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We propose a novel methodology to study kidney exchange. Taking the random graph model of kidney

exchange introduced in Ashlagi, Gamarnik, Rees and Roth’s “The need for (long) chains in kidney exchange”

(2012), we propose a non-asymptotic approach to quantifying the effectiveness of transplant chains in reduc-

ing the number of unmatched highly-sensitized patients. Our approach is based on a two-phase random walk

procedure where random walks are used to allocate chains, followed by allocation in cycles. The benefit of

random walks is that they preserve the probabilistic structure of residual graphs, greatly facilitating anal-

ysis. Our approach allows us to analytically show the benefit of chains, as compared to transplantation in

cycles only, in non-asymptotic (medium-sized) graphs. We also derive useful analytical bounds that illus-

trate the performance of our proposed allocation procedure and more general kidney allocation procedures.

Our results complement previous findings on the benefits of chains that includes analytical results in large

(limit) graphs and empirical results based on data from fielded kidney exchanges. Moreover, our analysis

sheds light on the relative importance of chains versus cycles in kidney allocation. In particular, our results

show prioritizing chains over easy-to-transplant cycles, as opposed to prioritizing those cycles over chains,

improves performance and provide analytical bounds on the associated benefits. A detailed simulation study

numerically verifies our main results and provides additional insights.
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1. Introduction

Allocating donated kidneys to deserving patients with end-stage renal disease is an important

challenge in today’s health care system. Kidney exchanges are an integral part of the allocation

system and play a central role in live donation. Exchanges consist of pools of patients each paired

with a loved-one willing to donate. A pair may be incompatible, due to differences in blood type

or other tissue sensitivities. The goal of the exchange is to swap donors among incompatible pairs

to allow for more transplants. Exchanging kidneys among incompatible patient-donor pairs creates

cycles of donation within an exchange.

More possibilities for exchange occur in the presence of altruistic donors – individuals who are

willing to donate their kidney to any patient in need. That is, the kidney of an altruistic donor is

not directed to any particular patient. For this reason, altruistic donors are also called nondirected

donors (NDDs). There are alternate uses for the donated kidney of an NDD. Until relatively

recently, the NDD kidneys were offered to the deceased donor wait-list managed nationally under

the aegis of the United Network of Organ Sharing (UNOS). However, within kidney exchanges,

altruistic donors can initiate donation “chains”. A chain starts with an altruistic donor offering

a kidney to a compatible recipient. The paired donor of that recipient further donates his or her

kidney to another compatible recipient, and so on. Since NDDs are not directed towards a particular

recipient, a chain need not “cycle” back.

Allocating NDD kidneys among their alternate uses has sparked ethical and practical debate,

including whether chains are needed at all (Roth et al. (2007), Ünver (2010), Ashlagi et al. (2011),

Gentry et al. (2009), Woodle et al. (2010)). Theoretical results show that, under certain structures,

short cycles are sufficient, eliminating the need for chains (Roth et al. (2007), Ünver (2010)). On

the other hand, empirical results and simulations consistently show that chains are important in

practice. Ashlagi et al. (2012) and Dickerson et al. (2012b) resolve this discrepancy between theory

and practice. Their analytical results reveal that the underlying sparseness of connections between

patients and donors in the exchange is the main driver of the need for chains.

As the above demonstrates, analytical models of kidney exchange have been helpful in resolving

debates and providing explanations of experimental data. As new empirical findings and practical

issues have arisen, models have been adjusted to meet these challenges. The standard-bearer of ana-

lytical work has been random graph models. These models approximate exchanges by generating,

in a probabilistic fashion, nodes and arcs that represent recipient-donor pairs and compatibilities,

respectively. Recent papers use asymptotic analysis as their primary theoretical workhorse; that is,

they examine kidney exchange graphs as the number of nodes tends to infinity. The development of

Ashlagi et al. (2012) described above is a primary example. Earlier theoretical findings (for instance
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Roth et al. (2007)) were based on dense random graphs and were inadequate to explain empirical

findings. By revising the standard model to include sparse random graphs, Ashlagi et al. (2012)

are able to theoretically justify the observed need for chains in fielded exchanges using asymptotic

analysis. Asymptotic analysis has also been used to derive insights into incentives issues (Toulis

and Parkes (2011)), the effect of “failed” chains and cycles (Dickerson et al. (2013)), myopic versus

forward-looking considerations in dynamically allocating kidneys (Ashlagi et al. (2013), Dickerson

et al. (2012a)) and fairness issues (Dickerson et al. (2014)).

However, asymptotic analysis has its limitations. Asymptotic results are best interpreted in the

setting of “large” exchanges with many recipient-donor pairs, something not usually observed in

practice (Melcher et al. (2012)). Researchers in the area of kidney exchange are well aware of this

limitation. Indeed, Ashlagi et al. (2012) state that analysis in “medium”-sized graphs should, in

fact, be the target for analysis.

The main technical contribution of this paper is to develop a non-asymptotic methodology that

applies to medium-sized exchanges. The core novelty of our methodology is to employ a random-

walk procedure with two distinct phases. The first phase is to allocate kidneys in chains via a

memoryless random walk. After chains are removed, the second phase is to allocate via cycles.

