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Abstract

We consider the problem of optimally selecting a large portfolio of risky loans, such as mortgages,
credit cards, auto loans, student loans, or business loans. Examples include loan portfolios held by finan-
cial institutions and fixed-income investors as well as pools of loans backing mortgage- and asset-backed
securities. The size of these portfolios can range from the thousands to even hundreds of thousands. Op-
timal portfolio selection requires the solution of a high-dimensional nonlinear integer program and is
extremely computationally challenging. For larger portfolios, this optimization problem is intractable.
We propose an approximate optimization approach that yields an asymptotically optimal portfolio for a
broad class of data-driven models of loan delinquency and prepayment. We prove that the asymptoti-
cally optimal portfolio converges to the optimal portfolio as the portfolio size grows large. Numerical
case studies using actual loan data demonstrate its computational efficiency. The asymptotically optimal
portfolio’s computational cost does not increase with the size of the portfolio. It is typically many orders
of magnitude faster than nonlinear integer program solvers while also being highly accurate even for
moderate-sized portfolios.
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1 Introduction

Financial institutions such as banks and government sponsored enterprises such as Fannie Mae own as

well as securitize portfolios of mortgages, credit card receivables, auto loans, student loans, and business

loans. Various other entities, such as pension funds, mutual funds, hedge funds, insurance firms, and the US

Treasury, also hold portfolios of loans or securities backed by loan portfolios. The size of the consumer and

commercial loan market is larger than the corporate credit market and rivals the equity market. According to

estimates by the Federal Reserve and the Securities Industry and Financial Markets Association, there was

over $13.4 trillion in mortgages, $8.7 trillion in mortgage-related securities, $3.3 trillion in consumer credit,

and $1 trillion in student loans outstanding at the end of 2014.

Optimal loan portfolio selection requires the solution of a high-dimensional nonlinear integer program

(which is NP-hard) and is extremely computationally challenging. Portfolios can commonly have anywhere

from hundreds to hundreds of thousands of loans (Melennec 2000b), and each loan is characterized by a

high-dimensional vector of loan-level features such as credit score, interest rate, loan balance, collateral,

purpose, payment history, and location. Optimal selection of a loan portfolio is an integer program since

loans can only be held in unit amounts. Objective and constraint functions are nonlinear and sometimes

nonconvex, and they can be computationally costly to evaluate. Securities backed by loan pools, such as

collateralized loan and mortgage obligations, can be complex derivatives of the underlying loan portfolio.

This paper presents an approach for tractable large-scale optimization of loan portfolios. The perspec-

tive is that of a lender, investor, or asset-backed security structurer who seeks to select a portfolio of loans

that optimizes a performance measure subject to a set of constraints. For example, an investor may want to

choose a portfolio of loans that minimizes some risk measure subject to the expected return being greater

than a chosen threshold. A structurer may be interested in selecting a pool of loans to back a collateral-

ized loan obligation so as to minimize the risk to the senior tranche investor, subject to constraints on the

composition of the pool. Our formulation of the objective and constraints is sufficiently general to encapsu-

late many practical examples, including lending portfolios, collateralized loan obligations, mortgage-backed

securities, collateralized mortgage obligations, and other asset-backed securities.

We consider a broad class of dynamic loan-level models of prepayment and delinquency, which include

generalized linear models and machine learning models such as logistic regression and neural networks.

These “data-driven” models are widely used in practice and are fitted from historical loan performance data

that are collected internally or acquired from data vendors. We harness the limiting laws for large pools of

loans recently developed under these models by Sirignano & Giesecke (2014) to approximate the objective

and constraint functions of the problem, forming an approximate optimization problem. We prove that as

the size of the portfolio grows large, the solution to the approximate problem, which we refer to as the

asymptotically optimal portfolio (AOP), converges to the true optimal portfolio (i.e., the solution of the

actual integer optimization problem). The AOP has significant computational advantages. It is the solution

to a continuous optimization problem (not an integer program) and its dimension is typically far smaller

than the dimension of the exact integer program. The dimension of the exact integer program is the size of
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the pool of loans from which the portfolio is being selected. Thus, for portfolios being chosen from pools

in the thousands, tens of thousands, or even hundreds of thousands, the integer program quickly becomes

intractable. In contrast, the AOP’s dimension does not increase with the size of the portfolio (or pool from

which it is being selected) since it is solving for a distribution over the “loan types”.

We extensively test our approach for a variety of problems, including several which use actual loan data.

The numerical results highlight the computational efficiency of the AOP. Two numerical studies of note are

the selection of prime and subprime mortgage portfolios under mean-variance and log-optimal objectives.

In those two examples, we test the AOP using models that are fitted to historical mortgage default and

prepayment data and pools of actual mortgages drawn from our data set. Several other numerical studies

are also presented, including optimally selecting a portfolio to back an MBS and selecting a portfolio to

maximize exponential utility. The AOP is compared against the true optimal portfolio, which is obtained

by solving the actual nonlinear integer optimization problem using best-of-class nonlinear integer program

solvers. The AOP consistently outperforms these nonlinear integer program solvers on every problem we

study. The AOP is often many orders of magnitude faster than the integer program solvers. In fact, for

larger portfolios (e.g., selecting several thousand loans from an available pool of tens of thousands of loans)

the integer program solvers break down (ran out of memory) or take extremely long times to solve (days or

even weeks). In contrast, the AOP is able to solve the problem in seconds. Moreover, for many of these

problems, the integer program solvers’ solutions are actually suboptimal compared to the AOP. That is, the

exact objective function evaluated at the AOP is smaller than the exact objective function evaluated at the

integer program solution (assuming one is minimizing the objective). For all the problems we study, the

AOP agrees strongly with the best of the integer program solvers’ solutions (97− 99 percent agreement for

the solution vectors).

1.1 Related Literature

Despite its obvious importance, the problem of selecting a portfolio of risky loans has not received nearly

as much attention as the equity portfolio problem. Bennett (1984) provides an early discussion. Altman

(1996) explores a standard mean-variance formulation of the problem, as well as an alternative formulation

that uses the unexpected loss from defaults as a risk measure. Paris (2005) treats the selection problem for a

portfolio of consumer loans using a one-period, discrete-state formulation and an expected utility objective.

Mencia (2012) studies mean-variance and utility-based formulations when loans are placed into groups of

loans with similar characteristics. None of these authors address the significant modeling and computational

issues arising with large problems, nor the availability of detailed loan- and borrower-level information. The

formulation of the loan portfolio problem we propose in this paper harnesses the historical loan performance

data commonly available and facilitates the treatment of the large problems that are common in practice.

Andersson, Mausser, Rosen & Uryasev (2001), Akutsu, Kijima & Komoribayashi (2004), Kraft & Stef-

fensen (2008), Meindl & Primbs (2006), Wise & Bhansali (2002), and others study static and dynamic

corporate bond portfolio selection problems using expected utility or other objectives. Capponi & Figueroa-
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Lopez (2014) and Capponi, Figueroa-Lopez & Pascucci (2015) develop regime-switching models to address

the dynamic asset allocation problem in defaultable markets. Kraft & Steffensen (2009) study how conta-

gion and bankruptcy procedures affect the selection problem. Giesecke, Kim, Kim & Tsoukalas (2014)

analyze the static selection problem for a portfolio of credit swaps using a goal programming approach

which includes real trading constraints. Bo & Capponi (2014) examine the dynamic selection problem for a

portfolio of credit swaps using a power utility objective and dynamic programming approach. While bonds

and credit swaps have features similar to those of loans, the problems studied in the aforementioned pa-

pers differ significantly from the class of problems we address in this paper. The bond and swap portfolio

problems do not usually call for integer constraints. Prepayment risk is absent unless one considers callable

bonds. Short positions can often be implemented, while it is rarely possible to short loans. Finally, the size

of the bond and swap portfolio problems is typically much smaller, by orders of magnitude, than that of the

loan portfolio problem.

Saunders, Xiouros & Zenios (2007) approximate a credit portfolio optimization problem by replacing

the true optimization objective with a law of large numbers. Their model setting differs from ours in several

ways. They consider a static model for the underlying assets while our model is dynamic. They consider an

optimization problem where the goal is to select the portion of the portfolio in multiple discrete buckets (i.e.,

within each bucket the assets are homogeneous). One can choose to place a continuous amount of capital

in each bucket; they therefore deal with a continuous optimization problem. We consider the problem of

choosing a portfolio of heterogeneous loans where each loan’s features take values in a continuous space.

Therefore, one must optimize over an infinite-dimensional function (e.g., a measure on the real line). Loans

in our setting can only be chosen in unit amounts, making the problem an integer program. Saunders et al.

(2007) only include a constraint on short-selling, while we include general constraint functions. This, for

instance, allows us to consider a mean-variance problem where the variance is minimized subject to the

expected return being greater than some threshold. We also approximate the true portfolio optimization

problem using both the law of large numbers and central limit theorem in order to increase the accuracy of

our approximation. Finally, a major focus of our paper is computational methods for solving the approximate

optimization problem for actual loan data and comparing the performance to integer program solvers.

Since the selection of a loan is generally a binary decision, our work can be related to the cardinality

constrained portfolio optimization literature. This literature extends the standard mean-variance model for

stocks to account for integer constraints, and develops relaxation methods which take advantage of the

unique properties of the quadratic formulation. Among the first studies, Blog, Van der Hoeck, Rinnooy

& Timmer (1983) propose a dynamic programming heuristic for small portfolios, and Bienstock (1996)

proposes a surrogate constraint in lieu of the cardinality constraint. This approach is extended in Bertsimas

& Shioda (2009), who propose a convex relaxation and pivoting method. More recently, Gao & Li (2013)

develop a Lagrangian relaxation and geometric approach which exploits a special symmetric property of the

quadratic objective. Our work significantly differs from these studies. First, we focus on data-driven models

for loans, not stocks. The primary source of risk is event risk (delinquency, prepayment), rather than the
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risk of price movements. We face two sources of high-dimensionality: the large number of assets, and the

large number of asset-level features. Second, our approach is based upon weak convergence results for large

pools. It applies to many objectives and constraints, and does not rely on any restrictive or special (e.g.,

quadratic) structure of the problem.

1.2 Structure of Paper

Section 2 describes the general loan portfolio problem for a broad class of data-driven models of loan delin-

quency and prepayment. The approximation of the optimization problem and the asymptotically optimal

portfolio are presented and analyzed in Section 3. Section 4 numerically implements our approach for

several examples using actual loan data. Proofs of theorems can be found in an appendix.

2 Problem Formulation

2.1 Class of Models

For a broad family of discrete-time models for loan prepayment and delinquency, we consider the problem

of optimally selecting N loans for an investment portfolio or a security backed by a portfolio of loans. We

fix a probability space (Ω,F ,P) and an information filtration (Ft)t≥0, where P is the actual probability

measure. The state of the n-th loan at time t ∈ I = {0, 1, . . . , T} is Unt ∈ U , where U is a finite discrete

space, T is the time horizon, and n ∈ {1, . . . , N}. For example, if the loans are subject to both default and

prepayment risk, U = {outstanding, prepaid, default}. For notational convenience, we will refer to these

states as o, p, and d, respectively, and we assume that p and d are absorbing states. Additional states could

be 30 days late, 60 days late, etc. For each loan, Un0 = o. Each loan has (static) features Y n ∈ Y ⊂ RdY .

The feature space Y includes both continuous and categorical variables. For instance, Y n might include

features such as credit score, loan-to-value (LTV) ratio, initial interest rate, type of loan, collateral type,

and geographic location. In addition, a stochastic process X = (Xt)t∈I with Xt ∈ RdX models common

stochastic factors such as national interest rate and national unemployment rate that have an influence on all

loans. The common factor X drives the correlation amongst the loans in the pool.

The conditional state transition probability takes the form

P[Unt = u|Ft−1] = hθ(u, U
n
t−1, Y

n, Xt−1), t ∈ {1, . . . , T}, (1)

where the transition function hθ is specified by a parameter θ ∈ Θ that is estimated from loan perfor-

mance data as in Khandani, Kim & Lo (2010), Sirignano, Sadhwani & Giesecke (2015), Banasik, Crook

& Thomas (1999), Capozza, Kazarian & Thomson (1997), Stepanova & Thomas (2002), Baesens (2005),

Bastos (2010), Westgaard & der Wijst (2001), and many others. A typical formulation for hθ would be a

generalized linear model (GLM), such as logistic regression, or a machine learning model, such as a neural

network. To model seasonality of transitions, dependence of hθ upon time can be incorporated by including
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time as an element of the common factor X .

