we assume node i to be the last scenario

node in N , i.e., i = n − 1. We create 3n + 3T − 5 linearly independent points in conv(P 0
T ) in the

following groups.

(i) For each r ∈ [−(T − 1),−(k + 1)]Z (totally there are T − k − 1 points), we create (x̄r, ȳr, ūr)

in conv(P 0
T ) such that

x̄rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(ii) For each r ∈ [−k, n − 1]Z (totally there are n + k points), we create (x̄r, ȳr, ūr) in conv(P 0
T )

such that

x̄rs =


C, ∀s ∈ [−(T − 1),−(k + 1)]Z

∪[−(k − 1), r]Z
C − V, s = −k
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(iii) For each r ∈ [−(T − 1),−(k + 2)]Z (totally there are T − k − 2 points), we create (x̂r, ŷr, ûr)

in conv(P 0
T ) such that

x̂rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(iv) For each r ∈ [−k, n−2]Z (totally there are n+k−1 points), we create (x̂r, ŷr, ûr) in conv(P 0
T )

such that

x̂rs =


C + V, ∀s ∈ [−(T − 1),−(k + 1)]Z

∪[−(k − 1), r]Z
C, s = −k
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(v) For each r ∈ [−(T − 2),−(k + 1)]Z (totally there are T − k − 2 points), we create (x̃r, ỹr, ũr)

in conv(P 0
T ) such that

x̃rs =


C, ∀s ∈ [r,−(k + 1)]Z
∪[−(k − 1), n− 1]Z

C − V, s = −k
0, o.w.

, ỹrs =

{
0, ∀s ∈ [−(T − 1), r − 1]Z
1, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.
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(vi) For r = −k (totally there is one point), we create (x̃r, ỹr, ũr) in conv(P 0
T ) such that

x̃rs =


C + (k + s)V, ∀s ∈ [r,−1]Z
C + kV, ∀s ∈ [0, n− 1]Z
0, o.w.

, ỹrs =


0, ∀s ∈ [−(T − 1),

r − 1]Z
1, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.

(vii) For each r ∈ [−(k − 1), n − 1]Z (totally there are n + k − 1 points), we create (x̃r, ỹr, ũr) in

conv(P 0
T ) such that

x̃rs =

{
C, ∀s ∈ [r, n− 1]Z
0, o.w.

, ỹrs =

{
0, ∀s ∈ [−(T − 1), r − 1]Z
1, o.w.

,

and ũrs =


1, s = r, if r ≤ −1
1, ∀s ∈ [r, n− 1]Z, if r ≥ 0
0, o.w.

.

(viii) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋs =


C + sV, ∀s ∈ [−k,−1]Z
C, ∀s ∈ [0, n− 1]Z
0, o.w.

, ẏs =


0, ∀s ∈ [−(T − 1),

−(k + 1)]Z
1, o.w.

, and u̇s =

{
1, s = −k
0, o.w.

.

It is clear that (x̄r, ȳr, ūr)n−1
r=−(T−1), (x̂r, ŷr, ûr)n−2

r=−(T−1),r 6=−(k+1), (x̃r, ỹr, ũr)n−1
r=−(T−2), and (ẋ, ẏ, u̇)

are linearly independent and therefore the statement is proved.

C.4 Proof for Proposition 12

Proof: We only prove that inequality (27) is facet-defining for conv(P 0
T ), because the facet-defining

proof for inequality (28) is similar due to symmetry and thus omitted here. Due to the symmetry

of the scenario nodes in N , without loss of generality, we assume node i to be the last scenario

node in N , i.e., i = n − 1. We create 3n + 3T − 5 linearly independent points in conv(P 0
T ) in the

following groups.

(i) For each r ∈ [−(T −1),−2]Z (totally there are T −2 points), we create (x̄r, ȳr, ūr) in conv(P 0
T )

such that

x̄rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(ii) For each r ∈ [−1, n− 2]Z (totally there are n points), we create (x̄r, ȳr, ūr) in conv(P 0
T ) such

that

x̄rs =


C, ∀s ∈ [−(T − 1),−(k + 1)]Z
C − (k + s)V, ∀s ∈ [−k,−1]Z
C − (k − 1)V, ∀s ∈ [0, r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .
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(iii) For r = n− 1 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 0
T ) such that

x̄rs =

{
C − V, s = −1

C, o.w.
, and

ȳrs = 1, ūrs = 0,
∀s .

