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Abstract

In this article, we propose an exact simulation method of the Wishart multidimensional
stochastic volatility (WMSV) model, which was recently introduced by Da Fonseca et al.
[14]. Our method is based on analysis of the conditional characteristic function of the log-
price given volatility level. In particular, we found an explicit expression for the conditional
characteristic function for the Heston model. We perform numerical experiments to demon-
strate the performance and accuracy of our method. As a result of numerical experiments, it
is shown that our new method is much faster and reliable than Euler discretization method.

Keywords: Wishart processes, stochastic volatility, Monte-Carlo method, exact simulation

1 Introduction

Ever since the Heston’s stochastic volatility model [24] was introduced in 1993, it has been the
most important and widely used model among stochastic volatility models. Its popularity relies
on the clear financial interpretation of parameters and computational tractability of the model.
Heston [24] found the characteristic function of logarithmic asset price in a closed-form and
showed that European call options can be priced by inverting the characteristic function.

Despite its popularity, extensive empirical research has documented limitations of the Heston
model [4, 5, 10, 11, 13]. The most critical deficiency of the model is that it can not generate
realistic term structure of volatility smiles; Heston model provides too flat implied volatility
surface to capture reality. But empirical studies revealed that the implied volatility curve for a
short maturity has rather steep slope and it is convex, and that for a long maturity tends to be
linear [11, 13]. Consequently, much effort has been focused on generalizing the Heston model
so as to accommodate such stylized facts. There are two approaches to generalize the Heston
model. The first one is to add jumps in the dynamics of stock return, the volatility, or both
of them [4, 5, 16]. And the other stream has been investigating the multifactor nature of the
implied volatility [5, 11, 14, 16].

Among multifactor stochastic volatility models, the Wishart multidimensional stochastic
volatility (WMSV) model is the most flexible one, and it matches the term structure of implied
volatilities well [14, 13]. Term structure of the realized volatilities in this model is described
by a positive semidefinite matrix valued stochastic process, namely the Wishart process which
was developed by Bru [8] and introduced in the financial literature by Gourieroux and Sufana
[22]. The dependence between the asset price and the volatility factor is also characterized
by a square matrix. Such a matrix specification of the model make it possible to capture the
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stylized facts observed in the option markets. The model can fit both the long-term volatility
level and the short-term skew at the same time. In addition, the model exhibits the stochastic
leverage effect, and it makes the model adequate to deal with a stochastic skew effect. Even with
these flexible parameter specifications, it is still analytically tractable; the problem of pricing
European vanilla options can be handled through the transform methods of Duffie et al. [16]
and the FFT methods of Carr and Madan [9].

Even though analytic aspects of the WMSV model are well explored [6, 14, 13, 18], there
are only few studies on the simulation of the model. Gauthier and Possamäı [19] proposed some
discretization schemes beyond the crude Euler scheme, but their schemes are less satisfactory
in terms of accuracy. Their schemes entails severe bias errors, and its accuracy is sensitive to
the model parameters.

In this paper, we propose an exact simulation method of the WMSV model, which does not
suffer from discretization bias. Our new simulation method for the WMSV model is motivated
by the exact simulation method of Broadie and Kaya [7] for the Heston model. Their key obser-
vation was that the Heston model can be sampled exactly, provided that the endpoints and the
integral of variance process are sampled exactly. For this purpose, they derived the conditional
characteristic function for the integral of the variance process up to the endpoint conditional on
its endpoints, and they used it to sample the integral by Fourier inversion techniques. We take
a similar, but rather direct approach to generate a sample from the WMSV model. We first
sample the terminal value for the volatility factor process. Then we use the Fourier inversion
techniques to generate the log-price of the stock conditional on the given terminal value of the
volatility factor.

In order to apply the Fourier inversion techniques, it is necessary to find the relevant charac-
teristic function. In our case, it is the conditional characteristic function of the log-price given
the terminal value of volatility factor. We prove that it can be obtained by solving a certain
system of ordinary differential equations. In particular, we provide an explicit formula of the
conditional characteristic function for the Heston model. In general, the system of ordinary dif-
ferential equations does not admit a closed-form solution due to non-commutativity of matrix
multiplications, but it can be efficiently solved by numerical methods.

The rest of this paper is organized as follows. Section 2 introduces the WMSV model
specifications and derive the conditional characteristic function of the log-price. Section 3
provides a brief review on the Broadie-Kaya’s exact simulation method of the Heston model.
Section 4 presents our exact simulation method for the WMSV model in detail. In Section 5, we
give some numerical results and compare our method with a standard discretization method and
Broadie-Kaya’s method. Section 6 conclude the paper. Some detailed derivations are deferred
to appendices.

2 The Wishart Multidimensional Stochastic Volatility Model

Within the WMSV model, the dynamics of asset price, under the risk neutral measure, is
described by

dSt
St

= rdt+ tr
[

√

Xt

(

dWtR
⊤ + dZt

√

Id −RR⊤
)

]

, S0 = s > 0, (1)

where tr is the trace operator, r is a constant which represents the risk neutral drift, W and
Z are independent d × d standard matrix Brownian motions, i.e., all the entries of W and Z
are independent standard 1-dimensional Brownian motions. In this specification, the volatility
is determined by the d × d symmetric positive semidefinite matrix-valued process Xt. In the
followings, we denote by S++

d (S+
d ) the set of symmetric positive (semi)definite matrices. The d×
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d matrix R specifies the correlation between asset price and volatility factors, and it determines
the skewness of the distribution of the return.

The volatility factor process is assumed to be a Wishart process which solves the equation

dXt = (δΣ⊤Σ+HXt +XtH
⊤)dt+

√

XtdWtΣ+ Σ⊤dW⊤
t

√

Xt, X0 = x ∈ S+
d , (2)

where Σ, H are d× d matrices, and δ ≥ d− 1. The parameter restriction δ ≥ d− 1 ensures the
existence of the unique weak solution of (2) [12]. The Wishart process is a matrix analog of the
square-root mean-reverting process. In order to grant the typical mean-reverting feature of the
volatility, the matrix H is assumed to be negative definite.

Throughout the paper, we express the asset price in terms of the log-price Yt = log(St), so
that (1) becomes

dYt =
(

r − 1

2
tr[Xt]

)

dt+ tr
[

√

Xt

(

dWtR
⊤ + dZt

√

Id −RR⊤
)

]

, Y0 = y. (3)

We first review the affine transform formula for the WMSV model [14], and we derive the
conditional Laplace transform of log-price YT given the terminal volatility XT using the affine
transform formula and the change of measure techniques.

2.1 Laplace Transform of YT

Due to the affine nature of the WMSV model, the Laplace transform of the log-price process
is exponentially affine in the initial values (x, y). In particular, the Laplace transform is of the
following form.

Proposition 2.1 (Da Fonseca et al. [14]). The Laplace transform of the log-price YT is given
by

Ex,y

[

e−uYT
]

= e−φ(0,u)−tr[ψ(0,u)x]−uy, if LHS is finite, (4)

where (φ,ψ) is the solution of







∂tψ(t, u) = 2ψ(t, u)Σ⊤Σψ(t, u)

−(H⊤ − uRΣ)ψ(t, u)− ψ(t, u)(H − uΣ⊤R⊤) + u(u+1)
2 Id,

∂tφ(t, u) = −δtr[ψ(t, u)Σ⊤Σ]− ur,

(5)

for 0 ≤ t ≤ T , with the terminal value ψ(T, u) = 0 and φ(T, u) = 0.

Remark 2.2. In this paper, we take the equations (5) as backward equations for notational
convenience. With this backward equations, the conditional Laplace transform given Ft can be
written as

Ex,y

[

e−uYT
∣

∣

∣
Ft
]

= EXt,Yt

[

e−uYT−t

]

= e−φ̃(0,u)−tr[ψ̃(0,u)Xt]−uYt ,

where (φ̃, ψ̃) is the solution of (5) with ψ̃(T − t, u) = 0 and φ̃(T − t, u) = 0. Notice that
ψ(· + t, u) = ψ̃(·, u) and φ(· + t, u) = φ̃(·, u) by the uniqueness of the solution. So we have
ψ̃(0, u) = ψ(t, u) and φ̃(0) = φ(t). Hence we have

Ex,y

[

e−uYT
∣

∣

∣
Ft
]

= e−φ(t,u)−tr[ψ(t,u)Xt]−uYt . (6)
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2.2 Conditional Laplace Transform of YT given XT

The aim of this subsection is to find the conditional Laplace transform of YT given XT = xT ∈
S++
d . We apply the affine transform formula (6) and the change of measure technique (e.g. see

Theorem XI.3.2 of [30]) to find the conditional Laplace transform. From this section, we assume
that Σ is nonsingular, and δ > d− 1 to ensure the nonsingularity of Wishart process Xt.

To state and prove the main result of this section, it is necessary to recall the definitions of
the noncentral Wishart distribution and some multivariate special functions. We collect them
in Appendix A.1.

