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Abstract

We undertake an empirical study of the impact of delay announcements on callers’ abandon-

ment behavior and the performance of a call center with two priority classes. A Cox regression

analysis reveals that in this call center, callers’ abandonment behavior is affected by the an-

nouncement messages heard. To account for this, we formulate a structural estimation model of

callers’ (endogenous) abandonment decisions. In this model, callers are forward-looking utility

maximizers and make their abandonment decisions by solving an optimal stopping problem.

Each caller receives a reward from service and incurs a linear cost of waiting. The reward and

per-period waiting cost constitute the structural parameters that we estimate from the data of

callers’ abandonment decisions as well as the announcement messages heard. The call center

performance is modeled by a Markovian approximation. The main methodological contribution

is the definition of an equilibrium in steady state as one where callers’ expectation of their

waiting time, which affects their (rational) abandonment behavior, matches their actual waiting

time in the call center, and its characterization as the solution of a set of non-linear equations.

A counterfactual analysis shows that callers react to longer delay announcements by abandoning

earlier, that less patient callers as characterized by their reward and cost parameters react more

to delay announcements, and that congestion in the call center at the time of the call affects

caller reactions to delay announcements.

Keywords: Delay announcement, Abandonment, Structural estimation, Equilibrium

1 Introduction

Delay announcements provide estimates of the waiting time to prospective customers in invisible

queues, inform callers about their chances of receiving service and influence their decision to keep

waiting or to abandon. In turn, callers’ abandonment behavior affects system performance. Thus,

1Che-Lin Su passed away in July 2015. We lost a wonderful friend and the field lost one of its pioneers.
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understanding the impact of delay announcements on the system performance is an integral part

of designing modern call centers. In this context, we study the following questions: What is the

impact of delay announcements on callers’ behavior in terms of waiting and abandoning decisions?

Do different caller types react differently to delay announcements? Does the same caller react to an-

nouncements differently when facing different levels of congestion? How does callers’ abandonment

behavior affect the system performance if the call center manager announces delays? We undertake

an empirical approach to investigate these questions and develop a methodological framework to

characterize the equilibrium in steady-state of the system that facilitates our analysis.

We first empirically explore the question of whether delay announcements affect callers’ aban-

donment behavior. A series of Cox regression analyses reveals that both the content and the

sequence of announcement messages have a statistically significant impact on callers’ abandonment

behavior. Furthermore, caller characteristics and congestion levels in the call center matter. This

analysis shows the impact of delay announcements observed in the data under the current policy of

the call center; however it cannot be used to investigate the impact on the system under different

announcement messages or under different operating conditions. The reason for this is that as

announcement messages, caller composition or operating characteristics change, the abandonment

behavior will change. Empirically demonstrating the role of announcements on caller abandonment

behavior in call centers constitutes the first important contribution of this paper.

To investigate the impact of delay announcements on the system (even for announcements dif-

ferent from what we observe in the data), we model callers’ abandonment decisions endogenously

as in the optimal stopping model introduced in Aksin et al. (2013). The main difference in the

estimation, for the current paper’s setting with delay announcements, is that callers’ hazard rates

of entering service, i.e. service probabilities, are a function of delay announcement histories. Since

callers’ choices when facing delay announcements are explicitly modeled, this allows the possibility

to explore abandonment behavior under different announcement schemes.

Much of the extant literature models callers’ patience as exogenous to the call center operations

and takes its parameters as given. In contrast, we model callers’ patience endogenously and estimate

its primitives (i.e. structural parameters) using data from a call center with two priority classes:

high and low. In our data set, callers receive delay announcements that contain information about

their positions in the queue and the waiting time of the longest waiting caller every 60 seconds.

Given the callers’ parameters, we then predict the abandonment behavior of the high and low

priority callers in settings where the pattern or the information content of the announcements differ

from those in the data. We first use the optimal stopping model of callers’ abandonment behavior

to derive callers’ abandonment time distributions from their anticipated waiting time distributions.

We develop the optimal stopping model (Section 4) for a case that callers receive a delay announce-

ment message every one minute. For simplicity, in the subsequent analyses (Sections 5 and 6)

we assume that callers receive only one announcement message upfront upon arrival. Building

on Whitt (2005), we then approximate the system by a Markovian model with state dependent

abandonment rates. Using this Markovian approximation, we represent the callers’ waiting time
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distributions as functions of their abandonment time distributions.

We combine these components to define the equilibrium in steady-state of the system as one

in which callers’ waiting time distributions used in the derivation of the abandonment time distri-

butions (based on the optimal stopping model) match the waiting time distributions derived from

the Markovian approximation. This definition corresponds to the rational expectation equilibrium

in the system, where callers’ expectation about their waiting time, which affects their (rational)

abandonment behavior, matches their actual waiting time in the call center. This is where the main

methodological contribution of our paper lies: the definition, characterization and computation of

the complex equilibrium in steady-state.

To highlight the contributions of this paper further, it is helpful to compare it with its antecedent

Aksin et al. (2013) that introduced the optimal stopping model for studying callers’ abandonment

behavior under no delay announcements. From an application perspective, the main difference

of this paper from Aksin et al. (2013) is the presence of delay announcements and corresponding

generalizations of the model and the estimation framework. More importantly, from a methodolog-

ical perspective, this paper makes a novel contribution by characterizing the system equilibrium

in steady-state analytically. This characterization is enabled by the proposed Markovian approx-

imation of the underlying queueing system, and allows us to circumvent the iterative simulation

approach taken in Aksin et al. (2013) to find the new equilibrium in steady-state of the system

subsequent to a change in the system policy. In the proposed framework, the equilibrium is ob-

tained by solving a set of non-linear equations. An iterative simulation based approach may not be

appropriate in a setting with delay announcements due to the additional layer of complexity the

announcement messages bring: callers’ abandonment behavior will depend on both the announce-

ment message and the system operational state (as shown by the Cox regression results), making

the resulting search a multi-dimensional one where the approach of Aksin et al. (2013) may not

converge. In what follows, we use “equilibrium” and “equilibrium in steady-state” interchangeably.

Finally, the practical contribution of our paper comes from a series of counterfactual analyses,

where we explore the effect of different delay announcements on the system performance. In par-

ticular, we focus on the call center manager’s choice of the granularity of the information contained

in the announcements. For example, the manager can inform the callers about the exact number of

callers who are waiting to be served (full information on system occupancy case).2 Alternatively,

the manager may choose to announce a range for the number of callers in the queue (partial in-

formation on system occupancy case). In addition, we explore the impact of delay announcements

under different priority policies. In our counterfactual study, callers who hear that the queue is long

(short) abandon more (less) and leave the system sooner (later) compared to the case when no delay

information is provided. Moreover, increasing the granularity of the information contained in the

announcements leads to a smoother change in callers’ behavior across different system states. The

results also show that less patient callers are more sensitive to delay information, and as a result

their abandonment behavior changes more significantly. Thus the counterfactual results confirm

2Our full information on system occupancy is similar to the partial information case in Guo and Zipkin (2007).
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that abandonment behavior changes as a function of customer characteristics, the messages heard,

and the operating conditions in the call center, underlining the importance of an approach that

can take all of these factors into account when analyzing delay announcements.

The rest of the paper is organized as follows: We provide an overview of the related literature

in Section 2. Section 3 describes the data and a Cox regression analysis to illustrate the impact of

delay announcements on callers’ abandonment behavior, the details of which are given in Appendix

A. Section 4 presents a model for callers’ abandonment behavior, the estimation framework and

results. Section 5 lays out a methodological framework to study the impact of delay announcement

in call centers. In Section 6, we discuss the counterfactual analysis. Section 7 concludes the pa-

per. Proofs are provided in Appendix B. A simulation study to illustrate the identification of our

model is described in Appendix C. Appendix D demonstrates a method to improve the state space

collapse approximation. A comparison of the optimal stopping model for callers’ abandonment

behavior and a simpler model is given in Appendix E, and finally, Appendix F shows a validation

of the equilibrium computation via simulation.

2 Literature Review

A natural consequence of customers’ dissatisfaction with waiting is that some customers may lose

patience and abandon the queue. The traditional approach to model customers’ abandonments con-

siders an exogenous distribution for customers’ abandonment time (patience time). If customers’

actual waiting time exceeds their abandonment time, they abandon the system; see Gans et al.

(2003) and references therein, and also Ward (2012) for an overview of the literature on asymptotic

analysis of queueing systems with abandonments.

An alternative approach is to model callers as forward looking decision makers who make wait

or quit decisions to maximize their utility (see Hassin and Haviv (2003) and references therein).

In Hassin and Haviv (1995), such callers abandon the system if their reward from receiving service

drops to zero. Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum (2004) assume that

upon arrival callers choose an optimal abandonment time to maximize their utility. Callers aban-

don the system if their actual waiting time exceeds their optimal abandonment time. Aksin et al.

(2013) and this paper are outgrowths of the Ph.D. dissertation Emadi (2013). Emadi (2013) first

formulates the endogenous abandonment model in Aksin et al. (2013) and uses it to study delay

announcements, as presented in the current paper. Aksin et al. (2013) model callers’ endogenous

abandonment behavior as an optimal stopping problem, in which callers make the decision between

waiting and abandoning not only upon arrival but also during the waiting encounter. This feature

resembles the optimal stopping model for callers’ decisions studied herein. However, unlike Aksin

et al. (2013), we incorporate the impact of delay announcements on callers’ decision. Under a ratio-

nal expectations framework, we derive a set of nonlinear equations to characterize the equilibrium

system performance in the presence of delay announcements. Afèche and Sarhangian (2015) pro-

vide an analytical characterization of equilibrium abandonment behavior in an M/M/1 observable
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queue with two customer classes, in which no delay announcement is needed as customers observe

the state of the system.

The current paper is among the first in operations management combining the empirical esti-

mation of choice related parameters of forward looking customers, and the subsequent analysis of

an operational problem in the presence of these customers. In our setting the estimation involves

estimating the parameters of a caller’s utility function, while the operational problem studied is

that of predicting the effect of delay announcements in a queue. Yu et al. (2015) also study de-

lay announcements empirically, subsequent to an estimation of caller characteristics. In order to

show the effect of announcements on abandonment behavior in the data, Yu et al. (2015) first

perform pairwise comparisons of survival curves under different announcement messages. These

comparisons do not lead to definitive results regarding the impact of announcements. Our analysis,

which makes use of a Cox regression, shows that one cannot look at the effect of an announce-

ment message on abandonment behavior in isolation, since this effect is shown to depend on the

content and sequence of messages heard as well as the operating environment at the time of the

call. Their subsequent analysis parallels Aksin et al. (2013), making use of an iterative simula-

tion based computational approach. The main difference of their structural estimation analysis is

that they consider models that allow for changes in waiting cost parameters as a function of delay

announcement. In our approach, the reward from service and the waiting cost are customer primi-

tives, which are not affected by the environment. Lu et al. (2013) analyze how waiting in queue in

the context of a retail store affects customers’ purchasing behavior. They estimate the impact of

customer service levels on purchase incidence and choice decisions from a data set. Vulcano et al.

(2010) estimate customers’ choice related parameters empirically and then study the subsequent

revenue management problem under choice based models. In pricing problems, such an approach

of empirical estimation of consumer parameters to predict profit and welfare performance is more

common. For some recent examples, see Nair (2007), Hendel and Nevo (2013) and Li et al. (2014).

The study of delay information and its effect in queues has been ongoing for some time. Feigin

(2006) provides a descriptive analysis of data from a bank call center, illustrating that aggregate

hazard rates change at announcement points. Such changes in behavior affect the system perfor-

mance, which can be studied through queueing analysis. The role of revealing or suppressing queue

length information on customer choices in joining queues is first analyzed by Hassin (1986). One of

the earlier models to study the impact of waiting time information or delay announcement in queues

is by Whitt (1999a). Whitt analyzes the effect of providing state information on the performance

of a single class Markovian model, assuming callers’ patience threshold has an exogenously given

exponential distribution. The parameter of this distribution is not affected by the announcements.

Jouini et al. (2009) provide a multi-class extension of Whitt’s model. Guo and Zipkin (2007) show

how different levels of delay information, e.g. providing system occupancy versus providing the

exact delay, affect the performance of an M/M/1 system. Both Whitt (1999a) and Guo and Zipkin

(2007) assume that customers either abandon immediately after hearing the delay announcements,

or remain in the queue until they enter service. In other words, abandonments while waiting do not
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arise in their models. This assumption is relaxed in Armony et al. (2009) and Jouini et al. (2011).

In Armony et al. (2009), callers may abandon after hearing the delay announcements. The

authors assume that the probability of balking and the distribution of callers’ patience thresholds

are exogenously specified and depend on the delay estimates given to the callers. Jouini et al.

(2011) also allow abandonments. Instead of specifying exogenous patience thresholds, the authors

explicitly model callers’ behavior changes after hearing the delay announcements. They also as-

sume an exponential distribution for callers’ initial patience thresholds. This distribution remains

exponential after callers hear the announcements, but its parameter changes based on an under-

lying behavioral patience update model. They suggest an iterative fixed point algorithm to find

the parameter of the patience threshold distribution in the equilibrium state. Similar to this latter

paper, we endogenize callers’ reactions to delay announcements; however, we place no restrictions

on their form, and derive them from callers’ estimated patience primitives within a structural esti-

mation framework.

Since providing delay information affects callers’ abandonments which in turn affects system

performance, a natural question to investigate is what information to provide in the delay announce-

ments. Whitt (1999a) considers announcing the state of the system and the remaining service time

of each customer in the system. Consequently, the callers learn the distribution of their delay time

upon arrival. In Jouini et al. (2011), the authors assume that the announcements are made as a

chosen percentile of the delay distribution. In Armony et al. (2009), the authors study the effect of

announcing one particular real time delay estimate (announcing the last customer’s realized delay)

on system performance. The performance of real time delay estimators in different settings are

analyzed in Ibrahim and Whitt (2009). State dependent delay estimators are discussed in Whitt

(1999b). Xu et al. (2007) study ticket queue systems, where each customer is issued a numbered

ticket upon arrival, and the number currently being served is displayed. The information provided

in ticket queue systems differs from the actual queue length due to customers’ abandonments. Guo

and Zipkin (2007) consider two types of announcements: partial information (announcing system

occupancy) and full information (announcing the exact waiting time).

3 Data

In this section, we first describe the data set. Next, we present a Cox regression analysis to illustrate

the impact of delay announcements on callers’ abandonment behavior.

3.1 Data Description

Our data set is the operational data of a bank call center spanning all twelve months of 1999.3 The

call center processes up to 100,000-120,000 calls per month. We only focus on callers who seek to

talk to an agent (35 percent of all callers) and who contacted the call center on weekdays. Around

70 percent of callers who talked to an agent asked for the retail banking service. We only consider

these callers in our analysis. In order to focus on relatively busy hours of the day when the call

3The data set was made available to us by the Service Enterprise Engineering (SEE) lab at Technion-Israel Institute of
Technology (http://ie.technion.ac.il/Labs/Serveng/).
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volume is relatively stable, we focus on calls between 9 a.m. and 4 p.m. Before August, there

was only one pool of agents. Starting from August a new pool was added to the call center. We

consider observations before August in our analysis.

Customers in this call center have different priorities. There are two priority classes: high and

low. The low priority callers join the end of the queue, while the high priority callers are advanced

in the queue by 90 seconds. Service is then delivered on a first-come-first-served (FCFS) basis.

Consequently, a newly arriving high priority caller will enter service sooner than all the low priority

callers who have arrived in the last 90 seconds.