As a tool for analysis, our two-phase procedure has many strengths, as evidenced by our analytical

results in Sections 3 and 4. For example, we provide exact formulas and simple non-asymptotic

analytical bounds for the tail probabilities and expectation of the random number of unmatched

nodes after the termination of the first stage. Although non-asymptotic, these bounds can be used

to recover asymptotic results (as demonstrated in Proposition 1). These bounds serve as inputs

to further bound the expected number of unmatched nodes after both phases are implemented,

assuming particular algorithms for assigning cycles in the second stage. These latter bounds allow

us to assess the performance of our two-phase procedure and quantify the benefits of chains in

medium-sized graphs.

More qualitatively, one of the challenges in both analyzing and managing kidney exchange graphs

is trading off the benefits of chains versus cycles. From an analytical perspective, there are cases

where chains are not needed (if the graph is sufficiently dense) and cases where chains are needed

(if the graph is sufficiently sparse), as discussed above. However, there is little direct work on the

relative importance of the sequence in which chains and cycles are removed. In particular, there

remains open question of how to prioritize chains and cycles. As noted in the literature (see, for

instance, Toulis and Parkes (2011)), under the current system, hospitals may have an incentive to

transplant short cycles locally and not submit these cases to an exchange. In this situation, easy-to-

transplant cycles are de facto prioritized over chains, as many potential kidney-donor pairs cannot

participate in long chains through an exchange. Our analysis sheds light on this issue and provides
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some analytical insight into the cost of this practice. In particular, we show via simulation and

through analytical bounds that prioritizing chains cycles outperforms prioritizing cycles over chains.

This provides estimates of the cost of the practice of hospitals myopically transplanting cycles.

Interestingly, we show through numerical simulations that the magnitude of this cost depends on

the type of cycle prioritized. When only easy-to-transplant cycles are prioritized the loss is much

greater then when a wider class of cycles are prioritized.

Although our proposed procedure does not assign chains optimally (it uses random walk), there

are a variety of cases where there is little loss overall. In kidney exchange, an optimal packing of

chains may not be needed due to the presence of cycles. In our approach, the residual graph (the

graph that remains after removing chains) maintains its initial probabilistic density, unaffected by

random walk realizations in the first stage. Since our procedure assigns nodes to chains randomly,

it does not target high-degree nodes that would allow for longer chains at the cost of increased

sparsity at the cycle-formation stage. Without introducing additional sparsity, cycles are then

sufficient to match many of the remaining patient-donor nodes. The dense structure of the residual

graph probabilistic comparison between the original graph and residual graph. This idea is central

to our analysis in Section 4.

In existing integer linear programming (ILP) based implementations (see for instance, Dickerson

et al. (2014)), the assignment of chains is computationally quite costly. For a given input graph, the

number of cycles of bounded length is polynomial in the input size, whereas the number of chains

grows exponentially in the input size when not capped. For the column-generation algorithms

adapted in Dickerson et al. (2014) this can present computational challenges. The fact that random

assignment of chains performs reasonably well (as evidenced by our simulations and confirmed by

personal communication with John Dickerson (2014)) may greatly reduce computational burden.

We adapt this idea to construct a hybrid ILP implementation that uses both ILP and random

walks, where random walks are used to generate a moderate number of candidate chains in the

graph, and test its performance in Section 6. This hybrid algorithm has the benefit of being able

to compute reasonable transplant plans faster, enabling consideration of more scenarios. Thus, we

believe there is both theoretical and practical interest for using the concept of random walks in

kidney exchange.

We organize this paper as follows. In Section 2 we introduce our random graph model of kidney

exchange and propose our two-phase random walk procedure. Section 3 provides analysis of the

nature of the graph at the termination of the first stage. Section 4 provides results on the nature

of the graph after the termination of the second stage. Section 5 analyzes the impact of prioritiz-

ing cycles over chains (and vice versa). Section 6 contains our numerical experiments. Section 7

concludes and points to future work.
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2. Analytical framework

2.1. Random graph model

We consider the random graph model of kidney exchange proposed in Ashlagi et al. (2012). Similar

models are employed in Ashlagi et al. (2013) and Dickerson et al. (2013). Careful justification of

this model can be found in those papers.

The kidney exchange pool is modeled as a directed graph D which contains two types of nodes:

patient-donor nodes and NDD nodes. A directed arc (u, v) connects nodes u and v if the patient of

node v is compatible with the donor of node u. Following Ashlagi et al. (2012), we suppress the issue

of blood type matchings and focus instead on tissue-type matching of donors and patients. Arc

(u, v) appears in the graph with a probability that depends only on the tissue-type characteristics

of node v. Furthermore, patient-donor nodes are classified into two categories: high-sensitization

nodes and low-sensitization nodes. For brevity, we call high-sensitization nodes H-nodes and low-

sensitization nodes L-nodes. Arc (u, v) appears in the graph with probability pH (pL) if v is an

H-node (L-node), where u is an arbitrary node (not equal v) in the graph. Throughout we assume

pH < 0.1< pL. The assumption of two categories of patient-donor nodes is justified by empirical

investigations found in Ashlagi et al. (2013), where it is shown that the probability a patient is

compatible with a randomly selected donor follows a bimodal distribution.