Theorem 2.3. The conditional Laplace transform of log-price YT given XT = xT ∈ S++
d

satisfies

Ex,y

[

e−uYT
∣

∣

∣
XT = xT

]

=

(

det[V (0, 0)]

det[V (0, u)]

)δ/2

exp
{

− φ(0, u) − uy
}

× exp
{

− 1
2tr
[

(2ψ(0, u) + Ψ(0, u)V (0, u)−1Ψ(0, u)⊤ −Ψ(0, 0)V (0, 0)−1Ψ(0, 0)⊤)x
]

}

× exp
{

− 1
2tr
[

(V (0, u)−1 − V (0, 0)−1)xT

]

}

(7)

×
0F1

(

1
2δ;

1
4V (0, u)−1Ψ(0, u)⊤xΨ(0, u)V (0, u)−1xT

)

0F1

(

1
2δ;

1
4V (0, 0)−1Ψ(0, 0)⊤xΨ(0, 0)V (0, 0)−1xT

) ,

where 0F1 is the hypergeometric function of matrix argument defined in Appendix A.1, the
matrix-valued functions ψ, Ψ, V , and the real-valued function φ are the solution of the system
of ordinary differential equations:























∂tψ(t, u) = 2ψ(t, u)Σ⊤Σψ(t, u)

−(H⊤ − uRΣ)ψ(t, u)− ψ(t, u)(H − uΣ⊤R⊤) + u(u+1)
2 Id,

∂tφ(t, u) = −δtr[ψ(s, u)Σ⊤Σ]− ur,
∂tΨ(t, u) = −(H⊤ − uRΣ− 2ψ(t, u)Σ⊤Σ)Ψ(t, u),
∂tV (t, u) = −Ψ(t, u)⊤Σ⊤ΣΨ(t, u),

(8)

for 0 ≤ t ≤ T , with terminal values ψ(T, u) = V (T, u) = 0, Ψ(T, u) = Id, and φ(T, u) = 0.

Proof. Using the affine transform formula (6), we define a positive martingale

Zt = Ex,y

[

exp
{

− uYT + φ(0, u) + tr[ψ(0, u)x] + uy
}

∣

∣

∣
Ft
]

= exp
{

− φ(t, u) + φ(0, u) − tr[ψ(t, u)Xt] + tr[ψ(0, u)x] − u(Yt − y)
}

,

for 0 ≤ t ≤ T , where (φ,ψ) is the solution of the equations (5). Since Z0 = 1 and Zt > 0 for
all 0 ≤ t ≤ T , it can be used as a Radon-Nikodym derivative process. We define an equivalent
measure P̃ by

dP̃

dP
= ZT , on FT .

In order to apply Girsanov theorem, we need to find a martingale (Mt)0≤t≤T such that Zt =
E(M)t. We apply the integration by parts formula to have

tr[ψ(t, u)Xt]− tr[ψ(0, u)x] =

∫ t

0
tr[∂sψ(s, u)Xs]ds+

∫ t

0
tr[ψ(s, u)dXs]

=

∫ t

0
tr
[

(∂sψ(s, u) +H⊤ψ(s, u) + ψ(s, u)H)Xs

]

ds

+

∫ t

0
δtr[ψ(s, u)Σ⊤Σ]ds+

∫ t

0
tr
[

2Σψ(s, u)
√

XsdWs

]

,
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and

u(Yt − y) =

∫ t

0

(

ur − 1

2
tr[uXs]

)

ds+

∫ t

0
tr
[

uR⊤
√

XsdWs

]

+

∫ t

0
tr
[

u
√

Id −RR⊤
√

XsdZs
]

.

Since (φ,ψ) satisfies the equations (5),

−φ(t, u) + φ(0, u) − tr[ψ(t, u)Xt] + tr[ψ(0, u)x] − u(Yt − y)

= −
∫ t

0
tr
[

(2Σψ(s, u) + uR⊤)
√

XsdWs

]

−
∫ t

0
tr
[

u
√

Id −RR⊤
√

XsdZs
]

−1

2

∫ t

0
tr
[

(4ψ(s, u)Σ⊤Σψ(s, u) + 2uRΣψ(s, u) + 2uψ(s, u)Σ⊤R⊤ + u2Id)Xs

]

ds.

Set

M = −
∫ ·

0
tr
[

(2Σψ(s, u) + uR⊤)
√

XsdWs

]

−
∫ ·

0
tr
[

u
√

Id −RR⊤
√

XsdZs
]

.

Then

〈M〉t =
∫ t

0
tr
[

(4ψ(s, u)Σ⊤Σψ(s, u) + 2uRΣψ(s, u) + 2uψ(s, u)Σ⊤R⊤ + u2Id)Xs

]

ds.

Therefore, we have Zt = E(M)t, 0 ≤ t ≤ T . By Girsanov theorem, the dynamics of X is as
follows

dXt = (δΣ⊤ +H(t, u)Xt +XtH(t, u)⊤)dt+
√

XtdW̃tΣ+ Σ⊤dW̃⊤
t

√

Xt,

where H(t, u) = H − uΣ⊤R⊤ − 2Σ⊤Σψ(t, u), and W̃ is a d× d matrix Brownian motion under
P̃. Therefore X is a Wishart process with time-varying linear drift in the sense of Appendix
A.2.

According to Proposition A.6 in Appendix A.2, under P̃, XT has the noncentral Wishart
distribution Wd(δ, V (0, u), V (0, u)−1Ψ(0, u)⊤xΨ(0, u)), and it has the transition density from
time 0 to T :

p0,T (x, xT ;u) =
(det[xT ])

(δ−d−1)/2

2dδ/2Γd(
1
2δ)(det[V (0, u)])δ/2

exp
{

− 1
2 tr
[

V (0, u)−1(xT +Ψ(0, u)⊤xΨ(0, u))
]

}

×0F1

(

1
2δ;

1
4V (0, u)−1Ψ(0, u)⊤xΨ(0, u)V (0, u)−1xT

)

, (9)

where Ψ(t, u) and V (t, u) solve the corresponding equations in (8). Notice that the transition
density of X under P can be obtained by taking u = 0 because H(t, 0) = H for all 0 ≤ t ≤ T .

Now we are ready to compute the conditional Laplace transform of YT given XT = xT .
Observe that

∫

S++
d

Ex,y

[

e−uYT
∣

∣XT = xT

]

f(xT )p0,T (x, xT ; 0)dxT = Ex,y

[

e−uYT f(XT )
]

= e−φ(0,u)−tr[ψ(0,u)x]−uy
Ex,y

[

ZT f(XT )
]

= e−φ(0,u)−tr[ψ(0,u)x]−uy
Ẽx,y

[

f(XT )
]

= e−φ(0,u)−tr[ψ(0,u)x]−uy

∫

S++
d

f(xT )p0,T (x, xT ;u)dxT .

for all nonnegative measurable function f on S++
d . Hence the conditional Laplace transform

satisfies

Ex,y

[

e−uYT
∣

∣XT = xT

]

= e−φ(0,u)−tr[ψ(0,u)x]−uy p0,T (x, xT ;u)

p0,T (x, xT ; 0)
.

By substituting (9) into the above equation, we complete the proof.
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2.3 Conditional Laplace Transform for Heston Model

If the volatility has a single factor, the WMSV model reduces to the classical Heston’s stochastic
volatility model [24]. Therefore the analysis in the previous subsection can be readily applied
to the Heston model. Moreover, (8) admits a closed-form solution, and it opens possibility of
further analysis of the conditional Laplace transform for the Heston model.

In the Heston model, the dynamics of log-price process Y and variance process X, under the
risk neutral measure, are described by the following system of stochastic differential equations:

{

dXt = κ(θ −Xt)dt+ σ
√
XtdWt,

dYt =
(

r − 1
2Xt

)

dt+
√
Xt

[

ρdWt +
√

1− ρ2dZt
]

,
(10)

with initial value X0 = x ≥ 0 and Y0 = y ∈ R. The second equation gives the dynamics of the
log-price process: the stock price St at time t is given by St = eYt , r is the risk-neutral drift
and

√
Xt is the volatility. The first equation describes the dynamics of the stochastic variance

process. The parameter κ > 0 determines the speed of the mean reversion, θ > 0 represents the
long-run mean of the variance process, and σ > 0 is the volatility of the variance process. W
and Z are independent standard 1-dimensional Brownian motions.

The parameters of the WMSV model and those of the Heston model are related in the
following way:

κθ = δΣ⊤Σ = δΣ2, σ = 2Σ, κ = −2H, ρ = R.

And (8) are reduced to















∂tψ(t, u) = 1
2σ

2ψ(t, u) + (κ+ uσρ)ψ(t, u) + 1
2u(u+ 1),

∂tφ(t, u) = −κθψ(t, u)− ur,
∂tΨ(t, u) = 1

2(κ+ uσρ+ σ2ψ(t, u))Ψ(t, u),
∂tV (t, u) = −1

4σ
2Ψ(t, u)2,

(11)

with terminal values ψ(T, u) = φ(T, u) = V (T, u) = 0 and Ψ(T, u) = 1.
Through a straightforward calculations, we can derive the conditional Laplace transform for

the Heston model. The detailed calculation is given in Appendix A.3.

Corollary 2.4. For the Heston model, the conditional Laplace transform of YT given XT =
xT > 0 satisfies

Ex,y

[

e−uYT
∣

∣XT = xT

]

=
η(u)(1 − e−κT )

κ(1− e−η(u)T )
exp

{

− u
(

y + (r − κθρ
σ )T

)

− 1
2(η(u) − κ)T

}

× exp
{

− 1
σ2

(

η(u)(1+e−η(u)T )−(κ+uσρ)(1−e−η(u)T )

1−e−η(u)T − 2κe−κT

1−e−κT

)

x
}

(12)

× exp
{

− 1
σ2

(

η(u)(1+e−η(u)T )+(κ+uσρ)(1−e−η(u)T )

1−e−η(u)T − 2κ
1−e−κT

)

xT

}

×
I0.5δ−1

[√
xxT

4η(u)e−0.5η(u)T

σ2(1−e−η(u)T )

]

I0.5δ−1

[√
xxT

4κe−0.5κT

σ2(1−e−κT )

]
,

where Iν(·) is the modified Bessel function of the first kind, and η(u) =
√

(κ+ uσρ)2 − σ2u(u+ 1).

6



3 Review on Broadie and Kaya Method

Before going into our exact simulation method, we briefly review the Broadie and Kaya’s exact
simulation method [7] of the Heston model. The simulation method, they devised, motivated
our research and it contains important idea of Fourier inversion techniques.