(iv) For each r ∈ [−(T − 1),−(k + 1)]Z (totally there are T − k − 1 points), we create (x̂r, ŷr, ûr)

in conv(P 0
T ) such that

x̂rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(v) For each r ∈ [−(k−1),−2]Z (totally there are k−2 points), we create (x̂r, ŷr, ûr) in conv(P 0
T )

such that

x̂rs =


C, ∀s ∈ [−(T − 1), r − 1]Z
C − ε, s = r
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(vi) For each r ∈ [−1, n− 2]Z (totally there are n points), we create (x̂r, ŷr, ûr) in conv(P 0
T ) such

that

x̂rs =


C + (k − 1)V, ∀s ∈ [−(T − 1),−(k + 1)]Z
C − (s+ 1)V, ∀s ∈ [−k,−1]Z
C, ∀s ∈ [0, r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(vii) For each r ∈ [−(T − 2), n − 1]Z (totally there are T + n − 2 points), we create (x̃r, ỹr, ũr) in

conv(P 0
T ) such that

x̃rs =


C, ∀s ∈ [r, n− 1]Z \ {−1}
C − V, ∀s ∈ [r, n− 1]Z ∩ {−1}
0, o.w.

, and ỹrs =

{
0, ∀s ∈ [−(T − 1), r − 1]Z
1, o.w.

,

and ũrs =


1, s = r, if r ≤ −1
1, ∀s ∈ [r, n− 1]Z, if r ≥ 0
0, o.w.

.

(viii) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋs =


C, s = −1
C + V, ∀s ∈ [0, n− 1]Z
0, o.w.

, ẏs =

{
0, ∀s ∈ [−(T − 1),−2]Z
1, o.w.

, and u̇s =

{
1, s = −1
0, o.w.

.

It is clear that (x̄r, ȳr, ūr)n−1
r=−(T−1), (x̂r, ŷr, ûr)n−2

r=−(T−1),r 6=−k, (x̃r, ỹr, ũr)n−1
r=−(T−2), and (ẋ, ẏ, u̇)

are linearly independent and therefore the statement is proved.
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C.5 Proof for Proposition 13

Proof: We only prove that inequality (29) is facet-defining for conv(P 0
T ), because the facet-defining

proof for inequality (30) is similar due to symmetry and thus omitted here. Due to the symmetry

of the scenario nodes in N , without loss of generality, we assume nodes i and j to be the last two

scenario nodes in N , i.e., i = n− 2, j = n− 1. We create 3n+ 3T − 5 linearly independent points

in conv(P 0
T ) in the following groups.

(i) For each r ∈ [−(T − 1), n − 2]Z (totally there are T + n − 2 points), we create (x̄r, ȳr, ūr) in

conv(P 0
T ) such that

x̄rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ȳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ūrs = 0,
∀s .

(ii) For r = n− 1 (totally there is one point), we create (x̄r, ȳr, ūr) in conv(P 0
T ) such that

x̄rs =


C, ∀s ∈ [−(T − 1),−k]Z
C − (k + s)V, ∀s ∈ [−(k − 1),−1]Z
C − kV, ∀s ∈ [0, n− 3]Z ∩ {n− 1}
0, s = n− 2

, ȳrs =

{
0, s = n− 2
1, o.w.

, and
ūrs = 0,
∀s .

(iii) For each r ∈ [−(T − 1),−(k + 1)]Z (totally there are T − k − 1 points), we create (x̂r, ŷr, ûr)

in conv(P 0
T ) such that

x̂rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(iv) For each r ∈ [−(k − 1), n − 3]Z (totally there are n + k − 3 points), we create (x̂r, ŷr, ûr) in

conv(P 0
T ) such that

x̂rs =


C, ∀s ∈ [−(T − 1),−k]Z
C − ε, ∀s ∈ [−(k − 1), r]Z
0, o.w.

, ŷrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(v) For r = n− 1 (totally there is one point), we create (x̂r, ŷr, ûr) in conv(P 0
T ) such that

x̂rs =


C + kV, ∀s ∈ [−(T − 1),−k]Z
C − sV, ∀s ∈ [−(k − 1),−1]Z
C, ∀s ∈ [0, n− 3]Z ∩ {n− 1}
0, s = n− 2

, ŷrs =

{
0, s = n− 2
1, o.w.

, and
ûrs = 0,
∀s .

(vi) For each r ∈ [−(T − 2),−k]Z (totally there are T − k − 1 points), we create (x̃r, ỹr, ũr) in

conv(P 0
T ) such that

x̃rs =

{
C, ∀s ∈ [r, n− 3]Z
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n− 3]Z
0, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.

67



(vii) For each r ∈ [−(k−1),−1]Z (totally there are k−1 points), we create (x̃r, ỹr, ũr) in conv(P 0
T )

such that

x̃rs =


C − V, ∀s ∈ [r,−1]Z
C, ∀s ∈ [0, n− 2]Z
C − 2V, s = n− 1
0, o.w.

, ỹrs =

{
0, ∀s ∈ [−(T − 1), r − 1]Z
1, o.w.

, and ũrs =

{
1, s = r
0, o.w.

.

(viii) For each r ∈ [0, n − 1]Z (totally there are n points), we create (x̃r, ỹr, ũr) in conv(P 0
T ) such

that

x̃rs =


C, ∀s ∈ [r, n− 2]Z
C, s = n− 1
0, o.w.

, ỹrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

, and ũrs =

{
1, ∀s ∈ [r, n− 1]Z
0, o.w.

.

(ix) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋs =


C + V, s = −1
C + 2V, ∀s ∈ [0, n− 2]Z
C, s = n− 1
0, o.w.

, ẏs =

{
1, ∀s ∈ [−1, n− 1]Z
0, o.w.

, and u̇s =

{
1, s = −1
0, o.w.

.

It is clear that (x̄r, ȳr, ūr)n−1
r=−(T−1), (x̂r, ŷr, ûr)n−1

r=−(T−1),r 6=−k,6=n−2, (x̃r, ỹr, ũr)n−1
r=−(T−2), and (ẋ, ẏ, u̇)

are linearly independent and therefore the statement is proved.

C.6 Proof for Proposition 14

Proof: We only prove that inequality (31) is facet-defining for conv(P 0
T ), because the facet-defining

proof for inequality (32) is similar due to symmetry and thus omitted here. Due to the symmetry

of the scenario nodes in N , without loss of generality, we assume nodes i and j to be the first

two scenario nodes in N , i.e., i = 0, j = 1. We create 3n + 3T − 5 linearly independent points in

conv(P 0
T ) in the following groups.

(i) For each r ∈ [−(T − 1),−2]Z ∪ {0} (totally there are T − 1 points), we create (x́r, ýr, úr) in

conv(P 0
T ) such that

x́rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
úrs = 0,
∀s .

(ii) For each r ∈ [1, n−1]Z (totally there are n−1 points), we create (x́r, ýr, úr) in conv(P 0
T ) such

that

x́rs =


C, ∀s ∈ [−(T − 1),−2]Z ∪ {0}
C − V, s = −1

C − 2V, ∀s ∈ [1, r]Z
0, o.w.

, ýrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
úrs = 0,
∀s .

68



(iii) For each r ∈ [−(T − 1),−(k + 1)]Z (totally there are T − k − 1 points), we create (x̀r, ỳr, ùr)

in conv(P 0
T ) such that

x̀rs =

{
C, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, ỳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ùrs = 0,
∀s .

(iv) For each r ∈ [−(k−1),−2]Z (totally there are k−2 points), we create (x̀r, ỳr, ùr) in conv(P 0
T )

such that

x̀rs =


C, ∀s ∈ [−(T − 1), r − 1]Z
C − ε, s = r
0, o.w.

, ỳrs =

{
1, ∀s ∈ [−(T − 1), r]Z
0, o.w.

, and
ùrs = 0,
∀s .

(v) For r = 0 (totally there is one point), we create (x̀r, ỳr, ùr) in conv(P 0
T ) such that

x̀rs =


C, ∀s ∈ [−(T − 1),−2]Z ∪ {0}
C − ε, s = −1
0, o.w.

