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In cargo logistics, a key performance measure is transport risk, defined as the deviation of the actual arrival

time from the planned arrival time. Neither earliness nor tardiness is desirable for customer and freight

forwarders. In this paper, we investigate ways to assess and forecast transport risks using a half-year of air

cargo data, provided by a leading forwarder on 1336 routes served by 20 airlines. Interestingly, our preliminary

data analysis shows a strong multimodal feature in the transport risks, driven by unobserved events, such

as cargo missing flights. To accommodate this feature, we introduce a Bayesian nonparametric model – the

probit stick-breaking process (PSBP) mixture model – for flexible estimation of the conditional (i.e., state-

dependent) density function of transport risk. We demonstrate that using alternative methods can lead to

misleading inferences. Our model provides a tool for the forwarder to offer customized price and service

quotes. It can also generate baseline airline performance to enable fair supplier evaluation. Furthermore,

the method allows us to separate recurrent risks from disruption risks. This is important, because hedging

strategies for these two kinds of risks are often drastically different.
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nonparametric, probit stick-breaking mixture model
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1. Introduction

Global trade has grown considerably in recent decades; many companies now have overseas facilities

and supply chain partners. International cargo logistics management thus plays an increasingly

important role in the global economy. Air transport delivers goods, that are time-sensitive, expensive,
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perishable or used in just-in-time supply networks, at competitive prices to customers worldwide.

Indeed, air cargo transports goods worth in excess of $6.4 trillion annually. This is approximately

35% of world trade by value (IATA 2014b). This industry, including express traffic, is forecast by

Boeing to grow at an average 4.7% annual rate in the next two decades to reach a total of more

than twice the number of revenue tonne-kilometers (RTK) logged in 2013. However, attention paid

to this industry is surprisingly little: air cargo industry ‘.. has remained the poor cousin to the more

glamorous passenger side of the business (passenger air transport industry)’ (Morrell 2011).

The consequences of this neglect are significant as the service level of cargo transport has become

firms’ big concern. In cargo logistics, a key (service) performance measure is transport risk (or

delivery reliability), defined as the deviation of the actual arrival time from the planned arrival time,

transport risk = actual arrival time− planned arrival time.

Neither earliness nor tardiness is desirable for customer and freight forwarders. While tardiness

causes delay in production and product/service delivery to all downstream customers, earliness

incurs additional storage and handling costs. Extreme risks, such as more than 48 hour delays or

more than 24 hours earliness, is defined as (transport) disruption risks, because they severely impact

the operations of the customers and the freight forwarders. To distinguish disruption risks from

the routine deviations within a day, we refer to the latter as recurrent risks. According to a 2011

PRTM survey, 69% of companies named improving delivery performance as their top supply chain

management strategy. In a 2010 report of Infosys, “carrier delays and non-performance on delivery”

is ranked as the leading risk in the logistics industry. Furthermore, in a 2014 survey conducted by the

International Air Transport Association (IATA) to major freight forwarders and their customers,

low reliability is perceived as the second most important factor (next to transportation cost).

In this paper, we study the transport risks of international air cargo based on a half-year of

air cargo data between 2012 and 2013, provided by a leading forwarder on 1336 routes served

by 20 airlines. Using a Bayesian nonparametric (BNP) model – the Probit stick-breaking (PSBP)

mixture model — we obtain accurate estimates of transport risk distributions and disruption risk
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probabilities. Our model provides a tool for the forwarder to offer customized price and service

quotes. It can also generate baseline airline performance to enable fair supplier evaluation.

We make several contributions to the Operations Management (OM) and Transportation litera-

ture as outlined below.

1.1. Empirical Air Cargo Transport Risk Distribution

Our work appears to be the first empirical study of global air logistics in the supply chain literature.

One interesting phenomenon observed from the data is that the distribution of transport risk,

conditional on predictors (i.e., independent variables including airline, route, shipping time, cargo

weight etc), is a multimodal distribution, as shown in Figure 1. The left side of Figure 1 is the

Figure 1 Left — Histogram of transport risk in hours; Right — Histogram of positive transport risk in hours

empirical distribution of transport risks of all shipments observed in the data (almost 90 thousand

shipments), which, clearly, is a non-symmetric, long-tail distribution with several bumps at the

distribution’s positive part. To better observe the bumps, we only plot the data that falls in the

range (0, 150) on the right side of Figure 1. Here, we can see clearly that big bumps concentrate

around days (at 24 hours, 48 hours, and 72 hours, etc.) and small bumps concentrate between days.

These systematic peaks are largely due to the fact that a cargo that failed to be loaded onto its

scheduled flight was loaded onto a flight on the same route later. The scheduled gap between flights,
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which depends heavily on the route, for example, is usually around 24 hours for international flights

and several hours for domestic flights. The time gaps between scheduled flights thus transfer to the

gaps between different peaks in the conditional distribution of transport risk to form a multimodal

distribution; see §3 for more detail.

Previous empirical studies primarily focus on domestic passenger flight arrival or departure delays;

see Deshpande and Arikan (2012) for a review. Most of this literature assumes delays follow uni-

modal distributions, adopting linear models; e.g, Shumsky (1995) and Mueller and Chatterji (2002).

However, delay distributions exhibit clear multimodality, making linear models unsuitable for air

cargo transport risk assessment and prediction. The previous focus on linear models may have been

due to the use of data from the US Department of Transportation (DOT) collected at the level of

each flight. Our data are instead collected at the level of each cargo trip, including information on

a trip from the beginning to end, usually consisting of several connecting flights. Data on the full

trip allow us to explore new transport uncertainties not considered before. Specifically, we include

information on delays due to missed flights within transportation risk. The clear multimodality in

the full trip delay distributions motivates the new modeling approaches proposed in this paper.

However, the modeling methods we develop are not restricted to cargo transport risk but can also be

applied to other transport risks (e.g., passenger air transport). For an air passenger, the transport

risk is determined by when the passenger arrives at the destination. Passenger arrival time can be

different from the arrival time of the planned last flight since the passenger might miss the final

flight due to a delay of his/her previous flight or some errands at the connecting airport. From this

perspective, the passenger transport risk problem is similar to the cargo transport risk problem that

we study in this paper.

To our best knowledge, the closest work to ours is Tu et al. (2008). The authors studied the

departure push-back delay of flights using a model consisting of three parts accounting for season-

ality, daily trends and a residual error modeled by a mixture distribution with Gaussian kernels

and mixing weights fixed. The authors used the model to fit one year of data on flights originating
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from Denver International Airport and operated by United Airlines. However, the simplicity of their

model makes it inapplicable to our study with much more volatile transport risks (as explain above)

and also a much bigger data set containing cargo shipments to more than 200 airports operated by

more than 20 airlines in 95 countries. To accommodate this complexity and better fit our data, we

use a Bayesian nonparametric model. In extensive model comparisons with alternative models (see

Appendix §B.5 for more details), including a flexible mixture model generalizing Tu et al. (2008),

our model shows superior performance.

1.2. BNP Model and Conditional Distribution Function

Our second contribution is methodological. To accommodate the multimodal feature in the empir-

ical transport risk distribution, we introduce a state-of-the-art Bayesian statistics tool – the BNP

mixture model. To the best of our knowledge, no prior work has used related techniques in empirical

OM, which so far predominantly applies frequentist statistics, such as ordinary least square esti-

mation or maximum likelihood estimation, see, e.g., Deshpande and Arikan (2012), Li et al. (2014)

and the references therein.

Bayesian statistics has experienced rapid development in the past two decades accelerated by

ever-increasing computational power. Among these tools, BNP mixture models have become popu-

lar in the last several years, with applications in fields as diverse as finance, econometrics, genetics,

and medicine (refer to Rodriguez and Dunson (2011) for references therein). A nonparametric mix-

ture model can be expressed as follows: in the case where we are interested in estimating a single

distribution from an independent and identically distributed (i.i.d) sample y1, · · · , yn, observations

arise from a convolution

yj ∼
∫
k (· |ψ)G (dψ)

where k (· |ψ) is a given parametric kernel indexed by ψ (we use bold symbol to indicate vector),

and G is a mixing distribution assigned a discrete form

G (ψ) =
L∑
l=1

ωlδψl , where
L∑
l=1

ωl = 1 and ωl ≥ 0, ∀l= 1, · · · ,L
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and L can be finite or infinite. For example, assuming that G follows a Dirichlet process prior leads

to the well known Dirichlet process mixture model (Escobar and West 1995).

For our application, we adopt a specific BNP model — the PSBP mixture model, which was

formally developed in Rodriguez and Dunson (2011). This method is known for its flexibility, gener-

ality, and importantly, computational tractability. In addition, PSBP leads to consistent estimation

of any conditional density under weak regularity conditions as shown in Pati et al. (2013). Rodriguez

et al. (2009) used this technique to create a nonparametric factor model to study genetic factors

predictive of DNA damage and repair. Chung and Dunson (2009) applied this tool to develop a

nonparametric variable selection framework. Our model is designed to capture the transport risk

distribution characteristics in all ranges, covering both recurrent and disruption risks.

Particularly, we focus on modeling the conditional distribution of transport risks, within the PSBP

framework. Modeling the conditional distribution allows us to investigate the relationship between

transport risks and potential predictors, including airline, route, shipping time, cargo weight etc,

based on which we can further explore ways to improve transport reliability. We will explain this in

more details in §3.1.

To demonstrate the value of PSBP, we compare our transportation risk estimation with that

obtained from a naive linear model (see Equation (10) in Appendix §B.5.1 for details). We show

that the two methods deliver dramatically different results. For instance, the naive linear model

fails to capture the critical roles airlines play in transport service levels, and more importantly,

underestimates disruption risks, which can result in insufficient risk management strategies. We fur-

ther compare our model with two generalized and advanced alternative models: generalized additive

models (GAM) (see Equation (11) in Appendix §B.5.3 for details) and flexible mixture models (see

Equation (12) in Appendix §B.5.3 for details). Overall, our PSBP model shows a strong in-sample

and out-of-sample predictive power but is relatively heavy in computation time. For the detailed

model comparison, please refer to §3.5 and Appendix §B.5.
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1.3. Data-Driven Risk Assessment Tool

Our method suggests a powerful and general tool to help supply chain risk assessment, a topic

that has not received the attention it deserves. In particular, while supply chain risk management

is gaining increasing attention from both practitioners and academics, a recent McKinsey & Co.