Our discrete-time formulation is motivated by the data structures often encountered in practice. The loan

performance data used for fitting the transition model (1) is usually updated monthly. However, all of the

theoretical and computational results developed below can be extended to the case where the loan dynamics

are modeled in continuous time. A continuous-time framework would employ stochastic intensities to model

state transitions; a typical formulation might be a Cox proportional hazard model. The model can also be

extended to include full path dependence upon X; see Sirignano & Giesecke (2014). In addition, one could

allow the loan-level features Y n to be independent stochastic processes (i.e., varying with time). Finally,

one could include contagion effects via a mean-field term in (1). The results in the paper can be extended to

these more general cases.

2.2 Loan Portfolio

A loan portfolio PN is a selection of N loans from available loans in the universe Y . In usual applications,

N would be fixed in advance due to external regulatory, financial, and investor demand requirements on the

size of a portfolio. Thus, a portfolio PN is a choice of loans {Y 1, . . . , Y N}. Define

PN =
1

N

N∑
n=1

δY n ,

where δ is the Dirac measure. This definition of PN is equivalent to a vector of choices (Y 1, . . . , Y N )

for the N loans in the portfolio. The choice of a portfolio is integer-constrained since at a particular point

y ∈ Y , loans with the feature y can only be added to the portfolio in integer amounts. Since PN takes values

in the space of probability measures, only long positions are allowed (in practice, it is usually difficult to

short a loan).1 In addition, define the empirical measure µNt ∈ M(U × Y), whereM(E) is the space of

probability measures on E:

µNt =
1

N

N∑
n=1

δ(Unt ,Y
n).

The empirical measure µNt (u, dy) gives the fraction of loans occupying the state u with features y. More

specifically, for a set A ∈ Y and a state u, µNt (u,A) gives the fraction of loans in state u and with features

in the set A. In addition,
〈
f, µNt (u, ·)

〉
Y ≡

∫
Y f(y)µNt (u, dy) = 1

N

∑N
n=1 f(Y n)1Unt =u where we have

defined 〈f, ν〉E =
∫
E f(y)ν(dy). At the initial time, µN0 (o, dy) = PN (dy). The empirical measure µNt

completely encodes the relevant information for a pool of loans.2 Using the empirical measure, a wide

variety of performance measures for a pool of loans or a security backed by a portfolio of loans can be
1Although not explicitly explored in this paper, one could easily allow short positions by optimizing over the cross-product of

two probability measures, P+ × P−, where P+ are the long positions and P− are the short positions.
2We assume that there is no interest in permutations of loans with exactly the same features.
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concisely formulated as:

RNPN = f(µN , X), (2)

where µN = (µNt )t∈I , f : BT+1 7→ RdR , and the space B = M(U × Y) × RdX . Note that the choice

of the portfolio PN completely determines the distribution of the random variable RN
PN

. As illustrated

in Section 2.3 below, the formulation (2) is sufficiently general to encapsulate many practical examples,

including: loan portfolios, collateralized loan obligations (CLOs), passthrough mortgage-backed securities

(MBS), collateralized mortgage obligations (CMOs), and other asset-backed securities (ABSs). Often, the

performance measure RN
PN

will be the return for the security. The performance measure RN
PN

is allowed

to be multi-dimensional in order to account for multiple performance criteria. For example, ABS are often

tranched, with several classes of investors, each with their own return deriving from the cashflow from the

underlying portfolio of loans. Finally, the common factorX is included as cashflows are typically discounted

at some interest rate, which would be included as an element of X . We model the risk-free interest rate rt
for the time period [t, t + 1) by rt = r(Xt). The corresponding discount factor for a cashflow at time t is

denoted as Dt and we denote D(X) = (D1, D2, . . . , DT ).

An investor is faced with the decision of how to optimally select N loans for a portfolio. The investor

wishes to minimize some functional of the selected performance measure subject to constraints. We consider

a static portfolio optimization problem where the investor selects their portfolio at time zero and holds it until

the horizon T . The optimal portfolio PN,∗ solves the following problem:

min
P∈MN (Y)

V N (P ) ≡ v2(E[v1(RNP )]) such that JN (P ) ≡ E[g(RNP )] ≥ c, q(P ) ≤ d, (3)

where the functions q :M(Y) 7→ RdQ , g : RdR 7→ Rdg , v1 : RdR 7→ Rdv , and v2 : Rdv 7→ R, and c, d are

real-valued constants. We have also introduced the space

MN (Y) =

{
1

N

N∑
n=1

δyn : y1, . . . , yN ∈ Y

}
⊂M(Y).

The function JN (P ) could for instance be the expected return. The function V N (P ) could be the variance,

probability that the return is below a certain threshold, the investor’s expected utility, or higher-order mo-

ments of the distribution. More generally, V N could even be the distance between the distribution of the

return and some target distribution: simply define f in (2) to be a metric between RNP and the target distri-

bution. It may be desirable to use more sophisticated risk measures than the variance because default and

prepayment events generate highly non-normal distributions. The second constraint might model a require-

ment on the average credit score/rating (or any other characteristic) of the underlying loan portfolio. Such

constraints are commonly required by the rating agencies in order to garner a certain rating, see Melennec

(2000a) and Melennec (2000b). The second constraint could also be used to represent a limit in supply or

regulatory requirements for certain types of loans in the portfolio. Typically, one will be selecting a portfolio
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from an available pool of loans. Thus, there may be a limit on how much of each type of loan in the space

Y that one can select. The function q(P ) can be used to represent such a supply constraint. It can also be

used to represent a constraint on the total notional of a portfolio if the feature space Y includes as one of its

elements the size of the loan. All of these objectives and constraints are commonly encountered in practice.

2.3 Examples

We provide several examples of typical optimization problems. For the purpose of the examples, it is

implicitly assumed that all cashflows are reinvested at the risk-free rate and that each loan has unit notional

value. These restrictions are, however, not required under the general formulation.

Example 2.1 (Loan Portfolio). Banks and investors often hold large portfolios of business or consumer

loans. The loans composing these portfolios are typically subject to default and prepayment risk, and there

is a tradeoff between higher interest rates for more risky loans and their increased default risk. The feature

space Y might include the interest rate, geographic location, loan amount, loan term, etc. The common

factor X might be the national unemployment rate. Let U = {o, p, d}. Assume that all payments are made

monthly and each loan has the same maturity T . Each month, the payment amount is a(t, Y n). Given that

the n-th loan prepays at time t, the amount prepaid is c(t, Y n). Let `(Y n, Xt) be the loss given default for

the n-th loan provided that it defaults at time t. The investor’s return from the portfolio is:

RNPN =
1

N

N∑
n=1

T∑
t=1

Dt

[
a(t, Y n)1Unt =o + c(t, Y n)

(
1Unt =p − 1Unt−1=p

)
+ (1− `(Y n, Xt))

(
1Unt =d − 1Unt−1=d

)]
.

The portfolio return can be easily written in the form of (2):

RNPN =

T∑
t=1

Dt

[ 〈
a(t, ·), µNt (o, ·)

〉
Y +

〈
c(t, ·), µNt (p, ·)− µNt−1(p, ·)

〉
Y

+
〈
1− `(·, Xt), µ

N
t (d, ·)− µNt−1(d, ·)

〉
Y
]
.

An optimization goal for such a portfolio would be to minimize the risk of the return subject to the expected

return being above a certain threshold:

min
P∈MN (Y)

V N (P ) such that E[RNP ] ≥ c.

The risk measure V N might be variance or the probability that the return is less than a certain threshold. It

could also be a linear combination of the central moments, accounting not just for the variance but also for

higher order effects such as skewness and kurtosis.

Example 2.2 (Collateralized Loan Obligation). A collateralized loan obligation (CLO) is a securitization

of a large number of business loans. A CLO has a tranched structure; for this example, we examine a simple
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structure with two tranches (equity and senior). The underlying loans can have features Y n such as credit

ratings, type of loan, type of business, and interest rate. Loans with lower credit ratings will be more likely

to default, but will also have higher interest rates. The coupon rate for the senior tranche is 4% and the

senior tranche’s attachment point is 20% . Any remaining interest from the underlying loans is paid to the

equity tranche. In the event that a loan defaults, the recovery from that loan is entirely paid to the senior

tranche. Other asset-backed securities have similar structures to CLOs and their optimization can be treated

in a similar manner as in this example.

Let U = {o, d}. Assume the loans have coupon payments a(t, Y n) and maturity T . At maturity T ,

the loans pay back their notional. In addition, all coupon payments are made monthly. As in Example 2.1,

`(Y n, Xt) is the loss given default. RN
PN

will be a two-dimensional vector, with the first element being the

return to the equity tranche and the second element being the return to the senior tranche:

(
RNPN

)
equity =

T∑
t=1

Dt max(
〈
a(t, ·), µNt (o, ·)

〉
Y −

4

5
· .04

12
, 0) +DT max(

〈
1, µNT (o, ·)

〉
Y −

4

5
, 0),

(
RNPN

)
senior =

T∑
t=1

Dt min(
4

5
· .04

12
,
〈
a(t, ·), µNt (o, ·)

〉
Y) +DT min(

〈
1, µNT (o, ·)

〉
Y ,

4

5
)

+

T∑
t=1

Dt

〈
1− `(·, Xt), µ

N
t (d, ·)− µNt−1(d, ·)

〉
Y .

The senior tranche is sold to an investor, who desires to minimize their risk. The equity tranche is typically

retained by the bank which structured the deal, and the bank might desire a minimum expected return on the

equity tranche. There also may be additional constraints on the fraction of loans in certain rating categories

and different industries, and on the average rating of the underlying loan portfolio. The optimization problem

would then be:

min
P∈MN (Y)

V N (P ) such that E[
(
RNP
)

equity] ≥ c1, E[
(
RNP
)

senior] ≥ c2, q(P ) ≤ d.

V is a risk measure, which might for instance be the variance of the senior tranche return. More generally,

V could even be the distance under some metric between the distribution of the senior tranche return and a

target distribution. Other constraints of practical interest which can be easily included are requirements on

the average rating, average coupon rate, average recovery rate of the underlying loan portfolio, and Moody’s

diversification ratio, which can be written as a continuous function of (PN , PN × PN ).

Example 2.3 (Passthrough Agency Mortgage-backed Security). In a passthrough MBS, the cashflows from

the underlying pool of mortgages are directly passed on to the MBS investor; see Fabozzi, Bhattacharya

& Berliner (2010) for details and background. An agency MBS is guaranteed against loss from default

by the government-sponsored enterprise (either Freddie Mac or Fannie Mae) which securitized the MBS.

Moreover, the mortgages are high quality and have low default rates. Therefore, it is a common approach to
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model only prepayments in such pools.

An agency MBS investor is exposed to prepayment risk. If the mortgage rates fall, many mortgage

holders will refinance and prepay their mortgages. When unemployment rises, refinancing is more difficult

to obtain due to tighter credit conditions and prepayment rates fall. There are other loan-specific factors

which may influence the propensity of a mortgage holder to prepay, including: credit score, debt-to-income

ratio, property type, and the existence of a prepayment penalty in the mortgage contract. The common

factors X might include the national mortgage rate and the national unemployment rate. The features Y
would include the interest rate, credit score, prepayment penalty flag, occupancy status, debt-to-income

ratio, loan-to-value ratio, property type, geographic location, and other factors.

The return for the passthrough security can be easily written in the form of (2). Let U = {o, p} and

assume the mortgages are fully amortizing with monthly payments a(t, y) and maturity T . Given that the

n-th loan prepays at time t, the amount prepaid is c(t, Y n). We have

RNPN =

T∑
t=1

Dt

[ 〈
a(t, ·), µNt (o, ·)

〉
Y +

〈
c(t, ·), µNt (p, ·)− µNt−1(p, ·)

〉
Y
]
.

The optimization goal is to minimize variance, subject to the expected return being above a certain threshold:

min
P∈MN (Y)

Var[RNP ] such that E[RNP ] ≥ c.

3 Asymptotically Optimal Portfolio

The optimization problem (3) is a nonlinear integer program. It is well-known that integer programs are

NP-hard. Furthermore, the number of decision variables in (3) is equal to N , where N can be anywhere

from thousands to even hundreds of thousands for typical portfolios encountered in practice. For large N ,

the objective function and constraints can be computationally costly to calculate, taking many hours or days

for a single evaluation on a personal computer. Finally, the objective function may even be nonconvex. Due

to all of these reasons, the optimization problem (3) is very computationally challenging to solve.