The data traces each call from initiation to termination. The calls can be broken down to

three stages: VRU (Voice Response Unit) interaction, waiting in the queue and talking to an agent

(service stage). The entry and exit times for each stage is recorded in the data. In addition, the

identification number of the callers and the name of the agent who served the caller are observed

in the data. The observable entries for each call are listed in Table 1.

Customer ID and ID of the agent who served the call

Priority class and type of service requested

Date and time of entering and exiting the VRU, queue and the service stage

Outcome of the call (entered service or abandoned?)

Table 1: The observable entries in the data.

The callers receive a delay announcement upon arrival and every 60 seconds after arrival. The

announcements inform callers about their relative positions in the queue, accompanied by the

waiting time of the longest waiting caller. The relative position of the callers is calculated based on

the number of available agents. For example, if there are s agents available, the callers in positions

1 to s from the head of the queue are told they are “First” in the queue; callers in positions s+ 1

to 2s are told they are “Second” in the queue, etc.

We cannot observe the announcements given to the callers in the data; however, we recover

them using the observable entries in Table 1 and the rule for the announcements. In particular,

given callers’ priority classes and their arrival times to the queue, we find callers’ positions in the

queue and the amount of time they have been waiting. In addition, to find the number of available

agents, we divide the day into 15 minute intervals. An agent is considered available in an interval if

she serves at least one caller in that interval. Using the number of available agents, callers’ positions

and their waiting times at any particular time during the day, we derive the type of announcements

that were given to the callers.

After deriving the announcements given to the callers, we observe that the first part of the

announcement (the relative position in the queue) is between 1 and 5. We consider callers whose

relative position in the queue does not exceed 3 for our analysis. This portion of the data constitutes

more than 99.7 percent of the total callers. For this portion of the data, the second part of the

announcement (the waiting time of the longest waiting caller) is between 0 and 2700 seconds. In

Section 4.2, we observe that the number of announcements contributes directly to the complexity

of the maximum likelihood estimation problem. Taking the complexity of the estimation problem

into account, we discretize the values for the second part of the announcement to the following six
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intervals (in seconds): [0,10], [11,30], [31,90], [91,210], [211,480] and [481,2700]. These intervals are

chosen so as to ensure that callers corresponding to each interval have similar waiting times and

abandonment patterns.4 Given these simplifications, callers may hear three different messages in

the first part of the announcement (the relative position in the queue) and six different messages

in the second part of the announcement (the waiting time of the longest waiting caller). Therefore,

the total number of announcement messages J is 18.

Callers who enter service immediately after arrival do not make any abandonment decisions

and, consequently, are not considered in our analysis. Moreover, we focus on callers with a wait

duration less than 600 seconds, who constitute more than 99.5 percent of callers who had to wait.

In summary, our analysis focuses on 62,718 calls with the following characteristics: the caller

asked for the retail banking service, the caller did not enter service immediately after arrival, the

call was received on weekdays before August between 9 a.m. and 4 p.m., the caller waited less than

600 seconds and the caller’s relative position did not exceed 3. The summary statistics for this

portion of the data are given in Table 2. The abandonment rates in this call center are unusually

high. This can be attributed to the very small size of this center with around five agents, preventing

any statistical economies of scale from taking place.

Priority class Number of observa-
tions

Abandonment rate Average waiting
time (sec.)

Average waiting time of
abandoned calls (sec.)

High priority 41,401 17.86 % 92.36 62.07

Low priority 21,317 32.08 % 103.86 63.13

Table 2: Summary statistics for the portion of the data used in the analysis.

As shown in Table 2, the difference between the average waiting times of the high and low

priority callers is 11.5 seconds even though the high priority callers are advanced by 90 seconds. In

this call center 24% of customers enter service upon arrival, i.e. do not wait at all. Consequently,

the queue does not get long and the advancement of the high priority callers does not have a large

effect most of the time, which leads to a small difference between the average waiting times of the

high and low priority callers.

3.2 Illustrating the Impact of Delay Announcements in the Data

Before proceeding with any further analysis regarding the structural estimation of callers’ abandon-

ment behavior under delay announcements, we empirically explore whether delay announcements

have an impact on callers’ abandonment behavior. This is not straightforward and care needs to

be taken in the analysis. First of all, abandonment time data is right censored. The call center

being studied makes multiple delay announcements timed at every sixty seconds. Patience is not

only affected by the content of these multiple messages, but also by the sequence of messages be-

ing heard. In other words, the multiple delay announcements cannot be analyzed independently.

These features imply the need for a survival analysis with multiple ordered events, where survival

4We partition the values for the second part of the announcement to a fine grid of subintervals, and find the
abandonment rates and average waiting times of the callers corresponding to each subinterval. Then we merge the
adjacent subintervals for which callers abandonment rates and average waiting times are relatively close. This leads
to the six aforementioned intervals.
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time represents time to abandonment and the multiple ordered events are the delay announcements

being heard every sixty seconds as callers wait. Finally, as described earlier, the call center has two

types of priority for callers, and like any call center, will experience different congestion levels as a

function of call arrivals and staffing, as well as time of day effects. In order to clearly understand

the effect of announcements on patience of callers, one needs to control for other confounding ef-

fects such as type of caller or call center congestion. To perform this analysis we resort to a Cox

regression analysis where control variables for priority class, arrival rates, and time of day effects

are included.

We order the announcement messages lexicographically based on the first part (the relative

position in the queue) and the second part (the waiting time of the longest waiting caller) of the

message; and label them with indices from 1 to 18. We then define the main independent vari-

ables of the analysis as the announcement message heard upon arrival, followed by the incremental

value of the announcement message heard at each subsequent announcement event. To capture

the incremental effect, all announcement variables following the one upon arrival are defined as the

difference between two messages heard in subsequent announcements. Thus, if a caller hears an

improving message (progress), the variable will be negative; whereas if the caller is informed of a

deteriorating situation, this variable will be positive. The magnitude of the variable will represent

the extent of the progress or deterioration.

The results of the analysis show that callers who hear a message with a higher index (represent-

ing a worse combination of position in the queue and wait of the longest waiting caller) abandon

earlier. In addition, callers who hear announcement messages with increasing index values at mul-

tiples of 60 seconds (indicating a worsening condition) abandon earlier. To be more specific, callers

who hear an announcement indicating a longer delay upon arrival become less patient and abandon

earlier. In addition, callers who see a deteriorating delay condition abandon earlier. These results

show that both the content of the announcement messages and their sequence plays a role in shap-

ing callers’ abandonment decisions. Furthermore, the significance of the control variables for caller

priority and arrival rates (as a proxy for congestion) suggests that callers’ patience primitives and

the operations of the call center affect their abandonment decisions. The details of this analysis

are given in the online Appendix A.

The Cox regression analysis shows that the announcement messages currently implemented in

this call center (the independent variables in the regression) indeed impact callers’ abandonment

behavior (the dependent variable in the regression). However, we cannot use this analysis to find

the impact of a different set of independent variables on callers’ abandonment behavior. In other

words, if we change the content or type of the announcements in the data, we cannot use the results

of the Cox regression to find callers’ abandonment behavior in the new setting, and consequently,

cannot find the impact on call center performance measures. To overcome this issue, we proceed

with a structural estimation approach explained in the remainder of the paper.
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4 A Model for Callers’ Abandonment Behavior Under Delay An-

nouncements

In this section, we first present an optimal stopping model for callers’ abandonment behavior under

delay announcements. Next, we describe the estimation methodology and results. Our analysis in

this section allows each caller to hear multiple delay announcements during her wait, consistent

with our data. However, in Sections 5 and 6 we focus attention on the case with a single delay

announcement for simplicity, where each caller hears the delay announcement upon arrival.

4.1 A Model of Callers’ Abandonment Behavior

We model callers’ decision making process as an optimal stopping problem, where abandoning cor-

responds to “stopping.” Callers are forward looking. In each period, callers compare their expected

future utilities from waiting and abandoning, and choose the action that maximizes their utility.

If a caller decides to abandon, she leaves the system immediately. Otherwise, she remains in the

system and faces a similar decision between abandoning and waiting in the next period unless she

enters service.

To account for callers’ preferences, we assume that callers’ utilities depend on two parame-

ters: the reward from receiving service and the delay cost per unit of time, denoted by ri and

ci, respectively, for caller i. Callers may have different reward and cost parameters. To model

caller heterogeneity, we assume that the reward and cost parameters have the following log-normal

distributions:

ri = exp(mr + σry1i) and ci = exp(mc + σcy2i), (1)

where y1i and y2i are i.i.d. standard normal random variables. Given (1), the set of structural

parameters that characterize the distribution of callers’ preferences is Θ = (mr, σr,mc, σc).

We assume that callers receive a delay announcement from a set of J possible announcements

upon arrival and every L periods after that. In particular, if a caller has not entered service or

abandoned until period kL, she receives her (k + 1)th announcement at period kL. We denote the

(k + 1)th announcement, received in period kL, by jk ∈ {1, ..., J}. In the periods with no delay

announcement (t 6= kL, k = 0, 1, 2, ...) callers make their abandonment decision at the beginning of

the period. In the periods with a delay announcement (t = kL, k = 0, 1, 2, ...), callers first receive

the delay announcement and then make the abandonment decision. For simplicity, we assume that

every delay announcement is conveyed instantaneously. Figure 1 shows the order of events.
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announcement

(k+2)th

announcement

Figure 1: The order of events.

Let Hk = (j0, j1, ..., jk) denote the sequence of announcements received by a caller who has re-

ceived (k+1) announcements. Suppose that all callers enter service before time mL.5 Consequently,

the maximum number of announcements a caller may receive is m. Denote by aHk the ex-ante prob-

ability that a caller receives the announcement history Hk. Moreover, for t ∈ {kL, ..., (k+1)L−1},
let πHk(t) denote the service probability in period t, i.e. the probability of entering service

conditional on not having entered service before t, for callers with announcement history Hk.
We assume that the probabilities aHk and πHk(·) are common knowledge among callers for all

Hk ∈ {1, ..., J}k+1, 0 ≤ k < m. The announcement history Hk is terminal if no caller with

such a delay history hears a further delay announcement. Namely, all such callers either aban-

don or enter service before the next scheduled announcement. For each such terminal Hk, define

THk ∈ {kL, ..., (k+1)L−1} as the maximum waiting time of all callers with that announcement his-

tory. Then, THk will help us determine the last relevant period for those callers with announcement

history Hk, and facilitate a recursive definition of the callers’ valuations of their future decisions,

starting from period THk .

Next, we define the utility for caller i with announcement history Hk for t ∈ {kL, ..., (k+ 1)L−
1}, 0 ≤ k < m, denoted by uHk , as a function of the action d chosen by the caller. We let d = 1 if

the caller abandons and d = 0 if she decides to wait. The utility function is given by

uHk(t, ri, ci, εit(d), d) = vHk(t, ri, ci, d) + εit(d), (2)

where εit(d) denotes the random shock incurred by choosing action d. The random shocks can

be attributed to external events that may shift a caller’s utility and increase her willingness to

either abandon or wait. The term vHk(t, ri, ci, d) in (2) is the nominal utility. If a caller decides

to abandon, she will leave the system immediately. Since the waiting cost incurred in the past is

sunk, the nominal utility of abandoning is zero, i.e.

vHk(t, ri, ci, 1) = 0, (3)

whereas the nominal utility from waiting at t ∈ {kL, ..., (k + 1)L− 1} has the following form

vHk(t, ri, ci, 0) = −ci + πHk(t)ri + (1− πHk(t))E
[

max
d∈{0,1}

uHk(t+ 1, ri, ci, εi(t+1)(d), d)
]
. (4)

The first term on the right hand side of (4) is the waiting cost, and the second term is the expected

5This subsumes the special case of a single announcement when L is sufficiently large so that m = 1.
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utility of receiving service in the current period. The third term is the expected utility of not

receiving service in the current period and making the optimal decision in the next period.

We refer to the expectation in (4) as the integrated value function and denote it by VHk(t, ri, ci).

The expectation is calculated by integrating the maximum utility in the next period over the

distribution of the random shocks. We can rewrite (4) as follows

vHk(t, ri, ci, 0) = −ci + πHk(t)ri + (1− πHk(t))VHk(t, ri, ci). (5)

The optimal action of caller i at time t, denoted by dit, maximizes her utility. That is,

dit = arg max
d∈{0,1}

uHk(t, ri, ci, εit(d), d), t ∈ {kL, ..., (k + 1)L− 1}, k = 0, 1, ...,m− 1. (6)

Adopting the type-I extreme value assumption for the distribution of the random shocks, we

derive the closed form representations of the integrated value functions and choice probabilities in

Proposition 1; see the online Appendix B for its proof.

Proposition 1. Suppose that the idiosyncratic shocks εit(1) and εit(0) have iid type-I extreme

value distribution. Denoting by PHkit (dit; ri, ci) the probability that caller i with delay announcement

history Hk takes action dit ∈ {0, 1} in period t, for each k = 0, 1, ...,m− 1, we have

PHkit (dit; ri, ci) =
exp(vHk(t, ri, ci, dit))

1 + exp(vHk(t, ri, ci, 0))
, t ∈ {kL, ..., (k + 1)L− 1}, (7)

where vHk (t, ri, ci, 1) and vHk (t, ri, ci, 0) are given by (3) and (5), respectively. Moreover, the

integrated value function VHk(t, ri, ci) is given by

VHk (t, ri, ci)

=


log
(

1 + exp(vHk(t+ 1, ri, ci, 0))
)

if t 6= (k + 1)L− 1,∑
Hk+1=(Hk,j), j∈{1,...,J}

aHk+1

aHk
log
(

1 + exp(vHk+1
(t+ 1, ri, ci, 0))

)
if t = (k + 1)L− 1.

(8)

For every terminal announcement history Hk, we have VHk(THk , ri, ci) = 0 for all ri and ci.

4.2 Estimation methodology and results

The cost and reward parameters of each priority class are estimated separately using a two-stage

approach. First, we estimate service probabilities πHk(·) and the ex-ante probabilities of receiving

different announcement histories aHk for all announcement histories directly from the data. Then,

given the service probabilities and the probabilities of receiving announcements, we construct the

likelihood of observed callers’ actions in the data and maximize it to find the callers’ parameters.

To estimate the service probabilities, we first use the Kaplan-Meier estimator (Kaplan and Meier

(1958)) to estimate the waiting time distribution FHk(t), due to censoring because of abandonments.

We assume that the waiting time distribution in the data is the equilibrium outcome. Given the

waiting time distribution FHk(t) corresponding to delay announcement history Hk (obtained from

our data under the current call center operations), the service probability πHk(t) is calculated as

12



πHk(t) =
FHk(t+ 1)− FHk(t)

1− FHk(t)
, t ∈ {kL, ..., (k + 1)L− 1}, k = 0, 1, ...,m. (9)

To find ex-ante probabilities of receiving different announcement histories aHk , we count the num-

ber of callers that receive the announcement message sequence in Hk and divide it by the total

number of callers in the data. We next discuss the identification of our model.

Identification. Our data exhibits significant variation in the service probabilities across dif-

ferent periods and in waiting times across different callers. This variation is illustrated in Figure

2, which shows the waiting time histogram and service probabilities πHk(t) for callers who receive

type 1 announcement upon arrival, i.e. callers who hear that their relative position is one and the

waiting time of the longest waiting caller is in [0,10]. The variation in the service probabilities and

waiting times allows us to identify the reward and cost parameters separately.
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Figure 2: The waiting time histogram and service probabilities for callers who hear upon arrival that their relative
position is one and the waiting time of the longest waiting caller is in [0,10].