Global Survey of Business Executives shows that “nearly one-quarter of firms say their company

doesn’t have formal risk assessment.” On the other hand, as articulated in Van Mieghem (2011),

managing risk through operations contains 4 steps: 1. identification of hazards; 2. risk assessment;

3. tactical risk decisions; 4. implement strategic risk mitigation or hedging. These four steps must

be executed and updated recurrently. Among the four steps, step 1 is more experience and context

based, which typically involves information from anecdotal records or long experience with the

specific business processes. Step 4 is more action-based, requiring detailed organizational design

and information systems to carry out the hedging strategies developed in step 3. These two steps

may not need quantitative methods. Steps 2 and 3, on the other hand, require rigorous analysis

and quantification, and therefore call for analytical research. While most of the supply chain risk

management literature focuses on the third step, which involves developing strategies for reducing

the probabilities of negative events and/or their consequences should they occur, this paper focuses

on step 2 – risk assessment.

Risk assessment involves estimation of two components: (a) risk likelihood, i.e., “the probability

that an adverse event or hazard will occur” and (b) risk impact, i.e., “the consequences of the

adverse event” (Van Mieghem 2011). The long-term expected risk is the integration of these two

parts. Kleindorfer et al. (2003) assess risk impact (part (b)) of catastrophic chemical accidents using

data collected by the Environmental Protection Agency. Kleindorfer and Saad (2005) presented a

conceptual framework for risk assessment and risk mitigation for supply chains facing disruptions.

Different from these studies, our work focuses on using statistical methods to accurately estimate the

risk likelihood (part (a)), which calls for more advanced scientific computation and analysis tools.

Correctly identifying hazards and assessing risk has important implications for the effectiveness of
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alternative management policies (Cohen and Kunreuther 2007). Our study shows that a careful risk

assessment is critical to developing tailored services for customers (i.e., shippers) of different types

and selecting service suppliers.

The transport risk studied in this paper resembles the random yield/capacity risks in manufac-

turing studied by many authors; see, e.g., Federgruen and Yang (2009), Wang et al. (2010). Also,

transportation disruption risk is an important type or component of random supply disruption risks

considered by Song and Zipkin (1996), Tomlin (2006), etc. While most of these authors focus on

risk mitigation strategies assuming a particular risk distribution, such as a Bernoulli distribution

for disruption risks, the Bayesian PSBP mixture model introduced here can be used to generate

empirical random yield distributions and disruption probabilities, when data are available.

The reminder of the paper is organized as follows: in §2, we give a brief introduction of the air

cargo logistics industry and its challenges, the data we used for this study and the research questions

we ask. In §3, we describe approaches for model selection, we introduce the PSBP mixture model

and the algorithm for posterior computation, and we compare our model with other models based

on goodness of fit and predictive performance. In §4 we explain the results. In §5 we propose several

applications of our model to design more efficient operational strategies. In §6, we conclude the

paper and discuss future directions. Appendix A contains data cleaning steps, and the tables and

figures illustrating the data. Appendix B contains certain algorithm details, model implementation

steps, model checking and comparison results. Appendix C contains estimation results and selected

figures.

2. Industry Background, Data Source, and Research Questions

Though a crucial part of global operations, the air cargo industry is less known to the public because

it operates behind the scenes. For this reason, in order to understand our model and analysis, it is

necessity to provide a brief background of the industry, which also explains the initial motivation

for the industry to develop a standardized Cargo 2000 process. Our data is Cargo 2000 standardized.
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2.1. Service Chain Structure

First, we examine the shipping process. Typically, an air cargo transport involves four parties:

shippers (e.g., manufacturers), freight forwarders (forwarders in short), carriers (i.e., airlines) and

consignees (e.g., downstream manufacturers or distributors); see Figure 2 for an illustration. These

Figure 2 Cargo flows from the shipper to the forwarder; then from the forwarder to the airline; then from the

airline to the same forwarder. In the end, the forwarder delivers the cargo to the consignee

four parties form a chain structure, usually called the air transport supply chain. A shipper initiates a

transaction by providing the forwarder company with “(1) origin/destination; (2) collection/delivery

date; (3) shipment details (cargo pieces, weight and volume); (4) shipper/consignee information; (5)

product/shipping service required”(IATA 2014a). Following their route map, the forwarder picks

up cargoes from the shipper at the required time, consolidating cargoes sharing the same route if

possible, and then sends cargoes to the selected airline at an origin airport. The airline takes charge

of cargoes until arriving at the destination airport. An airline might use a direct flight or 2 – 3

connecting flights based on the route map. The forwarder accepts cargoes at the destination, and

delivers them to consignees.

To simplify terms, we refer to both the shipper and the consignee as the “customers”. Customers

use forwarders in 90% of air cargo shipments. A forwarder is a service provider for its customers,

while it in turn uses airlines as service providers. Upon receiving a shipping request, a forwarder

sends a booking request to several airlines, choosing the most economic one that satisfies the agreed

upon timetable. Large forwarders typically reserve a certain percentage (e.g., 30%) of the total space

on most airlines, including passenger and cargo airlines.
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2.2. Cargo 2000 (C2K) Standards

To compete against integrators (service providers who arrange door-to-door transportation by com-

bining mode(s) of transportation, such as DHL, UPS etc.), Cargo 2000 (C2K) was founded by a

group of leading airlines and freight forwarder companies, “IATA Interest Group”, in 1997. This

initiative was designed to enable industry-wide participants to “provide reliable and timely deliv-

ery shipments through the entire air transport supply chain” (C2K Master Operating Plan (MOP)

Executive Summary(IATA 2014a)). Specifically, they developed a system of shipment planning and

performance monitoring for air cargo which allows proactive and realtime event processing and

control. Currently C2K is composed of more than 80 major airlines, forwarders, ground-handling

agents, etc (see Figure A.1 in Appendix for the current members of C2K). C2K Quality Manage-

ment System is implemented with two different scopes: Airport-to-Airport (A2A) and Door-to-Door

(D2D). In this paper, we focus on the A2A level shipments due to data constraints.

The following describes how C2K is used to create a shipping plan, and how airlines and forwarders

monitor, control, intervene and repair each shipment in real-time.

2.2.1. Plan After a carrier has confirmed requested capacity on planned flights, it creates an

A2A route map (RMP) and shares it with the forwarder. A RMP describes the path the shipment

follows, including flight information, milestones and the latest-by time for the fulfillment of mile-

stones along the transport chain. See Table A.1 and Figure A.2 in Appendix §A.2 for an illustration.

If a customer agrees on the plan, the RMP is set alive. Otherwise, modifications will be made until

agreement is achieved. Essentially, each route map is a combination of a station profile and mile-

stones. Station profiles, which contain information on the duration for completion of each process

step, are kept by forwarders and carriers. The milestones are defined by the C2K MOP.

2.2.2. Monitor, Control, Intervene and Repair After a route map is issued, the shipping

process is monitored against this map. The completion of every milestone triggers updates on both

the airline’s and forwarder’s IT systems. Any deviation from the plan triggers an alarm, which allows

for corrections to be taken by the responsible party in order to bring the shipment back on schedule.
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If necessary, a new RMP is made for the remaining transport steps. Meanwhile, an exception record

is entered into the system recording the necessary information such as time, location, and reasons.

See Table A.2 in Appendix §A.2 for an illustration.

2.2.3. Report At the end of the shipment process, a report, including whether or not the

delivery promise was kept and which party was accountable for the failure, is generated. This allows

the customers to directly compare the performance of their C2K enabled forwarders, carriers and

logistics providers.

2.3. Forwarder’s Frustration and Our Objectives

Even with current systems, the service level remains unsatisfying. As a result, forwarders risk loosing

customers even though forwarders have no direct control of A2A, which is the most uncertain part

of shipping. Questions for the forwarder to solve include: (1) how to predict transport risks so as

to prepare for risks and inform customers in advance and (2) how to improve transport reliability

in each route by selecting the best supplier? We aim to help address these questions. Suppose a

customer comes to the forwarder with a fixed route (origin-destination), time of shipping, weight and

volume of cargo. We aim to provide the forwarder with a distribution of transport risk conditional

on demand variables (route, month, cargo weight/volume) and decision variables (airline, number

of flight legs, planned duration, initial deviation time) with 95% uncertainty interval. See Table 1

for descriptions of these variables. Specifically, demand variables are determined by the shipper’s

demand requirement which can not be changed. On the other hand, the decision variable can

be chosen by the shipper at the time of purchasing shipping services. Based on this information,

an optimal route can be chosen to match the customer’s cost/utility function, providing different

options to different customers. Please refer to §5.1 for application illustration. Next, we elaborate

how the above mentioned demand and decision variables affect the transport risk.

2.3.1. Effect of Demand Variables 1. Route: service level differs dramatically across routes

depending on (a) supply-demand of air transport service and (b) congestion level and infrastructure

at visited airports. We use a route-level effect to absorb all these factors.



Shang, Dunson, Song: Big data Bayesian risk assessment
12 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Table 1 Potential predictors

demand variables

route (r) an origin-destination airport pair combination (captures all the fixed

effects on a particular route).

month (m) month when the shipping is finished

cargo weight (wgt) total weight of the cargo (kilograms)

cargo number-of-pieces (pcs) total number of pieces of the cargo (unit load)

decision variables

airline (a) the airline transported the cargo

number of legs (leg) number of connecting flights taken to arrival at destination

planned duration (dur) total time (days) planned to take to finish the transport

initial deviation (devstart) deviation (days) between actual and planned check-in time at airline

origin warehouse

2. Month: demand (e.g., holiday shipping) and weather (e.g., winter snow) both have a seasonal

trend, which results in different perceived air cargo transport service levels in different months. We

used the month, in which each shipment completes, as the predictor. Since shipments only take

1.7 days to complete on average, essentially identical results would be achieved using the month of

transport start.