Since the system (10) of the stochastic differential equations does not admit a closed-form
solution and there is no elementary way to simulate XT and YT exactly. Broadie and Kaya
proposed an exact sampling scheme which uses the Fourier inversion techniques [7]. From (10),

YT = y + rT − 1

2

∫ T

0
Xsds+

√

1− ρ2
∫ T

0

√

XsdZs + ρ

∫ T

0

√

XsdWs

= y + rT − 1

2

∫ T

0
Xsds+

√

1− ρ2
∫ T

0

√

XsdZs +
ρ

σ

(

XT − x− κθT + κ

∫ T

0
Xsds

)

= y +
ρ

σ

(

XT − x
)

+ (r − κθρ

σ
)T +

(ρκ

σ
− 1

2

)

∫ T

0
Xsds+

√

1− ρ2
∫ T

0

√

XsdZs.

Recall that Z is independent of W . Consequently, Z is independent of the sigma field FX
T =

σ(Xt : 0 ≤ t ≤ T ). So, FX
T -conditional distribution of

∫ T
0

√
XsdZs is normal with mean 0. And

its conditional variance can be computed by the Itô’s isometry:

varx,y

(

∫ T
0

√
XsdZs

∣

∣

∣
FX
T

)

= Ex,y

[(

∫ T
0

√
XsdZs

)2∣
∣

∣
FX
T

]

= Ex,y

[

∫ T
0 Xsds

∣

∣

∣
FX
T

]

=

∫ T

0
Xsds.

These observations gives the following exact sampling scheme of the state variables (XT , YT ):

Algorithm 1 (Broadie and Kaya [7]). This algorithm generates the state variables XT and YT
of the Heston model.

Step (1) Generate a sample from the distribution of XT

Step (2) Generate a sample from the conditional distribution of I =
∫ T
0 Xtdt given XT

Step (3) Generate a standard normal random number Z

Step (4) Set YT = y + ρ
σ

(

XT − x
)

+ (r − κθρ
σ )T +

(ρκ
σ − 1

2

)

I +
√

(1− ρ2)IZ.

For the step (1), one need to generate a sample from the distribution of XT . Fortunately,
the distribution of XT is well-known in the literature (e.g. see Glasserman [20]). The law of
XT can be expressed as

XT =
σ2(1− e−κT )

4κ
χ′2
δ

( 4κe−κT

σ2(1− e−κT )
x
)

,

where δ = 4κθ
σ2

, χ′2
δ (λ) denotes the noncentral chi-squared random variable with δ degrees of

freedom, and a noncentrality parameter λ. For the sampling of noncentral chi-squared random
variable, refer to [20].

The Broadie and Kaya’s idea of Fourier inversion techniques comes into play at the step (2).

They showed that the conditional characteristic function ϕ(·|x, xT ) of
∫ T
0 Xtdt given XT = xT

can be written as

ϕ(λ|x, xT ) = Ex,y

[

exp
(

iλ
∫ T
0 Xtdt

)

∣

∣

∣
XT = xT

]

=
γ(λ)e−(1/2)(γ(λ)−κ)T (1− e−κT )

κ(1 − e−γ(λ)T )

× exp
{x+ xT

σ2

[κ(1 + e−κT )

1− e−κT
− γ(λ)(1 + e−γ(λ)T )

1− e−γ(λ)T

]}I0.5δ−1

[√
xxT

4γ(λ)e−0.5γ(λ)T

σ2(1−e−γ(λ)T )

]

I0.5δ−1

[√
xxT

4κe−0.5κT

σ2(1−e−κT )

]
,

7



where γ(λ) =
√
κ2 − 2σ2iλ. Then they numerically inverted the conditional characteristic

function ϕ(·|x, xT ) to have an approximation of the conditional distribution,

Px

(

∫ T
0 Xtdt ≤ v|XT = xT

)

≈ Fh,N (v|x, xT ) =
hv

π
+

2

π

N
∑

n=1

sin(hnv)

n
Re
[

ϕ(hn|x, xT )
]

, (13)

where h > 0 is the discretization step size. Finally, they applied the inverse transform method
to Fh,N (·|x, xT ) to simulate the integral

∫ T
0 Xtdt, i.e., they generated a uniform random number

U and solved the following equation for
∫ T
0 Xtdt numerically

Fh,N

(

∫ T
0 Xtdt|x, xT

)

= U.

4 Exact Simulation Method

In this section, we present in detail our exact sampling algorithm of the WMSV model. Since
the process (X,Y ) is a time-homogeneous Markov process, the exact simulation method of
(XT , YT ) given an initial value (X0, Y0) = (x, y) can be extended to the exact simulation method
of (Xt2 , Yt2) given (Xt1 , Yt2) for arbitrary t1 < t2 in a straightforward manner. Therefore we
only consider the simulation of (XT , YT ) given an initial value (X0, Y0) = (x, y).

For the WMSV model, a naive extension of Broadie and Kaya method is hardly accomplish-
able. The difficulty comes from the dimensionality of the volatility factor process X. In the
Broadie and Kaya method, one need to generate a sample from the conditional (univariate) dis-

tribution of
∫ T
0 Xtdt given XT = xT , and it can be achieved by Fourier inversion techniques. In

contrast, the integrated volatility factor
∫ T
0 Xtdt of the WMSV model has a d×d matrix-variate

distribution, which makes it almost impossible to generate a sample from the distribution by
Fourier inversion techniques. Hence, instead of following the Broadie and Kaya’s approach, we
take a rather direct way to achieve the goal through Theorem 2.3. Roughly, our method consists
of the following two step.

Algorithm 2. This algorithm generates L pairs of the state variables (XT , YT ) of the WMSV
model.

Step (1) Generate L samples X
(1)
T , · · · ,X(L)

T from the distribution of XT

Step (2) For each l = 1, · · · , L, generate a sample Y
(l)
T from the conditional distribution

of YT given XT = X
(l)
T

In the following subsections, we go through the details of these two steps.

4.1 Sampling from the Distribution of XT

As indicated in the proof of Theorem 2.3, XT has noncentral Wishart distribution with degrees of
freedom δ, covariance matrix V (0, 0), and matrix of noncentrality parameter V (0, 0)−1 Ψ(0, 0)⊤

x Ψ(0, 0). The Wishart distributions with integer degrees of freedom (i.e., δ ∈ N) are extensively
studied in the literature of the multivariate statistical analysis (e.g. see [21, 27, 29]).

In case that δ is an integer which is greater than or equal to d, one way of exact simulation
is squaring a normal random matrix [8]. Let Nt be a solution of the following equation

dNt = NtH
⊤dt+ dBtΣ, with N⊤

0 N0 = x, (14)
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where B is a standard δ× d matrix Brownian motion. One can easily check that N⊤N satisfies
the stochastic differential equation (2). The equation (14) admits a closed form solution

Nt =

(

N0 +

∫ t

0
dBsΣe

−sH

)

etH , for 0 ≤ t <∞.

Notice that the rows of NT are independent normal random vectors with common covariance
matrix V (0, 0) and the mean of NT is N0e

TH . Therefore, for integer degrees δ of freedom, the
exact sampling of XT can be achieved by sampling δ × d i.i.d. normal random variables. And
there is also a more sophisticated but efficient way of simulating noncentral Wishart distributions
with an integer degrees of freedom [21].

As far as we know, an exact sampling scheme for a noncentral Wishart distribution with
non-integer valued degrees of freedom has only recently been devised by Ahdida and Alfonsi [2].
They have used a splitting method of the infinitesimal generator of Wishart processes. Their
exact sampling scheme requires sampling of at most d(d− 1)/2 i.i.d. normal random variables
and d noncentral chi-square random variables. In the numerical experiments of this paper, we
used the exact sampling method of Ahdida and Alfonsi [2].

4.2 Sampling from the Conditional Distribution of YT Given XT

This subsection is devoted to the step of sampling from the conditional distribution of YT given
XT = xT . This step is the most technical and time consuming step in our method. As explained
in Section 3, Broadie and Kaya adopted Fourier inversion techniques to invert the conditional
characteristic function of

∫ T
0 Xtdt given XT = xT . We follow a similar approach, but we invert

directly the conditional characteristic function of YT given XT = xT to avoid the difficulty in
converting the characteristic function of matrix-variate random variable.

Let ϕ(·;x, y, xT ) be the conditional characteristic function, i.e.,

ϕ(λ;x, y, xT ) = Ex,y

[

eiλYT
∣

∣

∣
XT = xT

]

, for λ ∈ R.

And let F (·;x, y, xT ) be the corresponding distribution function:

F (v;x, y, xT ) = Px,y

(

YT ≤ v
∣

∣XT = xT

)

.

By Levy’s inversion formula, the distribution can be recovered from the characteristic function,
i.e., for −∞ < lǫ < v, we have

F (v;x, y, xT ) = F (lǫ;x, y, xT ) +
1

2π

∫ ∞

−∞
ϕ(λ;x, y, xT )

e−iλlǫ − e−iλv

iλ
dλ

= F (lǫ;x, y, xT ) +
1

π

∫ ∞

0
Re
[

ϕ(λ;x, y, xT )
e−iλlǫ − e−iλv

iλ

]

dλ

= F (lǫ;x, y, xT ) +
1

π

∫ ∞

0
Im
[

ϕ(λ;x, y, xT )(e
−iλlǫ − e−iλv)

]dλ

λ
.

Notice that we can make F (lǫ;x, y, xT ) small enough to ignore by taking a small lǫ. So the
integral terms are dominant in the above expressions. The integral above can be approximated
by a numerical integration method. We use the trapezoidal rule to compute the distribution
function numerically. It is known that the trapezoidal rule works well for oscillating integrands
because the errors tend to be cancelled (see section 4 of Abate and Whitt [1]). An integral on
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the whole positive real line can be approximated in the following way. For notational simplicity,
we write the integrand as g(λ).