To be specific, as shown in Figure 2, callers’ waiting patterns exhibit significant variation which

enables us to identify the abandonment probabilities in different periods for different delay an-

nouncement histories. In addition, using equations (3)-(5) and (7)-(8), we can write the abandon-

ment probability of the callers with announcement history Hk as follows

PHkit (1; ri, ci) = ψHkit

({
πHq(t

′)ri − ci : k ≤ q ≤ m− 1, t′ ≥ t, t′ ∈ {qL, ..., (q + 1)L− 1}
})
, (10)

where ψHkit is a suitably defined function. Equation (10) shows that if there were no variation in the

service probabilities, i.e. πHq(t) = π for all t and Hq, then the abandonment probability is solely

a function of πri − ci. In this case, we cannot identify the reward and cost parameters separately,

i.e. only πri − ci is identified. However, the inter-temporal variation of the service probabilities in

the data allows us to identify the reward and cost parameters separately. Moreover, callers receive

different delay announcements in our data set. Consequently, callers who have the same belief

about the waiting time distribution ex-ante may receive different announcement messages at the

next announcement epoch, which according to our analysis in Section 3.2 would lead to different

beliefs about the waiting time distribution, and consequently, different service probabilities. As

a result, delay announcements further increase the variation in the service probabilities (beyond

what is shown in Figure 2). Thus, presence of delay announcements in our data set helps further

with the identification of the reward and cost parameters separately.
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Heterogeneity in callers’ reward and cost parameters (σr and σc) is identified by the variation

in callers’ abandonment behavior in a given period. To see the intuition behind this, suppose that

there are N callers who have waited for t periods. If there is no heterogeneity (σr = σc = 0), then all

callers have the same reward and cost parameters, and hence, the same abandonment probability.

Consequently, the total number of abandonments in period t is a Binomial random variable. On the

other hand, when callers are heterogeneous (σr 6= 0 or σc 6= 0) the total number of abandonments

in period t is the sum of N binary random variables with different success probabilities, which are

themselves random. Therefore, under heterogeneity, the total number of abandonments exhibits

more variation. Consequently, we can identify σr and σc from the variation in abandonment times

across different callers.

In addition, the abandonment probabilities are more sensitive to variation in the cost parameter

than variation in the reward parameter. To see this, note that by (10), increasing ri by ε will impact

the arguments of ψHkit (i.e. πHq(·)ri − ci) by πHqε. However, increasing ci by ε will impact the

arguments of ψHkit by −ε. Therefore, the variation in the number of callers’ abandonments and its

sensitivity to the reward and cost parameters across different periods helps us identify σr and σc

separately. Also, note that our model is flexible enough to allow for cases where the heterogeneity

across the callers is negligible; i.e. σr = σc = 0. In the estimation results (Table 3), we will see that

this is the case for the low priority callers and for the cost parameter of the high priority callers.

Maximum likelihood estimation problem. Suppose that callers are indexed by i = 1, ..., N ,

where N is the total number of callers in the data. Recall that the reward and cost parameters

of caller i are ri and ci, respectively, given by (1). Let Wi denote the last period in which caller i

decides between waiting and abandoning. Moreover, let {dit : t = 0, 1, ...,Wi} denote the sequence

of actions of callers i, where dit is the action chosen in period t.

Given that the announcements are made every L periods, the number of announcements heard

by caller i is bWi/Lc+ 1. Recall that Hk and PHkit (dit; ri, ci) denote the announcement history and

the choice probability for t ∈ {kL, ..., (k+1)L−1} and k = 0, ...,m−1. The likelihood of observing

the sequence of actions {dit : t = 0, 1, ...,Wi} by caller i is given by

`i(Θ) =

∫ ∫ bWiL c∏
k=0

min(Wi,(k+1)L−1)∏
t=kL

PHkit (dit; ri, ci) φ(y1i)φ(y2i)dy1idy2i. (11)

The likelihood of the entire sample is the product of each individual caller’s likelihood and has the

following form:

L(Θ) =

N∏
i=1

∫ ∫ bWiL c∏
k=0

min(Wi,(k+1)L−1)∏
t=kL

PHkit (dit; ri, ci) φ(y1i)φ(y2i)dy1idy2i. (12)

To estimate the structural parameters Θ, we maximize the log-likelihood function logL(Θ)

subject to the following constraints: the integrated value functions given by (8), the abandon-

ment probabilities given by (7) and the nominal utilities given by (3)-(5) for all i = 1, ..., N, k =
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0, ...,m− 1, t ∈ {kL, ..., (k + 1)L− 1}, Hk ∈ {1, ..., J}k+1, and (1).

To evaluate the likelihood function, we need to compute the integrated value functions corre-

sponding to all Hk ∈ {1, ..., J}k+1, k = 0, ...,m− 1, at all t ∈ {kL, ..., (k+ 1)L− 1}. Therefore, the

number of equations for the integrated value function, which contributes directly to the complexity

of the maximization problem, is L
∑m−1

k=0 J
k+1 = LJ(Jm − 1)/(J − 1). Consequently, the complex-

ity of the estimation problem increases by the number of announcement messages J , number of

scheduled announcements m and number of periods between two consecutive announcements L.

We use the non-linear optimization solver KNITRO (Byrd et al. (2006)) with AMPL interface

to solve the maximum likelihood estimation problem. We solve the problem for 100 randomly

generated starting points and find the estimates corresponding to the highest likelihood value. To

approximate the two dimensional integrations in the likelihood function, we use the Gauss-Hermite

integration method (Judd (1998), Chapter 7.2) considering five nodes in each dimension. We also

conduct a Monte-Carlo experiment to illustrate the capability of our estimation method to recover

true parameter values; see the online Appendix C for the details.

Estimation results. We estimate the parameters of the high and low priority groups sepa-

rately. In other words, we solve the MLE problem for each group in isolation. We assume that

callers make their decisions between waiting and abandoning every 5 seconds. Since our data is

more granular, consistent with our modeling assumptions in Section 4.1, we truncate the abandon-

ment times downward and the service initiation times upward. The estimated parameters of the

callers and their standard errors (shown in parenthesis) are reported in Table 3. To compute the

standard errors, we use the parametric bootstrap method (Horowitz (2001)). Table 4 shows the

mean and standard deviation for callers’ rewards and cost parameters, which are calculated from

the estimates in Table 3.6

Priority group mr mc σr σc

High priority
1.856 –2.336 0.202 3.44E–05

(0.012) (0.043) (0.015) (0.101)

Low priority
1.734 –2.326 3.37E–05 9.91E–06

(0.009) (0.030) (0.035) (0.081)

Table 3: The estimation results.

Priority group r-Mean ($) c-Mean ($/minute) r-St.Dev. c-St.Dev.

High priority 6.527 1.161 1.333 4.79E–04

Low priority 5.661 1.173 1.91E–04 1.39E–04

Table 4: The mean and standard deviation for callers’ rewards and cost parameters.

As can be seen in Table 4, the reward parameter of the high priority callers is larger than that

of the low priority callers. Therefore, the high priority callers value service more than the low

priority callers. This observation along with the fact that the high and low priority callers have

approximately the same cost parameters shows that the low priority callers are less patient than the

high priority callers. This can also be confirmed by the summary statistics of the observations in

the data in Table 2. As can be seen in Table 2, the average waiting time of the low priority callers

6The mean and standard deviation of callers’ rewards are given by exp(mr + σ2
r/2) and exp(mr + σ2

r/2)
√

exp(σ2
r)− 1,

respectively. Similarly, for callers’ costs, these statistics are exp(mc + σ2
c/2) and exp(mc + σ2

c/2)
√

exp(σ2
c )− 1.
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is only 11.5 seconds longer than the average waiting time of the high priority callers; however, the

low priority callers abandon twice as much as the high priority callers. The standard deviation of

the reward parameter for the high priority callers is positive. This shows that the high priority

callers are heterogeneous in their rewards from receiving service.

Given the estimation results in Table 4, the ratio of the reward and cost parameters (r/c) for

the high and low priority callers are 5.62 and 4.83, respectively, even though as shown in Table 2

the average of callers’ observed abandonment times in the data is around 1 minute for both the high

and low priority callers. At first, this may seem problematic. However, given that the abandonment

times of the callers are censored (heavily by the service process), the observed abandonment times

in the data are not an indicator of callers’ mean patience threshold, and cannot be compared with

r/c directly. An analysis (available from the authors) that estimates the mean of callers’ aban-

donment time using the Kaplan-Meier estimator (Kaplan and Meier (1958)) and corrects its bias

using the Jack-Knife method in Stute and Wang (1994) shows that the bias corrected mean of the

abandonment time are 5.55 and 5.16 for the high and low priority callers, respectively, which are

fairly close to r/c.

Out of Sample Testing. To examine the ability of our model to predict callers’ abandonment

behavior, we perform out-of-sample tests. We split the data for each priority group to two sets:

calls between 9 am and 12 pm, and calls between 12 pm and 4 pm. We consider one of these sets

as the training data, and the other one as the test data. We first estimate the parameters of the

callers in the training data, which will be used to predict the number of abandonments in the test

data. To do so, we estimate the service probabilities and the probabilities of receiving different

announcement histories in the test data. Then, using those with the parameter estimates from the

training data, we predict the number of abandonments in the test data.

Let PHkaban(t) denote the probability that a caller in the test data receives announcement his-

tory Hk and abandons in period t ∈ {kL, ..., (k + 1)L − 1}.7 The predicted number of calls that

the corresponding callers receive announcement history Hk and abandon in period t is NPHkaban(t),

where N is the total number of calls in the test data. Also, let QHkaban(t) denote the actual num-

ber of calls that the corresponding callers with announcement history Hk abandon in period t.

Then the total number of predicted and actual abandonments are
∑
Hk
∑(k+1)L−1

t=kL NPHkaban(t) and∑
Hk
∑(k+1)L−1

t=kL QHkaban(t), respectively. To examine the accuracy of the prediction, we consider the

relative and absolute errors given by

Relative Error =
|
∑
Hk
∑(k+1)L−1

t=kL QHkaban(t)−
∑
Hk
∑(k+1)L−1

t=kL NPHkaban(t)|∑
Hk
∑(k+1)L−1

t=kL QHkaban(t)
, (13)

7The probability P
Hk
aban(t) has the following form:

P
Hk
aban(t) = aHk

∫ ∫ (
(1− πHk

(t))P
Hk
it (1; ri, ci)

)( k∏
q=0

min(t−1,(q+1)L−1)∏
s=qL

(1− πHq (s))P
Hq

is (0; ri, ci)
)
φ(y1i)φ(y2i)dy1idy2i.

The term aHk
on the right hand side is the probability of receiving announcement history Hk. The first term inside the integral

is the probability of not receiving service and abandoning in period t. The second term inside the integral is the probability of
not receiving service and not abandoning in periods before t.
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Absolute Error =
1

N
|
∑
Hk

(k+1)L−1∑
t=kL

QHkaban(t)−
∑
Hk

(k+1)L−1∑
t=kL

NPHkaban(t)|. (14)

Table 5 shows the relative and absolute errors of prediction for different combinations of the training

and test data for the high and low priority classes. The actual abandonment rates for the high

priority callers in (9 am-12 pm) and (12 pm-4 pm) are 18.42% and 17.44%, respectively. For the

low priority callers in (9 am-12 pm) and (12 pm-4 pm), the actual abandonment rates are 33.18%

and 33.16%, respectively.

Training set Test set Relative Error Absolute Error

High priority (9 am-12 pm) High priority (12 pm-4 pm) 13.94 % 2.43 %

High priority (12 pm-4 pm) High priority (9 am-12 pm) 3.68 % 0.68 %

Low priority (9 am-12 pm) Low priority (12 pm-4 pm) 7.88 % 2.61 %

Low priority (12 pm-4 pm) Low priority (9 am-12 pm) 11.42 % 3.79 %

Average across all tests 9.23 % 2.38 %

Table 5: The relative and absolute errors in predicting the abandonment rates.

As can be seen in Table 5, our model is capable of predicting the abandonment rates with an

average absolute error less than 2.5% and an average relative error less than 10%.

To test the performance of our model in predicting callers’ abandonment behavior for a case

where the training set and the test set do not exhibit time of the day effect and are similar in terms

of callers’ abandonment behavior, we focus on observations between 2pm and 4pm. We split the

data to observations in January-April, and observations in May-July. Table 6 shows the absolute

and relative errors in predicting the abandonment rates for different combinations of the training

and test sets.

Training set (2pm-4pm) Test set (2pm-4pm) Relative Error Absolute Error

High priority (Jan.-April) High priority (May-July) 5.57 % 1.04 %

High priority (May-July) High priority (Jan.-April) 1.90 % 0.36 %

Low priority (Jan.-April) Low priority (May-July) 1.63 % 0.60 %

Low priority (May-July) Low priority (Jan.-April) 1.59 % 0.57 %

Average across all tests 2.67 % 0.64 %

Table 6: The relative and absolute errors in predicting the abandonment rates for cases with a lower level of time of
the day effect.

Comparison of the results in Tables 5 and 6 indicates that the average of the errors decreases

by more than 50% for the case without a time of the day effect. In other words, the out-of-

sample predictions are more accurate if the training and test sets are similar in terms of callers’

abandonment behavior.

We also compared the prediction power of our stopping time model with a simpler (myopic)

decision making model as an alternative model for callers’ abandonment behavior. We demonstrate

that our model has a better performance. See the online Appendix E for more details.

5 A Framework to Study the Impact of Delay Announcements

In this section, we develop a framework to study the impact of delay announcements on the per-

formance of a system with two priority classes. For simplicity, we assume callers receive a delay
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announcement only once upon arrival. The announcement provided by the call center manager

affects callers’ anticipation of their waiting time distributions and their chances of receiving ser-

vice. This in turn influences callers’ abandonment behavior, in particular the probability that

callers abandon at a given time while waiting. Moreover, a change in callers’ abandonment behav-

ior affects the system performance and, consequently, callers’ waiting time distributions. We are

particularly interested in finding the equilibrium of the system, where callers’ anticipation of their

waiting time distributions, which are affected by the announcements, match their actual experience

in the system. The analysis of this system is complex and requires several substantial steps.
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Figure 3: The building blocks for the equilibrium characterization.

Figure 3 shows different blocks for the analysis of the delay announcements’ impact on the

system and the sections of the paper that describe the analyses involving the corresponding blocks.

We use a Markovian approximation of a two-class queueing system to derive callers’ waiting time

distributions from callers’ abandonment time distributions and call center parameters such as the

arrival and service rates. This Markovian approximation is described in Section 5.1.

Moreover, we represent the abandonment time distributions as endogenous functions of callers’

reward and cost parameters and their anticipated waiting time distributions (using the optimal

stopping model of Section 4.1). This representation is laid out in Section 5.2. In addition, in Sec-

tion 5.2, we derive a set of equations that characterizes the equilibrium of the system for different

choices of delay announcement messages.

5.1 A Markovian approximation of the call center operations

In this section, we introduce a Markovian approximation to simplify the underlying queuing anal-

ysis. Using this approximation, we derive the steady-state probabilities of the system and the

waiting time distributions of the callers given their abandonment time distributions.

Preliminaries. Consider a call center with two priority classes: high and low. Subscripts “h”

and “l” will be used to represent the high and low priority callers. Suppose that both the high and

low priority callers are served by a single pool of agents that consists of s agents. The interarrival

times for the high and low priority callers have i.i.d. exponential distributions with rates λh and λl,

respectively. Denote by λ = λh + λl the total arrival rate to the system. The service times for the

high and low priority callers have i.i.d. exponential distributions with rates µh and µl, respectively.
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We initially assume that µh = µl = µ. Later in this section, we relax this assumption.