Our model considers the possibility that NDDs and bridge donors (donors freed to donate to

extend the length of a chain) renege before the time of transplantation. This is captured by the

probability r. That is, every time a chain is extended there is a probability r it terminates before

the next link in the chain is transplanted.

We use the notation D(h, `, t;pH , pL, r) to represent an exchange pool with h high-sensitization

nodes, ` low-sensitization nodes, and t NDD donors, along with compatibility probabilities pH

and pL and renege probability r. The proportion `
`+h

of low-sensitization nodes in the graph is

denoted by λ. When certain parameters are understood as given we drop them in our notation.

For instance, when the focus is on the size of the exchange with probabilities fixed, we will write

D(h, `, t) instead of D(h, `, t;pH , pL, r).

A clearing of the kidney exchange graph is a collection of disjoint cycles and chains that represent

the patients and donors involved in transplantation. Cycles and chains must be disjoint since each

patient can receive at most one kidney and every donor can give at most one kidney. A patient-

donor node in a clearing is said to be matched, since the patient receives a kidney and the donor

donates its kidney. In practice, kidney exchanges clear at regular intervals (weekly, monthly or

bimonthly) to balance the objectives of efficiency and fairness (see Dickerson et al. (2012b) and

Melcher et al. (2012) for details). Our model is static and considers only a single decision period.



Ding et. al.: A non-asymptotic approach to kidney exchange
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

2.2. Two-phase random walk procedure

We propose the following two-phase clearing procedure for D(h, `, t;pH , pL, r) (hereafter simply

called the two-phase procedure), illustrated in Figure 1.

Phase 1: While there exists at least one NDD, initiate a chain starting from an NDD. At each

step, grow the chain by adding an H-node accessible from the last node of the chain (referred to

as a tail node). If there is more than one accessible H-node, randomly select one among them

with equal probability. If no H-nodes are accessible, terminate the chain and remove all selected

nodes in the chain (including the initiating NDD donor). Repeat until either all H-nodes have been

removed or all NDDs have been consumed. Go to Phase 2.

Phase 2: Apply a cycle-packing algorithm on the residual graph that remains at the termination

of Phase 1.

A few remarks on the procedure are in order. First, chains in Phase 1 are executed within

the subgraph of H-nodes and NDD-nodes. There are no L-nodes in the chains of our procedure.

Second, Phase 2 does not specify a cycle-packing algorithm. Our analysis in Section 4 provides

theoretical bounds for the case where Phase 2 consists of bipartite matching between H- and L-

nodes. Section 6 gives numerical results for when Phase 2 employs both two- and three-way cycles.

Section 5 compares the performance of this algorithm to one where these phases are inverted (more

details on this later).

COME BACK HERE TO FIX

Figure 1 Our two-phase procedure. Black disks are H-nodes, triangles are NDDs, and red disks are L-nodes.

H� L�

(a) Phase 1: Chain formation in H-nodes via random

walk

(b) Phase 2: Cycle packing in the residual graph

The analytical power of the two-phase procedure comes from the fact we are able to derive upper

bounds on the expected number of unmatched H-nodes after the termination of the algorithm

and compare this to the expected number of unmatched H-nodes when only cycles are permitted.
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There are several steps to this analysis. In Section 3 we analyze Phase 1, focusing on probabilistic

statements about how many H-nodes have been transplanted. Section 4 explores what happens

after Phase 2, leveraging results from Phase 1.

3. Analysis of Phase 1

In this section, we define a two-dimensional-state stochastic process that tracks the progress of

random walks, in terms of transplanting H-nodes and consuming NDD donors. Counting arguments

yield exact probabilities associated with the random number of H-nodes left unmatched at the

end of Phase 1. To yield more useful non-combinatorial bounds used in Section 4, we later define

a potential function and construct martingales to get useful analytical estimates of the expected

number of residual unmatched H-nodes.

Let X(n) denote the number of unmatched H-nodes at the time when n nodes (either H-

nodes or NDD donor nodes) have been removed from the original graph D(h, `, t). Let t(n) denote

the number of remaining NDDs plus the one being used in the current chain at the time when

n nodes (either H-nodes or NDD donor nodes) have been removed. The stochastic process is

{(X(n), t(n))|n≥ 0}. Each increment of “time” n denotes the removal of a node from the graph.

When either the donor reneges or there are no compatible donors, an NDD node is removed and

t(n) is decremented by one. We call this a “failure”. When a compatible match is found and a

patient gets a transplant, then an H-node is removed and X(n) is decremented by one. We call

this a “success”. By definition, X(0) = h, and t(0) = t.

This process of node removal eventually terminates. There are two conditions for termination.

The first is that all NDD donors have been consumed, corresponding to t(n) = 0. The second is

that all H-nodes have been transplanted, corresponding to X(n) = 0.