∫ ∞

0
g(λ)dλ =

g(0+)

2
h+ h

∞
∑

n=1

g(nh)− ed(h) =
g(0+)

2
h+ h

N
∑

n=1

g(nh)− ed(h)− et(N),

where ed(h) and et(N) are errors due to the discretization of the continuous variable and the
truncation of the infinite sum, respectively. Each of these errors can be made arbitrarily small
by taking sufficiently small h and sufficiently large N , and we give a detailed discussion on the
control of these errors in Section 4.3. One can easily find that g(0+) = v − lǫ. Therefore, we
approximate the distribution function by the following finite trigonometric series:

Fh,N (v;x, y, xT ) =
h(v − lǫ)

2π
+

1

π

N
∑

n=1

Im
[ϕ(nh;x, y, xT )

n
(e−inhlǫ − e−inhv)

]

=
h(v − lǫ)

2π
+

1

π

N
∑

n=1

(Re
[

ϕ(nh;x, y, xT )]

n

(

sin(nhv)− sin(nhlǫ)
)

)

(15)

− 1

π

N
∑

n=1

( Im
[

ϕ(nh;x, y, xT )]

n

(

cos(nhv)− cos(nhlǫ)
)

)

.

We address how to evaluate the conditional characteristic function ϕ(λ;x, y, xT ). The con-
ditional characteristic function can be obtained by taking u = −iλ in the formula (7). The
formula (7) involves the solutions ψ, φ, Ψ, and V of the system (8) of ordinary differential
equations. As we have shown in Section 2.3, the system (8) admits a closed-form solution for
the Heston model. In general, the system (8) does not admit a closed-form solution because
of non-commutativity of matrix multiplications. But the system (8) can be efficiently solved
by numerical methods. In particular, we used the MATLAB function ode45 for solving equa-
tions in our experiments.1 It should be noted that the functions ψ, φ, Ψ, and V are needed to
be evaluated only at (0, 0), (0,−ih), · · · , (0,−iNh), and such evaluation points can be chosen

uniformly across samples X
(1)
T , · · · ,X(L)

T . Therefore, it is enough to solve the system (8) at
those grid points only once for all simulation runs, and this numerical step does not cause a
computational burden if the number L of simulation runs is relatively larger than N .

The expression (7) requires calculations of the power of complex numbers, which is, in
general, a multi-valued function:

(z)ν = (|z|eiArg(z))ν = (|z|ei(Arg(z)+2mπ))ν = |z|νeiνArg(z)+2mνπ, m ∈ Z,

with principal argument −π < Arg(z) ≤ π. If λ 7→ z(λ) is a complex-valued continuous function
on R which does not attains 0, then there exists a unique continuous function λ 7→ arg(z(λ))
such that −π < arg(z(0)) ≤ π. Such a continuation can be easily constructed by tracing the
principal argument Arg(z(λ)) and adding or subtracting 2π at the discontinuous points. And
then, we can use it to construct a continuous version of the power function:

(z(λ))ν = |z(λ)|νeiνarg(z(λ)).

It is obvious that λ 7→ detV (0,−iλ) is a continuous function which does not attains 0, and we
can apply the above observation to calculate (detV (0,−iλ))δ/2.

1The MATLAB function ode45 is based on an explicit Runge-Kutta (4, 5) formula of Dormand and Prince[15].
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The conditional characteristic function (7) involves a hypergeometric function of matrix
argument. The hypergeometric function of matrix argument is defined by the following power
series

0F1(b; y) =

∞
∑

k=0

∑

|ι|=k

1

(b)ι

Cι(y)

k!
. (16)

For the definitions of |ι| and (b)ι, see Section A.1. The zonal polynomials Cι(y) are not poly-
nomials of the matrix y, but polynomials of its eigenvalues. So, we sometimes write the hyper-
geometric functions and the zonal polynomials in the following way:

Cι(y) = Cι(α1, · · · , αd), 0F1(b; y) = 0F1(b;α1, · · · , αd),

where α1, · · · , αd are eigenvalues of y. Koev and Edelman [26] exploited the combinatorial
properties of zonal polynomials and the generalized hypergeometric coefficients to develop an
algorithm for computing a truncated version of (16):

m
0 F1(b;α1, · · · , αd) =

m
∑

k=0

∑

|ι|=k

1

(b)ι

Cι(α1, · · · , αd)
k!

.

Since the denominator of the series (16) grows faster than factorial order, the series converges
quickly and the truncated version gives a good approximation. We provide a detailed error anal-
ysis of the truncated series in Section 4.3. MATLAB implementations of Koev and Edelman’s
algorithms are available in the author’s homepage [25]. But the routine gets only real eigenvalues
as input arguments. So we modified the codes applicable for complex input arguments.

To sample the log-price YT , we use the inverse transform method. We generate a uniform
random number U and we numerically solve the equation for YT

Fh,N (YT ;x, y, xT ) = U. (17)

The equation can be solved efficiently by numerical method, e.g., Newton’s method, because the
function Fh,N is a strictly increasing function. We provide details in the following subsection.

4.3 Some Implementation Issues

In order to implement our method, we need to resolve some issues. We have to determine
appropriate values of lǫ, h, and N in (15), and decide the number of summands to approximate
the infinite series (16). We also need to address how to solve the equation (17).

A careful choice of values of lǫ, h, and N is crucial in our method, because they determine
the points where the characteristic function ϕ(·;x, y, xT ) is evaluated. Too few evaluation points
might introduce a large bias of the Monte Carlo simulation due to the approximation error of the
conditional distribution function. Too many points might make our method too slow, because
the evaluation of the characteristic function ϕ(·;x, y, xT ) is the most time-consuming step of
our method.

As indicated in the previous subsection, the approximation (15) involves three different kinds
of errors: the discretization error ed(h), the truncation error et(N), and the left tail probability
F (lǫ;x, y, xT ). We suggest a way to control these errors based on the conditional mean and
standard deviation of YT given XT = xT . Recall that the mean and standard deviation can be
easily found by differentiating the characteristic function ϕ(·;x, y, xT ):

µ(xT ) = Ex,y[YT |XT = xT ] = Im
(

ϕ′(0;x, y, xT )
)

,

σ(xT )
2 = Ex,y[(YT − µ)2|XT = xT ] = −Re

(

ϕ′′(0;x, y, xT )
)

−
(

Im(ϕ′(0;x, y, xT ))
)2
.
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In the section 5 of Abate and Whitt [1], they used Poisson summation formula to prove that
the discretization error is bounded by two simple tail probabilities

0 ≤ ed(h) ≤
(

1− F (2π/h + lǫ;x, y, xT )
)

+ F (−2π/h+ v;x, y, xT )

for v− lǫ < 2π/h. Suppose that we want to calculate F (v;x, y, xT ) with an error less than ǫ. Let
lǫ and uǫ such that F (lǫ;x, y, xT ) ≤ ǫ/4 and F (uǫ;x, y, xT ) ≥ 1 − ǫ/4. Take h = 2π

uǫ−lǫ
. Then,

for lǫ ≤ v ≤ uǫ,

2π

h
+ lǫ = uǫ, and − 2π

h
+ v ≤ −2π

h
+ uǫ = lǫ,

so that

|F (lǫ;x, y, xT )− ed(h)| ≤ max{F (lǫ;x, y, xT ), ed(h)} ≤ ǫ/2.

Then we turn to the truncation error et(N). Since the summands in (15) are oscillating, the
absolute value of the last term gives an estimate for the truncation error:

|et(N)| ≈ 1

π

∣

∣

∣
Im
[ϕ(Nh;x, y, xT )

N
(e−iNhlǫ − e−iNhv)

]∣

∣

∣
≤ 2|ϕ(Nh;x, y, xT )|

π

So, we may choose a large N so that |ϕ(Nh;x, y, xT )| ≤ ǫπ/4 to make the truncation error
approximately less than ǫ/2.

These error bounds and estimates are theoretically appealing, but they are not suitable for
practical use. For example, we can compute ϕ(Nh;x, y, xT ), but it is very time-consuming.
Furthermore, we need to evaluate F (·;x, y, xT ), which is not known in advance. To overcome
these difficulties, we exploit a heuristic idea, which is obtained from numerical experiments.
The conditional distribution of YT given XT = xT is roughly similar to the normal distribution,
because the terminal value XT of volatility factor is already known and the main source of
randomness is the stochastic integral with respect to a Brownian motion. But they show
some differences as well. The normal distribution is symmetric with respect to mean, but the
conditional distribution of YT is asymmetric, and the decay rate of the conditional characteristic
function of YT gets slower as the correlation parameter R increases. So, we start with lǫ, h, and
N which are suggested by the normal distribution, and then modify them to take such effects
into account. The normal distribution suggests us to take lǫ, h, and N of the following form:































lǫ = Φ−1
(

ǫ/4;µ(xT ), σ(xT )
2
)

= µ(xT ) + σ(xT )Φ
−1(ǫ/4),

h = 2π
(

Φ−1
(

1− ǫ/4;µ(xT ), σ(xT )
2
)

− Φ−1
(

ǫ/4;µ(xT ), σ(xT )
2
)

)−1

= −π
(

σ(xT )Φ
−1
(

ǫ/4
)

)−1
,

N =
⌈

1
hσ(xT )

√

−2 log(πǫ/4)
⌉

,

where Φ−1(·;µ, σ2) and Φ−1(·) are the inverse functions of the normal distribution N (µ, σ2) and
the standard normal distribution, respectively. And ⌈a⌉ denotes the smallest integer greater
than a. Then we modify them with the mean µ(xT ) and the correlation parameter R. Since we

want to choose the points u = −inh, n = 1, · · · , N uniformly across samples X
(1)
T , · · · ,X(L)

T ,
we take lǫ, h, and N in a conservative way:























lǫ = min
l=1,··· ,L

{

µ(X(l)
T
) + σ(X(l)

T
)Φ−1(ǫ/4)

}

,

h = −π × min
l=1,··· ,L

(

(

c1|µ(X(l)
T
)|+ σ(X(l)

T
)
)

Φ−1
(

ǫ/4
)

)−1
,

N = max
l=1,··· ,L

⌈

1+c2
√

tr[R⊤R]

hσ(X
(l)
T

)

√

−2 log(πǫ/4)

⌉

,

(18)
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for appropriate constants c1 ≥ 0 and c2 ≥ 0. In particular, we take c1 = 0.1 and c2 = 0.5 in our
experiments.