The sequencing policy in the call center is a point updating policy. There are two separate

queues: high priority queue and low priority queue. The high (low) priority callers join the end of

the high (low) priority queue. The priority point of the low priority callers upon arrival is zero,

however, the high priority callers obtain τ points upon arrival. Callers’ points increase by their

waiting times. In particular, a low priority caller who has been waiting for t time units has t points;

however, a high priority caller who has been waiting for t time units has t+ τ points. If an agent

becomes available, the agent compares the points of the callers at the head of the high and low

priority queues and selects the caller with the higher points to render service. Note that a newly

arriving high priority caller has higher points than any low priority caller who has arrived in the

past τ time units. The average number of the low priority callers who arrive in τ time units is λlτ .

Consequently, a newly arriving high priority caller may pass up to approximately [λlτ ] low priority

callers. We let [x] denote the nearest integer to x.

Analyzing the evolution of this two class system requires tracking the number of callers in both

the high and low priority queues. To decrease the dimension of the tracking process, we use the

state-space collapse approximation discussed next.

State space collapse approximation. Let nh and nl denote the number of the high and

low priority customers in the queue, respectively. The total number of callers in the queues is then

n = nh +nl. Inspired by the heavy traffic literature (Harrison (1988), Bramson (1998)), we use the

state space collapse approximation to represent nh and nl as functions of the total queue length

n. To this end, we approximate the expected time between successive arrivals of the high and low

priority callers by 1/λh and 1/λl, respectively. Assuming that abandonments are rare compared to

service completions, the delay experienced by the caller at the head of the high priority queue is

approximated by nh/λh; and she has nh/λh + τ priority points. Similarly, the delay of the caller

at the head of the low priority queue is approximated by nl/λl; and she has nl/λl priority points.

Using the state space collapse approximation, we assume that the priority points of the two

callers at the head of the two priority queues are approximately equal.8 Therefore, given n, we find

the values of nh and nl that minimize the difference between the points of the callers at the head

of the high and low priority queues. In other words, we solve the following minimization problem:

min
nh,nl

|nh
λh

+ τ − nl
λl
| subject to n = nl + nh, 0 ≤ nl, nh ≤ n. (15)

The solution of (15) is given by

nh = max
(

0,
[ λh
λh + λl

(n− λlτ)
])

and nl = n− nh. (16)

Under large abandonment rates, the state-space collapse approximation given in (16) may not

be as accurate as desired. For such cases, we propose a heuristic refinement of the approximation

8If this were not the case, then one of the classes would have strict priority over the other. Then, in the heavy traffic limit,
that class becomes empty instantaneously. Therefore, whenever both queues are non-empty, they should have the same priority
in the heavy traffic limit. Motivated by this, we look for solutions in which the difference in the priorities of the first customer
in each queue is minimized.
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in the online Appendix D that adjusts the solution of (15) and improves the accuracy of the

approximation.

State dependent waiting time and abandonment time distributions. The call center

manager announces the total number n of callers waiting in the two queues upon arrival. Therefore,

we let F hn (t) and F ln(t) denote the virtual waiting time distributions for the high and low priority

callers, respectively, who arrive when there are n callers in total in the high and low priority queues

and all agents are busy.9 Similarly, we let Zhn(t; r, c) and Z ln(t; r, c) denote the abandonment time

distributions for the high and low priority callers, respectively, who arrive when there are n callers

in the two queues, and have reward and cost parameters r and c. Also let Γhn(t; r, c) and Γln(t; r, c)

denote the hazard rates of Zhn(t; r, c) and Z ln(t; r, c), respectively. Since the callers’ reward and

cost parameters are not observable, we use the expected abandonment time distributions and the

expected hazard rates in the Markovian approximation. To this end, let Ghn(t) and Gln(t) denote

the expected abandonment time distributions for the high and low priority callers, respectively,

who arrive when there are n callers in total in the two queues. Also let Hh
n(t) and H l

n(t) denote

the expected hazard rates for the high and low priority callers, respectively, who arrive when there

are n callers in total in the two queues. That is, for η ∈ {h, l}

Gηn(t) =

∫ ∫
Zηn(t; r, c)φ(y1)φ(y2)dy1dy2 and Hη

n(t) =

∫ ∫
Γηn(t; r, c)φ(y1)φ(y2)dy1dy2, (17)

where r = exp(mη
r + σηry1), c = exp(mη

c + σηc y2) and y1, y2 are i.i.d. standard normal random vari-

ables as in (1). In this section, we assume that Gηn(t) and Hη
n(t) are known for all n and η ∈ {h, l}.

Then, we use the Markovian approximation to find the steady-state probabilities of the system and

the virtual waiting time distributions F ηn (t), η ∈ {h, l}.
Steady-state probabilities. To derive the steady-state probabilities, we build on Whitt

(2005) and approximate the system by a birth-and-death process with state-dependent abandon-

ment rates. The abandonment rate from the system is the sum of the abandonment rates of all

callers in the two queues. Recall that a caller’s abandonment time distribution (and the corre-

sponding hazard rate) depend on the total number of callers in the two queues upon her arrival.

Under the assumption that abandonments are rare compared to service completions, the caller

who is the i thh caller from the end of the high priority queue (caller ih) has been waiting for ap-

proximately ih/λh time units. Let mh(ih, n) denote the total number of callers in the two queues

upon caller ih’s arrival given that there are n callers in the two queues currently. We approximate

mh(ih, n) as follows:

mh(ih, n) = [sµ
ih
λh

] + (nh − ih) + (nl − [λl
ih
λh

]). (18)

Note that given the total number of callers n in the two queues, we solve (15) to derive the

corresponding nh and nl. The first term on the right hand side of (18) is the number of callers

who have entered service since caller ih’s arrival. The second and the third terms are the numbers

9Note that FHk
(t) in Section 4.2 denotes the waiting time distribution corresponding to a caller with announcement history

Hk, while Fn(t) in this section denotes the virtual waiting time distribution of callers depending on the state of the system
upon arrival.
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of the high and low priority callers, respectively, who are currently in the queue and were in the

system upon caller ih’s arrival. The term [λlih/λh] approximates the number of low priority callers

who joined the system after caller ih’s arrival. As a result, the abandonment time distribution of

caller ih is Ghmh(ih,n)(·). Similarly, given that caller ih has been waiting for approximately ih/λh

time units, her (expected) abandonment rate is Hh
mh(ih,n)(ih/λh).

Analogously, the total number of callers in the two queues upon arrival of the i thl caller from

the end of the low priority queue (caller il), denoted by ml(il, n), is approximated by

ml(il, n) = [sµ
il
λl

] + (nl − il) + (nh − [λh
il
λl

]). (19)

Consequently, the abandonment time distribution of caller il is Glml(il,n)(·), and her (expected)

abandonment rate is H l
ml(il,n)(il/λl).

Let δn denote the total abandonment rate from the system when the total number of callers in

the high and low priority queues is n. The abandonment rate is zero when the queues are empty,

i.e. δ0 = 0. For n ≥ 1, the total abandonment rate is the sum of abandonment rates of all callers

in the high and low priority queues, given by

δn =

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

) +

nl∑
il=1

H l
ml(il,n)(

il
λl

). (20)

We approximate the stochastic process governing the number of callers in the system by a birth-

and-death process. The birth rate is the total arrival rate to the system denoted by λ = λh + λl.

When there are k callers in the system, the death rate µk is given by

µk =

 kµ if 1 ≤ k ≤ s,

sµ+ δk−s if k ≥ s+ 1.

(21)

Let γk denote the steady-state probability of having k callers in the system. The steady-state

probabilities are given by the balance equations:

λγk = µk+1γk+1, k = 0, 1, 2, ...., and
∞∑
k=0

γk = 1.

Approximating the virtual waiting time distribution. Following Whitt (2005), we ap-

proximate the waiting time of the served calls by a sum of exponential random variables, whose

rates depend on the service rate of the system and the abandonment rates of the callers present in

the high and low priority queues.

To derive the virtual waiting time distributions F hn (t) and F ln(t), consider a caller who joins

the system when the total number of callers in the high and low priority queues is n. We track

the evolution of the system until all callers in the high and low priority queues with priority points

higher than the caller of interest enter service or abandon. Then, the caller of interest will be the

next to enter service.

To this end, it is essential to establish the order in which the existing high and low priority

callers enter service. Although it is virtually impossible to figure out the exact order of callers, we
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approximate it by sorting the callers based on their (approximate) priority points. Recall that the

(approximate) priority point of the high priority caller ih (from the end of the high priority queue)

is ih/λh + τ . Similarly, the priority point of the low priority caller il is il/λl. Figure 4 shows the

priority points of the callers in the high and low priority queues.
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Figure 4: The priority points of the callers in the high and low priority queues.

For the high priority callers, let Oh(ih, n) denote the order in which caller ih enters service. We

have
Oh(ih, n) = n− (ih − 1)−min(bλl(

ih
λh

+ τ)c, nl), (22)

where bλl(ih/λh + τ)c is the largest integer less than or equal to λl(ih/λh + τ). The second and the

third terms on the right hand side of (22) are the number of the high and low priority callers with

lower priority points than caller ih, respectively. Similarly, for the low priority callers, the order in

which caller il enters service, denoted by Ol(il, n), is given by

Ol(il, n) = n− (il − 1)−min(bλh(
il
λl
− τ)c+, nh), (23)

where bλh(il/λl − τ)c+ = max(0, bλh(il/λl − τ)c). The second and the third terms on the right

hand side of (23) are the number of the low and high priority callers with lower priority points than

caller il, respectively. The function Ol (Oh) gives the order of entering service for the low (high)

priority callers across all callers in the two queues. For example, a low priority caller that has a

lower order number than a high priority caller enters service sooner. Also, if a caller has the order

number 1, then she is the first caller to enter service irrespective of her priority class.

We next derive the virtual waiting time distribution for the high priority callers. We approxi-

mate each inter-departure time (including abandonments) by exponential random variables. To be

more specific, each inter-departure time is modeled as a minimum of several exponential random

variables, and hence, its rate is the sum of the rates of those exponential random variables.

Suppose that a new high priority caller arrives when there are n (n > [λlτ ]) callers in total in

the queues.10 Recall that the high priority callers are advanced in the system. In particular, the

new high priority caller can pass approximately [λlτ ] low priority callers. Therefore, the new high

priority caller will enter service after n − [λlτ ] + 1 departures. The time between the new high

priority caller’s arrival and the first departure is modeled as an exponential random variable with

10When n ≤ [λlτ ], the solution of (15) is nh = 0 and nl = n ≤ [λlτ ]. In this case, the new high priority caller passes all
callers in the low priority queue and will be the next customer who enters service. Therefore, her waiting time distribution is
an exponential random variable with rate sµ.
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rate xh1(n) given by

xh1(n) = sµ+

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

) +

nl∑
il=[λlτ ]+1

H l
ml(il,n)(

il
λl

). (24)

The first term on the right hand side of (24) is the service rate. The second term is the abandonment

rate of the high priority callers who are ahead of the new high priority caller. The last term is the

abandonment rate of the low priority callers who are not passed by the new high priority caller.

To consider subsequent departures, we make two assumptions about the system dynamics as in

Whitt (2005). First, given an ordering of callers, we assume that they depart the queue in that order

irrespective of whether they enter service or abandon. Second, we assume that each inter-departure

time is 1/λ, i.e the total departure rate from the queues is λ. Consequently, after each departure

we add 1/λ to the time the callers have been waiting to calculate their abandonment rates, i.e. the

hazard rates of the abandonment time distributions. Under these assumptions, the time between

the first and the second departures is approximated by an exponential random variable with rate

xh2(n) given by

xh2(n) = sµ+

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

+
1

λ
) I{Oh(ih,n)≥2} +

nl∑
il=[λlτ ]+1

H l
ml(il,n)(

il
λl

+
1

λ
) I{Ol(il,n)≥2}. (25)

Note that the indicator function in (25), I{·}, is one if the order of receiving service for the corre-

sponding caller is greater than or equal to two, i.e. the corresponding caller is not the first one to

depart. Repeating the above procedure, we can show that the time between the (q − 1)th and qth

departure is modeled as an exponential random variable with rate xhq (n) given as follows:

xhq (n) = sµ+

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

+ (q − 1)
1

λ
) I{Oh(ih,n)≥q}

+

nl∑
il=[λlτ ]+1

H l
ml(il,n)(

il
λl

+ (q − 1)
1

λ
) I{Ol(il,n)≥q}. (26)

The waiting time of the high priority caller of interest is approximated by the sum of expo-

nential random variables with rates xhq (n), 1 ≤ q ≤ n − [λlτ ] + 1. We characterize the waiting

time distributions via their Laplace transforms. Then, we invert the Laplace transforms using a

numerical transform inversion to derive the waiting time distributions. The Laplace transform of

F hn (t), denoted by LFhn (t)(z), is given by

LFhn (t)(z) =
1

z

n−[λlτ ]+1∏
q=1

xhq (n)

z + xhq (n)
. (27)

To invert the Laplace transforms, we use the Euler method introduced in Whitt and Abate (1995).

We next derive the virtual waiting time distribution for a low priority caller who arrives when

there are n callers in total in the two queues. Because this low priority caller of interest may be

passed by some high priority callers, we cannot ignore the future arrivals as we did in the derivation

of the waiting time distribution for the high priority callers. Let bh(n) denote the number of the
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high priority callers who will pass the low priority caller of interest during her stay in the system.

Under the assumption that each departure takes approximately 1/λ time units, the average waiting

time of the low priority caller of interest is (n+ bh(n) + 1)/λ. The low priority caller of interest will

be passed by high priority callers who arrive in the next τ time units. Therefore, the low priority

caller of interest will be passed by at most λhτ high priority callers, and if her average waiting time

(n + bh(n) + 1)/λ is less than τ by only λh(n + bh(n) + 1)/λ callers. Hence, the number of the

high priority callers who pass the low priority caller is λh min((n + bh(n) + 1)/λ, τ) which should

be equal to bh(n) by definition. Therefore, we have

bh(n) = λh min(
n+ bh(n) + 1

λ
, τ). (28)

The solution of (28) has the following form (see Lemma 1 in the online Appendix B):

bh(n) =

 λhτ if n ≥ λlτ − 1,

λh

λl
(n+ 1) if n < λlτ − 1.

(29)

We divide callers who enter service sooner than the low priority caller of interest into four

groups, which are illustrated in Figure 5. The first group consists of the high priority callers in

the queue upon arrival of the low priority caller of interest. The order of receiving service for

these callers is Oh(ih, n), ih ∈ {1, ..., nh}. The second group includes the low priority callers who

will not be passed by any high priority callers. The order of receiving service for these callers is

Ol(il, n), il ∈ {[λlτ ], ..., nl}. The third group consists of the low priority callers who will be passed

by some high priority callers. If no high priority caller passes these group of callers, their order of

receiving service would be Ol(il, n), il ∈ {1, .., [λlτ ]}. However, because these callers are passed by

some high priority callers, their order of receiving service is Õl(il, n) given by11

Õl(il, n) = Ol(il, n) + ([λlτ ]− il)[bh(n)]/[λlτ ], il ∈ {1, .., [λlτ ]}.

The fourth group consists of the high priority callers who pass the low priority caller of interest.

The order of receiving service for these callers is Õh(i′h, n) given by12

Õh(i′h, n) = n− [λlτ ] + (
λl
λh

+ 1)i′h + 1, i′h ∈ {1, ..., [bh(n)]}.