Instead of solving the computationally intensive problem (3), we propose to approximate RNP for large

N using limiting laws for the pool of loans. Under this approximation, the optimization problem becomes

one of choosing an optimal distribution of loans P ∈ M(Y), where M(E) is the space of probability

measures on the space E. Therefore, the high-dimensional nonlinear integer program (3) is transformed

into an optimization problem over a single function. The approximate optimization problem has significant

computational advantages: it is a continuous optimization problem rather than an integer program. For large

N , the computational cost of evaluating the approximate objective and constraint functions is many orders

of magnitude less than the computational cost of evaluating the true objective and constraint functions in

(3). See Section 3.5 for a detailed discussion of the computational advantages of the AOP over integer

program solvers. As illustrated in Section 4, the solution to the approximate optimization problem, termed

the “asymptotically optimal portfolio,” is often accurate even for relatively small N (such as N = 125).
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In this section, we first construct the approximate optimization problem. The solution of the approximate

problem is then proven to converge asymptotically to the true optimal portfolio as N → ∞. Finally, we

present some explicit solutions for the asymptotically optimal portfolio in a special case.

3.1 Approximate Optimization

The asymptotically optimal portfolio P̄N,∗ is the solution to the optimization problem:

min
P∈M(Y)

v2(E[v1(R̄NP )]) such that E[g(R̄NP )] ≥ c, q(P ) ≤ d, (4)

where R̄NP is the approximation for RNP . The approximation is based upon a law of large numbers and

central limit theorem for a pool of N loans. If the asymptotically optimal portfolio is solely based upon the

law of large numbers, R̄∞P , it is denoted as P̄∞,∗.

For the class of models (1), Sirignano & Giesecke (2014) prove a dynamic law of large numbers and a

dynamic central limit theorem. They assume the statesU1
t , . . . , U

N
t to be independent conditional uponFt−1

(weakening of this condition may be possible, but was not explored in that paper). The empirical measure

µN converges in distribution to a limiting measure µ̄ inM(U×Y)T+1 asN →∞. The limiting measure µ̄t
satisfies a dynamic, random equation, driven by the common factors X . The empirical fluctuation measure

Ξ̄N converges in distribution to the limiting distribution Ξ̄ in W T+1 as N → ∞, where ΞNt =
√
N(µNt −

µ̄t), W =
∏|U|
u=1 S

′(RdY ), and S′ is the space of tempered distributions. The variable Ξ̄t is conditionally

Gaussian given a path of the common factors X up to t. The law of large numbers satisfies:

µ̄t(u, dy) =
∑
u′∈U

hθ(u, u
′, y,Xt−1)µ̄t−1(u′, dy). (5)

It is important to note that the law of large numbers is dynamic and is also a random equation; randomness

enters through the factor X . The law of large numbers has a natural link with the original model (1): the

transition function hθ appears in (5). The central limit theorem satisfies:

Ξ̄t(u, dy) =
∑
u′∈U

hθ(u, u
′, y,Xt−1)Ξ̄t−1(u′, dy) +Mt(u, dy). (6)

Given X , M(u, dy) is a Gaussian process with zero mean and covariance satisfying

Cov
[
Mt(u1, dy),Mt(u2, dy)

∣∣X0:t−1

]
= −

∑
u′∈U

hθ(u1, u
′, y,Xt−1)hθ(u2, u

′, y,Xt−1)µ̄t−1(u′, dy),

Var
[
Mt(u, dy)

∣∣X0:t−1

]
=
∑
u′∈U

hθ(u, u
′, y,Xt−1)(1− hθ(u, u′, y,Xt−1)µ̄t−1(u′, dy),

where u1 6= u2 and X0:t = (X0, . . . , Xt). Like the law of large numbers, the central limit theorem is also

dynamic. Randomness for the limiting process Ξ̄ enters both through X and a martingale term M . More

details on the limiting equations µ̄ and Ξ̄ can be found in Appendix B.
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One can approximate a finite pool of sizeN using the law of large numbers and the central limit theorem.

For large N , we have the following approximation:3

µNt
d
≈ µ̄Nt = µ̄t +

1√
N

Ξ̄t. (7)

The large pool approximation (7) is conditionally Gaussian and can be easily simulated. Conditional on

each path of the common factors X , the distribution of µ̄Nt is Gaussian; the conditional mean and condi-

tional covariance can be computed in closed-form. For large pools, the computational cost of solving (7)

is typically several orders of magnitude less than the computational cost of brute-force simulation of (1).

Moreover, even for pools with only a few hundred loans, the approximation is highly accurate. See Sirig-

nano & Giesecke (2014) for a detailed description of computational methods for the numerical solution of

(7). The large pool approximation (7) can be used to approximate the portfolio return RNP by simply setting

the initial conditions µ̄0(o, dy) = P (dy) and Ξ̄0 = 0. We make this explicit in the following notation.

Denote µ̄ν as the law of large numbers with initial condition µ̄0(o, dy) = ν(dy) (and zero for all other states

u 6= o). Also, let µ̄N,ν be the large pool approximation with initial conditions µ̄0(o, dy) = ν(dy) (and zero

for all other states u 6= o) and Ξ̄0 = 0. The approximation for (2) is:

RNP
d
≈ R̄NP = f(µ̄N,P , X), (8)

where µ̄N,P = (µ̄N,Pt )t∈I . That is, we have chosen the initial composition of the portfolio according to the

measure P (dy), which is the quantity we will optimize over.

3.2 Convergence Analysis

In a previous paper, Sirignano & Giesecke (2014), the authors showed that the large pool approximation µ̄N

will be close to the empirical measure µN for sufficiently large N . However, the convergence of the finite

optimal portfolio to the limiting optimal portfolio is not automatically implied by µN d→ µ̄∞ and is much

more challenging to prove.4

3The notation
d
≈ means the approximation holds in distribution. Rigorously, this means that ρ1,dR(νN , ν̄N ) → 0 as N → ∞

where νN is the measure of the random variableRNP ∈ RdR , ν̄N is the measure of R̄NP ∈ RdR , and ρ1,d is the Prokhorov metric for
the space of probability measures on Rd. Since µ̄N is distribution-valued, convergence for (7) is defined in terms of test functions.
For any bounded function φ(u, y) : U ×Y → R which is continuous in y, ρ1(νNφ , ν̄

N
φ )→ 0 as N →∞. Here, ν̄Nφ is the measure

of the real-valued random variable
∑
t∈I,u∈U

〈
φ(u, y), µ̄Nt (u, dy)

〉
Y , and νNφ is the measure of the real-valued random variable∑

t∈I,u∈U
〈
φ(u, y), µNt (u, dy)

〉
Y .

4The finite optimization problem considered in this paper (without constraints) can be formulated as maximizing a function
GN (zN ) : ZN → R where ZN ⊆ Z . In the context of this paper, GN (zN ) could for instance be E[v1(RNzN )] where ZN =
MN (Y) and zN is the selected portfolio. By the weak convergence results, we have that GN (zN ) → G(z) as N → ∞ if
zN → z ∈ M as N →∞. However, this is in general not sufficient to show that ZN,∗ = arg maxzN∈ZN GN (zN ) converges to
Z∗ = arg maxz∈Z G(z) since arg max is not a continuous operator. We provide a simple counterexample, taken from van Handel
(2008), where ZN = Z = [−1, 1], GN (z) = e−z

2

+ 2e−(Nz−N+
√
N)2 , and G(z) = e−z

2

. Even though GN (z) → G(z) for
every z ∈ [−1, 1] andZ is compact, ZN,∗ does not converge toZ∗. Instead, ZN,∗ → 1 whileZ∗ = 0. In general,GN (z)→ G(z)
for every z ∈ Z does not mean that arg maxz∈Z G

N (z) converges to arg maxz∈Z G(z). Proving the convergence of the optimums
is often a very challenging problem.
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In this paper, we show that the finite optimal portfolio PN,∗ weakly converges to the limiting optimal

portfolio P̄∞,∗ (the “asymptotically optimal portfolio”). Theorem 3.1 below provides a theoretical guarantee

for the AOP; namely, that for sufficiently large N , the AOP will be accurate, and its accuracy will increase

as the portfolio size grows.

Theorem 3.1. Suppose that Y is compact, the functions hθ, g, v1, v2, and q are continuous, and there is a

unique minimizer P∞,∗ of (4) for N = ∞. Furthermore, suppose f : BT+1 × RdX → RdR is of the form

f(µ, x) = F (µ,D(x)) where D : RdR → RdD is a continuous bounded function and F : BT+1 × RdD →
RdR is continuous on BT+1 × RdD .5 Finally, assume the optimization problem (3) is feasible for all N .

Then, the optimal portfolio PN,∗ weakly converges to the limiting portfolio P̄∞,∗ as N →∞.

The proof can be found in the Appendix A. As a corollary, ρ(P̄N,∗, PN,∗) → 0 as N → ∞ where

ρ is the Prokhorov metric (also see Appendix A). From a practical perspective, Theorem 3.1 shows that

the limiting portfolio P̄∞,∗ is accurate for large N . Similarly, the asymptotically optimal portfolio P̄N,∗ is

also accurate for large N . In practice, the approximation P̄∞,∗ (based on the law of large numbers) will

be sufficient for larger portfolios, although the approximation P̄N,∗ (which includes both the law of large

numbers and central limit theorem) will add some accuracy for moderate-sized portfolios.

The assumptions in Theorem 3.1 are mild and realistic to the loan portfolio setting. The strongest con-

dition, that P∞,∗ is the unique maximizer of (4) when N =∞, is a standard assumption in the optimization

and statistics literature. If the limiting optimization problem is convex, it will automatically be satisfied.

The restriction that D is bounded is not limiting since in typical applications D(x) will be a discount factor

for the cashflows. The majority of the standard machine learning and statistical models used for the tran-

sition function hθ in equation (1) will be continuous; examples include generalized linear models, neural

networks, and Gaussian process regression.

Finally, one might wonder why we have restricted ourselves to the constraint q(P ) ≤ d where q must

be continuous in Theorem 3.1. A more general constraint might be P (B) ≤ ν(B), ∀B ∈ YB where ν

is some measure and YB is a collection of closed sets in Y . The obstacle to such a general formulation is

that the set {P (B) ≤ ν(B), B ∈ YB} is not compact, and therefore the optimization problem (4) may

not have a solution. However, for almost all practical applications, it should be noted that the constraint

q(P ) ≤ d is sufficient. To solve for the P̄∞,∗, one must typically discretize the space Y into a grid or

“computational cells”. Then, for computational purposes, the optimization is over a discrete space (i.e.,

Y would be treated as a finite discrete space), and hence q will always be continuous. Another approach

would be to approximate constraints of the form P (B) ≤ ν(B), ∀B ∈ YB by approximating an indicator

function using bump functions. Indicator functions can be arbitrarily closely approximated with a smooth

bump function (for instance, a sigmoidal function). Therefore, constraints on closed sets of the real line can

be closely approximated using such analytic functions.

5B and RdX are metric spaces under the Prokhorov and Euclidean metrics, respectively. BT+1 × RdD is also a metric space
under the appropriate product metric, and continuity of F is defined with respect to this product metric.
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3.3 Some explicit solutions

Generally, there are no explicit solutions for the asymptotically optimal portfolio and (4) must be numer-

ically solved. However, for certain simple cases, there are explicit solutions using calculus of variations.

Define the mean and covariance functions m(y) and σ(y, y′):

m(y) = E[f(µ̄N,Ψy , X)],

σ(y, y′) = Cov[f(µ̄N,Ψy , X), f(µ̄N,Ψy′ , X)],

where Ψy = δy. Suppose that f is linear in µ̄Nt and Y = [a1, a2] ⊂ R. Let p be the density of the measure

P . Then,

min
p∈C(Y),P (dy)=p(y)dy

γVar[R̄NP ]− E[R̄NP ] = γ

∫ a2

a1

∫ a2

a1

σ(y, y′)p(y)p(y′)dy′dy −
∫ a2

a1

m(y)p(y)dy,∫ a2

a1

p(y)dy = 1, (9)

where C(Y) is the set of continuous functions on Y . If σ(y, y′) = 0 for y 6= y′, calculus of variations yields:

p(y) =
m(y)

2γσ(y, y)
+

c

2γσ(y, y)
, (10)

where c is a constant and can be determined from the condition
∫ a2
a1
p(y)dy = 1. Importantly, note that (10)

is only the solution if p(y) ≥ 0 for all y ∈ Y; otherwise, one must allow short-selling of loans for (10) to be

the correct solution (see Footnote 1 for how to extend the original framework to allow for short-selling). If

short-selling were allowed, P (dy) = p(dy)dy would be a signed measure. The solution (10) looks similar to

the Sharpe ratio. If σ(y, y′) 6= 0 for y 6= y′, one can again use calculus of variations to obtain the Fredholm

integral equation of the first kind:

m′(y′) = 2γ

∫ a2

a1

∂

∂y′
σ(y, y′)p(y)dy, (11)

which can be solved to find p(y). The Fredholm integral equation has been extensively studied and is known

to have a solution in the form of the Liouville-Neumann series. As before, (11) is only the correct solution

if p(y) ≥ 0 (otherwise short-selling must be allowed).