3. Cargo weight and volume: each flight has a maximum weight and volume (cargo volume is

approximated by cargo pieces in this paper). Larger cargoes may be more likely to fail to be loaded

onto the scheduled flight due to (1) airlines overselling capacities and (2) changes of currently

available capacity, such as more luggage from passengers. However, larger cargoes are usually more

valuable, thus may have higher transport priority.

2.3.2. Effect of Decision Variables 1. Airline: transportation delays are expected to vary

substantially across airlines due to a wide variety of factors, and hence we added (1) the interaction

of airline and route and (2) the interaction of airline and number of legs into the model.
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2. Number of legs: number of legs increases the probability for a cargo to miss connecting flights,

so it is a strong predictor of transport risk.

3. Planned duration: even conditional on route, airline and number of legs, planned duration

differs greatly. This reflects cushions added to the shipping time.

4. Initial deviation: if the cargo is sent to the airline earlier than scheduled, it can be loaded onto

an earlier flight and otherwise the cargo might miss it’s planned flight. Before the trip starts, the

forwarder can use 0 as the default value to make transport risk prediction. As soon as the forwarder

has sent the cargos to the airline, a new prediction can be made with the new time information.

2.3.3. Other Potential Predictors There are other factors, such as price and weather, that

may also affect the risk distribution, but are not available in our data. Our model indirectly captures

these effects through allowing the distribution of risk to vary flexibly with the demand and decision

variables mentioned above. Different definitions of demand/decision variables can be adopted, such

as to replace our “route” with “path” (with connecting airports information). This can potentially

improve the predictive accuracy. However since our data is sparse and our major focus is to present

fundamental modeling details, we choose to retain our current settings while these specifics can be

easily modified in our model.

2.4. Data and Summary Statistics

Our data contain a leading freight forwarder company’s C2K standard air freight shipments from

October 2012 to April 2013. The data contain real-time milestone updates, similar to the data

shown in Table A.1 in Appendix §A.2, and route maps for each shipment. The last route map before

the shipment is used to measure risk. After cleaning (see Appendix §A.1 for cleaning steps), the

data include 86,149 shipments on 1336 routes operated by 20 airlines. Freights are shipped from 58

countries to 95 countries. In Appendix §A.3 are summary statistics. In sum, we observe that: (i)

European airlines, such as Lufthansa and KLM, play a significant role in the data; (ii) More than

50% of shipments are transported on routes served by more than 1 airline. For example, around 30%

of shipments are on routes served both by direct flights and 2-leg service; (iii) There are more than
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50% of shipments transported on routes where services of different legs are available. This confirms

the need for a careful assessment of the impact of different choices, which can lead to a higher utility

if service levels vary significantly.

3. Model

In this section, we explain the model in details. §3.1 provides motivation for estimating the condi-

tional distribution of transport risk and advantages of using the PSBP mixture model. The model

can be decomposed into two parts: mixture weight and mixture kernel, detailed in §3.2 and §3.3,

respectively. The Bayesian posterior sampling algorithm to estimate unknown parameters in weights

and kernels is presented in §3.4. We also discuss model selection and comparison in §3.5. Detailed

supplementary materials can be found in Appendix §B.

3.1. Conditional Risk Distribution

Figure 3 True data (histogram), PSBP predictive (solid curve) and naive linear model predictive (dashed curve)

mean conditional response density f̂(y | x). Left: route = Frankfurt to Shanghai, airline = KLM; Right:

route = London to Atlanta, airline = Delta. For the exact method to calculate predictive conditional

response density, please refer to §5.2.

The multimodal feature is not only present at the aggregate data level, see Figure 1, but also

at the granular level, such as each route or route-airline level. The histograms in Figure 3 show
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the empirical distributions on two sample routes served by two airlines. In order to make accurate

predictions and inferences based on such data, the first step is to choose a model flexible enough

to fit the data well. Usual choices of models for multimodal data rely on mixtures, e.g., mixtures of

Normal kernels, which are known to provide an accurate approximation to any unknown density.

We cannot rely on simple mixture models, as we are investigating the distribution of trans-

port risks conditional on demand and decision variables, including both categorical and continuous

predictors. This leads to a problem of conditional distribution estimation . One stream of lit-

erature on flexible conditional distribution estimation uses frequentist methods. Fan et al. (1996)

proposed a double-kernel local linear approach, and related frequentist methods have been consid-

ered by Hall et al. (1999) and Hyndman and Yao (2002) among others. The other popular choice

is a BNP mixture model. Muller et al. (1996) proposed a Bayesian approach to nonlinear regres-

sion, in which the authors modeled the joint distribution of dependent variable and independent

variables using a Dirichlet process mixture of Normals (Lo 1984, Escobar and West 1995). This

type of approach induces a model for the conditional distribution of the response through a joint

model for the response and predictors. Although such joint models are provably flexible, in practice

they can have clear disadvantages relative to models that directly target the conditional response

distribution without needing to model the high-dimensional nuisance parameter corresponding to

the joint density of the predictors. Such disadvantages include treating the independent variables as

random, while they are often designed variables (e.g., it seems unnatural to consider route or airline

as random), and relatively poor practical performance in estimating the conditional distribution.

We instead focus on direct modeling of the unknown conditional distribution of transport risk y

given predictors x = (x1, · · · , xp)
′
∈X (X is the sample space for the predictors x) without specifying

a model for the marginal of x. In our context, predictors x = {airline (a), route (r), month (m),

number of legs (leg), initial deviation (devstart), planned duration (dur), cargo weight (wgt), cargo

number of pieces (pcs)} (as specified in Table 1). In particular, we assume the transport risk y arises

from a convolution
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y | x∼
∫
k (y |ψ)Gx (dψ) (1)

where k (· |ψ) is a given parametric kernel indexed by parameters ψ (e.g., Normal kernel k (· |ψ)

is indexed by ψ =(mean, standard deviation)), and the mixing distribution Gx is allowed to vary

flexibly with predictors x ∈ X . The typical form in the BNP literature (refer to Rodriguez and

Dunson (2011) for references) lets

Gx =
L∑
l=1

ωl (x) δψl(x), where
L∑
l=1

ωl (x) = 1 and ωl (x)≥ 0 (2)

where the atoms {ψl (x) : x∈X}Ll=1 are i.i.d sample paths from a stochastic process over X , and

{ωl (x) ,x∈X} are predictor-dependent probability weights that sum to one for all x. The above

form is too general to be useful and it is necessary to make some simplifications for practical

implementation. One common possibility is to introduce predictor dependence only in the Gx atoms,

ψl (x), while keeping weights, ωl (x) = ωl, fixed. However, this approach tends to have relatively poor

performance in our experience, including the air cargo transport risk data, we have also shown this

in model comparison with Flexmix model (see Appendix §B.5.3 for details).

In our case, the peak locations of the dependent variable, transport risk, are almost constant

(i.e., daily peaks for international shipments, and some additional few-hourly peaks for domestic

shipments besides the daily peaks). However, the heights of the peaks change greatly along with x

(e.g., route, airline, demand variables). The height of each peak represents (roughly) the probability

for the observation to fall into the kernel centered around that peak. For example, if conditional

on certain x1, the peak around 24 hours is relatively high, then a shipment, conditional on x1, has

a large probability of being delayed for 24 hours. On the other hand, if conditional on certain x2,

there is only one significant peak around 0 hours, then a shipment, conditional on x2, probably

arrives close to the planned arrival time. So, in our context, to find out how the height of each peak

depends on x is of central interest.

Inducing dependence structure in the weights can be difficult and lead to complex and inefficient

computational algorithms, limiting the applicability of the models. To overcome these difficulties,
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we adopt the PSBP mixture model, which has the advantages of computational tractability and

consistency under weak regularity conditions.

3.2. Bayesian Probit Stick-breaking Process

Recalling the general form of the mixing measure in Equation (2), stick-breaking weights are

defined as ωl = ul
∏
p<l (1−up), where the stick-breaking ratios are independently distributed ul ∼

Hl for l < L and uL = 1 for the case of finite L. In the baseline case in which there is no predictor,

Probit stick-breaking weights are constructed as

ul = Φ(γl) , γl ∼N (µ,φ)

where Φ(·) denotes the cumulative distribution function (cdf) for the standard normal distribution.

µ is the mean and φ is the precision (the reciprocal of the variance) of a normal distribution such

that for x∼N (µ,φ), the probability density function (pdf) is f(x) =
√

φ
2π

exp
{
−φ

2
(x−µ)

2
}
. For a

finite L, the construction of the weights ensures that
∑L

l=1ωl = 1. When L=∞,
∑∞

l=1ωl = 1 almost

surely (Rodriguez and Dunson 2011).

The use of Probit transformation to define the weights builds a mapping between a real number

γl from −∞ to +∞ into ul ∈ (0,1). Thus, the transformation allows researchers to restate the model

using normally distributed latent variables γl, facilitating computation via data augmentation Gibbs

sampling algorithms presented in §3.4. This transformation also makes model extensions to include

additional structure (e.g,. predictors) straightforward. Additionally, the Probit transformation sim-

plifies prior elicitation as presented at the end of §3.2.

In order to make ωl (x) predictor-dependent, we further express the latent variables γl as a linear

function of x, {γl (x) ,x∈X} (In this paper we use superscript as an index rather than the exponent

of the parameter):

ωl (x) = Φ(γl (x))
∏
p<l

(1−Φ(γp (x))) (3)

γl(x) = θ1
l + θ2

a + θ3
r + θ4

(a,r) + θ5
m + θ6

leg + θ7
(a,leg) + f1

(
devstart | θ8

)
+f2

(
dur | θ9

)
+ f3

(
log (wgt) | θ10

)
+ f4

(
log (pcs) | θ11

)
(4)



Shang, Dunson, Song: Big data Bayesian risk assessment
18 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

where {θ1
l } controls the baseline probability of latent class l (l= 1, · · · ,L), {θ2

a} controls the baseline

heterogeneity of airline a (a= 1, · · · ,20), {θ3
r} controls the heterogeneity of route r (r= 1, · · ·1336),{

θ4
(a,r)

}
represents the dependence of weights on possible interactions between airlines and routes,

and the meanings of {θ5
m},

{
θ6
leg

}
,
{
θ7

(a,leg)

}
are similar. In addition, f1, f2, f3 and f4 are spline

functions expressed as a linear combination of B-splines of degree 4 (see Appendix §B.4 for details

of the smooth splines used), where the knots of devstart are [-3, -2, -1, 0, 1, 2, 3], the knots of dur

are [1, 2, 4, 6, 8, 10], the knots of log(weight) are [2, 4, 6, 8] and the knots of log(pcs) are [1, 3, 5].