Now, we consider the problem of determining where to truncate the hypergeometric series
(16). The partitions of integers can be ordered lexicographically, i.e., if ι = (k1, · · · , kd) and
ι̃ = (l1, · · · , ld) are two partitions of integers we will write ι > ι̃ if ki > li for the first index i
at which the parts become unequal. With this order relation, we give an upper bound for the
truncation error of the hypergeometric functions. The proof is given in Appendix A.4.

Proposition 4.1. For b > 1
2(d− 1) and an integer m ≥ d− 1, we have for α1, · · · , αd ∈ C

|0F1(b;α1, · · · , αd)− m
0 F1(b;α1, · · · , αd)| ≤

(|α1|+ · · ·+ |αd|)m+1

(m+ 1)!(b)ι̂(m+1)
e|α1|+···+|αd|, (19)

where ι̂(m + 1) is the smallest partition among the partitions of m + 1 into not more than d
parts.

Notice that the smallest partition ι̂(k) = (k1, · · · , kd) among the partitions of k into not
more than d parts is the most evenly distributed partition, and the smallest partition ι̂(k + 1)
of k + 1 is the partition which is obtained by adding 1 to k1 if all the ki’s are equal, or adding
1 to kj at which kj differs from kj−1 otherwise. For example, (2, 2, 2, 2, 1), (2, 2, 2, 2, 2), and
(3, 2, 2, 2, 2) are the smallest partitions of 9, 10, and 11 into 5 parts, respectively. With this
observation, we can compute the hypergeometric coefficients (b)ι̂(k) as follows: (b)(1) = b and

(b)ι̂(k+1) =

{

(b)ι̂(k)(b+ k1) if k1 = · · · = kd
(b)ι̂(k)

(

b+ kj − 1
2(j − 1)

)

if k1 = · · · = kj−1 6= kj = · · · = kd
, (20)

where ι̂(k) = (k1, · · · , kd).
We use the bound (19) as a criterion for truncating the series (16). Notice that the parameter

b is a constant 1
2δ, which satisfies the assumption of Proposition 4.1. Since it is a constant, we

need to compute the hypergeometric coefficients of the smallest partitions only once in all the
simulation runs, and it does not add computational burden to our method. So the upper bound
(19) can be calculated with minor additional computational budget.

In order to solve the equation (17), we use the Newton’s method. A careful choice of the
initial guess is necessary to enhance the convergence. As explained before, the conditional
distribution F (v;x, y, xT ) is approximated as the normal one with mean µ(xT ) and variance
σ(xT )

2. Therefore, we take the initial guess v0 as the solution of the equation

Φ(v0;µ(xT ), σ(xT )
2) = U, or v0 = Φ−1(U ;µ(xT ), σ(xT )

2).

Then we apply the Newton’s method to the function Fh,N (v;x, y, xT ) to generate a sequence
which approximates the solution of the equation (17):

vk+1 = vk −
Fh,N (vk;x, y, xT )

F ′
h,N (vk;x, y, xT )

.

We iterate the loop for a fixed number of times, usually 4 or 5 times, and then use the bisection
search method if the sequence, generated by Newton’s method, fails to converges within the
predetermined number of iterations.

We summarize the method of generating a sample from the conditional distribution of YT
given XT = xT .

Algorithm 3. This algorithm generates L samples Y
(1)
T , · · · , Y (L)

T from the conditional distribu-

tion of YT given XT = X
(1)
T , · · · ,X(L)

T , respectively.
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Step (1) Determine lǫ, h, and N according to (18),

Step (2) Evaluate ψ(0, u), φ(0, u), Ψ(0, u), and V (0, u) at u = −inh, n = 1, · · · , N

Step (3) Evaluate ϕ(nh;x, y,X
(l)
T ) for n = 1, · · · , N and l = 1, · · · , L

Step (4) Generate IID uniform random numbers U (1), · · · , U (L)

Step (5) For each l = 1, · · · , L, solve Fh,N (Y (l)
T ;x, y,X

(l)
T ) = U (l) for Y

(l)
T

5 Numerical Results

In this section, we compare numerically our exact simulation method with other existing meth-
ods: the Euler discretization scheme for the WMSV model and the Broadie-Kaya method for
the Heston model.

5.1 Comparison between the Exact Sampling and the Euler Scheme

The system of stochastic differential equations (2) and (3) does not admit a closed form so-
lution. In such a case, one way to simulate the model is to discretize the time interval and
simulate another process, which approximates the model, on these discrete time grids. Euler
discretization is a basic discretization scheme. Let 0 = t0 < t1 < · · · < tN = T be a partition of
the time interval [0, T ] into N equal subintervals, i.e., ∆t = ti − ti−1 = T/N , i = 1, · · · , N . We
discretize the Wishart process (2) by setting X̂t0 = x, and

X̂ti =

(

X̂ti−1 + (δΣ⊤Σ+HX̂ti−1 + X̂ti−1H
⊤)∆t+

√

X̂ti−1∆WtiΣ+ Σ⊤
(

∆Wti

)⊤
√

X̂ti−1

)+

,

where ∆Wti = Wti − Wti−1 . Here, A+ denotes the positive part of a symmetric matrix A:
we set A+ = Odiag(λ+1 , · · · , λ+d )O⊤ if A = Odiag(λ1, · · · , λd)O⊤ and O an orthogonal matrix.

In order to make X̂ti positive semidefinite, we take the positive part at each time grid. The
discretization of the log-price process (3) is

Ŷti = Ŷti−1 +
(

r − 1

2
tr[X̂ti−1 ]

)

∆t+ tr
[
√

X̂ti−1

(

∆WtiR
⊤ +∆Zti

√

Id −RR⊤
)]

,

where ∆Zti = Zti − Zti−1 . Euler discretization scheme is easy to understand and implement.
But it has serious disadvantages: the distribution of the samples drawn from Euler scheme is
different from the true distribution, and it may require very fine discretization to reduce the
bias as small as acceptable. These will be illustrated by numerical results.

We will compare the exact simulation method with the Euler discretization scheme in the
terms of distributions, convergence and performance. The simulation experiments in this paper
were performed on a desktop PC with an Intel Core2 Quad 3.00 GHz processor and 3.25 GB
RAM, running Windows XP Professional. We used the MATLAB in the version R2009a.

In order to demonstrate the difference of empirical distributions of exact simulation method
and Euler discretization method, we generated 106 samples and estimated the density functions
of YT using those samples. To estimate density functions, we used the MATLAB function
ksdensity which computes a density estimate using kernel density estimation. The theoretical
density function was obtained by a numerical inversion of the characteristic function (4). Figure
1 shows the density functions of YT for the parameter set:

δ = 1.1, r = 0, y = 0, T = 1.0,
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Figure 1: Density estimates of the log-price : The upper left panel shows the overall shapes of
density estimates, and the other three panels magnify different parts of the upper left one.

x =

[

0.0298 0.0119
0.0119 0.0108

]

, H =

[

−1.2479 −0.8985
−0.0820 −1.1433

]

,

Σ =

[

0.3417 0.3493
0.1848 0.3090

]

, R =

[

−0.2243 −0.1244
−0.2545 −0.7230

]

.

The set of parameters except δ for the model is taken from Da Fonseca and Grasselli2 [13].
The number of time steps for the Euler method is set to 25. From Figure 1, we observe that
the distribution of the samples drawn from Euler method apparently differs from the true
distribution.

The errors in density estimates result from the discretization bias of the Euler scheme.
Even worse, there is no appropriate way to measure the bias errors. In contrast, the error
of exact simulations comes mostly from the variance, and it can be easily measured by the
sample variance. To illustrate such a difference, we present European call option price estimates
obtained by two simulation methods. The model parameters are the same as above except
δ = 3.2. We consider an at-the-money call option, i.e., the strike price K is set to equal to

2In their paper, the calibrated δ for DAX index is 0.5776, and it violate the assumption δ > d− 1. Indeed, in
that case, the Wishart process X is no longer an affine process in the sense of Cuchiero et. al. [12].
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Methods
No. of No. of

MC estimates std. errors
Time

time steps simulation runs (sec)

Exact N/A

50000 0.192415 0.1430 × 10−2 12.14
100000 0.191451 0.1009 × 10−2 24.28
500000 0.192143 0.4535 × 10−3 121.4
1000000 0.191513 0.3202 × 10−3 242.8

Euler

50

50000 0.195202∗ 0.1456 × 10−2 179.4
100000 0.194829∗ 0.1034 × 10−2 358.7
500000 0.193827∗ 0.4603 × 10−3 1793.5
1000000 0.194197∗ 0.3259 × 10−3 3587.0

100

50000 0.194016 0.1461 × 10−2 358.4
100000 0.193264 0.1027 × 10−2 716.8
500000 0.193008∗ 0.4570 × 10−3 3584.2
1000000 0.193073∗ 0.3234 × 10−3 7168.5

Table 1: The Monte-Carlo estimates of the call option price with δ = 3.2: The theoretical
option price is 0.191575. The asterisked numbers are those for which the theoretical price lies
outside of the 95% confidence interval.