Although the cases with explicit solutions are limited in scope, they offer some insight into the solution

of the asymptotically optimal portfolio. Without the systematic risk (no covariance between loans with

features y and y′ where y 6= y′), the formula (10) looks similar to the Sharpe ratio. In particular, there is a

clear tradeoff in the formula between the idiosyncratic risk and the return of a loan y. Although the solution

p(y) does depend upon the solution p(y′) (through the constant c), such dependence could be said to be

weak. In the case of systematic risk, the solution at p(y) in (11) strongly depends upon the global solution

through an integral equation.
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3.4 Computational Approaches to Solving the AOP

The AOP’s solution is a single function P , which is a measure on Y . In practice, one cannot directly solve

for the function P but must instead either discretize Y into grid points or use a set of basis functions. In the

numerical studies in Section 4 below, we use the former approach. Various methods can be used to choose

grid points. A simple approach which works well for small pools is assigning the grid points to be the values

for the loans in the pool from which the portfolio is being chosen. However, when Y is high-dimensional

and the size of the pool is large, a sparse grid is necessary. We use k-means clustering in order to choose

the sparse grid. Relatively few grid points are typically needed in order to obtain an accurate solution; we

explain the reasons for this in Section 3.5.

There are also other large-scale optimization methods that could potentially be applied to solving the

AOP and might offer promising directions for future research. High-dimensional optimization problems

have been previously considered, especially in the context of dynamic programming problems. Several

approaches have been developed and successfully implemented. Tsitsiklis & Van Roy (2001), Longstaff

& Schwartz (2001), and Bellman & Dreyfus (1959) use basis functions to solve high-dimensional dynamic

programming problems. The first two papers especially focus on the problem of high-dimensional American

options. Doya (2000) also uses basis functions for optimization, but in the context of reinforcement learning.

Bokanowski, Garcke, Griebel & Klompmaker (2013) and Munos & Moore (2002) investigate sparse grids

for optimization. Lewis & Nash (2005), Borzi & Schulz (2009), and Dreyer, Maar & Schulz (2000) develop

multigrid methods for optimization.

3.5 Sources of Computational Advantages of AOP

There are several sources for the AOP’s lower computational cost in comparison to solving the original

integer program. Firstly, integer programs are much more difficult, and computationally time-consuming,

than continuous optimization problems. Integer programs are NP-hard. The computational complexity of an

integer program grows exponentially with the number of decision variables (Li & Sun 2006). This begins to

pose severe challenges for high-dimensional optimization problems (such as loan portfolio selection), which

will be discussed in more detail below. Moreover, for portfolio optimization, one has a nonlinear integer

program, which makes the problem even more challenging (Hemmecke, Koppe, Lee & Weismantel 2010).

Finally, many loan portfolio optimization problems are nonconvex; one example is optimizing over the

tranches of an asset-backed security. These integer programs are even more difficult (Burer & Letchford

2012). In contrast, the AOP is able to take advantage of the insight that the finite optimal portfolio is

close to the solution of a continuous optimization problem. Instead of solving a challenging nonlinear

integer program for the finite optimal portfolio, the AOP solves a continuous optimization problem which is

considerably less computationally expensive.

Secondly, the computational cost of evaluating the objective and constraint functions for the AOP is

much lower than for the integer program. We give a rough estimate below. Suppose there are N loans.

To calculate the objective and constraint functions, one must simulate the dynamics or evaluate outcome of
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each of the N loans. If N is large, this will take a long time. The AOP is numerically solved by discretizing

Y into Ng grid points. At each grid point, the LLN and CLT must be simulated. The cost for simulating a

single loan and the limiting laws at a single point are roughly the same. Therefore, the ratio of computational

times for a single evaluation of the objective and constraint functions is:

Computational time for a single evaluation of the objective/constraints for AOP
Computational time for a single evaluation of the objective/constraints for integer program

=
Ng

N
.

Typically, very few points Ng are necessary to accurately evaluate the LLN and CLT (see Section 4 of this

paper and Sirignano & Giesecke (2014)). Furthermore, the number of grid points Ng remains constant

no matter the size of the finite portfolio N . Later in this section, we provide more discussion on why

so few grid points are needed for the AOP. For large N (for example, tens of thousands or hundreds of

thousands of loans), the cost to evaluate the objective and constraint functions will be much lower for the

AOP. Similarly, the ratio of the costs for a single evaluation of the gradients for the respective problems

will be Ng
N . Additionally, in some cases, closed-form solutions are available for the AOP while they are not

available for the integer program. This further increases cost savings for the AOP.

Thirdly, the integer program typically has a much higher dimension (i.e., many more optimization vari-

ables) than the AOP. The number of decision variables for the original integer program is N , the size of

the portfolio. In contrast, the AOP’s solution is a single function and can typically be numerically solved at

a dimension much smaller than N . As previously mentioned, the computational complexity for an integer

program grows exponentially with the number of decision variables. In our numerical studies reported in

Section 4, the well-known solver BARON even has difficulties for portfolios where N is in the hundreds.

There are additional computational challenges for high-dimensional optimization including memory con-

straints. Even if the problem were continuous, high-dimensions can pose large challenges. Second-order

solvers (such as interior-point algorithms, trust region methods, and Newton methods) require solving linear

systems of equations and will have complexity O(N3). This quickly becomes computationally infeasible

for large N . One can still use first-order methods such as gradient descent, but the convergence rate is very

slow and gradient descent is known to have difficulties with saddle points and local minima. Furthermore,

for large N , the memory required to store the objective or constraint functions may become infeasible. For

a mean-variance problem, the covariance matrix will have N2 elements. A standard desktop computer will

run out of memory forN in the tens of thousands. For all of these reasons, nonlinear integer program solvers

will become computationally or even infeasible for larger portfolios.

The advantage of the AOP is that optimization occurs over a single function P instead of N loans where

N can be large. Optimizing over a function allows one to take advantage of the inherent structure of the

problem. Since the objectives and contraints are continuous functions on Y , one expects the solution at

points y1 and y2 to be very similar if y1 and y2 are sufficiently close in distance. For instance, if loans with

feature y1 are attractive to hold in the portfolio, it is very likely that loans with feature y2 are also attractive

and will be held in the portfolio. Thus, by optimizing over a single function, one is able to take advantage

of this structure and achieve some generalization. One would expect the function to have some smoothness
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and continuity and moreover, within an appropriately small region in space, to not change too rapidly.

Importantly, functions with suitable regularity can be arbitrarily well-approximated by other functions (for

instance, basis functions or, more directly, by grid discretization). This is the principle that underpins the

efficient solution of many infinite-dimensional problems, such as PDEs, machine learning (neural networks,

Q-learning, etc.), and HJB equations. Similar to these other applications, the number of functions (or grid

points) needed to approximate P tends to not be large when P has some structure to it; moreover, this

number remains constant in N . If one treates every loan as a separate variable to optimize over (i.e., the

number of decision variables is N ), this structure is completely ignored and all generalization is lost.

Of course, for numerical implementation, one cannot directly solve for the function P but must instead

either discretize Y into grid points or use a set of basis functions. However, the spirit of the argument carries

over: due to the structure of the problem, relatively few grid points (i.e., the grid does not need to be very

fine) or basis functions may be needed. Moreover, the number of grid points Ng does not increase with N

but remains constant as N grows. Thus, the dimension of the AOP remains constant while the dimension

N of the integer program becomes large. For example, if the dynamics of loans with features y1 and y2

are very similar and ||y1 − y2|| is small enough, it is not necessary to have two grid points at y1 and y2,

respectively, but instead suffices to have a single grid point y1+y2
2 . The AOP takes advantage of the fact that

by leveraging the LLN and CLT, one can group similar loan types together. Consequently, relatively large

mesh sizes can be taken for the grid, resulting in relatively few decision variables for the AOP.

Finally, we again highlight the number of decision variables for the AOP (after discretization or basis

functions) remains constant no matter the size of the original portfolio N . Consequently, the AOP does

not have the drawback of large memory consumption and one can employ second-order solvers with fast

convergence properties.

As will be seen in Section 4, the AOP is highly accurate and has a much lower computational cost than

integer program solvers. Its accuracy can be directly attributed to the convergence of the finite optimal

portfolio to the AOP as N grows. This convergence is theoretically guaranteed by Theorem 3.1. Intuitively,

the fast convergence is due to the idiosyncratic noise quickly averaging out for the system, which can be

seen in the numerical studies in Sirignano & Giesecke (2014).

4 Numerical Studies

To demonstrate the advantages of our optimization approach, we now numerically implement the asymptot-

ically optimal portfolio (AOP) for several loan portfolio selection problems. The approximate optimization

problem is solved using Matlab’s basic interior point algorithm. We compare the AOP to solutions from

various popular mixed integer nonlinear program (MINLP) solvers for the true optimization problem. These

solvers include BARON and BONMIN. See Tawarmalani & Sahinidis (2005) and Bonami, Biegler, Conn,

Cornuejols, Grossmann, Laird, Lee, Lodi, Margot & Waechter (2008), respectively, for descriptions of the

solvers. BARON is generally considered the state of the art in terms of global mixed integer nonlinear pro-
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gram solvers. A detailed comparison of BARON against a range of other solvers is available in Neumaier,

Shcherbina, Huyer & Vinko (2005). BARON requires a commercial license and can utilize IBM’s CPLEX

solver, which also requires a commercial license. BONMIN is also considered the state of the art amongst

the freely available integer programming solvers. BONMIN makes use of several heuristics, most promi-

nently its diving heuristic (see Bonami & Goncalves (2012)). These heuristics can be very successful in

practice, but in general are not guaranteed to converge, whereas the branch and bound method has theoret-

ical guarantees for convergence. In general, we find that BARON outperforms BONMIN when N is very

small, but BONMIN (with or without heuristics) outperforms BARON when N becomes even moderately

large. BONMIN’s diving heuristic outperforms BONMIN’s branch and bound for larger problems.

We consider a variety of test problems, which are described in more detail later in this section. First, we

compare the performance of the AOP with the integer program solvers for a one-period model, which is a

special case of our model class (1) with T = 1. In many cases, a one-period model allows for closed-form

objective and gradients for both the AOP and the integer program. In addition, we compare the performance

of the AOP with the integer program solvers for the full multi-period model (T > 1). In this latter case, the

objective and gradients are approximated using Monte Carlo simulation.

(i) One-period Model (T = 1):

(a) Selecting a mean-variance portfolio of loans

(b) Selecting an optimal portfolio of loans under exponential utility

(c) Selecting an optimal portfolio backing an equity tranche of a MBS

(d) Selecting a geographically diverse mean-variance portfolio

(ii) Multi-period Model (T > 1):

(a) Selecting a mean-variance portfolio of prime mortgages

(b) Selecting a log-optimal portfolio of subprime mortgages

In each test case, we consider the optimization problem of selecting N loans from a pool of Np available

loans. Such a problem might be faced by a lender, investor, or asset-backed security structurer. A moderate-

sized problem would have N = 250 and Np = 1, 000. Larger problems in practice could have N = 2, 500

and Np = 10, 000 or N = 25, 000 and Np = 100, 000. For the one-period model, the Np available loans

are randomly generated. For the multi-period model, the pool of Np available loans are drawn from actual

loan data sets. Default and prepayment model parameters for the multi-period model are fitted to actual loan

data.