Here we use the logarithm form of cargo weight (wgt) and number of pieces (pcs) as the predictors,

since the original distributions are highly skewed. To ensure identification of the parameters, we let

θ2
1 = θ3

1 = θ4
(1,r) = θ4

(a,1) = θ5
1 = θ6

(1,leg) = θ7
(a,1) = 0 for all a, r and interactions in sample space X .

3.3. Posterior Computation

In Bayesian statistics, the posterior distribution is typically not available analytically, involving

an intractable normalizing constant. For this reason, posterior calculations usually rely on either

large sample approximations, which may have questionable accuracy in our transportation risk

applications, or Markov chain Monte Carlo (MCMC) sampling. The basic idea in MCMC sampling

is to construct a Markov chain having stationary distribution corresponding to the joint posterior

distribution of the model parameters, with this done in a manner that avoids ever having to calculate

the intractable constant. In order for the Markov chain to have the appropriate behavior, the Markov

transition kernel needs to be carefully chosen, with usual choices corresponding to either Metropolis-

Hastings (MH) or Gibbs sampling. MH can involve a lot of tuning in models with many parameters,

while Gibbs avoids tuning by sampling sequentially from the conditional posterior distributions

of subsets of parameters given current values of the other parameters. Gibbs sampling relies on

a property known as conditional conjugacy. Focusing on a subset of the model parameters and

conditioning on the other parameters, the prior probability distribution is conditionally conjugate

if the conditional posterior distribution takes the same form as the prior. The specific choices of our
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model form and prior distributions (to be described below) are motivated by retaining conditional

conjugacy.

In order to obtain conditional conjugacy for blocks of parameters, we follow a common strategy

known as data augmentation. The basic idea in data augmentation is that one may obtain condi-

tional conjugacy, and hence a simple Gibbs sampling algorithm, by introducing latent variables in

a careful manner. The MCMC algorithm is then run for both the latent variables and the model

parameters; although this increases the number of unknowns to sample, it can lead to greater effi-

ciency by allowing model parameters to be sampled in blocks directly from full conditional posterior

distributions. Similar augmentation strategies are routinely used in frequentist statistics; e.g., to fix

mixture models with the EM algorithm. Here, we follow the augmentation strategy of (Rodriguez

et al. 2009). First we focus on case when L <∞. For each observation yj | x, (corresponding to

replicate j conditional on x, j = 1, · · · , n (x) if there are n(x) replicates, otherwise j is dropped

if there are no replicates, i.e., n(x) = 1), we introduce a latent indicator variable sj (x) such that

sj (x) = l if and only if observation yj | x is sampled from mixture component l (l = 1,2, · · · ,L).

The use of these latent variables is standard in mixture models. With the help of latent indicators

sj(x), Gibbs sampling of more than 2000 model parameters can be classified into four categories,

as presented in Appendix §B.1.1 ∼ §B.1.5.

3.4. Distributional Choices

To complete a specification of our model, we require a specific choice for the kernel in the kernel

mixture, as well as prior probability distributions for each of the model parameters. These choices

are described below.

3.4.1. Normal Kernel A mixture of a moderate number of Normals is known to produce

an accurate approximation of any smooth density. Also motivated by computational tractability

of the Normal distribution (i.e., conditional conjugacy), we specify the parametric kernel, k (· |ψ),

of the PSBP mixture model as a Normal distribution, N (µ,φ), where ψ = (µ,φ). Recalling that

our mixture model takes the form in Equation (1), we replace the kernel in the above equation
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with Normal and use the PSBP specified prior Gx. Then the conditional distribution of y can be

expressed in the simple form

y | x =
L∑
l=1

ωl (x)N (y | µl, φl) (5)

The prior of atoms {(µl, φl) , l= 1,2, · · · ,L} is NG(ζµ, ξµ, aφ, bφ), a conditionally-conjugate Normal-

Gamma prior such that

µl ∼N (ζµ, ξµφl) , φl ∼G (aφ, bφ) .

where l= 1,2, · · · ,L. The specification of prior ζµ, ξµ, aφ and bφ is discussed in Appendix §B.2.

3.4.2. Prior for Parameters in Weight We choose Normal priors for parameters Θ ={{θ1
l },

{θ2
a}, {θ3

r},
{
θ4

(a,r)

}
, {θ5

m},
{
θ6
leg

}
,
{
θ7

(a,leg)

}
, θ8, θ9, θ10, θ11}

θij ∼N
(
νi, εi

)
, for i= 8, · · · ,11 and j = 1, · · · , n(i)

where n(i) is the number of B-spline basis used for predictor i. For the coefficients of 7 categorical

independent variables θ1, · · · ,θ7 (i.e., θ1 = {θ1
l } etc), we build a hierarchy, which enables information

borrowing among parameters in one category

θ1
l ∼N

(
Φ−1

(
1

L− l+ 1

)
, ε1
)
, θ2

a ∼N (0, ε2) , · · · θ7
(a,leg) ∼N

(
0, ε7

)
.

where εi ∼G (ci, di) for i= 1,2, · · · ,7. Here G(a, b) is a Gamma distribution such that for x∼G(a, b)

the pdf is f(x) = ba

Γ(a)
xa−1e−bx. We use the specially designed prior of θ1

l to enforce the same prior

baseline probability of each cluster l = 1,2, · · · ,L. The specification of {(ci, di) , for i= 1,2, · · · ,7}

and {(νi, εi) , i= 8,9, · · · ,12} is discussed in Appendix §B.2.

3.5. Model Fitting Assessment

In order to select a specific set of predictors to include in our PSBP mixture model, we rely on

comparing different possibilities using cross validation. In particular, we select a model having the

best out-of-sample predictive performance. Details are provided in Appendix §B.4, and the selected
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model is shown in Equation (6). This model is used for later model comparison and application

illustration.

γl(x) = θ1
l + θ2

a + θ3
r + θ4

(a,r) + θ5
m + θ6

leg + f1

(
devstart | θ8

)
+ f2

(
dur | θ9

)
+ f3

(
log (wgt) | θ10

)
(6)

It is important to assess how well this model fits the data, while verifying that it does not overfit.

In general, Bayesian methods are protected against overfitting due to the implicit penalty on model

complexity that appears in the posterior distribution but not in maximum likelihood estimation.

In mixture models, overfitting can occur by using too many mixture components. However, the

PSBP mixture model and related Bayesian nonparametric models automatically favor placing all

but a negligible amount of the probability weight on a few components. This is consistent with

our observation of superior out-of-sample predictive performance relative to flexible frequentist

regression models.

We follow a common Bayesian strategy of goodness of fit checking by using posterior predictive

plots. In particular, the basic idea is to generate new data from the posterior predictive distribution

under our PSBP mixture model and see how the observed data relate to these model generated

data. If the model fits poorly, a systematic deviation will show up. We observe an excellent goodness

of fit based on these assessments. On the contrary, a naive linear model, shown in Equation (10)

in Appendix §B.5, shows extremely poor fit. We additionally compare our model with frequentist

generalized additive models (GAMs) and flexible mixture models using both in-sample and out-

of-sample prediction residuals. Overall, our model presents a superior performance. For interested

readers, please refer to Appendix §B.5 for more details.

4. Results

Table C.1 in Appendix §C.1 shows the posterior mean and 95% probability interval of (selected)

model parameters. There are several things to note from the table:

1. The 50 kernel means, µ1, µ2, · · · , µ50, range from -70.0 to 77.5 (hours), indicating the model

predicted deviation concentrates within -3 to 3 days, consistent with the data. The 50 kernel standard

deviations, 1/
√
φ1,1/

√
φ2, · · · ,1/

√
φ50, range from 0.62 to 84.4, meaning the Normal kernels can be

very narrow or flat, allowing for flexible estimation.
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2. Level parameters, θ1
1, θ

1
2, · · · , θ2

49, vary from -10.9 to 6.74, and the wide range suggests strong

variation in risk. For example, if an airline-route pair has γl (x)− θ1
l close to zero, then for certain

l with θ1
l smaller than -5, the weight ∝ Φ(γl (x)) ≈ Φ(−5) ≈ 0, thus eliminating the inclusion of

this component. By similar arguments, θ1
l can also help determine for which γl (x)− θ1

l component

l plays major role.

3. The posterior distributions of all the coefficients are substantially more concentrated than their

prior distributions, suggesting that the data provide substantial information to update the priors;

in addition, the 95% probability intervals are narrow.

4. The posterior estimation of airline coefficient (we disguise the names of airlines for confiden-

tiality reasons. The airline index used here is randomly assigned), θ2
a, shows great heterogeneity,

and the large standard deviation, 1/
√
ε2, which measures the variations among airlines, confirms

this from one other aspect. Closer inspection reveals that except A1, whose coefficient is fixed at

zero for identification, 18 of the remaining 19 airlines’ 95% probability intervals don’t include 0.

Furthermore, many of them are far from zero, implying large impact on transport risk. However,

based on the linear model (see Equation (10) in Appendix §B.5), only 2 of the 19 airlines are sig-

nificantly different from 0 at 5% confidence level. This huge difference underlies the principle of the

two estimation methods. The naive linear model focuses in estimating the effects of independent

variables on distribution mean , and its results indicate airlines don’t necessarily affect the mean of

transport risk much. However, PSBP’s results show that airlines are playing an important role on

selecting and weighting possible kernels, which affects the tail shape, number of peaks, probability of

extreme observation etc. These results and comparison once again show that the linear model, which

cannot detect the airlines’ (and some other predictors’ including routes’ etc) impact on transport

risk in this case, would lose considerable valuable information.