11Recall that the low priority caller of interest will be passed by [bh(n)] high priority callers. Moreover, the [λlτ ]th caller
from the end of the low priority queue will not be passed by any high priority caller. Consequently, caller il (il ≤ [λlτ ]− 1) will
be passed by approximately ([λlτ ]− il)[bh(n)]/[λlτ ] high priority callers, which is a linear interpolation between 0 and [bh(n)].

12Caller i′h joins the system approximately i′h/λh time units after the low priority caller of interest arrives. Therefore, λli
′
h/λh

new low priority callers have arrived since the arrival of the low priority caller of interest. Given that each high priority caller
passes approximately [λlτ ] low priority callers, caller i′h passes [λlτ ]− λli′h/λh − 1 low priority callers who were in the system
before the low priority caller of interest arrives (out of the total n callers in the queues). In addition, i′h− 1 high priority callers
arrived before caller i′h and will enter service sooner than caller i′h. Therefore, the total number of callers who enter service
sooner than caller i′h is n + i′h − 1 − ([λlτ ] − λli′h/λh − 1) = n − [λlτ ] + (λl/λh + 1)i′h, i.e. her order of receiving service is
n− [λlτ ] + (λl/λh + 1)i′h + 1.
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Figure 5: Four groups of callers that enter service sooner than the low priority caller of interest.

Given the four groups defined above, we approximate the time between the (q − 1)th and qth

departures after arrival of the low priority caller of interest by an exponential random variable with

rate xlq(n) given by

xlq(n) = sµ+

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

+ (q − 1)
1

λ
) I{Oh(ih,n)≥q}

+

nl∑
il=[λlτ ]

H l
ml(il,n)(

il
λl

+ (q − 1)
1

λ
) I{Ol(il,n)≥q}

+

[λlτ ]−1∑
il=1

H l
ml(il,n)(

il
λl

+ (q − 1)
1

λ
) I{Õl(il,n)≥q},

+

[bh(n)]∑
i′h=1

Hh
n(−

i′h
λh

+ (q − 1)
1

λ
) I{Õh(i′h,n)≥q}. (30)

The first term on the right hand side of (30) is the service rate. The second to fifth terms correspond

to the abandonment rates of the callers in the first to fourth groups explained above, respectively.

Every high priority caller in the fourth group will find n callers in the queues upon arrival, and

consequently, her hazard rate will be Hh
n(·). The reason is that by our assumption the total

departure rate from the system is approximately λ, which is also the total arrival rate. Consequently,

the total number of callers in the queues remains approximately fixed at n. In addition, we allow

that the argument of Hh
n , i.e. (−i′h/λh + (q − 1)/λ) which is the amount of time caller i′h has

been waiting, takes negative values.13 This happens if caller i′h has not arrived yet. Therefore, we

assume that the hazard rate functions are zero for negative arguments, i.e. Hh
n(−t) = 0 for t > 0.

The waiting time for the low priority caller of interest is approximated by the sum of exponential

random variables with rates xlq(n), 1 ≤ q ≤ n+ bh(n) + 1. The Laplace transform of F ln(t) denoted

by LF ln(t)(z) is given by

LF ln(t)(z) =
1

z

n+[bh(n)]+1∏
q=1

xlq(n)

z + xlq(n)
. (31)

Relaxing the assumption that µh = µl. Recall that we assumed that abandonments are

13Caller i′h in the fourth group will arrive i′h/λh time units after the low priority caller of interest arrives, and (q − 1)th

departure occurs approximately (q − 1)/λ time units after the low priority caller of interest arrives. Therefore, caller i′h has
been waiting for (−i′h/λh + (q − 1)/λ) time units.
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rare compared to service completions. An implication of this assumption is that a caller who has

entered service is a high priority caller with probability λh/λ and is a low priority caller with

probability λl/λ. Consequently under the assumption that abandonments are rare compared to

service completions, an arbitrary busy agent serves the high priority callers with probability λh/λ

and serves the low priority callers with probability λl/λ. Hence, the long run average service

rate of an arbitrary busy agent denoted by µ is given by µ = (λhµh + λlµl)/λ. Substituting

µ = (λhµh + λlµl)/λ in the preceding derivations gives us the desired approximation for the case

of unequal service rates. That is, we replace µ in the derivation of the steady-state probabilities,

equation (21), and the derivation of the waiting time distributions, equations (24)-(26) and (30),

by (λhµh + λlµl)/λ.

5.2 The equilibrium in steady-state of the system

This section lays out a framework for computing the steady-state of the system in equilibrium for

different decisions of the call center manager regarding the delay announcements.

A caller who joins the system when there is an idle agent directly enters service and does not

receive any delay announcements. However, when all agents are busy, the caller hears a delay

announcement upon arrival that contains information about the number of callers who are waiting

to be served, i.e. the total number of callers in the high and low priority queues. Callers trust

the information provided by the call center manager. Recall that in our framework for computing

the new equilibrium, we assume for simplicity that each caller receives a delay announcement upon

arrival; and no further announcements are made to her.

The call center manager can choose three levels of granularity for information contained in

the announcements: no information on system occupancy, full information on system occupancy

and partial information on system occupancy.14 In the no information case, the manager does

not provide any information. In the full information case, the manager informs the callers of the

exact number of callers waiting to be served. In the partial information case, the manager does not

provide the exact number of callers waiting to be served but provides a range. For example, the

manager may announce: “There are fewer than three callers waiting to be served” or “There are

more than three callers waiting to be served.”

Different announcements for the high and low priority groups may affect their behavior dif-

ferently. Therefore, the call center manager may choose the announcements for the two priority

groups differently. Letting S = {0, 1, 2, ...} denote the state space for the number of callers waiting

to be served, for each priority group η = l, h, the manager chooses the number of announcement

messages Jη and a partition Aη1, Aη2,..., AηJη of S, where Aηj = {lηj−1 + 1, lηj−1 + 2, ..., lηj } with

lη0 = −1 < lη1 < lη2 < ... < lηJη−1 < lηJη = ∞. We refer to each such partition (Aη1,..., A
η
Jη

) as

an announcement message partition. For example, Jη = 1 and Aη1 = S corresponds to the no

information case, whereas Jη = ∞ and Aηj = {j} corresponds to the full information case. To

14For brevity, we omit the “on system occupancy” term and use “no information”, “partial information” and “full information”
terms instead.
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facilitate the analysis to follow, given an announcement message partition (Aη1,..., A
η
Jη

), we define

the corresponding announcement type function ∆η(·) that maps S to {Aη1,..., A
η
Jη
}: ∆η(n) = j if

n ∈ Aηj for n ≥ 0.

In what follows, we first explain the derivation of callers’ abandonment time distributions given

their parameters and virtual waiting time distributions. Also note that the preceding analysis (in

Section 5.1) derives the (virtual) waiting time distributions from the given abandonment time dis-

tributions. Combining these we next derive a set of equations that characterizes the steady-state of

the system in equilibrium for different announcement message partitions chosen by the call center

manager for the high and low priority callers. This is done by ensuring that the two aforementioned

distributions, i.e. the derivation of waiting time distributions from abandonment time distributions

and vice versa, yield distributions which are consistent with each other.

Derivation of callers’ abandonment time distributions. We derive the (expected) aban-

donment time distribution Ghn(t) for a high priority caller who arrives when there are n callers

waiting in the two queues. The derivation for the low priority callers is similar and omitted for

brevity. We first calculate the high priority caller’s anticipation of her waiting time distribution,

which depends on the delay announcement message. Then, we use the optimal stopping model to

derive her abandonment probabilities and (expected) abandonment time distribution.

This high priority caller receives a type ∆h(n) announcement message. That is, she is told that

the number of callers who are waiting to be served is an element of Ah∆h(n). Therefore, to calculate

her anticipated waiting time distribution given the message ∆h(n), denoted by F h(t;Ah∆h(n)), we

take the expectation over the set Ah∆h(n):

F h(t;Ah∆h(n)) =

∑
k∈Ah

∆h(n)
γs+kF

h
k (t)∑

k∈Ah
∆h(n)

γs+k
, (32)

where γs+k is the steady-state probability of having s+ k callers in the system (s callers in service

and k callers in the queues) and F hk (t) is the virtual waiting time distribution for callers who find

k callers in the queue and all agents busy upon arrival. Note that F h(t;Ah∆h(n)) is different from

the high priority caller’s actual waiting time distribution F hn (t) except in the full information case.

The high priority caller makes her abandonment decisions based on the optimal stopping model

outlined in Section 4. Suppose that her reward and cost parameters are r and c. Moreover, let

Θh = (mh
r , σ

h
r ,m

h
c , σ

h
c ) denote the structural parameters of the high priority callers. The high pri-

ority caller receives an announcement only once at t = 0. Consequently, her announcement history

is H0 = (∆h(n)). The caller’s abandonment behavior is affected by her anticipated probability of

receiving service. Since the caller believes that her waiting time distribution is F h(t;Ah∆h(n)), her

anticipated probability of receiving service corresponds to the hazard rate of F h(t;Ah∆h(n)). We

denote the hazard rate of F h(t;Ah∆h(n)) by πh(t;Ah∆h(n)). Note that this is different from the ser-

vice probability πhn(t) which is the actual probability of receiving service (as opposed to the caller’s

anticipation of it). We use (7)-(8) to calculate callers’ abandonment probabilities based on their

anticipated probability of receiving service πh(t;Ah∆h(n)) and their reward and cost parameters.
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We next derive the caller’s abandonment time distribution denoted by Zhn(t; r, c) and its expec-

tation denoted by Ghn(t) using the abandonment probabilities. For t = 0, we have

Zhn(0; r, c) = (1− F hn (0))P
∆h(n)
i0 (1; r, c). (33)

The right hand side of (33) is the product of two terms: the probability of not receiving service,

and the abandonment probability at t = 0. For t ≥ 1, the abandonment time distribution of caller

i is given by

Zhn(t; r, c) = Zhn(t− 1; r, c) + (1− Zhn(t− 1; r, c))(1− πhn(t))P
∆h(n)
it (1; r, c), (34)

where πhn(t) is the hazard rate of F hn (t). The first term on the right hand side of (34) is the

probability of abandoning at or before period t − 1. The second term is the probability of not

abandoning before period t, not receiving service at time t, but deciding to abandon in period t.

Using (17), (33) and (34), we have

Ghn(0) = (1− F hn (0))

∫ ∫
P

∆h(n)
i0 (1; r, c)φ(y1)φ(y2)dy1dy2,

Ghn(t) = Ghn(t− 1) + (1− πhn(t))

∫ ∫
(1− Zhn(t− 1; r, c))P

∆h(n)
it (1; r, c)φ(y1)φ(y2)dy1dy2,

(35)

where r = exp(mη
r + σηry1), c = exp(mη

c + σηc y2) and y1, y2 are i.i.d. standard normal random

variables as in (1).

Finding the equilibrium in steady-state of the system. We wish to determine F ηn , Gηn

and Zηn (η ∈ {h, l}) in equilibrium. Suppose that T is the maximum waiting time of the callers.

Also, let T ηj be the maximum waiting time of the callers of class η who heard message j. Note that

T = maxη,j T
η
j .15 For simplicity, we express the waiting and abandonment time distributions as

(T + 1)-vectors: for η = h, l, F ηn = [F ηn,t]
T
t=0, Gηn = [Gηn,t]

T
t=0 where F ηn,t = F ηn (t) and Gηn,t = Gηn(t).

Then the following four sets of equations characterize the steady-state of the system in equilib-

rium:

- Callers’ anticipated waiting time distributions:

j ∈ {1, ..., Jη}, 0 ≤ t ≤ T :F η(t;Aη∆η(n)) =

∑
k∈Aη

∆η(n)
γs+kF

η
k,t∑

k∈Aη
∆η(n)

γs+k
, (36)

- Derivation of callers’ abandonment time distributions using the optimal stopping model: we first

derive the abandonment time distribution for a caller, say caller i, with parameters r and c using

equations (33) and (34):

Zηn(0; r, c) = (1− F ηn,0)P
∆η(n)
i0 (1; r, c),

t ≥ 1 :Zηn(t; r, c) = Zηn(t− 1; r, c) + (1− Zηn(t− 1; r, c))(1− πηn(t))P
∆η(n)
it (1; r, c),

(37)

Then, we derive the expected abandonment time distributions using equation (35), where the

distribution of callers’ parameters for η = h, l are given by (1):

15To compute T ηj , we first set T ηj = T for some large T and find the system equilibrium. Then we update T ηj for all
j, η based on the resulting waiting time distributions. In our numerical experiments, the values T ηj converge rapidly.
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Gηn,0 = (1− F ηn,0)

∫ ∫
P

∆η(n)
i0 (1; rηi , c

η
i ) φ(y1i)φ(y2i)dy1idy2i,

T∆η(n) ≥ t ≥ 1 :Gηn,t = Gηn,t−1 + (1− πηn(t))

∫ ∫
(1− Zηn(t− 1; rηi , c

η
i ))

× P∆η(n)
it (1; rηi , c

η
i ) φ(y1i)φ(y2i)dy1idy2i,

(38)

To derive the abandonment probabilities in equations (37) and (38) for type j announcement

(∆η(n) = j for n ∈ Aηj ), we use equation (7), where the integrated value functions are given by (8):

t ≥ 0 :P jit(1; rηi , c
η
i ) =

1

1 + exp
(
− cηi + πη(t;Aηj )r

η
i + (1− πη(t;Aηj ))Vj(t, r

η
i , c

η
i )
) , (39)

πη(t;Aηj ) =
F η(t+ 1;Aηj )− F η(t;A

η
j )

1− F η(t;Aηj )
,

t ≤ Tj − 1 :Vj(t, r
η
i , c

η
i ) = log

(
1 + exp(−cηi + πη(t+ 1;Aηj )r

η
i

+ (1− πη(t+ 1;Aηj ))Vj(t+ 1, rηi , c
η
i ))
)
,

Vj(Tj , r
η
i , c

η
i ) = 0,

(40)

where Vj(t, r
η
i , c

η
i ) is the value function for a caller who heard message j.

- Derivation of the steady-state probabilities using the Markovian approximation:

n ≥ 1 :δn =

nh∑
ih=1

Hh
mh(ih,n)(

ih
λh

) +

nl∑
il=1

H l
ml(il,n)(

il
λl

),

k ≤ s :µk = kµ, k ≥ s+ 1 : µk = sµ+ δk−s, k ≥ 1 : γk =
λk∏k
q=1 µl

γ0,

K∑
k=0

γk = 1.

(41)

- Derivation of the waiting time distributions using the Markovian approximation:

n ≥ 0, 0 ≤ t ≤ T :F hn,t = L−1

1

z

n−[λlτ ]+1∏
q=1

xhq (n)

z + xhq (n)

 (t),

n ≥ 0, 0 ≤ t ≤ T :F ln,t = L−1

1

z

n+[bh(n)]+1∏
q=1

xlq(n)

z + xlq(n)

 (t),

(42)

where mh(ih, n), ml(il, n), xhq (n) and xlq(n) are given by equations (18), (19), (26) and (30), re-

spectively. Note that Hη
n is computed by (17) from Γηn, which is the hazard rate of, and hence,

computed from Zηn. In addition, we have µ = (λhµh + λlµl)/λ. In (41), K denotes the maximum

number of callers allowed to enter the system. We choose K such that the blocking probability is

negligible.