, ỳrs =

{
1, ∀s ∈ [−(T − 1), 0]Z
0, o.w.

, and
ùrs = 0,
∀s .

(vi) For each r ∈ [1, n−1]Z (totally there are n−1 points), we create (x̀r, ỳr, ùr) in conv(P 0
T ) such

that

x̀rs =


C, ∀s ∈ [−(T − 1),−k]Z
C − (k + s)V, ∀s ∈ [−(k − 1),−1]Z
C − kV, ∀s ∈ [1, r]Z
0, o.w.

, ỳrs =


1, ∀s ∈ [−(T − 1),

r]Z \ {0}
0, o.w.

, and
ùrs = 0,
∀s .

(vii) We create a point (ẋ, ẏ, u̇) ∈ conv(P 0
T ) (totally one point) such that

ẋrs =


C + kV, ∀s ∈ [−(T − 1),−k]Z
C − sV, ∀s ∈ [−(k − 1),−1]Z
C, s = 1
0, o.w.

, ẏrs =


1, ∀s ∈ [−(T − 1),

−1]Z ∪ {1}
0, o.w.

, and
u̇rs = 0,
∀s .

(viii) For each r ∈ [−(T −2),−1]Z (totally there are T −2 points), we create (x̄r, ȳr, ūr) in conv(P 0
T )

such that

x̄rs =


C, ∀s ∈ [r,−2]Z ∪ {0}
C − V, s = −1

C − 2V, ∀s ∈ [1, n]Z
0, o.w.

, ȳrs =

{
0, ∀s ∈ [−(T − 1), r − 1]Z
1, o.w.

, and ūrs =

{
1, s = r
0, o.w.

.

(ix) For each r ∈ [0, n − 1]Z (totally there are n points), we create (x̄r, ȳr, ūr) in conv(P 0
T ) such

that

x̄rs =


C, ∀s ∈ [r, n− 1]Z ∩ {0}
C, ∀s ∈ [r, n− 1]Z \ {0}
0, o.w.

, ȳrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

, and ūrs =

{
1, ∀s ∈ [r, n]Z
0, o.w.

.
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(x) We create a point (ẍ, ÿ, ü) ∈ conv(P 0
T ) (totally one point) such that

ẍrs =


C + V, s = −1
C + 2V, s = 0
C, ∀s ∈ [1, n− 1]Z
0, o.w.

, ÿrs =

{
1, ∀s ∈ [−1, n− 1]Z
0, o.w.

, and ürs =

{
1, s = −1
0, o.w.

.

It is clear that (x́r, ýr, úr)n−1
r=−(T−1),r 6=−1, (x̀r, ỳr, ùr)n−1

r=−(T−1),r 6=−k,r 6=−1, (ẋ, ẏ, u̇), (x̄r, ȳr, ūr)n−1
r=−(T−2),

and (ẍ, ÿ, ü) are linearly independent and therefore the statement is proved.

C.7 Proof for Proposition 15

Proof: To prove the validity, we discuss the following four cases considering different values of yi

and yj :

(i) If yi = yj = 0, it follows that xi = xj = 0 due to constraints (1f). Then inequality (33) is

valid for conv(P ) since C − C − kV > 0 and y, u ≥ 0.

(ii) If yi = 1 and yj = 0, it follows that xj = 0 due to constraints (1f). Since yi = 1, then

yp +
∑

s∈P(i,p) us ≥ 1 so that the generator can be online at node i. It follows that the right

hand side of (33), (C + kV ) + (C −C − kV )(yp +
∑

s∈P(i,p) us) is greater than C. Then (33)

is valid because xi ≤ C due to (1f).

(iii) If yi = 0 and yj = 1, it follows that xi = 0 due to (1f). Since yj = 1, then yp+
∑

s∈P(j,p) us ≥ 1

so that the generator can be online at node j. It follows that the right hand side of (33),

−(C − kV ) + (C −C − kV )(yp +
∑

s∈P(i,p) us) is greater than −C. Then (33) is valid because

−xj ≤ −C due to (1f).