Observe that {(X(n), t(n))|n≥ 0} is a two-dimensional pure death process with absorbing states

{(X, t)|X = 0 or t= 0}. At each non-absorbing state, the transition probability is given by

(X(n+ 1), t(n+ 1)) =

{
(X(n)− 1, t(n)) w.p. 1− rX(n)

(X(n), t(n)− 1) w.p. rX(n),

where

ri = r+ (1− r)(1− pH)i

gives the probability that either the tail node reneges, or the tail node cannot find an accessible

H-node. From this definition we see that {(X(n), t(n))|n≥ 0} is Markovian. Figure 2 provides a

visual representation.
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Figure 2 The stochastic process {(X(n), t(n))|n≥ 0}.

X(n)

t(n)

X(n)− 1

X(n)

rX(n)

1− rX(n)

removal of one node

t(n)− 1

t(n)

Stage n Stage n+ 1

When the graph contains i H-nodes, the number of NDDs consumed to reduce the number of

unmatched H-nodes by one is a geometric random variable with success probability 1− ri and

mean

µi :=
ri

1− ri
. (1)

For the ease of the subsequent analysis, we define the following potential function:

T (n) =
M∑

i=n+1

µi,

where M is a large constant integer. Given an integer n ≥ 0, the function T (n) calculates the

expected number of NDDs needed to reduce the number of H-nodes from M to n. In the special

case of r= 0, µi = (1−pH )i

1−(1−pH )i
and

∑∞
i=1 µi <∞. In this case, we can safely assign M = +∞ without

worrying that T (n) diverges to infinity. For r= 0 the potential function is

T 0(n) :=
∞∑

i=n+1

µi. (2)

Observe that T (n) is a strictly decreasing function on the discrete domain 0,1, . . . ,M . We extend

T (·) to be defined over the continuous domain [0,M ] via piecewise linear interpolation. This makes

the inverse function T−1 well-defined on the range [0, T (0)] of T where T (0)<∞. For x≥ T (0), we

take T−1(x) = 0, which will not modify the monotonicity of T−1(·). Under this extension, both T

and T−1 are convex functions because T has increasing differences: T (i)−T (i− 1) =−µi and µi is

decreasing in i since ri is decreasing in i. See Figure 3 for a visualization.

We can define the random stopping time as the first time when either all H-nodes or all NDDs

are matched, i.e.,

τ0 = min{n|t(n) = 0 or X(n) = 0}.
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Figure 3 The functions T and T−1.

n h

T (0)

h

x T (0)

nT (n) T−1(x)

The time of termination of Phase 1 is precisely τ0. We seek distributional information on the

random number X(τ0) of unmatched H-node patients at the time of termination of Phase 1. By

the Markovian property of the process, when there are multiple NDDs, whether chains are selected

simultaneously or sequentially does not affect the distribution of X(τ0). That is, we may either

grow multiple chains simultaneously, or complete one chain and then start another, and result in

the same distribution of X(τ0).

To make the dependence of X(τ0) on h and t explicit, let Yh,t denote the value of X(τ0) when

the initial graph is D(h, `, t). We are interested in the following performance metrics: (a) the tail

probability Pr(Yh,t ≤ k) for a given non-negative integer k and (b) the expectation of Yh,t .

Theorem 1. For a random kidney exchange graph D(h, `, t)

(a)

Pr(Yh,t ≤ k) =

{∏h

i=k+1(1− ri) when t= 1∏h

i=k+1(1− ri)
∑

k≤it−1≤...≤i1≤h
∏t−1
j=1 ξk(ij) when t≥ 2

(3)

where ξk(i) = ri for i > k, and ξk(i) = 1 if i≤ k.

(b) Consequently,

E[Yh,t] =


∑h−1

k=0

(
1−∏h

i=k+1(1− ri)
)

when t= 1∑h−1
k=0

(
1−∏h

i=k+1(1− ri)
∑

k≤it−1≤...≤i1≤h
∏t−1
j=1 ξk(ij)

)
when t≥ 2

Proof. (a) Note that Yh,1 represents the number of unmatched H-nodes after matching with

a single chain. The only way for Yh,1 ≤ k is for there to be a string of consecutive successes in
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extending the chain to reduce the number of unmatched H-nodes from h to k. By independence,

this happens with probability
∏h

i=k+1(1− ri).
The event {Yh,t ≤ k} contains all scenarios where there are less than t failures in the course of

removing h−k H-nodes. Suppose there are t′ ≤ t−1 failures before X(n) hits k. For j = 1,2, . . . , t′,

we let ij denote the number of H-nodes remaining in the graph at the time of the j-th failure.

The failure rate ξk(ij) at ij is thus rij . Whereas for j = t′+ 1, . . . , t−1, we simply assign ij = k and

ξk(ij) = 1 as these failures happen after X(n) hits k and therefore do not contribute to the event

{Yh,t ≤ k}. Thus, we derive the tail probability for Yh,t as

Pr(Yh,t ≤ k) =
h∏

i=k+1

(1− ri)
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij).

(b) The expression for E(Yh,t) directly follows from the equation E[X] =
∑∞

k=0 Pr(X >k) for non-

negative discrete random variables and the fact that Pr(Yh,t >h) = 0. �

The above combinatorial expressions for the tail probabilities and expectation of Yh,t are precise

but difficult to work with. The next result provides bounds that involve the potential function T

and are more amenable to later analysis.