5. Since the number of routes and their interactions with airline are large, 1336 and 587 respec-

tively, we don’t include their posterior summaries in Table C.1. However, posterior summaries of

hyper-parameters standard deviation, 1/
√
ε3, illustrate the large heterogeneity between routes. More
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importantly, the large standard deviation, 1/
√
ε4, represents possibly huge differences in terms of

the distribution of transport risks on the same route while by different airlines. This suggests that

a careful selection of carriers can result in dramatically different shipping experiences.

5. Applications

Estimates of predictive conditional probability density functions (Cpdfs) are key to generating data-

driven operation strategies. In this section, we provide several examples of how posterior Cpdfs can

aid decision making. We note that there are other applications of our transport risk models.

5.1. Service Comparison for One Shipment

The most straightforward use of PSBP posterior estimation is to provide predictive Cpdf of transport

risk to shippers based on their predetermined demand variables and selectable decision variables (see

Table 1). This not only helps the shipper to find a preferable service but also helps the forwarder to

set a price quote. Assume a customer comes with predetermined demand requirement d= {r,m,wgt}

and is choosing from services s = (a, leg, dur) ∈ S (d), where S (d) is the set of services available

given demand factors, d. Here, even though the initial deviation, devstart, is one of the decision

variables, we set it to 0 because this variable is unknown and not selectable before shipping starts.

Let f (risk | d, s) be the predictive distribution of transport risk conditional on d and a chosen s,

and li (risk) be customer i’s loss function. The optimal conditional choice of s, which minimizes

expected transport loss, is defined as

(s | d)
∗
i , argmins∈S(c)Lossi (s | d)

Lossi (s | d) =

∫
li (risk)f (risk | d, s)ddev (7)

where Lossi (s | d) is customer i’s expected loss of choosing s given d. Estimating each customer’s

unknown loss function li (dev) is another interesting study of practical value, but is outside the

scope of this paper. Here we use several generic loss functions to illustrate how to use predicted

f (risk | d, s) to aid service selection.
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Figure 4 PSBP predictive (solid curve) conditional response density f̂ (y | x) with 95% credible interval (dotted

curve) of the normal (bottom) and speedy (top) services from three airlines A6 (left), A8 (middle)

and A13 (right) on the route from Frankfurt (Germany) to Atlanta (United States). For details of the

calculation method, please refer to §5.2.

In Figure 5.1 are 6 choices as shown by the figure titles, on the route from Frankfurt to Atlanta.

The choices are randomly picked from the data. We use the following three loss functions:

l1 (risk) =C1 · risk l2 (risk) =C2 ·1{risk > 18} l3(risk) =C3 · risk2

l1 naturally arises when a risk neutral shipper is adverse to delays while fond of early arrivals; l2 is

more proper when a shipper is sensitive to extreme delays exceeding certain threshold (18 hours in

our example); l3 is used when a shipper is risk adverse and dislikes any deviations from the plan,

neither negative nor positive. Under these loss functions, the expected losses have simple analytical

forms

Loss1 =C1 ·Ef Loss2 =C2 · (1−F (18)) Loss3 =C3 ·
(
Varf +E2

f

)
where f is short for f (risk | d, s) and F is the corresponding cumulative density function. Figure 5

presents the expected losses (with posterior 95% probability intervals) calculated for the six choices
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Figure 5 Expected loss (with 95% credible interval) of the normal and speedy services from three airlines A6,

A8 and A13 on the route from Frankfurt (Germany) to Atlanta (United States). Left: Loss1 =C1 ·Ef ;

Middle: Loss2 =C2 · (1−F (18)); Right: Loss3 =C3 ·
(
Varf +E2

f

)

under 3 risk functions with C1 = C2 = C3 = 1, in which we use (S) to indicate speedy service. We

observe (1) the rank of services in terms of expected loss varies by loss functions; (2) choice of

airlines is playing a more dominant role than the choice between normal and speedy services given

an airline.

With estimated expected loss of each choice, forwarders can offer different price quotes to different

types of shippers. In this example, a forwarder can increase revenue by lowering A8’s prices to

attract price-sensitive shippers and increasing A6’s prices to attract quality-sensitive shippers under

loss function 2.

5.2. Supplier Ranking on Route or Higher Level

Unlike a shipper, whose decision is made at the level of each shipment, a forwarder plans its business

at the route or higher level. To help solve problems at high levels, the full predictive Cpdf should

be integrated. Specifically, let the full information set be U ={a, r, m, leg, dur, devstart, wgt}, for

U =U1 ∪U2 and U1 ∩U2 = φ, then

f (risk |U1) =

∫
f (y |U1,U2)f (U2)dU2

where U1 contains variables of central interest, and other variables in U2 are integrated out. For

example, a practical problem faced by a forwarder is whether to choose a carrier on a certain route

and how much capacity to reserve from it. For such decisions, an estimation of the airline’s service



Shang, Dunson, Song: Big data Bayesian risk assessment
26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 6 Reference performances of sample airlines A2 (left), A9 (middle) and A13 (right) with predictive density

mean (solid curve) and 95% credible interval (dotted curve)

reliability is a critical input. In this case airlines and routes are of interest, so we let U1 = {a, r} and

U2 = U − U1. By using Equation (7) with c and s replaced by r and a, the forwarder can obtain

expected losses by each airline a∈ S (r), which, in turn, can help make the right capacity reservation

and pricing decisions.

5.3. Baseline Comparison

Our result can also be used to generate baseline comparisons of various factors. Baseline effect of a

certain factor excludes the effects of any other factors, thus allowing for a direct comparison between

factors of one type. One interesting example is to understand the baseline performance of each

airline, in which case a direct comparison is impossible due to the fact that airlines serve different

routes. To achieve this baseline comparison, we use the average value for all other predictors, except

airline effects θ2
a, as their reference levels. Then we plug these reference levels in the posterior samples

of each airline and then obtain the reference risk distribution for each airline (See Figure 6 for 3

samples from the 20 airlines. See Appendix §C.2 for the remaining 17 baseline distributions). From

the plots we can directly compare airlines, which differ from each other by the number, locations, and

heights of peaks. As such, our model allows baseline comparison based on distribution knowledge.

This offers a much richer comparison than those appearing in the literature based on single average

metrics. Meanwhile, the richer tool allows us to obtain simple metric comparisons as special cases.

For example, using a U.S. passenger flight data set, Deshpande and Arikan (2012) analyzed

single-leg flight truncated block time, which is transport risk plus planned duration minus initial
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deviation. Initial deviation is defined as the positive delay of the previous flight by the same craft if

applicable and zero otherwise. The authors argue that if the truncated block time is shorter than the

scheduled block time, the airline incurs an overage cost of Co per unit overage time. Otherwise, the

airline incurs an underage cost Cu per unit shortage time. The authors then estimate the overage

to underage ratio, ϕ = C0/Cu, for each flight, and calculate the mean ratio of flights served by a

certain airline as the airline-wise overage to underage ratio, ϕa. Using our international air cargo

data, we can obtain an analogous metric by replacing “schedule block time” and “truncated block

time” in their paper with dur and (dur+ arrival deviation− [devstart]
+). One concern of estimating

airline-wise ratio ϕa by simply calculating the average of flight-wise ratios is that the effects from

other factors, such as routes etc, cannot be excluded. Thus, the calculated overage to underage

ratio of each airline, ϕa, cannot be used for direct comparison of airlines’ intrinsic service quality.

Baseline distribution of airlines, on the other hand, is a good solution to this problem. Specifically,

the optimal dur∗ is defined by news-vendor solution that

Prob
(
dur∗+ arrival deviation− [devstart]

+ ≤ dur∗ | a
)

=
1

1 +ϕa

Prob (arrival deviation≤ 0 | a) =
1

1 +ϕa
(8)

where we use the fact that the reference level of [devstart]
+, calculated by the data average, is zero.

Thus each airline’s overage to underage ratio is calculated by ϕa = 1
Fa(0)

− 1 ; see Figure 7 for the

calculated overage to underage ratios of 20 airlines with 95% probability intervals.

The overage to underage ratio ϕa is related to airline’s on-time probability by Equation 8: the

higher the on-time rate the lower the ratio ϕa. We compare our results to C2K Monthly Statement

issued by IATA. In particular, we choose monthly report issued in November 2012, the same period

of our data, and convert the reported airlines’ on-time rates into their overage/underage ratios

(represented by the circles in Figure 7). The circles deviate from our estimations, the solid dots,

following no obvious rules. We believe this is because IATA calculated the on-time rate by simply

averaging on-time times of an airline, which fails to exclude the impacts from factors other than the

airline, e.g., cargo weight, route, and thus results in unfair comparison. The baseline distribution
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Figure 7 For each of the 20 airlines in the data: the red dot in the center of the arrow is the mean overage to

underage ratio calculated by PSBP; the arrow represents the 95% posterior probability interval; the

blue circle is the overage to underage ratio from the C2K Monthly Statement issued by IATA (if there

is no overage to underage ratio reported in the C2K monthly statement, the blue circle is missing for

that airline).

we calculated can also be used to calculate many other metrics, such as variance, probability of

extreme disruptions etc, rather than the simple on-time rate reported by IATA’s monthly report.

6. Conclusions and Future Directions

Using data from international air cargo logistics, we investigate ways to assess and forecast transport

risks, defined as the deviation between actual arrival time and planned arrival time. To accommo-

date the special multimodal feature of the data, we introduce a Bayesian nonparametric mixture

model, the Probit stick-breaking process (PSBP) mixture model, for flexible estimation of condi-

tional density function of transport risk. Specifically, we build a linear structure, including demand

variables and decision variables, into kernel weights so that the probability weights change with

predictors. The model structure is easily extended to account for other factors, such as long-term

effects, by allowing coefficients to change dynamically over time, if data allows. Advantages of the

PSBP include its generality, flexibility, relatively simple sampling algorithm and theoretical support.
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Our results show that our method achieves much more accurate forecasts than alternative mod-

els: naive linear model, generalized additive model and flexible mixture model. Moreover, the linear

model can lead to misleading inferences. We also demonstrate how an accurate estimation of trans-

port risk Cpdf can help shippers to choose from multiple available services, and help a forwarder to

set targeting price, etc. In addition, we show how to use the model to estimate baseline performance

of a predictor, such as an airline. We compare our findings with performance reports issued by IATA

and point out the shortcomings of IATA’s simple way of ranking airlines. We note that the usage

of our method can be much broader than the examples shown here. Indeed, any decisions involving

a distribution function require an estimated Cpdf.