In all cases, we find that the AOP strongly outperforms BARON and BONMIN. The AOP has a much

lower computational cost than the MINLP solvers and has a similar level of accuracy. In some cases,

the AOP solution is actually better than the MINLP solvers’ solutions. This means that the true objective

function (V N from the true optimization problem (3)) evaluated at the AOP solution is smaller than the
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true objective function evaluated at the MINLP solver’s solution. In the remainder of the cases, the AOP

solution is consistently close to the best solution amongst the MINLP solvers. For moderately large N (e.g.,

N = 250 and Np = 1, 000), the AOP solution matches the best solution amongst the MINLP solvers on up

to 99% of the loans. Also for moderately large N , BARON’s solution is often quite inaccurate, meaning it

is significantly suboptimal compared to both BONMIN and the AOP. This highlights the well-known fact

that MINLP solvers’ success can vary in practice depending upon the particular problem. A priori, the

computational performance of a particular MINLP solver on a problem is difficult to anticipate. In terms

of computational time, the AOP generally takes several magnitudes less time than the MINLP solvers for

moderately sized problems. In some cases, the AOP is as much as 5 − 6 orders of magnitude faster than

the MINLP solvers. BONMIN often foregoes branch and bound for larger problems, opting for its diving

heuristic. In contrast to BONMIN’s branch and bound method and the AOP, there is no theoretical guarantee

on the accuracy of the diving heuristic for our class of problems. The diving heuristic is a type of relaxation

method which solves a sequence of continuous optimization problems and rounds them to find an integer

solution. Finally, for larger problems (e.g., selecting N = 2, 500 out of Np = 10, 000 available loans

or selecting N = 25, 000 out of Np = 100, 000 available loans), the problem becomes computationally

intractable for the MINLP solvers due to the high-dimensionality. In contrast, the AOP can efficiently and

accurately solve such large-scale problems.

4.1 One-period Model

We consider the problem of selecting a portfolio of N loans from a pool of Np available loans. The loan

feature space Y = [−1, 1] ⊂ R and X0 ∈ {−1,+1} (i.e., a “good” and a “bad” economy). The loans only

have default risk (no prepayment) and default with transition probability:

hθ(d, o, y, x) =
exp(−3 + y + x)

1 + exp(−3 + y + x)
.

The one-period model is a special case of our model class (1) with T = 1. If x = 1, the loss given default is

50%. If x = −1, the loss given default is 30%. If a loan does not default, its return is c+ y+1
10 (riskier loans

have higher interest rates). The Np available loans are drawn uniformly on Y . In this one-period model, the

AOP’s objective and gradient can be evaluated in closed-form (up until quadrature), even if, for instance,

Y was multi-dimensional and X was continuous-valued. The integer program’s objective and gradient can

also be evaluated in closed-form for many cases such as mean-variance, exponential utility, characteristic

function, and moments. However, for many other functions (such as log utility or a tranche payoff), the

objective and gradient for the true optimization problem must be evaluated via Monte Carlo simulation.

This is yet another advantage for the AOP over the integer program in the case of the one-period model.

To solve the AOP, one has to choose a grid. We choose a grid of 200 points. The grid points are chosen

as the centroids from k-means clustering of the Np available loans. Since the AOP is measure-valued, one

may not end up with an integer solution at all grid points. Thus, given the AOP, one has to decide how to
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“round” the AOP to get an integer solution. We use the simple heuristic of taking the ceiling of the grid

points with the largest values such that total portfolio size is N and setting the remainder to their floor.

We consider several problems for various sizes N and Np. We first examine the cases of a mean-variance

portfolio, an optimal portfolio under exponential utility, and the maximization of the expected return of an

equity tranche of an asset-backed security. Finally, we present an example where the goal is to construct a

geographically diverse portfolio.

4.1.1 Mean Variance Portfolio

We compare the performance of the AOP versus the integer program solvers BONMIN and BARON for

finding the mean-variance portfolio. First, we consider the problem of choosing 250 loans from an available

pool of 1, 000 loans. We require the portfolio to have a minimum expected return of 4% and the objective

is to minimize the variance. The comparison of the MINLP solvers and the AOP is given in Table 1. The

table reports the time for the solver, the reason it stopped (either reached the maxtime, minimum stepsize,

minimum objective value change, or ran out of the 16GB of available RAM), the objective function evaluated

at the solution, and a comparison of each solution with the AOP solution. The comparison of a solution with

the AOP solution is the number of loans (out of Np total loans) on which the two solutions agree. All

MINLP solver solutions are suboptimal compared to the AOP solution. This means that the true objective

is (lower) when it is evaluated at the AOP solution rather than the MINLP solution. Furthermore, the

AOP solution requires 1-2 seconds of computation time, while the integer program solvers take orders of

magnitude longer. We run the MINLP solvers for various lengths of times to show how their solutions

evolve over time. That is, we stop the MINLP solvers early (short of their convergence criterion) to see

how accurate their solution is. The first run reported for an integer program solver is for the minimum time

required for one iteration of the solver. BONMIN takes 10 minutes for its first iteration while BARON takes

almost an hour in its first iteration. BONMIN is still suboptimal compared to the AOP solution even after

several hours. BONMIN’s solution agrees with the AOP solution for over 97% of the loans. This simple

example highlights the computational challenges faced by even the leading global integer solvers, even at

this relatively “small” portfolio scale.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 500 Max time 37.5674 97.0 %
BONMIN 1000 Max time 37.4351 97.2 %
BONMIN 3111 Max time 37.4351 97.2 %
BONMIN 10000 Max time 37.4351 97.2 %
BARON 3051 Max time 97.7838 67.4 %
AOP 1 Min stepsize 37.3758 100 %

Table 1: Performance comparison between MINLP solvers and AOP for the selection problem of N = 250 loans out of a pool of
Np = 1, 000 loan for a mean-variance optimization problem under a one-period model.
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Next, we increase the size of the problem by one order of magnitude, i.e., we select 2,500 loans out

of 10,000. As expected, the performance gain obtained through the AOP is even more pronounced for this

larger problem. Out of the four integer programming cases we ran (three runs of BONMIN for different

maximum time intervals and a single run of BARON), only two produced an output (the others failed to find

a solution before the maximum allowed time), and both outputs were suboptimal compared to the AOP. In

all cases, the MINLP solvers were significantly slower than the AOP. Furthermore, BARON eventually ran

out of RAM and failed to produce a solution. The results are displayed in Table 2.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 500 Max time No output 0 %
BONMIN 1000 Max time 3444.82 99.62 %
BONMIN 10000 Max time 3444.82 99.62 %
BARON >10000 Out of RAM No output 0 %
AOP 2 Min stepsize 3435.88 100 %

Table 2: Performance comparison between MINLP solvers and AOP for the mean-variance selection problem of N = 2, 500 loans
out of a pool of Np = 10, 000 loans under a one-period model.

4.1.2 Optimal Portfolio under Exponential Utility

Next, we conduct similar tests for a portfolio which maximizes the exponential utility 1 − E[exp(γRNP )]

where γ = −1. Table 3 presents the solver results for the problem of choosing N = 250 loans from

a pool of Np = 1, 000 loans. BONMIN and AOP agree on 99.8% of the loans, with the AOP having a

slightly better solution. BARON’s solution does not perform as well in this case. BONMIN is roughly 90

times slower than AOP, with BARON being 1, 000 times slower. Table 4 contains results for the problem

of choosing N = 2, 500 loans from a pool of Np = 10, 000 loans. BONMIN is more than 4 orders of

magnitude slower than the AOP and its solution is suboptimal compared to the AOP’s solution. For even

larger Np, the computational time for BONMIN increases at a dramatic rate. Table 5 considers the case of

selecting N = 5, 000 loans out of a pool of N = 25, 000 loans. BONMIN takes over 5 days to finish it,

and agrees well with the AOP solution, although it is again slightly suboptimal compared to the AOP. Due

to BARON’s poor performance even for Np = 1, 000 and the long lengths of time, we did not run BARON

for the later tests with larger portfolio sizes.

4.1.3 Optimal Portfolio backing an Asset-backed Security

We now consider the problem of choosing a portfolio to maximize the expected return of an equity tranche

of an asset-backed security. The payoff to the equity tranche holder is simply a call option with strike
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Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 93 Search completed .6628567 99.8 %
BARON 1,020 Search completed .658 76.0 %
AOP 1 Min stepsize .6628569 100 %

Table 3: Performance comparison between MINLP solvers and AOP for the selection problem of N = 250 loans out of a pool of
Np = 1, 000 loans for a portfolio which maximizes exponential utility.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 33,209 Max time .663122 97.5 %
AOP 1 Min stepsize .663147 100 %

Table 4: Performance comparison between BONMIN and AOP for the selection problem of N = 2, 500 loans out of a pool of
Np = 10, 000 loans for a portfolio which maximizes exponential utility.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 455,997 Max time .6634706 99.9 %
AOP 1 Min stepsize .6634711 100 %

Table 5: Performance comparison between BONMIN and AOP for the selection problem of N = 5, 000 loans out of a pool of
Np = 25, 000 loans for a portfolio which maximizes exponential utility.

K. For the numerical examples in this section, the value K = 4% is used. Tables 6, 7, and 8 compare

the performance of the AOP with BONMIN for various sizes of N . In all cases, BONMIN’s solution is

suboptimal compared to the AOP, and many orders of magnitude slower.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 1218 Max time .0592 99.4 %
AOP 5 Min stepsize .0594 100 %

Table 6: Performance comparison between BONMIN and AOP for the selection problem of N = 125 loans out of a pool of
Np = 500 loans for a portfolio maximizing expected return of equity tranche of an MBS.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 2100 Max time .05949 99.4 %
AOP 5 Min stepsize .05952 100 %

Table 7: Performance comparison between BONMIN and AOP for the selection problem of N = 250 loans out of a pool of
Np = 1, 000 loans for a portfolio maximizing expected return of equity tranche of an MBS.
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Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 19440 Max time .05856 99.4 %
AOP 5 Min stepsize .05857 100 %

Table 8: Performance comparison between BONMIN and AOP for the selection problem of N = 2, 500 loans out of a pool of
Np = 10, 000 loans for a portfolio maximizing expected return of equity tranche of an MBS.

4.1.4 Geographic Diversification of a Loan Portfolio

Economic conditions at two geographic locations tend to be less correlated the more distant the geographic

locations are. For instance, a mortgage in California is less correlated with a mortgage in Florida than with

another mortgage in California. We consider the problem of forming a loan portfolio diversified across geo-

graphic locations according to a mean-variance criterion. 401 geographic locations (roughly the number of

Metropolitan Statistical Areas) are included and the common factor X is a taken to be a 401-dimensional

Gaussian random variable with covariance 1
2 + 1

2 exp(− 1
1000 × distance between location i and location j).

At each location, 24 loans are available at interest rates of 3.125, 3.375, . . . , 8.875 percent. Figure 1 shows

the geographic locations for the loans. The one-period model admits a closed-form distribution, which is

important since accurately simulating a high-dimensional covariance structure would require a large number

of Monte Carlo samples. Fitting a high-dimensional covariance matrix to data is prone to significant overfit-

ting; therefore, we have introduced the reduced-form covariance which depends upon the distance between

two locations.
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Figure 1: Geographic locations of the loans. The correlation between loans decreases with distance.
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Let y = (y1, y2) where y1 is the interest rate and y2 is the geographic location. The default probability

for each loan is:

hθ(d, o, y, x) =
exp(g(y1) +

∑401
i=1 xi1y2=i)

1 + exp(g(y1) +
∑401

i=1 xi1y2=i)
,

where g is a third-order polynomial with coefficients −4.221,−.4108, .2120, and −.0149 (which were

fitted to the historical subprime mortgage default data described in Section 4.2.2 below). In total, there

are Np = 9624 available loans to select from and the goal is to select a minimum variance portfolio of

N = 2, 500 loans. Due to there being many geographic locations, both the AOP and the integer program

are high-dimensional. As mentioned earlier, even high-dimensional continuous optimization problems can

be extremely computational challenging. In order to deal with this, we implement block coordinate descent.

Block coordinate descent divides the solution into subsets and cycles through these subsets. At each itera-

tion, it fixes the solution on all but one subset. It solves the problem for that much smaller subset of “free

variables”. Block coordinate descent has been proven to converge for continuous convex optimization prob-

lems (see Tseng (2001)). Table 9 displays the results. BONMIN’s solution agrees with the AOP on 99.5%

of the loans. The AOP’s solution is slightly less optimal compared to BONMIN’s solution. This example

could be extended by applying block coordinate descent to the AOP in order trace out the entire efficient

frontier for the mean-variance portfolio.

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN 894 Max time .001409 99.5 %
AOP 12 Max iterations .001410 100 %

Table 9: Performance comparison between BONMIN and AOP for the selection problem of N = 2, 500 loans out of a pool of
Np = 9, 624 loans for a minimum variance portfolio.

4.2 Multi-period Model

In this section, we optimize portfolios of mortgage loans under the full dynamic model (1), which will

be fitted to actual mortgage default and prepayment data. The pool of mortgages available for portfolio

selection is also drawn from actual mortgage data. All interest payments and coupon payments are assumed

to be monthly, and the times t = 1, . . . , T, are months. The risk-free rate is chosen to be a constant rt = .01.