Theorem 2. For a random kidney exchange graph D(h, `, t):

Pr(Yh,t ≤ k)≥
{

exp(T (h)−T (k)) if t= 1

exp(T (h)−T (k))
(1+

∑h
i=k+1 ri)

t−1

(t−1)! if t≥ 2.

The proof of this theorem is in Appendix EC.1 and uses bounds on sums in terms of the exponential

function. The result gives rise to a simpler corollary when r= 0 that is used in later results.

Corollary 1. For a random kidney exchange graph D(h, `, t) in the special case of r= 0, we have

Pr(Yh,t ≤ k)≥
{

1− 1
pH

((1− pH)k+1− (1− pH)h+1) when t= 1

exp
(
− (1−pH )k+1

pH (1−(1−pH )k+1)

)
(1+

∑h
i=k+1 ri)

t−1

(t−1)! when t≥ 2.
(4)

Proof. We first prove inequality (4) for the t ≥ 2 case. By Theorem 2, Pr(Yh,t ≤ k) ≥
exp (T (h)−T (k))

(1+
∑h
i=k+1 ri)

t−1

(t−1)! for t ≥ 2. Thus, to prove inequality (4), it suffices to show that

exp (T (h)−T (k))≥ exp
(
− (1−pH )k+1

pH (1−(1−pH )k+1)

)
.

When r = 0, we have ri = (1 − pH)i, and therefore µi = (1−pH )i

1−(1−pH )i
by (1). We can then lower

bound exp(T (h)−T (k)) as follows,

exp (T (h)−T (k)) = exp

− M∑
i=k+1

µi


= exp

− M∑
i=k+1

(1− pH)i

1− (1− pH)i


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≥ exp

(
−

∞∑
i=k+1

(1− pH)i

1− (1− pH)k+1

)

≥ exp

(
− (1− pH)k+1

pH(1− (1− pH)k+1)

)
.

We have thus proved inequality (4).

For t = 1 we use backwards induction on k. When k = h, Pr(Yh,1 ≤ h) = 1 ≥ 1 −
1
pH

((1− pH)h+1− (1− pH)h+1). So we have proved the base case of k = h. We next show that

inequality (4) for the t= 1 case holds for all k > 0, by assuming that it holds for k+ 1. We derive

an upper bound for Pr(Yh,1 ≤ k) as follows:

Pr(Yh,1 ≤ k) = Pr(Yh,1 ≤ k+ 1)Pr(Yh,1 ≤ k|Yh,1 ≤ k+ 1)

=

(
1− 1

pH
((1− pH)k+2− (1− pH)h+1)

)(
1− (1− pH)k+1

)
≥ 1− (1− pH)k+1− 1

pH
(1− pH)k+2 +

1

pH
(1− pH)h+1

= 1− 1

pH
(1− pH)k+1 +

1

pH
(1− pH)h+1

= 1− 1

pH

(
(1− pH)k+1− (1− pH)h+1

)
where the first equality follows from Markov property, the second equality follows from the induc-

tion assumption, and the inequality holds by omitting the term 1
pH

((1− pH)k+2− (1− pH)h+1)(1−
pH)k+1. This completes the induction. �

The above bounds are applicable to exchange graphs of arbitrary size. Although our focus is on

non-asymptotic analysis, they can be leveraged in asymptotic settings to derive results similar to

those in Ashlagi et al. (2012, 2013). The following result demonstrates this approach. Recall that

h and ` denote the number of high and low sensitization nodes (respectively) and λ= `
h+`

denotes

the proportion of low-sensitization nodes in the graph.

Proposition 1. Suppose r = 0, h is in the order of 1

p1+ε
H

for some ε > 0, and both λ and pL are

fixed constants. If t ≥ 1, then with probability approaching one the exchange graph has a perfect

clearing (that is, all nodes are transplanted) as pH→ 0.

Proof. In (4) suppose k= c
pH

log( 1
pH

) for c > 1. This yields Pr(Yh,1 ≤ k)≥ exp(−pc−1H ), which con-

verges to 1 as ph→ 0. Thus with probability approaching one, no matter how large the original graph

is, only one NDD is sufficient to reduce the number of H-nodes to the order of O
(

1
pH

log( 1
pH

)
)

.

Since t≥ 1, with probability approaching one the number of H-nodes remaining unmatched after

Phase 1, denoted by h′, is in the order of O( 1
pH

log( 1
pH

)). We claim that when pH→ 0, with prob-

ability approaching one all of those h′ H-nodes can be matched to L-nodes using two-way cycles.
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To prove this claim, we construct an undirected bipartite graph G̃= (VH∪VL, Ẽ) with partitioned

node sets VH := {all remaining h′ unmatched H-nodes} and VL := {all L-nodes}, and an undirected

edge set Ẽ = {(vH , vL) | vH ∈ VH , vL ∈ VL, (vH , vL), (vL, vH)∈E}. Each edge occurs with probability

of pHpL – the probability of having a two-way cycle between an H-node and an L-node. According

to the Marriage Theorem (Hall (1935)), if the H-nodes cannot be matched in G̃, then there exists

a “bad” pair of subsets A ⊂ VH and B ⊂ VL with a = |A| > b = |B| and the set B contains all

nodes adjacent to nodes in A. Without loss of generality, we may assume that (A,B) is a minimal

bad pair, which means that there is no bad pair (A′,B′) with A′ ∪B′ ⊂A∪B. When (A,B) is a

minimal bad pair, we must have b= a− 1. The probability that any nodes outside B is not linked

to any node inside A is given by (1− pHpL)(`−b)a = (1− pHpL)(`−a+1)a. Since there are at most