Our study serves as a stepping stone to deeper studies in the air cargo transport industry, or

more generally, the transportation industry, which generates tons of data everyday yet lacks proper

techniques for data analysis. According to a 2011 McKinsey report (Manyika et al. 2011), in the

transportation and warehousing sector, the main focus of our paper, IT intensity is among the top

20% and data availability is among the top 40% of all sectors, but the data-driven mind-set is merely

at the bottom 20%. The authors’ communication with leaders in this industry, from whom we get

the data supporting this research project, confirms this situation, “... we have plenty of data, or we

could say we have all the data possible, but we don’t know how to use the data...”.

One of the interesting findings of our paper is that airlines have critical impact on the shape

of the transport risk distribution rather than the mean focused on by linear models. For future

research, we hope to be able to obtain information regarding why and how airlines are performing

so differently on the same routes. By knowing the root drivers of airline service performance, the

service quality can be improved for each airline rather than simply choose the best performer.
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Appendix A: Data

A.1. Data Cleaning

After matching MUP with its baseline RMP, we obtain 155,780 shipments (matching rate is higher

than 95%). After dropping (1) shipments with extremely delayed milestones (usually caused by data

input errors); (2) shipments missing critical information (e.g., carrier); (3) shipments missing weight

or package information, 139,512 shipments are retained. The 139,512 shipments are operated by 20

airlines on 11,282 routes (we treat A to B and B to A as two distinct routes), and form 17,604

airline-route pairs. Since our analysis involves the airline-route interaction term, in order to avoid

the high noise caused by sparse observations, we drop route-airline pairs containing less than 10

observations and routes containing less than 20 observations in the observing period. After applying

this filter, we have 86150 observations left operated by 20 airlines on 1,333 routes. The filter is

effective in selecting large and profitable routes.

A.1.1. Exception Records Exception codes are meant to facilitate (1) finding root causes of

delays and (2) identifying parties accountable for failures. Unfortunately, as confirmed by the com-

pany as well as our data, exception codes are not helpful in these regards. Less than 8% of delays are

assigned exception codes, with only 10% of delays of more than 1 day coded. In addition, codes are

ambiguous, with the most frequently appearing code being “COCNR”, denoting the carrier hasn’t

received the cargo. Hence, we do not use exception data in our analysis.

A.2. Data Illustration

In Figure A.1 are the current members under C2K standards. In Table A.1 is a typical route map

Figure A.1 Cargo 2000 members

for a shipment from Nantes (France) to Bogotá (Columbia). In Figure A.2 are the milestone chain

and explanation of each milestone. In Table A.2 is an typical record of an exception.
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Table A.1 An example of a route map

Milestone Time Airport Flight Weight Piece

RCS 06.12.2013 16:15:00 NTE # 630 2

DEP 06.12.2013 19:00:00 NTE AA 8854 630 2

ARR 07.12.2013 08:52:00 CDG AA 8854 630 2

DEP 10.12.2013 09:21:00 CDG AA 0063 630 2

RCF 10.12.2013 21:26:00 MIA AA 0063 630 2

DEP 11.12.2013 14:58:00 MIA AA 0913 630 2

RCF 11.12.2013 21:46:00 BOG AA 0913 630 2

DLV 11.12.2013 22:40:00 BOG # 630 2

Figure A.2 Important milestones in a shipment with their short names

Table A.2 A typical record of exception

Status Exception Time Flight Airport

DEP COCSYMD 08.01.2013 05:05:00 BA 0125 LHR

A.3. Summary Statistics

Figure A.3 shows the number of shipments for each airline, and the percentage of shipments by the

number of legs. In Figure A.4 is the percentage of shipments between the five continents (AF: Africa;
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AS: Asia; EU: Europe; NA: North America; SA: South America). Figure A.5 shows the number of

airlines available for each shipment. Figure A.6 depicts the choices between legs of each shipment.

Table A.3 provides summary statistics with predictors defined in Table 1.

Table A.3 Summary statistics

Dependent Variable

mean std

transport risk (hour) -2.6 20.6

Predictors

Category Predictor

airline route airline-route month airline-leg2 airline-leg3

dimension 20 1336 588 7 20 16

Continuous Predictor

devstart (day) dur (day) log(wgt) (kg) log(pcs) (cbm)

mean -0.327 1.75 4.91 1.29

std 0.648 1.30 2.4 1.43
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Figure A.3 Number of shipments by each airline with

different number of legs (1, 2 or 3)

Figure A.4 Number of shipments between continents

Figure A.5 The percentage of routes with different

number of airline options. The airline

options vary from only 1 airline to as

many as 6 airlines serving the same route.

Figure A.6 The percentage of routes with different

number of leg options (mainly 1 or 2

legs). The histogram is further classified

into two categories: whether the route is

served by a single airline or multiple air-

lines.
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Appendix B: Supplementary Material of Computation and Model Checking

B.1. Gibbs Sampling

B.1.1. Gibbs Sampling for Kernel Parameters We use “· · · ” to indicate all the other param-

eters and data. The full conditional distribution of the component-specific parameters, µl and φl, is

given by

p (µl, φl | · · · )∝NG (µl, φl | ζµ, ξµ, aφ, bφ)
∏

(x,j) s.t. sj(x)=l

N (yj | µl, φl)

where ∝ represents “proportional to”, NG is the Normal-Gamma conjugate prior of µl and φl.

Simplified by the conjugacy structure, the Gibbs sampling of kernel mean µl is carried out by

µl | · · · ∼N
(

[ζµ +nlφl]
−1

[ζµξµ +hlφl] , ξµ +nlφl

)
where nl =

∑
x∈X

∑n(x)

j=1 1(sj(x)=l) and hl =
∑

x∈X
∑n(x)

j=1 yj(x)1(sj(x)=l). Similarly, the Gibbs sampling

of kernel precisions φl is

φl | · · · ∼G

(
aφ +

nl
2

; bφ +
1

2

∑
x∈X

n(x)∑
j=1

(yj(x)−µl) 21(sj(x)=l)

)

B.1.2. Gibbs Sampling for Weight Parameters: Latent Indicators Conditional on ker-

nel parameters and the realized values of the weights {ωl (x) ,∀x∈X}Ll=1, the distribution of the

indicators is multinomial with probability given by

Pr(sj(x) = l| · · · )∝ ωl(x)N (yj(x)|µl, φl) ,

So we can sample sj(x) (j = 1, · · · , n(x)) from a multinomial conditional distribution:

Pr(sj(x) = l| · · · ) =
ωl(x)N(yj(x)|µl, φl)∑L

p=1ωp(x)N(yj(x)|µl, φl)

B.1.3. Gibbs Sampling for Weight Parameters: Latent Auxiliary Variable In order to

sample the latent processes {γl (x) ,∀x∈X}Ll=1 and the corresponding weights {ωl (x) ,∀x∈X}Ll=1,

we augment the data with a collection of conditionally independent latent variables zjl(x) ∼

N(γl(x),1) (j = 1, · · · , n(x)). We aim to make the probability of observing {zj1 (x), · · · , zjl (x)}

equal to ωl (x) in Equation (3), thus the event of observing {zj1 (x), · · · , zjl (x)} can represent the

event of observing sj(x) = l as denoted at the beginning of §3.4. Specifically if zjp(x) < 0 for all

p < l and zjl(x)> 0, we define sj(x) = l. For a finite L case, we define si(x) =L if zip(x)< 0 for all

p≤L− 1. Then we have

Pr(sj(x) = l) = Pr (zjl(x)> 0, zjp(x)< 0 for p < l)

= Φ(γl(x))
∏
p<l

{1−Φ(γp(x))}
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independently for j = 1, · · · , n(x). In this way, Pr(sj(x) = l) equals to ωl (x) as defined in Equation

(3). This data augmentation scheme simplifies computation as it allows us to implement the following

Gibbs sampling scheme

zjl(x) | · · · ∼N (γl(x),1)1Ωl , ∀l≤min{sj(x),L− 1},

with

Ωl =

{
{zjl(x)< 0}, if l < sj(x),

{zjl(x)≥ 0}, if l= sj(x)<L

where N (·)1Ω denotes a normal distribution truncated to the set Ω.

B.1.4. Gibbs Sampling for Weight Parameters: Latent Processes The latent process

{γl (x) ,∀x∈X} is built on parameters Θ ={{θ1
l }, {θ2

a}, {θ3
r},
{
θ4

(a,r)

}
, {θ5

m},
{
θ6
leg

}
,
{
θ7

(a,leg)

}
, θ8,

θ9, θ10, θ11, θ12} and hyper-parameters Υ = {εi, ∀i = =1, 2, · · · , 7}. The distribution of Θ and Υ,

conditional on the augmented data, is given by

p(Θ,Υ | · · · )∝

[∏
x,j

p
(
zj(x) | γj(x)

)]
p(Θ)p (Υ)

where p (Θ) is the prior distribution of Θ and p (Υ) is the prior distribution of Υ, and j = 1, · · · , n(x).

The posterior sampling can be easily implemented by taking advantage of the normal priors we

choose. Due to similarities of the Gibbs sampling schemes for Θ and Υ, here we only give updating

schemes for two examples: one for coefficients {θ1
l }
L

l=1 ∈Θ and the other one for hyper-parameter

ε1 ∈Υ.

1. For θ1
l (l= 1,2, · · · ,L), the posterior Gibbs sampling follows normal distribution given by

θ1
l | · · · ∝ N

(
µθ1

l
, φθ1

l

)
where µθ1

l
=

{
Φ−1

(
1

L−l+1

)
+
∑

x∈X
∑

j [zjl (x)−∆jl (x)]1 (sj (x)≥ l)
}
/ (nl + 1), φθ1

l
=

(nl + ε1)/ (nl + 1), nl =
∑

x∈X
∑

j 1 (sj (x)≥ l) and ∆jl (x) = (γj (x)− θ1
l )1 (sj (x)≥ l).