(iv) If yi = yj = 1, we discus the following two cases:

1) If yp = 0, it follows that
∑

s∈P(i,p)∪P(j,p) us =
∑

s∈P(i,p) us +
∑

s∈P(j,p) us ≥ 2 so that the

generator can be online at both nodes i and j. Then the right hand side of (33) is greater

than C − C. It follows that (33) is valid because xi ≥ C and xj ≤ C.

2) If yp = 1, we discuss the following two situations:

• If
∑

s∈P(i,p)∪P(j,p) us ≥ 1, this case reduces to the above case.

• If
∑

s∈P(i,p)∪P(j,p) us = 0, then the generator keeps online in both paths P(i, p) and

P(j, p). Inequality (33) converts to xi − xj ≤ kV , which is valid because |P(i, p)| +

|P(j, p)| = k and thus the difference between xi and xj is maximized when xi increases

by |P(i, p)|V from xp and xj decreases by |P(j, p)|V from xp.
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Furthermore, similar to the proofs described for Proposition 8, we can easily construct linearly

independent points in conv(P ) to prove that (33) is facet-defining for conv(P ) as follows.

We create 3|V|−1 affinely independent points in conv(P ) that satisfy inequality (33) at equality.

Since 0 ∈ conv(P ), we create the remaining 3|V| − 2 linearly independent points.

For the convenience of generating points, we label the nodes in the tree as follows. As shown in

Figure 9, due to the symmetry of the scenario tree, we can first reorganize and label the nodes in the

tree such that t(i) ≤ t(j). Next, we label the nodes in V1 (in Figure 9) following the breadth-first

search rule as we did for the nodes in Figure 8, with root node 0 as the 0th one. Then, we can

reorganize and label the nodes along the path P(i, j) = P(i, p)∪P(j, p)∪{p} as shown in Figure 9

in the order of p, i−k1−1, i
−
k1−2, · · · , i

−, i, j−k2−1, j
−
k2−2, · · · , j

−, j, where k1 = dist(i, p) = |P(i, p)| and

k2 = dist(j, p) = |P(j, p)| as described before. For the remaining nodes in V̂ = V \ {V1 ∪ P(i, j)},

we continue labelling them following the breath-first rule as we did for V1.

0 p

i−k1−1 i−k1−2 i
−
2 i−

j−k2−1 j
−
k2−2 j−3 j−2

i

j− j

V1

Time t(p) Time t(i) t(j)Time t(0) Time T

Figure 9: Complete scenario tree

In general, we create the points in two main steps. First, similar to the proof in E-companion B.3

for Proposition 8, we create two groups of points, G1 (e.g., points (x́r, ýr, úr)n
2+n

r=1 in the proof of

Proposition 8) and G2 (e.g., points (x̄r, ȳr, ūr)n
2+n

r=1 in the proof of Proposition 8). Second, we create

the remaining points which form an upper-triangular matrix in terms of the value u. Finally, all

the generated points can form a similar structure as the ones described in Table 16.

Now we explain the details to construct the points in G1 and G2 for the first main step. First,

noticing that following the construction as described in E-companion B.3 for Proposition 8, we can
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Table 18: Matrix in terms of y

row yn,∀n ∈ V1 yp yn, ∀n ∈ P(i, p) yn, ∀n ∈ P(j, p) yn,∀n ∈ V̂
0 1 0 · · · 0

0 0 0 0
1 1 1 · · · 0

..

.
..
.

..

.
..
.

...

|V1| − 1 1 1 1 1

|V1|

I

1

I

0 0 · · · 0 0

0
|V1|+ 1 1 1 0 · · · 0 0

|V1|+ 2 1 1 1 · · · 0 0

... 1
...

...
...

...
...

|V1|+ |P(j, p)| 1 1 1 1 1 0

|V1|+ |P(j, p)|+ 1

I

1 0 0 · · · 0

I 0
|V1|+ |P(j, p)|+ 2 1 1 0 · · · 0

|V1|+ |P(j, p)|+ 3 1 1 1 · · · 0

... 1
...

...
...

...

|V1|+ |P(i, j)| 1 1 1 1 1

|V1|+ |P(i, j)|+ 1

I

1

I I

1 0 · · · 0

|V1|+ |P(i, j)|+ 2 1 1 1 · · · 0

... 1
...

...
...