Ca
h′C

b
` candidates for a minimal bad pair (A,B) of size a and b respectively, the probability that

at least one minimal bad pair exists of this size can be upper bounded by

h′∑
a=1

Ca
h′C

a−1
` (1− pHpL)(`−a+1)a ≤

h′∑
a=1

(h′`)a

(a!)2
(1− pHpL)(`−a+1)a

≤
h′∑
a=1

1

a!

[
`h′(1− pHpL)`−a+1

]a
≤ exp

(
`h′(1− pHpL)`−h

′+1
)
− 1

≤ exp (`h′ exp(−pHpL(l−h′+ 1)))− 1. (5)

Note that ` = O( 1

p1+ε
H

) >> h′, thus ` − h′ + 1 = O( 1

p1+ε
H

) and pHpL(` − h′ + 1) = O( 1
pε
H

) ≥
2 log( 1

pH
) when pH is sufficiently small. Therefore, the right-hand-side of (5) is upper bounded by

exp
(
`h′ exp(2 log( 1

pH
))
)
− 1 = exp(`h′p2H)− 1 = exp

(
O(p1−εH )

)
− 1→ 0, implying that the proba-

bility of the occurrence of a bad pair converges to zero when pH → 0. Therefore, with probability

approaching one, all the H-nodes can be matched using H-L two-way cycles. After removal of all

the H-nodes, the remaining subgraph contains L-nodes only. Each pair of L-nodes can be matched

with a constant probability of p2L. Because the size of the remaining graph is `−h′ =O( 1

p1+ε
H

)→∞
as pH→∞, we know that a perfect matching exists by the well-known Erdős-Rényi theorem (Erdős

and Rényi (1959)). �

Remark 1. When h has an order of 1

p1+ε
H

, Theorem 5.6(2) of Ashlagi et al. (2012) proves that all

nodes can be matched using k-way cycles if λ > 1
k
, or using chains with length ≤m if t≥ 1−λ

m
h.

Proposition 1 states that if we have a single chain of potentially infinite size (which is a weaker

assumption than having 1−λ
m
h chains each with length ≤m with respect to the purpose of matching

the (1−λ)h H-nodes) and a fixed proportion of L-nodes, we can clear all nodes. This complements

the result of Ashlagi et al. (2012).
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We now turn to deriving non-combinatorial lower and upper bounds on E[Yh,t] for later analysis.

Of course, one could combine Theorems 1 and 2 to achieve this, but a different method will yield

cleaner bounds. The proof of the following result (in particular part (c)) is involved and can be

found in Appendix EC.2. It uses martingale theory and convexity of the potential function T and

its inverse T−1.

Theorem 3. The following conditions hold:

(a) {T (X(n)) + t(n)|n≥ 0} is a martingale. As a consequence,

E[Yh,t]≥ T−1(T (h) + t). (6)

(b)
{
X(n)+T−1(T (X(n)+t(n)))

2
|n≥ 0

}
is a super-martingale. As a consequence,

E[Yh,t]≤
1

2

(
T−1(T (h) + t) +h

)
. (7)

(c) In the case of r= 0 and pH ≤ 0.1, we have the following strengthened upper bound,

E[Yh,t]≤
1

pH
log

(
1 +

1

(T 0(h) + 1
4
t)pH

)
(8)

where T 0(h) defined in equation (2) is the expected number of NDDs required to reduce the

number of H-nodes from +∞ to h.

Figure 4(a) and (b) plots actual values of E[Y (h, t)] versus the bounds in Theorem 3 for pH = 0.03,

h= 300 and r= 0.05 and r= 0, respectively (note the values of pL and λ are not relevant because

we are just working within the H-subgraph). The lower bound from (a) is quite tight. The upper

bound from (b) is not so tight, but nonetheless helps us to understand the asymptotic behavior of

E[Y (h, t)]. When r= 0, the bound in (c) is much tighter and implies that the number of unmatched

H-nodes after Phase 1 is upper bounded by O( 1
pH

log( 1
pH

)) (Since T 0(h) + 1
4
t is usually small,

1 + 1

(T0(h)+ 1
4 t)pH

=O( 1
pH

)).

4. Analysis of Phase 2

The goal of this section is to provide analytical bounds on the number of unmatched H-nodes

that are left after termination of Phases 1 and 2. This analysis proceeds by comparing against a

benchmark, namely the number of unmatched H-nodes that remain if only Phase 2 was imple-

mented from the beginning. In other words, we are interested in the net benefit of our procedure

to reduce the number of unmatched H-nodes beyond what could have been transplanted via cycles

alone. Our performance metric does not include the unmatched L-nodes, as it is easier to clear all

the L-nodes even using cycles only. Moreover, keeping L-nodes for a later clearing may even be
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Figure 4 The expected number of unmatched H-nodes E[Y (h, t)] and its lower bound (6), upper bound (7), and

the strengthened upper bound (8). The strengthened upper bound is applicable only to the r= 0 case.