S0 = eY0 = 1. We computed the theoretical price of the option by applying the Carr and
Madan approach [9] to the Laplace transform formula (4). Table 1 shows the Monte-Carlo
estimates of the option price. The Euler method gives unreliable results : the theoretical price
lies in only two (out of eight) 95% confidence intervals built by the Euler method. Furthermore,
the computation times spent by the Euler method are much longer than those for the exact
simulation method.

The accuracy of the Euler method gets worse as δ decreases. For a small δ, the discretized
Wishart process crosses more frequently the boundary of the cone of symmetric positive definite
matrices. At each time it passes the boundary, its negative part is truncated to make it positive
semidefinite, and such truncations might cause serious bias error. To illustrate such case, we
set δ = 1.1, and all other parameters are set as the same as above. Table 2 reveals that the
Euler discretization method hardly gives reliable estimates for δ = 1.1. The theoretical price
never lies in the 95% confidence intervals built by the Euler method, but it always lies in the
95% confidence intervals from the exact simulation.

5.2 Comparison with Broadie and Kaya Method

To apply our method to the Heston model, we used the explicit formula (12) instead of (7).
With (12), we do not need to solve the ordinary differential equations, and we can use the
built-in MATLAB function besseli 3 instead of the algorithm of Koev and Edelman [26] for the
computation of the hypergeometric function of matrix arguments.

We pointed out in Section 4.3 that a careful choice of the grid size h and the truncation
number N is necessary in our method. The same is true for any Fourier inversion based sim-
ulation method, e.g., Broadie and Kaya’s method [7]. In the paper of Broadie and Kaya, they
did not give any guideline on how to choose h and N , and they argued that appropriate h and
N can be found by trial and error. But it is difficult to find appropriate h and N , and it will
be illustrated by numerical experiments.

3The MATLAB funciton besseli computes the modified Bessel function of the first kind Iν(·) using the algorithm
of Amos [3].
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Methods
No. of No. of

MC estimates std. errors
Time

time steps simulation runs (sec)

Exact N/A

50000 0.114129 0.7381 × 10−3 15.34
100000 0.113630 0.5215 × 10−3 30.68
500000 0.112916 0.2320 × 10−3 153.40
1000000 0.113085 0.1642 × 10−3 306.80

Euler

50

50000 0.117013∗ 0.7654 × 10−3 180.33
100000 0.117020∗ 0.5441 × 10−3 360.67
500000 0.116698∗ 0.2428 × 10−3 1803.34
1000000 0.116940∗ 0.1718 × 10−3 3606.67

100

50000 0.116940∗ 0.7541 × 10−3 360.54
100000 0.115963∗ 0.5321 × 10−3 721.09
500000 0.115333∗ 0.2383 × 10−3 3605.45
1000000 0.115363∗ 0.1684 × 10−3 7210.90

Table 2: The Monte-Carlo estimates of the call option price with δ = 1.1: The theoretical
option price is 0.113000. The asterisked numbers are those for which the theoretical price lies
outside of the 95% confidence interval.

This section is designed to show how the various choices of h and N in (13) affect the
accuracy and performance of the Broadie and Kaya’s method, and to compare performance
of their method with ours. For the purpose, we generate 106 samples of the Heston model
using our method, and we also generate the same number of samples using Broadie and Kaya’s
method for various combinations of h and N . We used them to obtain Monte-Carlo estimates
of the European call option price. The model parameter is set to

x = 0.010201, y = log(100), κ = 6.21, θ = 0.019,

σ = 0.61, ρ = −0.7, r = 0.0319, T = 1.0, K = 100.

This set of parameters is taken from Duffie et al. [16]: it was calibrated to the option prices
for S&P 500 on November 2, 1993, and used in Broadie and Kaya [7] as well. Table 3 shows
the simulation results.4 From the table, the pair of h = 32 and N = 25 seems to be the best
choice of h and N among outputs of the experiments. But, even with that choice of h and N ,
the Broadie and Kaya’s method is slower than our method.

Through this experiment, we found that the Broadie-Kaya method requires many trials to
find the optimal choice of h and N . It is even worse that the optimal choice of h and N is
sensitive to the change of the model parameters. To demonstrate the sensitivity of their method,
we give another experimental results with the same parameter except T = 0.25. Table 4 shows
that the true option price never lies in the confidence intervals of their methods for the same
choices of h and N . In contrast, our automatic choice of h and N according to (18) makes our
method adaptive to the parameter changes.

6 Concluding Remarks

We proposed a method for the exact simulation of the asset price and volatility factor of Wishart
multidimensional stochastic volatility model(WMSV). Our simulation method is inspired by the
Fourier inversion techniques of Broadie and Kaya [7], and based on the analysis of the conditional

4In our method, the h and N are automatically chosen by (18)
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Methods h N Nh MC estimates std. errors Time(sec)

KK N/A N/A N/A 6.8125 7.4302 × 10−3 59.77

BK

8
100 800 6.8276∗ 7.4377 × 10−3 280.4
200 1600 6.8059 7.4206 × 10−3 591.1
400 3200 6.7993 7.4208 × 10−3 1172.0

16
50 800 6.8162 7.4299 × 10−3 123.4
100 1600 6.8025 7.4220 × 10−3 297.0
200 3200 6.8211∗ 7.4257 × 10−3 584.8

32
25 800 6.8098 7.4302 × 10−3 68.0
50 1600 6.8011 7.4144 × 10−3 132.6
100 3200 6.8191 7.4286 × 10−3 293.6

64
13 832 6.8346∗ 7.4252 × 10−3 41.16
25 1600 6.8222∗ 7.4173 × 10−3 72.52
50 3200 6.8184 7.4137 × 10−3 130.8

Table 3: The Monte-Carlo estimates of the call option price with T = 1.0: The theoretical
option price is 6.8061. The asterisker numbers are those for which the theoretical price lies
outside of the 95% confidence interval. KK refers to our method and BK refers to the method
of Broadie and Kaya.

Methods h N Nh MC estimates std. errors Time(sec)

KK N/A N/A N/A 2.6720 2.9214 × 10−3 78.18

BK

8
100 800 2.7883∗ 2.8438 × 10−3 279.5
200 1600 2.7597∗ 2.8631 × 10−3 608.0
400 3200 2.7463∗ 2.8705 × 10−3 1290.2

16
50 800 2.7853∗ 2.8435 × 10−3 124.0
100 1600 2.7587∗ 2.8664 × 10−3 306.6
200 3200 2.7483∗ 2.8796 × 10−3 647.7

32
25 800 2.7802∗ 2.8408 × 10−3 67.3
50 1600 2.7610∗ 2.8678 × 10−3 138.7
100 3200 2.7488∗ 2.8798 × 10−3 327.9

64
13 832 2.7845∗ 2.8433 × 10−3 40.63
25 1600 2.7651∗ 2.8695 × 10−3 75.19
50 3200 2.7445∗ 2.8736 × 10−3 150.9

Table 4: The Monte-Carlo estimates of the call option price with T = 0.25: The theoretical
option price is 2.6709. The asterisked numbers are those for which the theoretical price lies
outside of the 95% confidence interval. KK refers to our method and BK refers to the method
of Broadie and Kaya.
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Laplace transform of the asset price given a volatility level. The proposed simulation method can
be used to generate unbiased price estimators for path-independent or mildly path-dependent
options such as Bermudan options and American call options with discrete dividends.

We illustrated the accuracy and speed of the exact simulation method by numerical ex-
periments. The numerical results confirmed that the exact simulation method gives accurate
simulation results and it is faster than the crude Euler discretization method. The numerical
comparison on the Heston model revealed that our method is more adaptive than the original
exact simulation method of Broadie and Kaya.

In the paper of Broadie and Kaya [7], the authors extended the exact simulation method for
the Heston model to other affine jump diffusion models. With the same approach as theirs, the
exact simulation method for the WMSV model can be extended to single asset matrix affine
jump diffusion models [28] provided that the jumps in the model has the constant intensity and
the jump size can be sampled exactly. These extensions are straightforward and explained well
in Broadie and Kaya [7].

A Appendix

A.1 Noncentral Wishart Distributions & Special Functions

This section is intended to recall the definitions of noncentral Wishart distributions and some
multivariate special functions. For a detailed discussion on multivariate distributions and special
functions, refer to Muirhead [29].

The probability density function of the noncentral Wishart distribution involves two special
functions: the multivariate gamma function and the hypergeometric function of matrix argu-
ments. We start with the multivariate gamma function, which is defined in terms of an integral
over the cone S++

d of symmetric positive definite d× d matrices.

Definition A.1. The multivariate gamma function, denoted by Γd(a), is defined to be

Γd(a) =

∫

S++
d

exp(−tr[y])(det[y])a−(d+1)/2(dy), for Re(a) >
1

2
(d− 1).

Note that when d = 1, the multivariate gamma function becomes the usual gamma function,
Γ1(a) = Γ(a).

In order to give the definition of the hypergeometric function of matrix arguments, we need
to introduce the zonal polynomials, which is defined in terms of partitions of positive integers.
Let k be a positive integer. A partition ι of k is written as ι = (k1, k2, · · · ), where

∑

j kj = k
and k1 ≥ k2 ≥ · · · ≥ 0. We order the partitions lexicographically: let ι = (k1, k2, · · · ) and
ι̃ = (l1, l2, · · · ) be two partitions, we write ι > ι̂ if kj > lj for the first index j at which two parts
become unequal. In case ι = (k1, · · · , kd) and ι̃ = (l1, · · · , ld) are two partitions with ι > ι̃, we
say the monomial αk11 · · ·αkdd is of higher weight than the monomial αl11 · · ·αldd .