The common factor X that drives correlation in the mortgage portfolio includes the national mortgage rate

and the national unemployment rate. Each element i ∈ {u,m} of X is chosen to be an independent,

discrete-time CIR process:

X̂i
t = X̂i

t−1 + κi(mi − X̂i
t−1) + σi

√
X̂i
t−1ε

i
t,

Xi
t = max(X̂i

t , 0), (12)
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where {εit}t∈I,i=u,m are i.i.d. standard normal variables. The value of Xi
t is not allowed to go negative since

this would result in the square root of a negative number. The subscripts u and m refer to the unemployment

rate and mortgage rate, respectively. The method of maximum likelihood is used to fit the unemployment

rate to monthly national unemployment data for the United States from 1948 to 2014.6 The mortgage rate

is fitted to monthly 30-year fixed national mortgage rate data for the United States from 1971 to 2014. We

note that many other model choices could be made for the stochastic process X; our framework imposes no

assumptions on the form of X . Another possible choice for X is a vector autoregression.

4.2.1 Mean-Variance portfolio

We consider the problem of selecting a portfolio ofN agency mortgages from a pool ofNp available agency

mortgages according to a mean-variance criterion. Specifically, the problem is to minimize the variance of

the portfolio return subject to the expected portfolio return being greater than 1%.

Since agency mortgages have very low default rates (and, in fact, Fannie Mae and Freddie Mac will

compensate the MBS investor for any loss from default), we only model prepayments. Using the method

of maximum likelihood, the parameter θ for hθ is fitted to a data set of Freddie Mac mortgages over the

time period 1999 − 2014 which consists of 16 million mortgages. The mortgages are all 30-year fixed rate

and fully amortizing. The loan-level feature space Y includes the FICO score, first-time homebuyer flag,

number of units, occupancy status, combined loan-to-value ratio, loan-to-value ratio, initial interest, prepay-

ment penalty flag, property type, loan purpose, number of borrowers, debt-to-income ratio, and geographic

location (Metropolitan Statistical Area). We take

hθ(p, o, y, x) =
1

1 + exp(θ0 + θY · y + θu
X · xu + θm

X max(yi − xm, 0))
, (13)

where yi is the interest rate for the mortgage. A dimension reduction for the limiting law µ̄N can be

performed via the coordinate transformation w = (z, yi) = (θY · y, yi) ∈ RdW , which greatly reduces the

computational expense of simulating µ̄N as well as finding the optimal portfolio. We refer to this coordinate

transformation as the “low-dimensional transformation”. In this case, dW = 2, much smaller than the

original dimension of Y . We will refer to the variable z = θY · y as the “prepayment inclination”. Note that

this transformation, which reduces the dimension of the problem, is an exact transformation (no accuracy

is lost). The “prepayment inclination” is a variable (which is a linear combination of many features of the

loan) influencing how likely that loan is to prepay based upon the characteristics of the loan (such as FICO,

LTV ratio, etc.).

To solve for the AOP, one has to choose a grid. A natural grid for problems where Np is small or mod-

erately sized (hundreds or several thousand loans) is the actual coordinates in RdW of the available loans

w1, . . . , wNp . We use the same heuristic for rounding described earlier in the one-period model section.

Finally, we note that the AOP for the mean-variance case with this choice of grid points bares close resem-
6All parameter fits are available from the authors upon request.

25



blance to the well-known heuristic of relaxing an integer program: that is, solving the continuous version

of an integer program and rounding to yield a suitable integer solution. However, such relaxations are often

heuristic, while in our case the AOP has a theoretical guarantee to converge. Moreover, for large-scale prob-

lems, the relaxation heuristic will suffer because even continuous nonlinear optimization problems become

computationally challenging in high-dimensions. However, such large-scale problems can be solved via the

AOP by choosing a grid whose number of mesh points is much smaller than Np (see Section 4.3).

Solver Time (s) Exitflag True objective Comparison with AOP
BONMIN (diving heuristic) 200 Max time 0.089816 98.2 %
BONMIN (diving heuristic) 10,000 Max time 0.089816 98.2 %
BONMIN (branch & bound) 200 Max time 0.280683 76.8 %
BONMIN (branch & bound) 5,000 Max time 0.090541 89.2 %
BONMIN (branch & bound) 10,000 Max time 0.090518 91.6 %
BONMIN (branch & bound) 50,000 Max time 0.090447 91.8 %
BARON/CPLEX+PreProc. 3,600 Max time 0.524601 67.4 %
BARON/CPLEX+PreProc. 12,700 Max time 0.092638 80.8 %
BARON/CPLEX+PreProc. 52,700 Max time 0.091490 95.8 %
BARON/CPLEX 3,600 Max time 0.094147 84 %
BARON/CPLEX 12,700 Max time 0.092620 80.8 %
BARON/CPLEX 52,700 Max time 0.091183 95.8 %
BARON/CBC+PreProc. 12,700 Max time 0.10669 68.6 %
BARON/CBC+PreProc. 52,700 Max time 0.10669 68.6 %
BARON/CBC 12,700 Max time N/A 0 %
BARON/CBC 52,700 Max time 0.10669 68.6 %
AOP 2 Min stepsize 0.089815 100 %

Table 10: Performance comparison between MINLP solvers and AOP for the mean-variance selection problem of N = 250 loans
out of a pool of Np = 1, 000 loans.

The comparison of the MINLP solvers and the AOP is given in Table 10. All MINLP solver solutions

are suboptimal compared to the AOP solution, i.e., the true objective evaluated at the AOP solution has a

better value. We run the MINLP solvers for various lengths of times to show how their solutions evolve over

time. That is, we stop the MINLP solvers early (short of their convergence criterion) to see how accurate

their solution is. BONMIN’s diving heuristic is able to find a good solution relatively quickly, although

still two orders of magnitude slower than the AOP. However, BONMIN’s diving heuristic is still suboptimal

compared to the AOP solution after 10, 000 seconds. BONMIN’s branch and bound is still far off from the

solution even after 50, 000 seconds (almost 14 hours), as it seems stuck in a local optimum. BARON is

slower; and its solution is still quite far off after 52, 700 seconds (over 14 hours).

Figure 2 compares the performance of the AOP and BONMIN. The pool of available loans are marked

by ×, the loans chosen by the AOP are marked by �, and the loans on which the AOP and integer programs
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disagree are marked by ◦.
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Figure 2: Comparison of AOP with BONMIN for mean-variance portfolio with N = 250 and Np = 1, 000.

4.2.2 Log-optimal portfolio

We now select a portfolio ofN subprime mortgage loans from a pool ofNp available loans with the objective

of maximizing the expected log utility of the portfolio return. Specifically, the objective is to maximize

E[log(γRNP )] where RNP is the return of the portfolio P and γ is the risk aversion coefficient. For this

example, γ = 1 (which is equivalent to maximizing the exponential growth in the “long run”).

The subprime loans have both default and prepayment risk. We choose hθ to be a multinomial logistic

regression model. The transition functions hθ(p, o, y, x) and hθ(d, o, y, x) are given by

exp(θ0,p + θY,p · y + θu
X,p · xu + θm

X,p max(yi − xm, 0))

1 + exp(θ0,d + θY,d · y + θu
X,d · xu) + exp(θ0,p + θY,p · y + θu

X,p · xu + θm
X,p max(yi − xm, 0))

,

exp(θ0,d + θY,d · y + θu
X,d · xu)

1 + exp(θ0,d + θY,d · y + θu
X,d · xu) + exp(θ0,p + θY,p · y + θu

X,p · xu + θm
X,p max(yi − xm, 0))

,

respectively. The parameter θ is fitted using a data set containing over 10 million subprime mortgages. The

data set was generously provided by the Trust Company of the West. The features include FICO credit

score, LTV ratios, original balance, initial interest rate, loan type, default and prepayment times, and zip

codes. Once the model has been fitted, we again use the low-dimensional transformation w = (z, yi) =

(θY · y, yi) ∈ RdW , where z is now two-dimensional since we are considering both default and prepayment
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risk. In thise case, dW = 3. The first dimension of w is the “default inclination”, the second dimension

is the “prepayment inclination”, and the third dimension is the interest rate. The “default inclination” is a

variable (which is a linear combination of many features of the loan) influencing how likely that loan is to

default based upon the characteristics of the loan (such as FICO, LTV ratio, etc.). Similarly, the “prepayment

inclination” is a variable (which is a linear combination of many features of the loan) influencing how likely

that loan is to prepay.

Np mortgages are drawn from the subprime mortgage data set for the portfolio problem. For conve-

nience, we assume all mortgages are 15 year fixed-rate loans. When a default occurs, we assume that the

loss given default is 1
2 . This means that the investor receives 1

2 of the mortgage’s balance at the time of de-

fault. The objective function (expected log utility) is evaluated via Monte Carlo simulation. We use 10, 000

Monte Carlo samples. For consistency, the same paths for the common factors X are used for both the true

optimization problem as well as the AOP.

Table 11 compares the performance between BONMIN and the AOP. The two solutions agree on 98.8%

of the loans and the AOP is two orders of magnitude faster. Figure 3 shows a comparison of the integer

program and AOP solutions. The pool of available loans are marked by ×, the loans chosen by the AOP are

marked by �, and the loans on which the AOP and integer programs disagree are marked by ◦. Only two

dimensions of the space RdW are displayed in Figure 3; the other dimension, “prepayment inclination”, is

not included in the figure. However, all three dimensions are used in the model and computational study.

Solver Time (s) Exitflag True Objective Nodes Comparison with AOP
BONMIN 2419 Max time -5.685347 NA 98.6 %
AOP 31 Min stepsize -5.685306 NA 100 %

Table 11: Integer program and AOP performances where we choose N = 250 out of a pool of Np = 1000 loans for a log-optimal
portfolio.

4.3 Large-scale Optimization

In this section, we show how the AOP can tractably handle large portfolio optimization problems. By

“large”, we mean problems in the tens of thousands, hundreds of thousands, or even hundreds of thousands.

To demonstrate the challenge of such large-scale problems, consider the problem of selecting N loans from

an available universe ofNp loans. For the vast majority of problems, the objective and constraint functions in

the true optimization problem (3) must be stochastically approximated via Monte Carlo simulation. Suppose

that one performs L Monte Carlo simulations and that the objective and constraint functions are not path

dependent (for instance, only depend upon the sum of discounted cashflows over all the times t = 1, . . . , T ).

Then, one must store in memory and perform matrix operations on an Np × L matrix. For large Np and L,

this matrix will not be storeable in memory of a typical desktop computer. For instance, if Np = 100, 000
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Figure 3: Comparison of AOP with BONMIN for log-optimal portfolio with N = 250 and Np = 1, 000.

and L = 25, 000, the matrix would have 2.5 billion elements. Furthermore, matrix operations on such large

matrices are extremely computationally expensive. These operations must be performed at each iteration of

the optimization routine; on top of these computational challenges, one has an integer program of dimension

Np. Nonlinear integer programs with tens of thousands or hundreds of thousands of variables are generally

considered intractable. Even with a cluster of computers, problems of this size would be computationally

difficult and even intractable.

If the objective and constraint functions depend upon the path of the cashflows, then the problem be-

comes even more challenging. A matrix of size Np×T ×L must be stored. If Np = 100, 000, L = 25, 000,

and T = 360, the matrix would have around 900 billion elements. A matrix of this size cannot be stored in

memory, and a cluster would be needed to store the matrix as well as perform such large matrix operations.

Furthermore, simply simulating the cashflow matrix is expensive.

A natural question might be whether the AOP does not suffer from some of the same challenges. In the

last section, we used the actual data points for the available loans as the grid on which to solve the AOP. In

that case, there would be Np grid points. Even though the problem is a continuous optimization problem

instead of a integer program, the matrix operations required for second-order continuous optimization meth-

ods (e.g., interior point methods) are still extremely expensive. For instance, the continuous optimization

problem can be solved using first-order methods (e.g., gradient descent) on a cluster even if Np is in the

hundreds of thousands. However, first-order methods such as gradient descent have slow convergence rates.

For large Np, the AOP can actually be solved on a sparse grid, requiring only a few (hundreds or a few

thousand) grid points. Using such a sparse grid, the AOP can be accurately solved in a matter of seconds
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on a single computer using second-order optimization methods. This is one of the key advantages of the

AOP. Another option, which is available for certain problems and is implemented in Section 4.1.4, is block

coordinate descent. However, whenever possible, reduction of the number of grid points through sparse

grids will substantially decrease computational cost.