(a) r= 0.05, pH = 0.03, h= 300 (b) r= 0, pH = 0.03, h= 300

preferred (Ashlagi et al. (2013)). As in the previous section, the underlying memoryless property

of random walks and convexity arguments play a pivotal role here, as in the analysis of Phase 1.

A first challenge is to understand the random structure of the residual graph that remains at the

termination of Phase 1. We show that this residual graph is again a graph of the form D(h′, `, t)

where parameters `, t, pH , pL and r fixed and h′ ≤ h. Throughout this section we suppose h′ > 0

and all NDDs are consumed during Phase 1. The case where all H-nodes are matched before all

NDDs are consumed is a somewhat uninteresting special case since it is very unlikely to occur in

practice and so does not warrant further analysis.

Lemma 1. Let D=D(h, `, t) denote the initial random graph. Suppose during Phase 1, h−h′ H-

nodes are transplanted and removed and let R(h′) denote the conditional residual graph; that is, the

random graph resulting from D by removing exactly h− h′ H-nodes in chains via Phase 1. Then

the edge distribution in R(h′) is identical to the random graph D′ =D(h′, `,0).

Proof. Fix an ordering of the H-nodes in the starting graph D. There are
(
h−h′+t

t

)
scenarios in

which one starts with the graph D and ends with a residual graph that has h′ remaining H-nodes

and 0 NDD nodes. We simply need to distribute t failures among removing each of the h− h′ H-

nodes. Due to the memoryless property of random walk, each of these residual graphs is isomorphic

as a random graph to D′. Now, consider the conditional random graph R(h′). Since each of the

scenarios is disjoint, we can conclude that the edge distribution in the remaining graph R(h′) is

identical to the random graph D′. �
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As a first step, consider a simple instantiation of Phase 2 that involves bipartite matching. This

is admittedly not the optimal choice of algorithm for Phase 2, but it nonetheless forms a bedrock

for our analysis. Bipartite matching algorithms are for undirected graphs and so we construct an

undirected version of the relevant part of the kidney exchange graph. The set of nodes is partitioned

into H and L nodes and we only consider matches between H-nodes and L-nodes. An undirected

edge uv is in this undirected version of the random bipartite graph D̂ if and only if (u, v) and (v,u)

are both directed edges in the original directed graph D. Hence, the probability undirected edge uv

appears is pHpL. We let CHL denote the (random) set of undirected edges of this bipartite graph.

Phase 2 consists of using an algorithm to find maximal matching among the edges of CHL (for

instance, using linear programming). This algorithm generates a maximal cardinality matchingM,

which is a subset of the (random) set CHL (we also use this notation later in Section 5).

Let f(h) denote the expected number of H-nodes remaining when nodes are matched using

bipartite matching from the outset (that is, Phase 1 is not implemented) on a graph with h H-

nodes. In the definition of f , the number of L-nodes and the probabilities pH , pL and r are all

fixed constants and we write f simply as a function of h. Lemma 1 implies the following pivotal

corollary.

Corollary 2. The expected number of unmatched H-nodes after Phase 1 and Phase 2 is imple-

mented on D(h, `, t), given that Phase 1 eliminates h−h′ H-nodes, is f(h′).

Thus, the value of implementing chains versus not implementing chains can be partially under-

stood by comparing E[f(h′)] to f(h), where h′ is now a random variable that represents the number

of H-nodes remaining in the graph D after Phase 1 terminates; that is, h′ = Yh,t where Yh,t is the

number of unmatched H-nodes. The expectation in E[f(Yh,t)] is over the distribution of unmatched

H-nodes after Phase 1. Whereas we do not have an explicit characterization of f (making a direct

evaluation of E[f(Yh,t)] difficult), Section 3 does provide good estimates of E[Yh,t]. In order to

leverage these estimates, we show (in Lemma 2 below) that the function f is convex. The proof

of the lemma is in Appendix EC.3. It involves the linear programming formulation of bipartite

matching and submodularity arguments.

Lemma 2. The expected number f(h) of unmatched H-nodes remaining after running the bipartite

matching algorithm described above to D(h, `, t) is convex in h.

We leverage the convexity of f to bound the performance of the two-phase procedure when Phase

2 implements bipartite matching. This involves the following notation. Let

ν∗C :=E[f(Yh,t)] (9)

denote the expected number of unmatched H-nodes after completion of both Phase 1 and the

bipartite matching algorithm in Phase 2 on D(h, `, t).
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Figure 5 Leveraging the convexity of f in the proof of Theorem 4.

h′ h′

f(h′)

f(h)
h h′

f(h)

f(h)
h

Theorem 4. The following holds:

ν∗C ≤
f(h)

h
E[Yh,t]

≤ 1

h

(
(h− `)+ +

(1− pLpH)|h−`|+1− (1− pLpH)max{h,`}+1

pLpH

)
E[Yh,t]. (10)

Proof. By Lemma 2, we know f(h′)≤ f(h)

h
h′ for any fixed h′ ≤ h since f is convex. See Figure 5

and observe that f(0) = 0. Then by the monotonicity of expectation we have

E[f(Yh,t)]≤E
[
f(h)

h
Yh,t

]
=
f(h)

h
E[Yh,t]. (11)

This is the first inequality in (10).