Given the announcement partitions, the call center parameters, and the set of structural pa-

rameters for the high and low priority callers, we solve the above sets of equations simultaneously

to find the system equilibrium.16 This ensures that the waiting time distributions (F ηn,t, η ∈ {h, l})
16To solve this system of equations, we use the KNITRO solver (Byrd et al. (2006)) with AMPL interface. We solve an

optimization problem in which the objective function is 0 (or, a constant that does not depend on the variables) and the
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that are used to calculate the anticipated waiting time distributions by the first set of equations

(Equation (36)), match the distributions that are derived using the Markovian approximation by

the fourth set of equations (Equation (42)).

6 Counterfactual analysis

In this section, we conduct simulation experiments to assess the impact of changing the announce-

ment partition (i.e. the granularity of the information) and the relative priority of the two classes

on the performance of the call center described in Section 3. To compute the new equilibrium of

the system under these changes (using the structural parameters estimated in Section 4.2), we rely

on the framework presented in Section 5.2. The results presented in this section may not apply to

call centers with different settings/operations.

To study a system that represents the call center in the data, we estimate the arrival and service

rates from the data.17 Given that the number of agents in the data varies across days and hours

within a day, it is not obvious a priori what number of agents should be used in the analysis. To

determine that, we consider the call center performance under different staffing levels and choose

the number of agents that results in average waiting times and abandonment rates that are closest

to those observed in the data. This leads to a choice of 5 agents. We set the maximum number

of callers allowed in the system including the new arrival (K in Equation (41)) to 19, which cor-

responds to at most 13 callers in the queue at the time of a new arrival. This ensures a negligible

blocking probability (in the order of 10−6).

We conduct two sets of experiments: In the first set of experiments, we compute the equilibrium

of the system under the current priority policy for four announcement partitions given below:

- Announcement partition with one subset: No information is provided to the high and low priority

callers. This case can be thought of as announcing the message that the queue length is less than

or equal to 13, i.e. Aη1 = {0, ..., 13} for η ∈ {h, l}, which, of course, has no valuable informational

content for the callers.

- Announcement partition with two subsets: The announcement for the high and low priority

callers is one of two possible messages. Specifically, we set Aη1 = {0, ..., 9} and Aη2 = {10, ..., 13} for

η ∈ {h, l}. This particular choice is made because the aggregate performance metrics reveal that

callers arriving when the queue length is 10 or larger suffer from long waits. In contrast, when the

queue length is 9 or shorter, the corresponding waiting times are moderate to low.

- Announcement partition with three subsets: The announcement for the high and low priority

callers is one of three possible messages. We set Aη1 = {0, ..., 4}, Aη2 = {5, ..., 9} and Aη2 = {10, ..., 13}
for η ∈ {h, l}, corresponding to low, moderate and high congestion, respectively.

- Announcement partition with fourteen subsets: Full information is provided to the high and low

priority callers. That is, we have Aη1 = {0}, Aη2 = {1},..., Aη14 = {13} for η ∈ {h, l}.

constraints are the set of equations that defines the equilibrium.
17We find the inter-arrival and service times during busy hours (9 a.m. to 4 p.m.) and use their average to find the arrival

rate and service rate in our counterfactual analysis.
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Table 7 shows the summary statistics of the high and low priority callers for different announcement

partitions.18 In Table 7, P(A), E(W), E(W|A) and E(W|S) denote the probability of abandonment,

average waiting time, average waiting time for the abandoned calls and average waiting time for the

served calls, respectively. As can be seen in Table 7, the impact of providing more granular informa-

tion on most of the aggregate performance metrics is not significant. The only metric that is signif-

icantly impacted is E(W|A), which decreases as the information provided becomes more granular.

Announcement High priority Low priority

partition with P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

One subset (No inf.) 10.20% 49.99 48.85 60.06 27.47% 57.40 55.69 61.93

Two subsets 10.18% 49.93 48.91 58.99 27.45% 57.48 55.97 61.47

Three subsets 10.07% 48.48 48.03 52.49 26.66% 56.91 56.77 57.31

Fourteen subsets (Full inf.) 9.98% 47.37 47.09 49.84 26.10% 54.46 54.83 53.42

Table 7: Summary statistics for different announcement partitions under the current policy of the call center.

To understand the impact of delay announcements further, consider Figures 6 and 7, which

show the probability of abandonment and the average waiting time of the abandoned calls for dif-

ferent announcement partitions, respectively. As can be seen in Figures 6 and 7, providing delay

information helps callers make better decisions in the sense that callers who receive information

that the queue length is long abandon more and leave the system sooner compared to the case with

no information. Moreover, callers who receive information that the queue length is short abandon

less and stay longer in the system. The net effect on the probability of abandonment P(A) is

negligible; however, it is significant on the average waiting time of the abandoned calls E(W|A).
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Figure 6: The abandonment probability of the callers depending on the number of callers in the queue upon arrival
for different announcement partitions under the current policy of the call center.

Figures 6 and 7 also show that for a given announcement partition heard by a caller, the change

in the callers’ behavior is “continuous” in the system state, i.e. queue length, as that varies within

the particular announcement partition. In contrast, if callers arrive in states which belong to differ-

ent sets of the announcement partition, they receive different information and the change in their

behavior is not continuous in the queue length. This is manifested by a “jump” in the graphs for

18Because the abandonment rates of the high and low priority queues are high, when finding the equilibrium in steady-state
of the system, we adjust the solution of the state space collapse approximation appropriately using the procedure explained in
the online Appendix D. We also validate the accuracy of our equilibrium computation method. See the online Appendix F for
the details.
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Figure 7: The average waiting time of the abandoned calls depending on the number of callers in the queue upon
arrival for different announcement partitions under the current policy of the call center.

the abandonment probability and average waiting time.

In the second set of experiments, we investigate the impact of providing delay information on

the system under priority policies different from that found in the data. We consider the follow-

ing priority policies: First-come-first-served policy (FCFS), a strict (and non-preemptive) priority

policy, which gives strict priority to the “high priority” customers, and the reversed strict priority

policy, which gives strict priority to the “low priority” customers. Our framework is flexible enough

to incorporate these policies by setting τ , i.e. the time parameter by which callers in a particular

class are advanced in a queue, sufficiently large. (Setting τ = 1800 in the current policy closely

approximates the strict priority rules.)

Table 8 shows the summary statistics of the system under different priority policies for the no

information and full information cases. Comparing the results for the no information and full infor-

mation cases leads to three insights. First, providing delay information does not impact the callers

who receive very good service quality. As can be seen in Table 8, the summary statistics of the high

priority callers under the strict priority policy and the summary statistics of the low priority callers

under the reversed strict priority policy are not affected significantly by the delay information. In

these cases, irrespective of the system state, callers receive very good service quality. Therefore,

providing delay information does not affect callers’ anticipation of the service quality much and,

consequently, does not affect their behavior significantly.

Priority policy High priority Low priority
(Announcement partition) P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Reversed priority (No info.) 21.83% 67.08 66.84 67.96 3.80% 24.68 24.23 36.18

Reversed priority (Full info.) 19.38% 59.85 61.50 53.00 3.76% 24.41 23.95 36.18

FCFS (No info.) 12.92% 55.85 54.92 62.09 18.64% 50.04 47.02 63.25

FCFS (Full info.) 12.89% 52.91 53.12 51.54 18.03% 46.74 45.59 51.93

Strict priority (No info.) 3.73% 29.03 28.61 39.75 46.11% 47.08 34.10 62.24

Strict priority (Full info.) 3.70% 28.34 27.91 39.41 39.30% 45.36 40.32 53.16

Table 8: Summary statistics for the no information and full information cases under different priority policies.

Second, providing delay information decreases the average waiting time of the abandoned calls

when the service quality is either mediocre or poor. This is the case for the high priority callers

under the reversed strict priority policy, the low priority callers under the strict priority policy and
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both of them under the FCFS policy. For these cases, the callers who hear that the queue length is

long, and are not patient enough to wait for entering service, leave the system sooner, which results

in a lower average waiting time for the abandoned calls.

Finally, providing delay information affects the impatient callers more than the patient ones.

Under the reversed strict priority policy, the abandonment rate of the high priority callers is not

affected significantly from the delay information. In contrast, the change in the abandonment rate

of the low priority callers under the strict priority policy is more significant. Recall from the es-

timation results in Section 4.2 that the low priority callers are less patient than the high priority

callers. Therefore, they are more sensitive to the delay information and, consequently, their be-

havior changes more significantly. To clarify this point, we illustrate in Figure 8 the abandonment

probability of the high and low priority callers under the reversed strict priority policy and the

strict priority policy, respectively. Figure 8 shows that under delay information the abandonment

probability of the low priority callers increases faster as the system gets congested. As can be seen

in Figure 8, for the no information case the graphs for the high and low priority callers have roughly

the same slope. However, for the full information case, the slope of the graph of the low priority

callers is steeper initially than that of the high priority callers. This confirms the fact that that the

low priority callers are more sensitive (and more responsive) to delay information as the congestion

in the system builds.
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Figure 8: The abandonment probability for the no information and full information cases for the high priority callers
under the reversed strict priority policy and the low priority callers under the strict priority policy.

7 Concluding Remarks

This paper introduces a modeling framework to study the impact of delay announcements in a

multi-class call center. A model for callers’ abandonment behavior under delay announcement is

developed where callers’ decisions are endogenous to their anticipation of the chances of receiving

service and their parameters such as the reward from receiving service and the waiting cost. Callers’

reward and cost parameters are estimated from the call center data using maximum likelihood es-
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timation. Callers anticipate the service probabilities based on the information contained in the

announcements. This gives the call center manager an instrument to affect callers’ anticipation

and as a result their abandonment behavior by changing the information in the announcements.

A change in callers’ behavior affects the evolution of the system. Analyzing this effect requires

an extensive queueing analysis which we perform in our setting using a Markovian approximation.

In particular, using callers’ positions in the queue and the type of announcement they received,

we compute their probability of abandonment. Then, we model the system as a birth-and-death

process with state dependent abandonment rates, which facilitates the derivation of steady-state

probabilities and waiting time distributions.

To illustrate the impact of delay information, a comparison is made between different levels of

information granularity under different priority policies. For each case, we solve a set of non-linear

equations to find the equilibrium in steady-state of the system. We show that callers indeed react

to delay announcements and that providing delay information helps them make better decisions.

We find that providing delay information does not significantly affect the aggregate statistics such

as the average waiting times and abandonment rates. However, when callers suffer from poor ser-

vice, providing information induces the callers who are impatient and would eventually abandon, to

leave the system sooner. This results in a lower average waiting time for the abandoned calls, and

presumably, a higher customer satisfaction. We also find that impatient callers are more sensitive

to delay information in the sense that their behavior may change more prominently than that of

the patient callers.

In future work, it would be interesting to explore the application of the proposed framework to

other service systems where delay information is shared with customers, e.g. health care services.

Investigating the robustness of the results to different types of delay announcements, and in dif-

ferent call center operating environments is another direction to pursue. For example call centers

with more than two classes and with dynamic priority policies can be analyzed.

Lastly, this paper does not prove the existence and uniqueness of the equilibrium. These ques-

tions are tackled rigorously in Ata et al. (2015) and Ata and Peng (2015) for the case with no delay

announcement. It would be interesting to investigate these questions under delay announcements

too.
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Online Appendix for “Impact of Delay Announcements
in Call Centers: An Empirical Approach”

A Illustrating the Impact of Delay Announcements in the Data

In this section, we illustrate the impact of delay announcements on callers’ abandonment behavior

observed in the data using the Cox regression analysis (Hosmer et al. (2008)). The Cox regres-

sion analysis can be used to find the impact of a set of covariates (independent variables) on the

hazard rate of customers’ survival time distribution. In this paper, we are interested in customers’

abandonment behavior. Consequently, we consider customers’ abandonment times as their survival

times.

Suppose that hi(t) is the hazard rate of the abandonment time distribution for caller i with

the set of independent variables Xi. The vector Xi includes variables that may impact the caller’s

abandonment behavior, e.g. the announcement messages. In the Cox regression analysis we assume

that

hi(t) = h0(t) exp(Xiβ
T ), (43)

where h0(t) is the baseline hazard function that can be any function of t as long as h0(t) >

0. The function h0(t) does not have to be specified. The vector β is the vector of coefficients

of the independent variables, which captures the impact of the independent variables on callers’

abandonment hazard rates. Note that the exponent term in (43) does not involve a time variable.

Consequently, the ratio of hazard functions of two callers does not depend on time and h0(t). To

be more specific, the ratio of hazard function of callers i and j is given by

hi(t)

hj(t)
= exp((Xi −Xj)β

T ). (44)

As can be seen in (44) in the Cox regression analysis it is assumed that the ratio of hazard functions

of two callers only depend on the difference between their independent variables. This assumption

is called the proportional hazard rate assumption. Next, we explain the set of independent variables

and present the regression results.

Recall that each announcement message has two parts. The first part is the relative position in

the queue, which is an integer value between 1 and 3. The second part is the waiting time of the

longest waiting caller. As explained in Section 3, we discretize the values for the second part to

six intervals: [0,10], [11,30], [31,90], [91,210], [211,480] and [481,2700]. Consequently, we have the

total of 18 announcement messages. We order the announcement messages lexicographically based

on the first part and the second part of the message; and label them with indices from 1 to 18. For

example, the index for the announcement message with first part=3 and second part=[0,10] is 13.

Note that an announcement message with a higher index indicates a longer delay.

Denote by a1 =
[
ai1

]
the vector of the indices of the announcement messages callers heard upon
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arrival, where i indexes different callers. Moreover, for k ≥ 2 denote by ak =
[
aik

]
the vector of the

differences between the indices of the announcement messages callers receive at 60k seconds and

60(k − 1) seconds. As explained in Section 3 we focus on calls with waiting times less than 600

seconds, consequently, the maximum number of announcement messages a caller may receive is ten

and k ≤ 10. Note that if aik is positive then caller i’s expected delay announced at 60k seconds is

higher than the delay announced at 60(k − 1) seconds, which indicates a deteriorating condition.

This situation can occur for the low priority callers who are passed by some high priority callers

because of 90 seconds advancement in the priority policy. Let L denote the dummy variable for the

low priority group, Arate denote the arrival rate at the contact time, and th; 9 ≤ h ≤ 14 denote

the dummy variable for time of the day. The variable th is equal to 1 if the caller contacts between

h : 00 and h+1 : 00. The set of independent variables in the Cox regression is: X = (al; 1 ≤ l ≤ k,

L, Arate and th; 9 ≤ h ≤ 14).

We first perform a standard Cox regression and observe the main independent variables (al; 1 ≤
l ≤ k) do not satisfy the proportional hazard rate assumption that is made in the Cox regression

analysis, given the time dependent nature of these covariates; see Hosmer et al. (2008), Chapter

6.3, page 205 for details of the proportional hazard test. We verify that these variables are indeed

time varying by including interaction terms with time for each one of these variables that fail the

proportional hazard test while being significant, and performing the Cox analysis with these inter-

action terms. For the main independent variables that are significant, their interactions with time

are also significant confirming that the hazard rates are not proportional. We do not report these

results for brevity here, however note that the results in this regression qualitatively parallel our

final results reported below.

Based on these observations we consider an analysis where we split the data and perform a

separate Cox regression on each split. More specifically, to find the impact of the announcement

messages on callers’ abandonment behavior between 60(k − 1) seconds and 60k seconds from ar-

rival, we focus on callers that hear the kth announcement message at 60(k − 1) seconds but either

abandon or enter service before hearing the next announcement message at 60k seconds. For this

group of callers, we run a Cox regression on al; 1 ≤ l ≤ k, L, Arate and th; 9 ≤ h ≤ 14. All of these

regressions satisfy the proportional hazards assumption and show significant impact of announce-

ments (again not reported for brevity), paralleling our main results below. These results suggest

that doing a stratified Cox regression (see Hosmer et al. (2008) Chapter 7) where we consider each

split described above as a stratum in our analysis is appropriate and furthermore this will enable

us to use all of the data in one regression.