We propose three methods for choosing a sparse grid for the AOP. One is to simply perform k-means

clustering on the loan features Y 1, . . . , Y N and use the centroids of the clusters as the grid points. The

fraction of the available pool at the k-th grid point is the fraction of the pool in the k-th cluster. A slightly

more accurate algorithm is “repeated clustering”, which is described in Appendix C and is also based upon

k-means clustering. One disadvantage of using k-means clustering on the loan features Y 1, . . . , Y Np is that

if Y multi-dimensional, certain dimensions may be more important than others and clustering using y will

not ignore this. An alternative is to instead perform k-means clustering on the law of large numbers evaluated

at each available loan: (µ̄1
t (u, Y

1), . . . , µ̄Mt (u, Y 1)), . . . , (µ̄1
t (u, Y

Np), . . . , µ̄Mt (u, Y Np)). µ̄mt (u, Y n) is the

law of large numbers for the m-th Monte Carlo trial and the n-th available loan. M Monte Carlo trials are

used.

In Table 12, we study the performance of the sparse grids for the AOP when selecting 2, 500 out of

10, 000 loans for a log-optimal portfolio. The fitted model of Section 4.2.2 is used. We only use the LLN for

the AOP. The sparse grid with clustering on the law of large numbers usesM = 500 Monte Carlo trials. The

actual optimization uses L = 10, 000 Monte Carlo trials. We compare the solution using a sparse grid with

the exact solution (i.e., 10, 000 grid points). We compare the sparse grid solutions with the exact solution

in terms of the percent of loans on which they agree. The sparse grid is highly accurate even with a few

hundred grid points.

Number of Clusters Repeated clustering using Y n

Comparison with exact solution
Clustering using µ̄
Comparison with exact solution

100 95.6 % 98.3 %
150 96.5 % 98.5 %
225 97.2 % 99.2 %
300 97.6 % 99.0 %
525 98.2 % 99.4 %
750 98.4 % 99.6 %
900 98.6 % 99.5 %

1200 98.9 % 99.5 %
1350 99.0 % 99.6 %

10,000 100 % 100 %

Table 12: Comparison of solution using sparse grid with exact solution.
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5 Conclusion

In this paper, we address large-scale optimization of a portfolio of loans. Such problems are computation-

ally challenging since they involve high-dimensional nonlinear integer optimization. We approximate the

optimization problem for a broad class of dynamic models of loan risk using weak convergence results. The

solution to the approximate optimization problem is an asymptotically optimal portfolio (AOP) which we

prove weakly converges to the solution of the true integer program as the size of the portfolio grows large. In

a series of numerical studies using actual loan data, we compare the AOP against leading nonlinear integer

program solvers. The AOP is highly accurate for large and even moderately-sized portfolios and is often

several orders of magnitude faster than the best-in-class integer program solvers tested. Our method al-

lows for tractable, large-scale data-driven optimization of loan portfolios and could be applicable to security

selection problems in other asset classes.

A Proof of Theorem 3.1

The proof builds upon the weak convergence results for the class of models (1). A feasible sequence of port-

folios PN which weakly converges to the asymptotically optimal portfolio P̄∞,∗ is constructed. We show

that if the optimal portfolio PN,∗ does not weakly converge to the asymptotically optimal portfolio P̄∞,∗,

then V N (PN ) < V N (PN,∗) for some N . However, this is a contradiction, so the optimal portfolio PN,∗

must weakly converge to P̄∞,∗. Weak convergence is equivalent to convergence under the Prokhorov metric

ρ. Thus, Theorem 3.1 means that ρ(PN,∗, P̄∞,∗) → 0 and, by the triangle inequality, ρ(PN,∗, P̄N,∗) → 0.

(The exact same proof approach can be used to show that ρ(P̄N,∗, P̄∞,∗) → 0. We omit the details for this

in the proof since the steps are the same as used to show ρ(PN,∗, P̄∞,∗) → 0.) The Prokhorov metric is

the natural metric under which to study convergence for our problem due to the weak convergence results

available for the model framework (1) and other similar models. Therefore, from a practical perspective,

Theorem 3.1 implies that the asymptotically optimal portfolio P̄N,∗ is accurate for large N .

We first prove the convergence of the finite optimal portfolio to the limiting optimal portfolio for the

case without any constraints. Then, we extend the convergence result to the case with constraints. In this

section, we will use the notation “⇒” to denote weak convergence.7

A.1 Convergence of Finite Optimal Portfolio to Limiting Optimal Portfolio without Con-
straints

Let (E, d) be a compact metric space. We will prove convergence of the finite optimal portfolios PN,∗ in

the metric space (M(E), ρ) where ρ is the Prokhorov metric. This is the space of probability measures

endowed with the topology of weak convergence. Let Ed ⊆ E be a dense set in E (recall that a compact
7A probability measure νN ∈ M(E) weakly converges to a probability measure ν ∈ M(E) if and only if

〈
φ, νN

〉
E
→

〈φ, ν〉E for every continuous bounded function φ : E → R.
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metric space is separable). Define the spacesMN (Ed) = { 1
N δa1 + · · · + 1

N δaN : a1, . . . , aN ∈ Ed} and

MN (E) = { 1
N δa1 + · · · + 1

N δaN : a1, . . . , aN ∈ E}. Recall that the return of a portfolio PN of size N

is RN
PN

for PN ∈ MN (Y) and that if PN ⇒ P ∈ M(Y), RN
PN

d→ R̄∞P due to µN d→ µ̄P ∈ BT+1 where

B =M(U × Y). Define the objective functions:

V N (PN ) = v2

(
E[v1(RNPN )]

)
,

V∞(P ) = v2

(
E[v1(R̄∞P )]

)
. (14)

We consider the optimization problems:

PN,∗ = arg min
P∈MN (Y)

V N (P ). (15)

We wish to show that it converges to:

P∞,∗ = arg min
P∈M(Y)

V∞(P ). (16)

The optimization equation (15) is the true optimization problem where one can only hold loans in a portfolio

in unit amounts, and there can only be N total number of loans held in the portfolio.

Assumption A.1. Suppose that Y is compact, the functions hθ, g, v1, v2, and q are continuous, and there

exists a unique minimizer P∞,∗ of (4) for N = ∞. Furthermore, suppose f : BT+1 × RdX → RdR

is of the form f(µ, x) = F (µ,D(x)) where D : RdR → RdD is a continuous bounded function and

F : BT+1 × RdD → RdR is continuous on BT+1 × RdD .8

RNP is bounded since f is continuous, D is bounded, and M(U × Y) is compact. Since v1 and v2

are continuous and RNP is bounded, we also have that V N (PN ) = v2

(
E[v1(RN

PN
)]
)
→ V∞(P∞) =

v2

(
E[v1(R̄∞P∞)]

)
if PN ⇒ P∞. Similarly, JN (PN )→ J∞(P∞) if PN ⇒ P∞.

Note that we do not make any restriction that PN,∗ must be unique. Also, from Lemmas B.5 and B.4,

V N (P ) and V∞(P ) are continuous onMN (Y) andM(Y), respectively.

Lemma A.2. The spaceMN (Y) is compact.

Proof. Since M(Y) is compact, MN (Y) ⊂ M(Y) is also compact if MN (Y) is closed. It is easy to

see that MN (Y) is closed for each N . Let ZNm = { 1
N δa1m + · · · + 1

N δaNm} ∈ M
N (Y). Since Y is

compact, Am = (a1
m, . . . a

N
m) has a convergent subsequence Amk → A = (a1, . . . , aN ) ∈ Y . If ZNm

has a limit ZN∞, then 1
N

N∑
n=1

φ(anm) →
〈
φ,ZN∞

〉
as m → ∞ for every continuous, bounded φ. Then,

〈
φ,ZN∞

〉
= 1

N

N∑
n=1

φ(an), which implies that ZN∞ = 1
N δa1 + · · ·+ 1

N δaN ∈M
N (Y).

Lemma A.3. For any P ∈M(Y), there exists a sequence PN ∈MN (Y) such that PN ⇒ P .
8For the function f(µ, x) : BT+1 × RdX → RdR , µ ∈ BT+1 and x ∈ RdX .
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Proof. Let Y 1, . . . , Y N ∈ Y be i.i.d. random variables with measure P . Define their empirical measure

to be P̂N =
1

N

N∑
n=1

δY n ∈ MN (Y). By Theorem 11.4.1 in Dudley (2002), P̂N ⇒ P almost surely, i.e.,

P[P̂N ⇒ P ] = 1 where “⇒” denotes weak convergence. By contradiction, this implies that there exists a

sequence PN ∈ MN (Y) such that PN ⇒ P . Suppose no deterministic sequence PN ∈ MN (Y) existed

such that PN ⇒ P . Then, P[P̂N ⇒ P ] = 1 could not hold. Finally, since the measure P was arbitrary, we

have the desired result.

Theorem A.4. The sequence of optimal portfolios PN,∗ weakly converges to the limiting optimal portfolio

P∞,∗ as N →∞.

Proof. SinceM(Y) is compact and V∞ is continuous onM(Y), a minimizer exists for the limiting prob-

lem. Furthermore, since we assumed in Assumption A.1 such a minimizer is unique, there exists a relatively

open set Oν ⊂ M(Y) containing the unique minimizer such that all values of V∞ outside of Oν are uni-

formly separated from the value at the minimizer. To be precise, let ν > 0 and Oν = {P ∈ M(Y) :

ρ(P, P∞,∗) < ν}. Note that Ocν is compact (since a relatively closed subset of a closed set is also closed,

and a closed subset of a compact set is compact) and V∞(P∞,∗) − V∞(P ) < −ε for P ∈ Ocν and some

ε > 0. By Lemma A.3, there exists a sequence of measures PN which weakly converge to P∞,∗. Moreover,

by weak convergence, continuity of v, and boundedness of RNP , V N (PN )→ V∞(P∞,∗) as N →∞.

The minimizers PN,∗ = arg min
P∈MN (Y)

V N (P ) exist since MN (Y) is compact and V N is continuous

onMN (Y). SinceM(Y) is compact, for every subsequence PNk,∗, there exists at least one further subse-

quence PNkm ,∗ which weakly converges to some limit P2 ∈M(Y) as m→∞.9 By weak convergence, we

again have that V N (PNkm ,∗)→ V∞(P2) as m→∞. Suppose that P2 6= P∞,∗; this implies that P2 /∈ Oν
for some ν > 0. Then, for some m0, we have that for m ≥ m0:

V Nkm (PNkm )− V Nkm (PNkm ,∗) = [V Nkm (V Nkm )− V∞(V∞,∗)] + [V∞(P∞,∗)− V∞(P2)]

+ [V∞(P2)− V Nkm (PNkm ,∗)] <
ε

2
− ε+

ε

2
< 0. (17)

However, this is a contradiction since PNkm ,∗ is the minimizer of V Nkm (P ) for P ∈ MNkm (Y), implying

that it must be true that V Nkm (PNkm ) − V Nkm (PNkm ,∗) ≥ 0. Therefore, P2 ∈ Oν . Sending ν → 0, we

have that, for every subsequence PNk,∗ of PN,∗, there exists a further subsubsequence PNkm ,∗ ⇒ P∞,∗.

Therefore, PN,∗ ⇒ P∞,∗.
9The sequence Nk is a subsequence of N. The sequence Nkm is a subsequence of Nk. The elements of the sequence Nk and

Nkm are respectively denoted as N1, N2, . . . and Nk1 , Nk2 , . . ..
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A.2 Proof for General Case with Constraints

Now, we extend the proof from the previous section to the case where there are constraints. The true

optimization problem now becomes:

PN,∗ = arg min
P∈MN (Y)

V N (P ),

s.t. JN (P ) ≤ c,

q(P ) ≤ d, (18)

We wish to show that it converges to:

P∞,∗ = arg min
P∈MN (Y)

V∞(P ),

s.t. J∞(P ) ≤ c,

q(P ) ≤ d, (19)

Assumption A.5. In addition to the previous assumptions stated in Assumption A.1, assume that the opti-

mization problems (18) and (19) are feasible.

Let FN = {P ∈ MN (Y) : JN (P ) ≤ c, q(P ) ≤ d} and F∞ = {P ∈ M(Y) : J∞(P ) ≤ c, q(P ) ≤
d}.

Lemma A.6. The sets FN and F∞ are compact.