...

|V| − 1 1 1 1 1 1

observe that 1) the y part for G1 and G2 can be easily transformed to a lower-triangular matrix

as shown in Table 18, with each row corresponding to one point, and 2) un = 0 for ∀n ∈ V \ {0}.

Then, we assign the value x for each row in Table 18. For each row (except the row whose value

y is italicized), two groups of values are assigned to x corresponding to each point listed below to

make the given inequality (33) tight (since xn = 0 when the corresponding yn = 0, we only assign

the value to xn when the corresponding yn = 1).

(i) For each row r ∈ [0, |V1|−1], let xn = C (∀n : yn = 1) and assign this point to G1; let xn = C

(∀n : yn = 1) and assign this point to G2.

(ii) For each row r ∈ [|V1|, |V1|+ |P(j, p)|], let xn = C (∀n : yn = 1) and assign this point to G1;

let xi = C, xn = C − V (∀n 6= i : yn = 1) and assign this point to G2.

(iii) For each row r ∈ [|V1|+ |P(j, p)|+ 1, |V1|+ |P(i, j)| − 1], let xn = C (∀n : yn = 1) and assign

this point to G1; For each row r ∈ [|V1|+ |P(j, p)|+ 2, |V1|+ |P(i, j)| − 1], let xj = C, xn =

C + V (∀n 6= j : yn = 1) and assign this point to G2.

(iv) For row r = |V1|+ |P(i, j)|, we only consider assigning the value x corresponding to each node

in P(i, j), because the value x corresponding to the remaining nodes can be assigned easily
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as long as the feasibility is guaranteed. We assign the value x as follows: for the point in G1,

xp = xi−k1
= C−k1V , xi−k1−1

= C−(k1−1)V , xi−k1−2
= C−(k1−2)V , · · · , xi− = C−V , xi = C,

xj−k2−1
= C − (k1 + 1)V , xj−k2−2

= C − (k1 + 2)V , · · · , and xj = C − (k1 + k2)V = C − kV ; for

the point in G2, xp = xj−k2
= C + k2V , xj−k2−1

= C + (k2 − 1)V , xj−k2−2
= C + (k2 − 2)V , · · · ,

xj = C, xi−k1−1
= C + (k2 + 1)V , xi−k1−2

= C + (k2 + 2)V , · · · , xi− = C + (k1 + k2 − 1)V , and

xi = C + (k1 + k2)V = C + kV .

(v) For each row r ∈ [|V1| + |P(i, j)| + 1, |V| − 1], for each n ∈ V1 ∪ P(i, j), we use the same

approach as we did in the above Case (iv). For each n ∈ V̂, the value xn can be assigned

easily, as long as the feasibility is guaranteed.

In this way, we obtain in total 2|V| − 1 linearly independent points in conv(P ).

Table 19: Upper-triangular matrix in terms of u

y0 y1 y2 · · · yn · · · y|V|−1 u1 u2 · · · un · · · u|V|−1

0 1 1 · · · 1 1 1 · · · 0

0 0 1 · · · · · · 0 1 · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 1 yn′ = 1,∀n′ ≥ n 0 0 · · · 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 0 0 0 0 0 1

For the second main step, we create the remaining |V| − 1 linearly independent points. We

first follow the breadth-first search labelling scheme to label the nodes in the tree as described

in Figure 8. The generated points are shown in Table 19 in which each row corresponds to a

created point. Meanwhile, we let each row correspond to a non-root node (i.e., nodes with labels

n = 1, 2, . . . , |V| − 1 in the tree). For the row corresponding to node n, we assign the values for

the y part by setting yn′ = 1 for each n′ ≥ n. In this way, the u values can be uniquely decided

as shown in the right half of Table 19. We can observe that the u part forms an upper-triangular

matrix based on our labelling scheme, which immediately implies these |V| − 1 points are linearly

independent by themselves, as well as linearly independent with the points created above in G1

and G2. The remaining task is to create x values for each point to make it feasible and satisfy

inequality (33) at equality. To generate these values, when yp = yi = yj = 1, the value x can be

assigned in the same way as we did in Case (iv) above. For other situations, the x values can be

similarly assigned as described in Cases (i) to (iii) and (iv) above, and the construction is omitted

here.
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