To do the stratified Cox regression we define Gstrata as our strata variable, which is equal to

k for callers who hear the kth announcement message at 60(k − 1) seconds but either abandon or

enter service before hearing the next announcement message at 60k seconds. In the stratified Cox

regression, we allow different strata to have different baseline hazard rates. In our context, this cor-

responds to estimating a different baseline hazard for callers who hear one additional announcement

as we move from Gstrata = 1 to Gstrata = 10 (recall that the maximum number of announcement
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messages a caller may receive is ten). Let hk(t) denote the hazard rate of the abandonment time

distribution for callers whose Gstrata is equal to k (i.e. are in the kth stratum). The function hk(t)

has the following form:

hk(t) = h0k(t) exp(XβT ), (45)

where h0k(t) is the baseline hazard function for callers in the kth stratum. As can be seen in (45),

we assume that callers in different strata have different baseline hazard function, but the same

coefficients for the independent variables. Table 9 reports the results of this analysis.

Table 9: The results of the stratified Cox regression.

Variable Coefficient (Std. Err.)

a1 0.1758 *** (0.0023)

a2 0.0526 *** (0.0062)

a3 0.0324 *** (0.0118)

a4 0.0371 ** (0.0198)

a5 0.0458 (0.0316)

a6 0.0491 (0.0620)

a7 -0.0741 (0.0745)

a8 0.1703 ** (0.0978)

a9 0.0901 (0.3227)

a10 0.7483 *** (0.1917)

L 0.4889 *** (0.0172)

Arate 0.0137 *** (0.0005)

t9 0.0622 *** (0.0309)

t10 0.0327 (0.0280)

t11 0.0925 *** (0.0304)

t12 0.0698 *** (0.0331)

t13 -0.0455 (0.0321)

t14 -0.0083 (0.0311)

a *** and ** denote statistically signifi-

cant at 0.05 and 0.10, respectively.
b Stratified by Gstrata

As can be seen in Table 9, the coefficient for a1 (the index of the first announcement) is significant

and positive. This shows that callers who hear a longer delay announced upon arrival abandon

earlier. Similarly, the coefficients for a2, a3, a4, a8 and a10 are positive and significant. Note that

these variables capture the incremental change in the announcement index, which are positive if

the caller is informed of a deteriorating situation. Consequently, the regression results show that

callers who see a deteriorating delay condition abandon earlier. Moreover, the coefficient for L and

Arate are positive and significant, which shows that the low priority callers, and callers who arrive

when the system is more congested abandon earlier. We qualitatively obtain the same significance

and directional results in all models considered (Cox regression with time interaction terms and

Cox regression separately run on each split (stratum)).
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B Proofs

Proof of Proposition 1. Suppose that caller i’s announcement history is Hk. We first derive the

formula for choice probabilities PHkit (dit; ri, ci), and then the recursive formula for the integrated

value function VHk(t, ri, ci) for t ∈ {kL, ..., (k + 1)L− 1}.
Recall that caller i takes action dit if the utility of choosing dit is higher than the utility of

taking the reverse action, 1− dit, that is

uHk(t, ri, ci, εit(dit), dit) = vHk(t, ri, ci, dit) + εit (dit)

> vHk(t, ri, ci, 1− dit) + εit (1− dit)

= uHk(t, ri, ci, εit(1− dit), 1− dit).

Therefore, we have

PHkit (dit; ri, ci) =

∫ ∫
I{εit(dit)−εit(1−dit)>vHk (t,ri,ci,1−dit)−vHk (t,ri,ci,dit)}

× g(εit(0))g(εit(1))dεit(0)dεit(1). (46)

We assume that the idiosyncratic shocks have i.i.d type-I extreme value distribution with scale

parameter 1 and location parameter α ∈ R with the probability density function exp(−(ε(d) −
α)) exp(− exp(−(ε(d)−α)) for d = 0, 1. As will be seen below, for technical convenience we will set

α = −γ, where γ is Euler’s constant. From (46), by Section 5.2 in Ben-Akiva and Lerman (1985),

and the fact that vHk(t, ri, ci, 1) = 0, we obtain the formula for the choice probability as follows

PHkit (dit; ri, ci) =
exp
(
vHk(t, ri, ci, dit)

)
exp

(
vHk(t, ri, ci, 1)

)
+ exp

(
vHk(t, ri, ci, 0)

)
=

exp
(
vHk(t, ri, ci, dit)

)
1 + exp

(
vHk(t, ri, ci, 0)

) . (47)

We next derive the integrated value function for two cases: t 6= (k+1)L−1 and t = (k+1)L−1.

As the first case, suppose that t 6= (k+ 1)L− 1. Recall from (4) that the integrated value function

is given by

VHk(t, ri, ci) = E
[

max
d∈{0,1}

uHk(t+ 1, ri, ci, εi(t+1)(d), d)

]
,

where the expectation is taken over the distribution of εi(t+1)(1) and εi(t+1)(0). By Section 5.2

in Ben-Akiva and Lerman (1985), maxd∈{0,1} u(t + 1, ri, ci, εi(t+1)(d), d) has type-I extreme value

distribution with scale parameter 1 and location parameter α+ log(ev1 + ev0), where vq = vHk(t+
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1, ri, ci, q), q = 0, 1. Therefore, we have

VHk(t, ri, ci) = E
[

max
d∈{0,1}

uHk(t+ 1, ri, ci, εi(t+1)(d), d)

]
= α+ log(ev1 + ev0) + γ. (48)

For technical convenience, we assume that the location parameter for the distribution of the id-

iosyncratic shocks α is equal to −γ. Then, by definitions of v1 and v0 and (48), it follows that

VHk(t, ri, ci) = log
(

1 + exp
(
vHk(t+ 1, ri, ci, 0)

))
, t 6= (k + 1)L− 1. (49)

As the second case, suppose that t = (k + 1)L − 1. Note that the caller receives a new

announcement in the next period. Caller’s announcement history in the next period will be Hk+1

with probability aHk+1
/aHk , where Hk+1 is concatenation of Hk with j ∈ {1, ..., J}. Consequently,

the integrated value function, which is the expected maximum utility in the next period, is given

by

VHk(t, ri, ci) =
∑

Hk+1|Hk

aHk+1

aHk
E
[

max
d∈{0,1}

uHk+1
(t+ 1, ri, ci, εi(t+1)(d), d)

]
. (50)

From (48) and (49), for t+ 1 = (k + 1)L, we have

E
[

max
d∈{0,1}

uHk+1
(t+ 1, ri, ci, εi(t+1)(d), d)

]
= log

(
1 + exp

(
vHk+1

(t+ 1, ri, ci, 0)
))
. (51)

By substituting (51) in (50), we obtain

VHk(t, ri, ci) =
∑

Hk+1|Hk

aHk+1

aHk
log
(

1 + exp
(
vHk+1

(t+ 1, ri, ci, 0)
))
, t = (k + 1)L− 1. (52)

If Hk is a terminal history, then by definition all callers enter service or abandon by THk . Therefore,

no caller enters service after THk which means that the expected future value of waiting is zero at

THk . Consequently, we assume that VHk(THk , ri, ci) = 0.

Lemma 1. The solution for bh(n) = λh min((n+ bh(n) + 1)/λ, τ) is given by

bh(n) =

 λhτ if n ≥ λlτ − 1,

λh

λl
(n+ 1) if n < λlτ − 1.

Proof. We consider two cases: 1)(n+ bh(n) + 1)/λ ≥ τ and 2)(n+ bh(n) + 1)/λ < τ .

Case 1. Suppose that (n+bh(n)+1)/λ ≥ τ . Then, bh(n) = λh min((n+bh(n)+1)/λ, τ) = λhτ .

Consequently, by the assumption for case 1, we should have (n+ λhτ + 1)/λ ≥ τ . Thus, we should

have n+ 1 ≥ λτ − λhτ = λlτ . Hence, if n ≥ λlτ − 1, then bh(n) = λhτ .

Case 2. Suppose that (n + bh(n) + 1)/λ < τ . Then, bh(n) = λh min((n + bh(n) + 1)/λ, τ) =

λh(n + bh(n) + 1)/λ. Solving for bh(n), we obtain bh(n) = (n + 1)λh/λl. Consequently, by the
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assumption for case 2, we should have (n + (n + 1)λh/λl + 1)/λ < τ . It is easy to check that this

inequality is equivalent to n < λlτ − 1. Hence, if n < λlτ − 1, then bh(n) = (n + 1)λh/λl. This

completes the proof.

C A Monte-Carlo Experiment

We use the Monte-Carlo experiments to test the capability of our estimation method to identify the

true parameters of the callers. To conduct these experiments, we first generate simulated data sets

considering certain values for the structural parameters. We refer to these values by true values.

Next, we estimate the parameters of the simulated data sets and construct the 95% confidence

intervals.

We consider the following true values for the structural parameters: mr = 1.85, mc = −2.20,

σr = 0.35 and σc = 0.20, which correspond to the mean of the reward parameter, the standard

deviation of the reward parameter, the mean of the cost parameter and the standard deviation of

the cost parameter equal to 6.49, 1.33, 1.36 and 3.29, respectively. We use the service probabilities

πHk(·) and the probability of announcement histories aHk corresponding to the high priority callers

in the data for our simulated data generation procedure. We generate 50 simulated data sets which

have the same number of observations as the number of the high priority callers in our data set.

To simulate the abandonment behavior of simulated caller i, we draw y1i and y2i from the

standard normal distribution. We find ri and ci using the assumed true values for the structural

parameters. Given ri and ci, we calculate the integrated value functions and abandonment proba-

bilities for all announcement histories and at all periods.

Having the service probabilities πHk(t), the abandonment probabilities PHkit (dit; ri, ci) and the

probabilities of the announcement histories aHk allows us to simulate what announcement caller i

receives and whether she enters service or abandons the queue.

Table 10 shows the mean, standard deviation, upper and lower bounds of the 95% confidence

intervals for the estimated parameters of the simulated data sets. These results as well as a series of

extensive Monte-Carlo experiments (available from the authors) show that our estimation method

can recover the true parameter values from the data.

Structural parameter mr σr mc σc

True value 1.850 0.350 –2.200 0.200

Mean (Simulated data) 1.845 0.348 –2.218 0.218

Standard deviation (Simulated data) 0.010 0.015 0.033 0.080

Upper bound of the 95% confidence interval 1.865 0.376 –2.153 0.376

Lower bound of the 95% confidence interval 1.824 0.319 –2.283 0.061

Table 10: Results of the Monte-Carlo experiment.
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D Improving the State Space Collapse Approximation for Cases

with Large Abandonment Rates

In this appendix, using a series of simulation analyses we show that the state space collapse ap-

proximation may have a poor performance for cases with large abandonments. To be more specific,

for cases with large abandonments, the individual number of the high and low priority callers (nh

and nl) given the total number of callers in the queues (n = nh + nl) that are calculated using

(16) may not be accurate. To address the inaccuracy of the state space collapse approximation, we

propose an approach to change the solution in (16) by introducing a fudge factor for the amount

of advancement of the high priority callers τ . This effectively changes the split of n between nh

and nl. Although there are many ways to do this, adjusting τ in (16) is perhaps the simplest such

approach as it lends itself to a one-dimensional search to fine tune our Markovian approximation.

This approach is outlined not only for cases with exogenous abandonment time distributions, but

also for cases in our counterfactual analysis where callers’ abandonment behavior is endogenous

and follows an optimal stopping model.

We performed an extensive simulation study to examine the accuracy of the Markovian approx-

imation outlined in Section 5.1. We simulated the system for different specifications that include

different arrival rates, service rates, priority policies and abandonment time distributions. For each

specification used in the simulation, we calculated callers’ average waiting times and abandonment

rates from the simulation and compared them to those obtained from using the Markovian approx-

imation. Due to space limitation, we only report results from two cases described below; results

for the other cases are qualitatively similar.

Case 1. A system with two priority classes (high and low), where the high priority callers are

advanced by τ = 90 seconds. There are 5 agents. The arrival process is Poisson with rates

55.80 (/hr) and 28.80 (/hr) for the high and low priority groups, respectively. The service

times are exponentially distributed with rates 19.44 (/hr) and 16.56 (/hr) for the high and

low priority groups, respectively. The abandonment times for the high and low priority callers

have exponential distributions with rates 6.84 (/hr) and 15.48 (/hr), respectively.

Case 2. A system with the same setting as Case 1 except that the abandonment times for the high

and low priority callers have exponential distributions with rates 0.14 (/hr) and 0.31 (/hr),

respectively.

Table 11 shows the comparison of the approximation and simulation results for Cases 1 and 2. Note

that because the rates of the abandonment time distributions in Case 2 are smaller than those in

Case 1, the abandonment rates (P(A)) of the callers in Case 2 are smaller than those in Case 1.

The averages of the relative errors across all statistics in Table 11 for Case 1 and Case 2 are 8.33%

and 4.33%, respectively. This shows that the accuracy of our Markovian approximation decreases

if callers’ abandonment rate increases. Next, we explain the reason for this.

Table 12 shows the comparison of the approximation and simulation results for the expected
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Case 1
High priority Low priority

P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Approximation results 7.73% 40.68 38.34 68.65 23.20% 53.96 47.84 74.23

Simulation results 9.10% 47.13 44.49 73.54 23.84% 55.27 46.74 82.53

Relative error 15.02% 13.69% 13.83% 6.65% 2.66% 2.36% 2.35% 10.05%

Case 2
High priority Low priority

P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Approximation results 1.50% 395.75 395.39 419.21 3.88% 450.88 451.83 427.49

Simulation results 1.60% 406.85 406.18 449.06 4.08% 465.05 465.64 451.00

Relative error 6.06% 2.73% 2.66% 6.65% 4.87% 3.05% 2.97% 5.21%

Table 11: Comparison of the average waiting times and abandonment rates for the approximation and the simulation
for Case 1 and Case 2.

number of callers in the system E(N), the expected number of callers in the queues E(nh+nl), and

the expected ratio of the high priority queue length and the total queue length given that the queue

is not empty E(nh/(nh+nl)|nh+nl > 0). As can be seen in Table 12, the approximation errors for

Case 1 E(N) E(nh + nl) E(nh/(nh + nl)|nh + nl > 0)

Approximation results 5.21 1.09 0.50

Simulation results 5.33 1.17 0.62

Relative error 2.16% 6.68% 19.35%

Case 2 E(N) E(nh + nl) E(nh/(nh + nl)|nh + nl > 0)

Approximation results 14.66 9.95 0.62

Simulation results 14.72 10.01 0.63

Relative error 0.43% 0.58% 1.59%

Table 12: Comparison of E(N), E(nh + nl) and E(nh/(nh + nl)|nh + nl > 0) resulted from the approximation and
the simulation for Case 1 and Case 2.

E(N), E(nh +nl) and E(nh/(nh +nl)|nh +nl > 0) are higher for the case with larger abandonment

rates (Case 1). In addition, for Case 1 the errors in approximating E(N) and E(nh + nl) are less

than 7%, but the error in approximating E(nh/(nh+nl)|nh+nl > 0) is around 20%. This suggests

that for cases with large abandonments, even though the performance of the approximation in

capturing the total number of callers in the queues is acceptable, its performance in capturing the

individual number of the high and low priority callers nh and nl in the queues can be poor.