Proof. The preimage of a continuous function on a closed set is also closed. In addition, the intersection of

a compact set with a closed set is compact. Therefore, FN =MN (Y) ∩ {JN (P ) ≤ c} ∩ {q(P ) ≤ d}} is

compact. By the same reasoning, the F∞ is also compact.

Lemma A.7. If P is in the interior of the feasible region F∞, there exists a sequence PN such that PN ⇒ P

and PN is feasible for the optimization problem (18) for every N .

Proof. By Lemma A.3, there exists a sequence PN0 ∈ M(Y) where PN0 ⇒ P . As N → ∞, JN (PN0 ) →
J∞(P ) < c and q(PN0 ) → q(P ) < d. Then, there exists an N0 such that JN (PN0 ) < c and q(PN0 ) < d

for N ≥ N0. Finally, let PN be any sequence of feasible points for N < N0 and set PN = PN0 for

N ≥ N0.

Lemma A.8. Any limit point P of a sequence of feasible portfolios PN must be in the limiting feasible

region F∞.

Proof. By compactness, we trivially have that P ∈ M(Y). Suppose that P /∈ F∞. Then, one of the

constraints will be violated. For instance, suppose the first constraint is violated, implying that J∞(P ) ≥
c + ε for some ε > 0. However, since JN (PN ) → J∞(P ), this is a contradiction because it would imply

that JN (PN ) > c for some N . The same reasoning can be applied to show the other constraints must be

satisfied by P .
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Lemma A.9. If P∞,∗ is in the interior of the feasible region, PN,∗ ⇒ P∞,∗ as N →∞.

Proof. The proof is exactly the same as in Theorem A.4.

Theorem A.10. The optimal portfolios PN,∗ weakly converge to the limiting portfolio P∞,∗ as N →∞.

Proof. Due to Lemma A.9, all that remains is to prove the result when P∞,∗ lies on the boundary of the

feasible region. Construct the relatively open set Oν ⊂ M(Y) containing the unique minimizer such that

all values of V∞ outside of Oν are uniformly separated from the value at the maximizer. To be precise, let

ν > 0 and Oν = {P ∈ F∞ : ρ(P, P∞,∗) < ν}. Note that Ocν is compact (since a relatively closed subset of

a closed set is also closed, and a closed subset of a compact set is compact) and V∞(P )− V∞(P∞,∗) > ε

for P ∈ Ocν and some ε > 0. By continuity, one can choose a δ < ν such that V∞(P )− V∞(P∞,∗∗) > ε
2

for any P ∈ Ocν and P∞,∗∗ ∈ O2,ν ⊂ Oν , where O2,ν = {P ∈ F∞ : ρ(P, P∞,∗) ≤ δ}. For the purposes

of this proof, we will choose a point P∞,∗∗ ∈ O2,ν which is in the interior of F∞.

By Lemma A.7, there exists a sequence of measures PN ∈ FN which weakly converge to P∞,∗∗.

Moreover, V N (PN )→ V∞(P∞,∗∗) as N →∞.

SinceM(Y) is compact and by Lemma A.8, for every subsequence PNk,∗, there is at least one further

subsubsequence PNkm ,∗ which weakly converges to some limit P2 ∈ F∞ as m → ∞. By weak conver-

gence, we again have that V N (PNkm ,∗) → V∞(P2) as m → ∞. Suppose that P2 6= P∞,∗; this implies

that P2 /∈ Oν for some ν > 0. Then, for some m0, we have that for m ≥ m0:

V Nkm (PNkm )− V Nkm (PNkm ,∗) = [V Nkm (PNkm )− V∞(P∞,∗∗)] + [V∞(P∞,∗∗)− V∞(P2)]

+ [V∞(P2)− V Nkm (PNkm ,∗)] <
ε

4
− ε

2
+
ε

4
< 0. (20)

However, this is a contradiction since PNkm ,∗ is the minimizer of V Nkm (P ) for P ∈ FN and therefore

V Nkm (PNkm )− V Nk(PNkm ,∗) ≥ 0. Therefore, P2 ∈ Oν . The result follows due to the same reasoning as

in Theorem A.4.

B Limiting Laws

Assumption B.1. Suppose that µN0 converges in distribution to µ̄0, where µ̄0 is deterministic, h is continu-

ous, and Y is compact. Finally, also assume that
√
N(µN0 − µ̄0) converges in distribution to Ξ̄0.

Let B = M(U × Y). Provided Assumption B.1 holds, we have the following limiting laws for the

system (1).

Theorem B.2. The empirical measure µN converges in distribution to µ̄ in BT+1 as N −→ ∞, where µ̄

satisfies the equation:

µ̄t(u, dy) =
∑
u′∈U

hθ(u, u
′, y,Xt−1)µ̄t−1(u′, dy). (21)
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It is important to note that the law of large numbers is dynamic and is also a random equation; random-

ness enters through the factor X . The law of large numbers has a natural link with the original model (1).

The function hθ from (1) appears in the law of large numbers.

The law of large numbers can also be supplemented with a central limit theorem. Define the empirical

fluctuation process ΞNt =
√
N(µNt − µ̄t) ∈ W =

∏|U|
u=1 S

′(RdY ).10 Like the law of large numbers, the

central limit theorem is also dynamic. Randomness for the limiting process Ξ̄ enters both through X and a

martingale term M .

Theorem B.3. ΞN converges in distribution to Ξ̄ in W T+1 as N −→∞, where Ξ̄ satisfies the equation:

Ξ̄t(u, dy) =
∑
u′∈U

hθ(u, u
′, y,Xt−1)Ξ̄t−1(u′, dy) + M̄t(u, dy). (22)

Given X , M̄(u, dy) is a conditionally Gaussian process with zero mean and covariance:

Cov
[
Mt(u1, dy),Mt(u2, dy)|X0:t−1

]
= −

∑
u′∈U

hθ(u1, u
′, y,Xt−1)hθ(u2, u

′, y,Xt−1)µ̄t−1(u′, dy),

Var
[
Mt(u, dy)|X0:t−1

]
=
∑
u′∈U

hθ(u, u
′, y,Xt−1)(1− hθ(u, u′, y,Xt−1)µ̄t−1(u′, dy),

where u1 6= u2.

Proofs for Theorems B.2 and B.3 can be found in Sirignano & Giesecke (2014).

Lemma B.4. Suppose Assumption A.1 holds. Then, V∞(P ) = E[v(R̄∞P )] is continuous onM(Y).

Proof. It suffices to show that if Pk ⇒ P , V∞(Pk) → V∞(P ). As earlier, let µ̄ν be the law of large

numbers with initial condition µ̄t=0(o, dy) = ν. Using the linearity of the law of large numbers (21),

continuity of h, compactness of Y , and induction, we have that for each X , µ̄Pk ⇒ µ̄P as Pk ⇒ P .

Then, for each X , v(R̄∞Pk) ⇒ v(R̄∞P ) as Pk ⇒ P . Note that v(R̄∞P ) is bounded since f, v are continuous,

M(U × Y) is compact, and d is bounded. Using iterated expectations and the dominated convergence

theorem, the result follows.

Lemma B.5. Suppose Assumption A.1 holds. Then, V N (P ) = E[v(R̄∞P )] is continuous onMN (Y).

Proof. It suffices to show that if Pk ⇒ P ∈ MN (Y), V N (Pk) → V∞(P ). To show this, it is enough to

prove that for each X , µNk
d→ µN as Pk ⇒ P where µNt=0(o, dy) = P . A convergence determining class of

functions forBT+1 whereB =M(U×Y) is ζ(〈φ1, ν〉 , . . . , 〈φM , ν〉), where ζ, φ1, . . . , φM are continuous

and ν ∈ BT+1. (We have suppressed the notation 〈·, ·〉M(U×Y) for convenience.)

10S′ is the space of tempered distributions.
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E[ζ(
〈
φ1, µ

N
k

〉
, . . . ,

〈
φM , µ

N
k

〉
)|X] = E[ζ(

1

N

N∑
n=1

T∑
t=1

φ1(t, Y n
k , U

n
t ), . . . ,

1

N

N∑
n=1

T∑
t=1

φM (t, Y n
k , U

n
t )|X]

=
∑

u∈UT×N

∏
n=1,...,N,t∈I

P[Unt = unt |Y n
k , X]ζ(

1

N

N∑
n=1

T∑
t=1

φ1(t, Y n
k , u

n
t ), . . . ,

1

N

N∑
n=1

T∑
t=1

φM (t, Y n
k , u

n
t )).(23)

Note that P[Unt = unt |Y n
k , X] is a continuous function of hθ, which is itself a continuous function of Y n

k .

From Lemma A.2, P is of the form 1
N δa1 + · · · + 1

N δaN . Fix any ε > 0. Due to Pk ⇒ P , there exists a

K such that for every k ≥ K, |{y ∈ Y 1
k , . . . , Y

N
k : δ(y, an

′
) ≤ ε}| = |{a ∈ a1, . . . , aN : a = an

′}| for

n′ = 1, . . . , N .11 Equation (23) is invariant under permutations of (Y 1
k , . . . , Y

N
k ), and consequently has the

limit:

limk→∞
∑

u∈UT×N

∏
n=1,...,N,t∈I

P[Unt = unt |Y n
k , X]ζ(

1

N

N∑
n=1

T∑
t=1

φ1(t, Y n
k , u

n
t ), . . . ,

1

N

N∑
n=1

T∑
t=1

φM (t, Y n
k , u

n
t ))

=
∑

u∈UT×N

∏
n=1,...,N,t∈I

P[Unt = unt |an, X]ζ(
1

N

N∑
n=1

T∑
t=1

φ1(t, an, unt ), . . . ,
1

N

N∑
n=1

T∑
t=1

φM (t, an, unt ))

= E[ζ(
〈
φ1, µ

N
〉
, . . . ,

〈
φM , µ

N
〉
)|X].

This proves that for each X , µNk
d→ µN as Pk ⇒ P . Since f is continuous, f(µNk , X)

d→ f(µN , X). Since

f is bounded, by dominated convergence theorem, it follows that V N (Pk)→ V∞(P ) as Pk ⇒ P .

C Repeated Clustering

After the low-dimensional transformation (described in Section 4), the available loans have characteristics

w ∈ RdW . The available loans for selection for the portfolio (which has size N ) are W = {w1, . . . , wNp}.

• Normalize the points W = w1, . . . , wNp , initialize i = 0, and set the stopping threshold τ . Initialize

R as an empty list.

• For i = 0, . . . ,M :

(i) Find K clusters with centroids ĉ1, . . . , ĉK from the points Ŵ = {ŵ1, . . . , ŵNp} using k-means

clustering. (Initialize the first centroid in the k-means clustering algorithm by randomly drawing

a point from ŵ1, . . . , ŵNp .) A loan wn belongs to the cluster k∗ if:

k∗ = arg min
k=1,...,K

||ĉk − ŵn||

(ii) Let C = (c1, . . . , cK), where ck is the unnormalized value for ĉk (i.e., the reverse of the trans-

formation used to normalize the data w1, . . . , wNp).

11This can be easily proven from the fact Pk ⇒ P and using bump functions centered at each point an
′
.
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(iii) Solve the AOP using the grid R_C. (“a_b” is the concatenation of the lists a and b.) Round

the solution at each grid point such that the solution is in increments of 1
N and sums to 1 across

all grid points. Let the solution be pi.

(iv) If i ≥ 1, let Z be the subset of the loans ŵ1, . . . , ŵNp on which pi and pi−1 disagree. Find Ki

clusters from Z using k-means clustering and add the unnormalized centroids to the listR.

(v) If ||pi − pi−1|| < τ , stop.

• Let the sparse grid beR_C.

The repeated clustering algorithm described above, although ad-hoc, is quite successful in practice. The

k-means clustering finds grid points that minimize the within-cluster sum of squares and is a natural ap-

proach for finding a sparse grid that accurately captures the distribution of the available loans w1, . . . , wNp .

However, in many cases, k-means clustering by itself is not enough since the optimization will place more

importance on particular portions of the distribution. These portions of the space require a finer grid. Since

a naive grid is not sufficient, two different k-means clusters fromW will produce very different solutions for

loans in these portions of the space. (Recall that k-means clustering is initialized randomly and only guaran-

tees a local minimum; typically, two k-means clustering runs will produce different centroids.) Therefore,

we place additional grid points (again using k-means clustering, but only on the loans that differ between

the two consecutive solutions) in these portions of the space. This procedure is repeated until the solution is

stable. The repeated clustering algorithm is therefore a nonuniform sparse grid which attempts to describe

the distribution of W in a sparse manner and has a finer mesh where required by the optimization.
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