Definition A.2. Let y be a d× d complex symmetric matrix with eigenvalues α1, · · · , αd and
let ι be a partition of k into not more than d parts. The zonal polynomial of y corresponding
to ι = (k1, · · · , kd), denoted by Cι(y), is a symmetric, homogeneous polynomial of degree k in
the eigenvalues α1, · · · , αd such that

(i) The term of highest weight in Cι(y) is α
k1
1 · · ·αkdd , i.e.,

Cι(y) = cια
k1
1 · · ·αkdd + terms of lower weight,

where cι is a constant.
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(ii) Cι(y) is an eigenfunction of the differential operator ∆y given by

∆y =
d
∑

j=1

α2
j

∂2

∂α2
j

+
d
∑

j=1

d
∑

i=1
i 6=j

α2
j

αj − αi

∂

∂αj
.

In other words, Cι(y) satisfies ∆yCι(y) = λCι(y) for some λ.

(iii) As ι varies over all partitions of k, the zonal polynomials have unit coefficients in the
expansion of (tr[y])k, i.e.,

∑

|ι|=k

Cι(y) = (tr[y])k = (α1 + · · · + αd)
k,

where |ι| denotes the sum of parts of ι, i.e. |ι| = k1 + · · ·+ kd.

Definition A.3. The hypergeometric functions of matrix argument are given by

pFq(a1, · · · , ap; b1, · · · , bq; y) =
∞
∑

k=0

∑

|ι|=k

(a1)ι · · · (ap)ι
(b1)ι · · · (bp)ι

Cι(y)

k!
,

where the generalized hypergeometric coefficient (a)ι for a partition ι = (k1, · · · , kd) is given by

(a)ι =

d
∏

j=1

(

a− 1

2
(j − 1)

)

kj
,

and (a)k = a(a + 1) · · · (a + k − 1), (a)0 = 1. Here, the argument of the function is a complex
symmetric d× d matrix and the parameters aj , bj are arbitrary complex numbers. No denomi-
nator parameter bj is allowed to be zero or an integer or half-integer ≤ 1

2(d−1), otherwise some
of the denominators in the series will vanish.

Note that in case d = 1, there is only one partition of k into not more than d, namely (k).
Therefore, the hypergeometric function of matrix arguments becomes to the usual hypergeo-
metric function of real variables.

Likewise the noncentral chi-square distributions, the noncentral Wishart distribution with
integer degrees of freedom is defined by multiplying normal random vectors with themselves.
Consider δ(∈ N) independent random vectors of Rd, denoted by Z1, · · · , Zδ , with multivariate
normal distributions with means µ1, · · · , µδ and the common nonsingular covariance matrix C.
The distribution of the random matrix

W =
δ
∑

k=1

ZkZ
⊤
k

is called the noncentral Wishart distribution with δ degrees of freedom, covariance matrix C,
and matrix of noncentrality parameter Ω = C−1

∑δ
k=1 µkµ

⊤
k . If δ ≥ d, thenW has a probability

density function which is of the form:

(det[y])(δ−d−1)/2

2dδ/2Γd(
1
2δ)(det[C])δ/2

exp
{

− 1
2tr
[

C−1y +Ω
]

}

0F1

(

1
2δ;

1
4ΩC

−1y
)

, y ∈ S++
d . (21)

The function (21) is still a density function when δ is any real number greater than d− 1. This
observation make it possible to extend the notion of the noncentral Wishart distribution to
non-integer degrees of freedom.
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Definition A.4. Suppose that δ > d− 1, C ∈ S++
d , and Ω is a d × d matrix such that CΩ is

symmetric positive semidefinite. If a d×d symmetric positive definite random matrixW has the
probability density function (21), then W is said to have the noncentral Wishart distribution
with δ degrees of freedom, covariance matrix C, and matrix of noncentrality parameter Ω. We
will say W has Wd(δ, C,Ω) distribution.

Proposition A.5 (Theorem 3.5.3 in Gupta and Nagar [23]). SupposeW has noncentral Wishart
distribution Wd(δ, C,Ω). Then its Laplace transform is given by

E
[

e−tr(ϑW )
]

= det[Id + 2ϑC]−δ/2 exp
{

− tr
[

ϑ(Id + 2Cϑ)−1CΩ
]

}

,

for any symmetric positive semidefinite matrix ϑ.

A.2 Wishart Processes with Time-varying Linear Drift

In this section, we slightly extend the notion of Wishart processes in order to compute the
conditional Laplace transform of log-price given volatility level.

A symmetric positive semidefinite matrix valued stochastic process X is called a Wishart
process with time-varying linear drift if it is a weak solution of the following stochastic differ-
ential equation

dXt = (δΣ⊤Σ+H(t)Xt +XtH(t)⊤)dt+
√

XtdWtΣ+ Σ⊤dW⊤
t

√

Xt, with X0 = x, (22)

where δ ≥ d − 1, Σ is a d × d matrix, x is a symmetric positive semidefinite matrix, H(·) is a
d× d matrix valued continuous function, and W is a standard d× d matrix Brownian motion.
Wishart process with time-varying linear drift has noncentral Wishart marginal distributions.

Proposition A.6. Let X be a Wishart process with time-varying linear drift which solves (22).
Then XT has noncentral Wishart distribution Wd(δ, V (0), V (0)−1 Ψ(0)⊤xΨ(0)), where V (t)
and Ψ(t) are solutions of following system of ordinary differential equations

{

d
dtΨ(t) = −H(t)⊤Ψ(t),
d
dtV (t) = −Ψ(t)⊤Σ⊤ΣΨ(t),

with the terminal value Ψ(T ) = Id and V (T ) = 0.

Proof. Using standard argument(e.g., see Appendix B of Gourieroux and Sufana [22]), one may
prove that for a symmetric positive semidefinite matrix ϑ,

Ex

[

e−tr(ϑXT )
]

= e−φ̂(0,ϑ)−tr(ψ̂(0,ϑ)x),

where φ̂ and ψ̂ are the solution of following equations
{

∂tψ̂(t, ϑ) = 2ψ̂(t, ϑ)Σ⊤Σψ̂(t, ϑ)−H(t)⊤ψ̂(t, ϑ)− ψ̂(t, ϑ)H(t),

∂tφ̂(t, ϑ) = −δtr[ψ̂(t, ϑ)Σ⊤Σ],

with terminal values φ̂(T, ϑ) = 0 and ψ̂(T, ϑ) = ϑ. Using differentiation rules d
dtA(t)

−1 =

−A(t)−1 d
dtA(t)A(t)

−1 and d
dt ln det[A(t)] = tr[A(t)−1 d

dtA(t)], one may check that
{

ψ̂(t, ϑ) = Ψ(t)ϑ(Id + 2V (t)ϑ)−1Ψ(t)⊤,

φ̂(t, ϑ) = δ
2 ln det[Id + 2ϑV (t)],

solves the above system of differential equations. Therefore,

Ex

[

e−tr(ϑXT )
]

= det[Id + 2ϑV (0)]−δ/2 exp
{

− tr
[

ϑ(Id + 2V (0)ϑ)−1Ψ(0)⊤xΨ(0)
]

}

.

Since Laplace transform uniquely characterizes a distribution, XT has noncentral Wishart dis-
tribution Wd(δ, V (0), V (0)−1 Ψ(0)⊤xΨ(0)) by Proposition A.5.
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A.3 Details of calculation of (12)

In this section, we provide details of the calculation of the conditional characteristic function
(12). The first equation in the system (11) is the classical Riccati equation, and its closed-form
solution is well-known (e.g., see Section 10.7.2 of Filipović [17]). In particular,

ψ(t, u) = − u(u+ 1)(eη(u)(T−t) − 1)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)
,

∫ T

t
ψ(s, u)ds = − 2

σ2
log

(

2η(u)e
1
2
(η(u)+κ+uσρ)(T−t)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)

)

,

where η(u) =
√

(κ+ uσρ)2 − σ2u(u+ 1). It follows that

e−φ(t,u) =

(

2η(u)e
1
2
(η(u)+κ+uσρ)(T−t)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)

)δ/2

e−ur(T−t).

The solution of the third linear equation is

Ψ(t, u) = exp
{

− 1
2

∫ T
t (κ+ uσρ+ σ2ψ(s, u))ds

}

= e−
1
2
(κ+uσρ)(T−t) exp

{

− σ2

2

∫ T
t ψ(s, u)ds

}

= e−
1
2
(κ+uσρ)(T−t) 2η(u)e

1
2
(η(u)+κ+uσρ)(T−t)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)

=
2η(u)e

1
2
η(u)(T−t)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)
(23)

A direct integration shows that

V (t, u) =
1

2

σ2(eη(u)(T−t) − 1)

η(u)(eη(u)(T−t) + 1) + (κ+ uσρ)(eη(u)(T−t) − 1)
. (24)

We divide (23) by (24) to have

Ψ(0, u)

V (0, u)
=

4η(u)e0.5η(u)T

σ2(eη(u)T − 1)
=

4η(u)e−0.5η(u)T

σ2(1− e−η(u)T )
.

In particular,
Ψ(0, 0)

V (0, 0)
=

4κe−0.5κT

σ2(1− e−κT )
.

Observe that the relation between φ(t, u) and Ψ(t, u):

e−φ(t,u) = (Ψ(t, u))δ/2 exp
{

δ
4 (κ+ uσρ)(T − t)− ur(T − t)

}

.