Recall that in Section 5.1, we use the state space collapse approximation to find the number of

the high and low priority callers (nh, nl) given the total number of callers in the queues (n = nh+nl)

by solving equation (15). However, this approximation may not be suitable for cases with large

abandonments. Note that the number of the high and low priority queues has a significant impact

on derivation of the waiting time distributions. Consequently, an inaccurate state space collapse

approximation may lead to a poor approximation of the waiting times and abandonment rates.

We adjust the calculation in the state space collapse approximation such that E(nh/(nh +

nl)|nh+nl > 0) in the approximation matches that of the simulation. This ensures that on average

the (nh, nl) pair resulted from the approximation matches the pair in the simulation. Recall that

the solution of the state space collapse approximation is given by (16). We can adjust the solution

formula by changing either the arrival rates to the system (λh and λl), or the amount of the

high priority callers’ advancement τ . Finding the proper amount of adjustment requires a search
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procedure which is easier to conduct on one dimension. Therefore, we propose to adjust the solution

formula by substituting the amount of the high priority callers’ advancement τ with τ + ∆τ , where

∆τ is a fudge factor. Given that we only want to adjust the solutions of the state space collapse

approximation, we do not change the amount of the high priority callers’ advancement in other

parts of the Markovian approximation.

Denote by ∆̂τ the fudge factor for which E(nh/(nh + nl)|nh + nl > 0) in the simulation and

approximation match closely.19 For the call center that we have its data, policies with τ = −1800

and τ = 1800 resemble the reversed strict and strict priority policies, respectively. Consequently,

to find ∆̂τ , we start from ∆̂τ = −1800 and increase it until E(nh/(nh + nl)|nh + nl > 0) in the

approximation matches that of the simulation closely. Using this procedure, we find the values of

∆̂τ for Case 1 and 2 that are −60 and −90, respectively. Table 13 shows the comparison of the

approximation and simulation results for Case 1 and 2 after adjusting the calculation in the state

space collapse approximation results. The average of the relative errors across all statistics in Table

13 for Case 1 and Case 2 are 3.96% and 3.25%, respectively, which are less than the averages of

the relative errors in Table 11.

Case 1
High priority Low priority

P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Approximation results 8.55% 47.82 45.85 68.93 24.22% 54.80 48.33 75.06

Simulation results 9.10% 47.13 44.49 73.54 23.84% 55.27 46.74 82.53

Relative error 6.03% 1.46% 3.05% 6.27% 1.58% 0.85% 3.40% 9.05%

Case 2
High priority Low priority

P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Approximation results 1.53% 402.17 401.90 419.98 3.91% 455.19 456.22 430.06

Simulation results 1.60% 406.85 406.18 449.06 4.08% 465.05 465.64 451.00

Relative error 4.53% 1.15% 1.05% 6.48% 3.97% 2.12% 2.02% 4.64%

Table 13: Comparison of the average waiting times and abandonment rates for the approximation and the simulation
for Case 1 and Case 2 after adjusting the state space collapse approximation results by setting ∆̂τ at −60 and −90,
respectively.

Note that in Cases 1 and 2, callers’ abandonment time distributions are exogenously given.

However, in our counterfactual analyses in Section 6, we find the system equilibrium, where callers

make their abandonment decisions based on an optimal stopping model. To find ∆̂τ for the cases

in Section 6, we run a one dimensional search using the following procedure:

Step 0. Initialization: set ∆τ = −1800.

Step1. State space collapse approximation: for n ≥ 1, set nh = max(0, [(n−λl(τ + ∆τ))/(λl/λh+

1)]) and nl = n− nh.

Step 2. Markovian approximation:

Step 2.1. Solve the equilibrium equations given the state space collapse results in the pre-

vious step, and that the high priority callers’ advancement is τ .

19That is, the difference between E(nh/(nh + nl)|nh + nl > 0) in the simulation and approximation is less than 0.001.
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Step 2.2. Calculate the expected ratio of the high priority queue length to the total queue

length given that the queue is not empty resulted from the approximation denoted by

Eapp.(nh/(nh + nl)|nh + nl > 0), and callers anticipated waiting time distributions for

different announcement partitions given by F h(t;Ahjh) and F l(t;Aljl).

Step 3. Simulation:

Step 3.1. Simulate the system considering the same setting as that in the approximation

(i.e. the same callers’ parameters, arrival rates, service rates, number of agents, an-

nouncement partitions and the high priority callers’ advancement τ) and assuming that

callers’ expectations about their waiting time distribution are F h(t;Ahj ) and F l(t;Ahj ). In

the simulation, callers’ abandonment decisions are modeled using the optimal stopping

model in Section 4.

Step 3.2. Calculate the expected ratio of the high priority queue length to the total queue

length given that the queue is not empty resulted from the simulation denoted by

Esimul.(nh/(nh + nl)|nh + nl > 0).

Step 4. If | Eapp.(nh/(nh + nl)|nh + nl > 0)- Esimul.(nh/(nh + nl)|nh + nl > 0) |<0.001 then set

∆̂τ = ∆τ and go to Step 5. Otherwise, replace ∆τ with ∆τ + 1 and go to Step 1.20

Step 5. Report callers’ average waiting times and abandonment rates derived using the approxi-

mation.

E Comparison of the Prediction Performance of the Optimal Stop-

ping Model with a Simpler Myopic Model

In this section we compare the prediction performance of our stopping time model with a simpler

myopic model for callers’ abandonment behavior, referred to as the straw-man model. In this model

callers do not solve a dynamic program, but simply compare the following utilities while making

decision in period t:

− Utility from waiting given by r − c E[W | Announcement message history] + ε0

− Utility from abandonment given by 0 + ε1

where ε0 and ε1 are type-I extreme value shocks and E[W |Announcement message history] is the

expected delay given the announcement history. If there were no shocks added to the utilities, a

caller would abandon if r/c is less than the expected delay E[W |Announcement message history] .

20Given that the solutions of the state space collapse approximation are integer numbers, the change in Eapp.(nh/(nh +
nl)|nh + nl > 0) across subsequent iterations is not a continuous function of ∆τ , and consequently, there is the possibility of
not achieving the stopping tolerance (in our extensive analyses for different cases, we always could achieve the tolerance. But
theoretically there could be a case that we could not achieve it). For these cases, we find | Eapp.(nh/(nh + nl)|nh + nl > 0)-
Esimul.(nh/(nh + nl)|nh + nl > 0)| for all values of ∆τ between -1800 and 1800 and choose the one that corresponds to the
lowest absolute difference as the fudge factor.
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We assume that callers are heterogeneous in their parameters. Consequently, callers have different

reward and cost ratios. Under the assumption that the random shocks have type-I extreme value

distributions, the abandonment probability in this model takes the form of Logit probabilities

similar to the probabilities in our optimal stopping model. However, the fundamental difference is

that in the straw-man model callers do not take it into account that they may abandon in later

periods. In contrast, our stopping time model includes the expected future utility that stems from

all future (optimal) decisions.

To test which model (our stopping time model, or the straw-man model) can predict callers

abandonment behavior better, we performed out of sample tests on calls between 9 am and 12 pm,

and calls between 12 pm and 4 pm. The summary statistics of the data subsets are shown in Table

14.

Subset Average waiting time (sec.) Abandonment rate

High priority (9 am-12 pm) 88.40 18.42 %

High priority (12 pm-4 pm) 94.96 17.44 %

Low priority (9 am-12 pm) 103.45 33.18 %

Low priority (12 pm-4 pm) 104.21 33.16 %

Table 14: Average waiting times and abandonment rates of the callers in the data subsets used in the out of sample
tests.

As can be seen in Table 14, the difference between callers abandonment behavior in the subsets

of the high priority data is higher than the difference between the subsets of the low priority data.

So we anticipate the predictions for the low priority group to be easier, and hence, more accurate.

The relative and absolute errors in predicting the abandonment rates for different combinations

of the training and test data for the high and low priority classes are shown in the following tables.

Training set Test set Optimal Stopping Model Straw-man Model

High priority (9 am-12 pm) High priority (12 pm-4 pm) 2.43 % 3.97 %

High priority (12 pm-4 pm) High priority (9 am-12 pm) 0.68 % 1.32 %

Average across all tests 1.56 % 2.65 %

Table 15: Comparison of the absolute errors in predicting the abandonment rates for the optimal stopping model
and the straw-man model for the subsets of the high priority callers.

Training set Test set Optimal Stopping Model Straw-man Model

High priority (9 am-12 pm) High priority (12 pm-4 pm) 13.94 % 22.78 %

High priority (12 pm-4 pm) High priority (9 am-12 pm) 3.68 % 7.17 %

Average across all tests 8.81 % 14.98 %

Table 16: Comparison of the relative errors in predicting the abandonment rates for the optimal stopping model and
the straw-man model for the subsets of the high priority callers.
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Training set Test set Optimal Stopping Model Straw-man Model

Low priority (9 am-12 pm) Low priority (12 pm-4 pm) 2.61 % 2.60 %

Low priority (12 pm-4 pm) Low priority (9 am-12 pm) 3.79 % 4.06 %

Average across all tests 3.20 % 3.33 %

Table 17: Comparison of the absolute errors in predicting the abandonment rates for the optimal stopping model
and the straw-man model for the subsets of the low priority callers.

Training set Test set Optimal Stopping Model Straw-man Model

Low priority (9 am-12 pm) Low priority (12 pm-4 pm) 7.89 % 7.83 %

Low priority (12 pm-4 pm) Low priority (9 am-12 pm) 11.42 % 12.15 %

Average across all tests 9.65 % 9.99 %

Table 18: Comparison of the relative errors in predicting the abandonment rates for the optimal stopping model and
the straw-man model for the subsets of the low priority callers.

The results demonstrated in Tables 15-18 suggests the following points:

− If the test and training sets are very similar in terms of callers abandonment behavior (such

as in the low priority data subsets with very similar abandonment rates and average waiting

times), our model does weakly better than the straw-man model. In this case the difference

in prediction power between the two models is not high.

− If the difference between the abandonment behavior of the callers in the training and test sets

is more significant (such as in the high priority data subsets) our model does a better job in

predicting callers’ abandonment behavior.

This analysis suggests that our stopping time model has better prediction power.

F Validating Equilibrium Computation

We validate different blocks of our proposed equilibrium computation approach in different sections

of the paper (out-of-sample test to show the accuracy of our optimal stopping model in Section 4.2,

and simulation studies in the online Appendix D to show the accuracy of the Markovian approxi-

mation). Consequently, the equilibrium we compute by solving the system of equations presented

in Section 5.2 should not be far from the true equilibrium. We test this by performing a series of

simulation studies.

Figure 3 in Section 5 shows the building blocks of our equilibrium computation. The system is

in equilibrium state if waiting time distributions used in the derivation of the abandonment time

distributions (based on the model of callers abandonment behavior) match the waiting time distri-

butions derived from the Markovian approximation. We ensure this by imposing these conditions

as equality constraints that need to be met in equilibrium.

Our approach to verify that our computation yields the equilibrium via simulation is based

on the following observation: Our computational approach yields abandonment and waiting time

distributions. Consider simulating a queueing system, where callers are endowed with exogenous
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abandonment time distributions that are derived from our computation. The simulation yields

waiting time distributions for each class. If our computation indeed yields the equilibrium, then

the waiting time distribution and the corresponding summary statistics must be close to those from

simulation. We verify this by performing a series of simulation studies with the following steps:

Step 1. Compute the system equilibrium using our approach and find average waiting times and

abandonment rates.

Step 2. Simulate the call center assuming that callers abandon according to the abandonment

time distributions calculated in the previous step. We run the simulation 20 times for 200,000

callers in each simulation trial.

Step 3. Finally, we find the confidence intervals (CIs) for abandonment rates and average waiting

times resulted from 20 simulation trials. If abandonment rates and average waiting times

found in Step 1 fall within the confidence intervals, we conclude that the equilibrium computed

using our approach is close to the true equilibrium.

We performed this simulation study for the four announcement partitions in Tables 7 in Section

6: announcement partition with one subset (no information), announcement partition with two

subsets, announcement partition with three subsets and announcement partition with fourteen

subsets (full information). Tables 19-22 show abandonment rates and average waiting times found

using our equilibrium computation method and the simulation method as explained above. The

waiting times are in seconds.

Announcement partition High priority Low priority

with one subset (No inf.) P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Computation 10.20% 49.99 48.85 60.06 27.74% 57.40 55.69 61.93

Simulation (mean) 10.29% 50.34 49.28 59.54 26.77% 55.52 53.43 61.34

Simulation (st. dev.) 0.33% 0.39 0.41 0.26 0.58% 1.37 1.44 1.22

Upper bound of 95% CI 10.98% 51.16 50.14 60.09 27.98% 58.38 56.44 63.89

Lower bound of 95% CI 9.60% 49.52 48.42 58.99 25.56% 52.66 50.42 58.79

Table 19: Comparison of the results of the equilibrium computation method and the simulation for the case with an
announcement partition with one subset (no inf.).

Announcement partition High priority Low priority

with two subsets P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Computation 10.18% 49.93 48.91 58.99 27.54% 57.48 55.97 61.74

Simulation (mean) 10.25% 50.11 49.23 57.98 26.68% 55.43 53.48 61.00

Simulation (st. dev.) 0.36% 0.38 0.40 0.55 0.49% 1.27 1.39 0.89

Upper bound of 95% CI 11.01% 50.91 50.07 59.14 27.71% 58.09 56.39 62.78

Lower bound of 95% CI 9.49% 49.31 48.40 56.83 25.66% 52.77 50.57 59.13

Table 20: Comparison of the results of the equilibrium computation method and the simulation for the case with an
announcement partition with two subsets.
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Announcement partition High priority Low priority

with three subsets P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Computation 10.07% 48.48 48.03 52.49 26.66% 56.91 56.77 57.31

Simulation (mean) 10.14% 48.88 48.57 51.82 25.95% 54.83 54.32 56.32

Simulation (st. dev.) 0.35% 0.34 0.35 0.43 0.51% 1.15 1.32 0.94

Upper bound of 95% CI 10.88% 49.58 49.31 52.73 27.01% 57.24 57.09 58.28

Lower bound of 95% CI 9.40% 48.18 47.84 50.91 24.88% 52.42 51.56 54.35

Table 21: Comparison of the results of the equilibrium computation method and the simulation for the case with an
announcement partition with three subsets.

Announcement partition High priority Low priority

with fourteen subsets (Full inf.) P(A) E(W) E(W|S) E(W|A) P(A) E(W) E(W|S) E(W|A)

Computation 9.98% 47.37 47.09 49.84 26.10% 54.46 54.83 53.42

Simulation (mean) 10.00% 48.05 47.94 49.08 25.66% 52.60 52.77 52.13

Simulation (st. dev.) 0.35% 0.39 0.51 0.47 0.63% 1.11 1.25 0.97

Upper bound of 95% CI 10.74% 48.88 49.00 50.06 26.99% 54.93 55.39 54.15

Lower bound of 95% CI 9.26% 47.23 46.87 48.09 24.34% 50.27 50.14 50.11

Table 22: Comparison of the results of the equilibrium computation method and the simulation for the case with an
announcement partition with fourteen subsets (full inf.).

As can be seen in Tables 19-22 for all cases abandonment rates and waiting times calculated using

our equilibrium computation approach fall within the 95% confidence intervals. This suggests that

our equilibrium computation method can estimate the true equilibrium with acceptable accuracy.
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