2. For ε1 the posterior Gibbs sampling follows Gamma distribution given by

ε1 | · · · ∝ G

(
c1 +

L

2
, d1 +

∑L

l=1 θ
1
l · θ1

l

2

)
In the case L =∞, we can easily extend this algorithm to generate a slice sampler, as discussed

in Papaspiliopoulos (2008). Alternatively, the results in Rodriguez and Dunson (2011) suggest that

a finite PSBP with a large number of components (30 – 40, depending on the value of µ) can be

used instead (Ishwaran and Zarepour 2002). So we use L= 50 as the number of components in this

paper; this provides a conservative upper bound as many of these components may not be utilized.

In general, in the conditional method, the Markov chain Monte Carlo algorithm has to explore

multimodal posterior distributions. Therefore, we need to add label-switching moves, which assist
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the algorithm in jumping across modes. This is particularly important for large data sets, where

the modes are separated by areas of negligible probability. We use the framework developed in

Papaspiliopoulos and Roberts (2008) to design our label switching moves. These label switching

moves greatly improved the convergence of the chain.

B.1.5. Label Switching Moves The label switching moves with infinite mixture models are

listed as follows:

1. From 1,2, . . . ,L choose two elements l1 and l2 uniformly at random and change their labels

with probability

min

(
1,Πx∈X

(
ωl1 (x)

ωl2 (x)

)nl2 (x)−nl1 (x)
)

where nl (x) =
∑

j sj (x) = l (j = 1, · · · , n (x))

2. Sample a label l uniformly from 1,2, . . . ,L− 1 and propose to swap the labels l, l + 1 and

corresponding stick-breaking weights γl, γl+1 with probability

min

(
1,F ×Πx∈X

(1−Φ(γl+1 (x)))
nl(x)

(1−Φ(γl (x)))
nl+1(x)

)

where

F =
N
(
θ1
l |Φ−1

(
1
L−l

)
,1
)
·N
(
θ1
l+1 |Φ−1

(
1

L−l+1

)
,1
)

N
(
θ1
l |Φ−1

(
1

L−l+1

)
,1
)
·N
(
θ1
l+1 |Φ−1

(
1
L−l

)
,1
)

is the change of prior probability since the prior of θ1 is not symmetric.

Label switching moves for finite mixture models are listed as follows:

1. Sample a label l uniformly from 1,2, . . . ,L− 1 and propose to swap the labels l, l + 1 and

corresponding stick-breaking weights γl, γl+1 with probability

min

(
1,F ×Πx∈X

(1−Φ(γl+1 (x)))
nl(x)

(1−Φ(γl (x)))
nl+1(x)

)
, if l≤L− 2

where

F =
f
(
αl |Φ−1

(
1
L−l

)
,1
)
f
(
αl+1 |Φ−1

(
1

L−l+1

)
,1
)

f
(
αl |Φ−1

(
1

L−l+1

)
,1
)
f
(
αl+1 |Φ−1

(
1
L−l

)
,1
)

is the change of prior probability and f(· | µ,φ) is the probability density function of N (· | µ,φ). If

l=L− 1, the Metropolis-Hasting probability is:

min

(
1,Πx∈X

[
Φ(γl (x))

1−Φ(γl (x))

]nl+1(x)−nl(x)
)
, if l=L− 1
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B.2. Prior Elicitation

First, we consider eliciting hyper-parameters
{
ζµl
}L
l=1

and
{
ξµl
}L
l=1

, corresponding to the location of

the Normal components, and aφ and bφ, corresponding to their precisions. These hyper-parameters

need to be chosen to ensure that the mixture spans the expected range of observed values with

high probability. In our case, we have all prior means
{
ζµl
}L
l=1

equal to the global mean (or global

median) of all observations, -2.64, and set all
{

1/ξµl
}L
l=1

equal to half the range of the observed

data (a rough estimate of dispersion), 189.6. Sensitivity was assessed by halving and doubling the

values of ξµl . Under a similar argument, aφ and bφ should be chosen so that E (1/φl) = bφ/ (aφ− 1)

is also around half the range of the observations, so we choose aφ = 1.25, bφ = 47.5. In every scenario

we have employed proper priors, as weakly informative proper priors lead to improved performance

and improper priors can lead to paradoxical behavior in mixture models, similar to the well known

Bartlett-Lindley paradox in Bayesian model selection.

Next, we consider the prior structure on the weights ωl (x). As discussed above, the use of a

continuation ratio Probit model along with normal priors for the transformed weights is convenient,

as it greatly simplifies implementation of the model. In particular, the transformed mixture weights

{γl (x)} can be sampled by the algorithm shown in §3.2.3 above from conditionally normal distri-

butions. Hyper-parameter choice is also simplified. A common assumption of basic mixture models

for i.i.d. data is that all components have the same probability a priori. In the current context in

which mixture weights are predictor dependent, a similar constraint can be imposed on the baseline

conditional distribution by setting E(θ1
l ) = Φ−1 (1/ (L− l+ 1)). Since we build a hierarchy above

heterogeneity parameters to allow information borrowing, the variance of θi (i= 1,2, · · · ,7), is con-

trolled by the distribution of hyper parameters εi. In order to make sure the continuation ratio

Φ(γl (x)) is between 0.001 and 0.998 with 0.99 probability, we would expect Var (θi)≈ 1. Smaller

values for V (θi) lead to strong restrictions on the set of weights, discouraging small ones (especially

for the first few components in the mixture). On the other hand, larger variances can adversely

affect model selection. For the hyper parameter εi of θi, in order to make sure Var (θi)≈ 1, we let

ci = 6, di = 5 so that E (1/εi) = 1. This yields a prior sample size of 6, which gives some stability

while very small restrictions.

B.3. Implementation

The data were analyzed using the models described in §3.1. Fifty mixture components were judged

sufficient to flexibly characterize changes in the density across predictors, while limiting the risk of

over-fitting. Inferences were robust in our sensitivity analysis for L ranging between 40 and 60, but

the quality of the fit, as assessed through the plots described in §3 and §5, was compromised for

L< 40.
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The Gibbs samplers were run for 100,000 iterations following a 70,000 iteration burn-in period.

Code was implemented in Matlab, and the longest running time was 118h on a 2.96-GHz Intel Xeon

E5-2690 computer with 32 cores. This run time could be dramatically reduced by improving code

efficiency and relying on recent developments in scalable Bayesian computation, but we preferred

to use standard Gibbs sampling instead of new and less well established computational methods.

Examination of diagnostic plots showed adequate mixing and no evidence of lack of convergence.

B.4. Cross Validation for Variable Selection

To balance computation time and accuracy, we use 3-fold cross validation based on predictive log

likelihood. Specifically, we partition the original data into three equal sized subsamples, with two

of the subsamples used as training data for parameter estimation. Then, the estimated parameters

are used to calculate the log likelihood, as shown in Equation (5), of the left out subsample, also

known as the validation data. This process is repeated for 3 times so that every subsample is used

as validation data once. The reason why we choose to calculate the log likelihood of the validation

data that log likelihood is a strictly proper scoring rule for density forecasts as in our study, as

explained in Gneiting and Raftery (2007). We compare the cross validation value of many models

and list 10 models in Table B.1.

Table B.1 Cross validation for model comparison

Model -LL Model -LL

1 Ξ 324235 6 Ξ− θ7(a,leg)− θ4(a,r) 326687

2 Ξ− θ7(a,leg) 318101 7 Ξ− θ7(a,leg)− θ6leg − θ11 319515

3 Ξ− θ7(a,leg)− θ6leg 320239 8 Ξ− θ7(a,leg)− θ5m− θ11 318684

4 Ξ− θ7(a,leg)−θ
11 317894 9 Ξ− θ7(a,leg)− θ6leg − θ5m 327174

5 Ξ− θ7(a,leg)− θ5m 318894 10 Ξ− θ7(a,leg)− θ4(a,r)− θ2a 328721

For each model, the log-likelihood of its three subsamples is calculated by averaging over 10,000

posterior samples with the first 10,000 posterior samples dropped as burn-in. In Table B.1 we use

Ξ to indicate the full model, as shown in Equation (4), and use “−” to indicate dropping certain

predictors. We use LL to indicate sum of the three subsample log-likelihood for each model. Since

we are comparing −LL in Table B.1, smaller values suggest stronger predictive capability. So we

choose model (4) in the Table B.1, which is equivalent to Equation (9).

γl(x) = θ1
l + θ2

a + θ3
r + θ4

(a,r) + θ5
m + θ6

leg + f1

(
devstart | θ8

)
+ f2

(
dur | θ9

)
+ f3

(
log (wgt) | θ10

)
(9)
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Since there are 11 kinds of predictors in the full model (i.e., Equation (4)), which are 211 = 2048

different possible variable combinations, it is impossible for us to compare every model in a relatively

short research time frame. We choose to use a backward fitting process. Specifically, we start with

the full model, then every time we drop one predictor and observe how the −LL change. If the

−LL decreases, then we keep this predictor removed, otherwise, we add this predictor back. For

example, from model 1 to 2 in Table B.1, while the interaction term of airline and legs is dropped

the −LL drops, so we remove the interaction of airline and leg. From model 2 to 3, we further drop

predictor “legs”, however −LL increases, as a result, we add predictor “legs” back. We tested many

more models than those listed in Table B.1 with the best model shown in Equation (9). The 10

models listed in Table B.1 are shown for illustration.

As we have mentioned in §3.2, f1, f2 , f3 in Equation (9) (f4 in Equation (4) is similar) are

spline functions expressed as a linear combination of B-splines, or basis spline, of degree 4. The

usefulness of B-spline lies in the fact that any spline function of order n on a given set of knots can

be expressed as a unique linear combination of B-splines, hence the name basis spline. The knots

of f1, f2, f3 and f4 have been listed in §3.2, the knots are chosen based on both the meaning in

reality (e.g., for better interpretation) and to make sure the data amount in each range of support

is roughly comparable. The final expression of the basis spline of a higher order (3 or higher) can

be very complicated, so here I only list the recursion formula:

Bi,1(x) =

{
1 if ti ≤ x< ti+1

0 otherwise

Bi,k(x) =
x− ti

ti+k−1− ti
Bi,k−1(x) +

ti+k−x
ti+k− ti+1

Bi+1,k−1(x)

where vector t is the knots and k is the order of B-spline. We have tried different orders of B-splines

(i.e., 3∼ 6) with slightly changed knots, however, the predictive power is almost the same. So we

decide to use a B-spline of order 4.