Remind the relationship between the hypergeometric functions and the modified Bessel func-
tions:

0F1

(

ν + 1; 14x
2
)

= (x/2)−νΓ(ν + 1)Iν(x).
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Using the identities above, we found that

(V (0, 0)

V (0, u)

)δ/2
exp

{

− φ(0, u)
} 0F1

(

1
2δ;

1
4

(Ψ(0,u)
V (0,u)

√
xxT

)2)

0F1

(

1
2δ;

1
4

(Ψ(0,0)
V (0,0)

√
xxT

)2)

=
(V (0, 0)

V (0, u)

)δ/2(Ψ(0, u)

V (0, u)

)−δ/2+1(Ψ(0, 0)

V (0, 0)

)δ/2−1

×
(

Ψ(0, u)
)δ/2

exp
{

δ
4(κ+ uσρ)T − urT

}

I0.5δ−1(
√
xxT

Ψ(0,u)
V (0,u))

I0.5δ−1(
√
xxT

Ψ(0,0)
V (0,0))

= V (0, 0)
Ψ(0, u)

V (0, u)
exp

{

1
2κT − u(r − κθρ

σ )T
}

I0.5δ−1(
√
xxT

Ψ(0,u)
V (0,u))

I0.5δ−1(
√
xxT

Ψ(0,0)
V (0,0))

=
η(u)(1 − e−κT )

κ(1− e−η(u)T )
exp

{

−u(r − κθρ
σ )T − 1

2(η(u) − κ)T
}

I0.5δ−1

[√
xxT

4η(u)e−0.5η(u)T

σ2(1−e−η(u)T )

]

I0.5δ−1

[√
xxT

4κe−0.5κT

σ2(1−e−κT )

]
.

Recall that η(u)2 = (κ+ uσρ)2 − σ2u(u+ 1). Using this identity, we have

2ψ(0, u) +
Ψ(0, u)2

V (0, u)
=

−2u(u+ 1)(eη(u)T − 1)

η(u)(eη(u)T + 1) + (κ+ uσρ)(eη(u)T − 1)

+
4η(u)e−0.5η(u)T

σ2(1− e−η(u)T )

2η(u)e0.5η(u)T

η(u)(eη(u)T + 1) + (κ+ uσρ)(eη(u)T − 1)

=
−2σ2u(u+ 1)(eη(u)T − 1)(1 − e−η(u)T ) + 8η(u)2

σ2(1− e−η(u)T )(η(u)(eη(u)T + 1) + (κ+ uσρ)(eη(u)T − 1))

=
−2σ2u(u+ 1)(1− e−η(u)T )2 + 8η(u)2e−η(u)T

σ2(1− e−η(u)T )(η(u)(1 + e−η(u)T ) + (κ+ uσρ)(1− e−η(u)T ))

=
−2σ2u(u+ 1)− 4σ2u(u+ 1)e−η(u)T − 2σ2u(u+ 1)e−2η(u)T + 8(κ+ uσρ)2e−η(u)T

σ2(1− e−η(u)T )(η(u)(1 + e−η(u)T ) + (κ+ uσρ)(1 − e−η(u)T ))

=
−2σ2u(u+ 1)(1 + e−η(u)T )2 + 8(κ + uσρ)2e−η(u)T

σ2(1− e−η(u)T )(η(u)(1 + e−η(u)T ) + (κ+ uσρ)(1− e−η(u)T ))

=
2

σ2
(η(u)2 − (κ+ uσρ)2)(1 + e−η(u)T )2 + 4(κ+ uσρ)2e−η(u)T

(1− e−η(u)T )(η(u)(1 + e−η(u)T ) + (κ+ uσρ)(1− e−η(u)T ))

=
2

σ2
η(u)2(1 + e−η(u)T )2 − (κ+ uσρ)2(1− e−η(u)T )2

(1− e−η(u)T )(η(u)(1 + e−η(u)T ) + (κ+ uσρ)(1− e−η(u)T ))

=
2

σ2
η(u)(1 + e−η(u)T )− (κ+ uσρ)(1 − e−η(u)T )

1− e−η(u)T
.

And
1

V (0, 0)
=

2

σ2
2κ

1− e−κT
and

Ψ(0, 0)2

V (0, 0)
=

2

σ2
2κe−κT

1− e−κT
.

By substituting above quantities into the formula (7), we found the closed-form expression (12)
for the conditional Laplace transform of the Heston model.

A.4 Proof of Proposition 4.1

We start with a simple lemma.
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Lemma A.7. Let b > 1
2(d − 1). Suppose ι̂(k) is the smallest partition among the partitions of

k into not more than d parts. Then

0 < (b)ι̂(k) ≤ (b)ι

for all partitions ι of k into not more than d parts.

Proof. Fix k and we simplify the notation ι̂(k) as ι̂. The factors of the hypergeometric coeffi-
cients are of the form

0 < b− 1

2
(d− 1) ≤ b+ l − 1

2
(j − 1) ≤ b+ k − 1,

for j = 1, · · · , d, and l = 0, · · · , kj − 1. Thus, we have (b)ι̂ > 0. For a partition ι = (k1, . . . , kd),
define α(ι) := max{ki − kj : 1 ≤ i < j ≤ d} and β(ι) := min{j − i : ki − kj = α(ι), i < j}.
Assume that ι is not the smallest one. Then α(ι) ≥ 2. Let α(ι) = ki∗ − kj∗ and β(ι) = j∗ − i∗.
We define a new partition ι′ = (k1, . . . , ki∗−1, ki∗ − 1, ki∗+1, . . . , kj∗−1, kj∗ + 1, kj∗+1, . . . , kd).

Then (b)ι′ = (b)ι × b+kj∗−(j∗+1)/2

b+ki∗−(i∗+1)/2 < (b)ι. For the new partition ι′, if we have α(ι′) = α(ι),

then β(ι′) = β(ι) + 2. Since β(·) ≤ d − 1, we should have a partition with decreased α value
after some iterations. Hence, we obtain a partition ι̂ with α(ι̂) ≤ 1 in finite steps, which is the
smallest one. Since the new partitions always have smaller hypergeometric coefficient values,
we conclude (b)ι̂ < (b)ι for any non-smallest partition ι.

For reader’s better understanding, we give an example which illustrates the idea of the above
proof. Consider the case d = 5 and k = 8. In this case, the smallest partition is

ι̂ = ι̂(8) = (2, 2, 2, 1, 1).

We start with a partition which is not the smallest, say ι = (4, 3, 1, 0, 0). From this partition,
we successively looking for a new partition with a smaller hypergeometric coefficients until we
arrive at the smallest one:

(4, 3, 1, 0, 0), α(ι) = 4, β(ι) = 3

1 2 3 4 5
b+ 3
b+ 2 b+ 3

2
b+ 1 b+ 1

2
b b− 1

2 b− 1

−→

(3, 3, 1, 1, 0), α(ι) = 3, β(ι) = 3

1 2 3 4 5

b+ 2 b+ 3
2

b+ 1 b+ 1
2 b

b b− 1
2 b− 1 b− 2

−→

(3, 2, 1, 1, 1), α(ι) = 2, β(ι) = 2

1 2 3 4 5

b+ 2
b+ 1 b+ 1

2
b b− 1

2 b− 1 b− 2 b− 3

−→

(2, 2, 2, 1, 1), α(ι̂) = 1, β(ι̂) = 1

1 2 3 4 5

b+ 1 b+ 1
2 b

b b− 1
2 b− 1 b− 2 b− 3

At each stage, the values of the hypergeometric coefficients decrease, and the smallest partition
has the minimal hypergeometric coefficient. The next lemma is about comparisons between
hypergeometric coefficients of partitions with different sizes.

Lemma A.8. Let b > 1
2(d− 1) and k ≥ d. Then

(b)ι̂(k) < (b)ι̂(k+1).
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Proof. This lemma is a simple consequence of the recurrence relation (20). We write ι̂(k) =
(k1, · · · , kd). Since k ≥ d, we have kj ≥ 1 for all j = 1, · · · , d. Therefore,

1 ≤ kj < b+ kj −
1

2
(d− 1) ≤ b+ kj −

1

2
(j − 1),

for all j = 1, · · · , d. This observation and the recurrence relation (20) complete the proof.

Now we consider the zonal polynomials. Zonal polynomials are polynomials of eigenvalues
of the matrix, and their coefficients are all nonnegative (see the recurrence relation (14) in page
234 of Muirhead [29]). Therefore,

|Cι(α1, · · · , αd)| ≤ Cι(|α1|, · · · , |αd|),

for all partitions ι, and all complex numbers α1, · · · , αd.

Proof of Proposition 4.1. The proof is a combination of the inequalities which are established
in Lemma A.7 and A.8. Observe that

|0F1(b; y)− m
0 F1(b; y)| =

∣

∣

∣

∞
∑

k=m+1

∑

|ι|=k

1

(b)ι

Cι(y)

k!

∣

∣

∣
≤

∞
∑

k=m+1

∑

|ι|=k

1

(b)ι

|Cι(y)|
k!

≤
∞
∑

k=m+1

1

k!(b)ι̂(k)

∑

|ι|=k

Cι(|α1|, · · · , |αd|) ≤
1

(b)ι̂(m+1)

∞
∑

k=m+1

1

k!

∑

|ι|=k

Cι(|α1|, · · · , |αd|).

By definition, zonal polynomials are normalized so that

∑

|ι|=k

Cι(β1, · · · , βd) = (β1 + · · ·+ βd)
k

for all complex numbers β1, · · · , βd (see Definition 7.2.1 of Muirhead [29]). Therefore, we have

|0F1(b; y)− m
0 F1(b; y)| ≤ 1

(b)ι̂(m+1)

∞
∑

k=m+1

1

k!
(|α1|+ · · ·+ |αd|)k

≤ 1

(b)ι̂(m+1)

∞
∑

k=0

1

(k +m+ 1)!
(|α1|+ · · · + |αd|)k+m+1

≤ (|α1|+ · · ·+ |αd|)m+1

(m+ 1)!(b)ι̂(m+1)

∞
∑

k=0

1

k!
(|α1|+ · · ·+ |αd|)k

=
(|α1|+ · · ·+ |αd|)m+1

(m+ 1)!(b)ι̂(m+1)
e|α1|+···+|αd|.
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