B.5. Model Checking and Comparison

In this section, §B.5.1 and §B.5.2 are on model checking while §B.5.3 is about model comparison.

B.5.1. Posterior Predictive Checks We first use posterior predictive checks (PPC), devised in

Rubin (1984) and expanded in Gelman et al. (1996). PPC provide a popular approach for goodness-

of-fit assessments of Bayesian models. In implementing PPC, one first generates multiple data sets

of the same structure as the observed dataset from the posterior predictive distribution. This is

done by generating parameters from the posterior distribution, plugging these parameters into the

likeihood, and then sampling new data from this likelihood. If the model does not fit the data

well, data generated from the posterior predictive distribution will deviate systematically from the
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observed data. As an illustration, we implemented a PPC check of a naive linear model (referred to

as LM), a method widely used in previous research on flight delays. The specific form of LM is as

follows:

y ∼ N(µ,σ2)

µ = θ1 + θ2
a + θ3

r + θ4
(a,r) + θ5

m + θ6
leg + θ8 · devstart + θ9 · dur+ θ10 · log (wgt) (10)

where y represents the dependent variable transport risk. All the other predictors θ are the same

as explained in §3.2 except the original vector θ1 now doesn’t have the subscript l for each cluster

and is just a scalar intercept.

Figure B.1 Posterior predictive model checking. In “LM Replicate” and “PSBP Replicate”, the histogram is the

predicted response, transport risk. In the other four plots, the title is the target value for posterior

predictive checking; the histogram is PSBP predictive values; the solid line is the value calculated

from the real data; the dash-dotted line is the predictive value by LM.

To follow the steps of PPC, we replicate two data sets: one predicted by LM and one pre-

dicted by our model. We use these two replicated data to calculate summary statistics including

mean, standard deviation, Prob (ŷ <−24 or ŷ≥ 36) (i.e., the probability of transport disruption)

and Prob (−24≤ ŷ < 36) (i.e., the probability of recurrent transport risks), then compare the values

to the statistics calculated using the true data. If the model fits well, we expect the empirical values

of these statistics to not deviate significantly from the simulated distribution under the assumed
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model. From Figure B.1 we found that LM predicts the mean accurately (the dashed line and solid

line overlays), however largely underestimates extreme situations like more than 24 hours earliness

or more than 36 hours delays, while overestimating recurrent risk such as deviations between -24

to 36 hours. In addition, standard deviation is substantially underestimated. On the other hand,

the posterior predictive statistics by PSBP closely surrounding the empirical values. Moreover, if

we just look at the empirical distribution of the two replica data as compared to the observed data

empirical distribution (the first column in Figure B.1), we can see that the replicated data by LM

resembles the shape of the real data poorly. Whereas, the replicated data by our model resembles

the real data very well. This clearly shows the model inadequacy of linear model in our situation

and confirms our PSBP model to fit the data well.

B.5.2. Visual Inspection We further check the model at a more granular level – airline-route

level. In Figure 3, the histogram is drawn from real data, the solid line is the predictive conditional

density by PSBP (the posterior 95% probability intervals are too narrow to be visible in this figure),

while the dashed line is predicted by LM. PSBP captures the location and weights of peaks accurately

while linear model predicts badly.

B.5.3. Model Comparison We further formally compare our model with alternative models

including LM, generalized additive model (GAM) and flexible mixture model (Flexmix) using pre-

dictive residuals. GAM, as shown in Equation (11)

y ∼ N(µ,σ2)

µ = θ1 + θ2
a + θ3

r + θ4
(a,r) + θ5

m + θ6
leg + s(devstart | θ8) + s

(
dur | θ9

)
+ s
(
log (wgt) | θ10

)
(11)

generalizes LM by incorporating nonlinear forms of the continuous predictors. Here s(· | θ) represents

the smooth function (also the nonparametric or nonlinear form) and θ are the parameters. We

estimate the model using the “bam” function in R package “mgcv” (Wood 2011), in which the

estimation of GAMs is conducted via a penalized likelihood frequentist approach. The flexible

mixture model we consider is shown as follows (we use the same number of clusters as in PSBP

mixture model):

y ∼
∑
l

ωlN(µl, σl)

µl = θ1
l + θ2

a + θ3
r + θ4

(a,r) + θ5
m + θ6

leg + s(devstart | θ8) + s
(
dur | θ9

)
+ s
(
log (wgt) | θ10

)
(12)

This expression is similar to Equation (5). However, the regression part is now in the Gaussian

mean rather than the mixture weights. We estimate the model using “flexmix” function in R package

“flexmix” (Gruen and Leisch 2008), in which maximum likelihood estimation is conducted via an

EM algorithm. Table B.2 shows the root mean squared error (RMSE), mean absolute error (MAE)
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and log likelihood of the in-sample and out-of-sample prediction of the four models. Here the out-

of-sample prediction is the average RMSE/MAE/log-likelihood value from the three 3-fold cross-

validation methods explained in Appendix §B.4.

From the table, the PSBP Mixture model clear beats the alternatives in all metrics in both in-

sample and out-of-sample tests. The under-performance of LM and GAM are easy to understand, as

likely arising from the lack of ability to allow the delay distribution to shift flexibly with predictors.

Flexmix is a more realistic competitor in this respect, but has some clear disadvantages relative

to our Bayesian PSBP mixture approach. Both models are richly parameterized and even though

the sample size is large overall, there can be sparsity in local regions of the predictor space. Hence,

maximum likelihood estimation may have inflated errors relative to a penalization approach. The

weakly informative priors we advocate protect against overfitting and reduce mean square error in

estimating coefficients. Another advantage of PSBP is the form of the model in which the kernels

are fixed and the weights vary with predictors. As explained in §3.1, the locations of peaks of the

multi-modal distribution of the dependent variable, transport risk, are almost constant. However,

the heights of the peaks change greatly with predictors (e.g., route, airline, demand variables). Our

model can more parsimoniously account for such changes.

In terms of the computational time, we have explained those of our model in Appendix §B.3.

LM, GAM and Flexmix are implemented in R using packages listed above on a server of 128G

memory. The computational time of LM and GAM are fairly short, 3 minutes and 15 minutes

respectively. On the other hand, the estimation of Flexmix takes 135h to reach final convergence.

As the sample size and number of predictors increase, the rate of convergence and time per iteration

can both increase substantially for standard algorithms for fitting mixture models; both frequentist

and Bayesian. We note that our code has not been optimized and we have not attempted to use

recently developed algorithms for scaling up Bayesian computation to bigger problem sizes. We also

note that our PSBP mixture model can be implemented using a frequentist optimization approach;

although maximum likelihood estimation via the EM algorithm would be one possibility, the number

Table B.2 Residual checks for model comparison

LM GAM Flexmix PBSP Mixture

I/O* RMSE 18.6/19.1 17.8/18.4 14.9/15.7 14.1/15.0

I/O MAE 9.66/10.00 9.01/9.31 7.73/8.02 7.17/7.56

I/O Log-likelihood 373090/387755 370547/385183 314477/325575 307124/317894

* I/O: in-sample/out-of-sample
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of predictors and parameters in the model makes it important to include penalties. We do not

consider such possibilities further in this article.
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Appendix C: Supplementary Material of Results

C.1. Model Parameter Estimation

Table C.1 shows the posterior mean and 95% probability interval of (selected) model parameters.

C.2. Application: Baseline Distributions

In Figure C.1 and Figure C.2 are the baseline risk distributions of the remaining 17 airlines.
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Table C.1 Posterior summaries of model parameters

Kernel Parameters

µl (l= 1,2, · · · ,50) min(µl) =−79.6, max(µl) = 76.01

1/
√
φl (l= 1,2, · · · ,50) min

(
1/
√
φl

)
= 0.72, max

(
1/
√
φl

)
= 84.4

Parameters in Weight γ

Category Predictors

θ1l (l= 1,2, · · · ,49) min(θ1l ) =−10.9, max(θ1l ) = 6.74

θ2a (a= 1,2, · · · ,20)

θ21 A1 θ22 A2 θ23 A3 θ24 A4 θ25 A5

0

(0, 0)

0.03

(-0.40, 0.61)

-5.27

(-5.86, -4.83)

5.15

(4.31, 6.11)

3.09

(2.89, 3.26)

θ26 A6 θ27 A7 θ28 A8 θ29 A9 θ210 A10

1.16

(0.84, 1.53)

8.53

(8.19, 8.91)

2.54

(2.01, 2.98)

-0.82

(-1.22, -0.40)

2.90

(2.23, 3.64)

θ211 A11 θ212 A12 θ213 A13 θ214 A14 θ215 A15

-3.35

(-4.02, -2.74)

5.74

(5.44, 5.97)

-2.96

(-3.19, -2.67)

2.74

(2.27, 2.98)

-2.82

(-3.26, -2.36)

θ216 A16 θ217 A17 θ218 A18 θ219 A19 θ220 A20

4.95

(4.35, 5.50)

-3.16

(-3.50, -2.76)

-5.36

(-6.59, -4.41)

6.23

(5.79, 6.67)

-2.34

(-2.58, -2.12)

θ5leg (leg= 2,3)

θ52 θ53

-0.29

(-0.38, -0.21)

-0.34

(-0.47, -0.21)

Hyper-parameters

1/
√
ε1 1/

√
ε2 1/

√
ε3 1/

√
ε4 1/

√
ε5 1/

√
ε6

4.86

(3.98, 5.93)

3.39

(2.62, 4.44)

6.26

(5.86, 6.63)

7.02

(6.46, 7.60)

0.64

(0.46, 0.90)

0.74

(0.51, 1.10)
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Figure C.1 Reference performances of sample airlines with predictive density mean (solid) and 95% credible

interval (dotted) (cont.)
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Figure C.2 Reference performances of sample airlines with predictive density mean (solid) and 95% credible

interval (dotted)
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