The second inequality comes from bounding f(h) from above. We derive the bound by analyzing

the following näıve algorithm to match H-nodes. When h> `, sequence the L-nodes in an arbitrary

order. For each L-node, attempt to match to an H-node using available edges (which correspond

to two-way cycles in the directed graph). If successful, remove the matched pair and proceed to

the next L-node. The algorithm terminates when all the L-nodes have been matched. According

to this algorithm, there are at least h− i+ 1 unmatched H-nodes when the i-th L-node is next

to be matched. Thus, the probability of matching the i-th L-node is at least 1− (1− pHpL)h−i+1.

Summing up these probabilities, we derive a lower bound for the expected number of matched H

and L nodes ∑̀
i=1

(
1− (1− pHpL)h−i+1

)
= `− (1− pHpL)h−`+1− (1− pHpL)h+1

pHpL
.

This leads to the upper bound on unmatched H-nodes

f(h)≤ h− `+
(1− pHpL)h−`+1− (1− pHpL)h+1

pHpL
. (12)
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When h < `, we propose a similar algorithm. This time we use two-way cycles to match the

H-nodes sequentially. When the algorithm tries to match the i-th H-node, there are at least

`− i+ 1 unmatched L-nodes remaining, so the probability of matching the i-th H-node is at least

1− (1− pHpL)`−i+1. Using a similar logic as above, we derive the upper bound

f(h)≤ (1− pHpL)`−h+1− (1− pHpL)`+1

pHpL
. (13)

Together, (12) and (13) imply the following upper bound on f(h) that applies to both cases

(h> ` and h< `):

f(h) ≤ (h− `)+ +
(1− pLpH)|h−`|+1− (1− pLpH)max{h,`}+1

pLpH
.

Plugging this upper bound into (11) yields the second inequality in (10). �

Of course, one may wonder how Phase 1 and Phase 2, as currently specified, compare in perfor-

mance to more sophisticated clearing algorithms. This is a major topic in our numerical experiments

in Section 6. For now, we show how to analytically bound the performance of an optimal two-way

cycle-packing algorithm applied to the original graph in comparison to the performance using the

two-phase procedure with bipartite matching in Phase 2. We let ν∗2 denote the expected number

of unmatched nodes when applying an optimal two-way cycle packing algorithm to the original

random graph D(h, `, t).

Theorem 5. Recalling λ= `
h+`

, we have

ν∗C
ν∗2
≤ E[Yh,t]

h

1− 2λ

1− 2λ− (1−λ)p2Hh
(14)

where ν∗C is defined in (9) and assuming the denominator in the right-hand-side is positive.

Proof. Suppose when running the optimal matching algorithm using two-way cycles, the number

of H-nodes that are matched by H-H cycles and H-L cycles are n1 and n2 respectively. The

expected number of H-nodes matched in H-H-cycles is upper bounded by the expected total

number of H-H cycles in the H-subgraph. Hence, E[n1] ≤ h(h − 1)p2H ≤ p2Hh2. Clearly, E[n2] ≤
h− f(h). Therefore, E[n1 + n2] ≤ h− f(h) + p2Hh

2. Thus, ν∗2 ≥ f(h)− p2Hh2. By the definition of

f(h), since there are at most λ
1−λh L-nodes, f(h)≥ (1− λ

1−λ)h. This implies

ν∗C
ν∗2
≤ ν∗C
f(h)

f(h)

ν∗2

≤ E[Yh,t]

h

f(h)

f(h)− (p2Hh)h

≤ E[Yh,t]

h

(1− λ
1−λ)h

(1− λ
1−λ − p2Hh)h

=
E[Yh,t]

h

1− 2λ

1− 2λ− (1−λ)p2Hh
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where the second inequality uses Theorem 4. �

Using the bounds from Theorem 3 for E[Yh,t] allows us to derive insights from Theorem 5 into

the value of chains in reducing the number of unmatched H-nodes as compared to using cycles

only. The ratio
v∗C
v∗2

measures performance using chains as compared to using two-way cycles from

the outset. The smaller is this ratio, the greater the marginal value of using chains. The bound (14)

gives a guarantee on the expected marginal value of chains. Theorem 3 (c) implies that in the case

of r= 0, even with one NDD, E[Yh,t] can be upper bounded by 1
pH

log( c
pH

) no matter how large of h

(see the discussion after Theorem 3). Therefore, the ratio
ν∗C
ν∗2

is small as long as 1−2λ− (1−λ)p2Hh

is not close to zero. Thus when the proportion of L-nodes λ is small and h < 1
p2
H

, the benefits of

using NDDs (chains) is most substantial.

4.1. Connections to integer programming formulations

In this subsection we further underscore the possibility that our bounds in Theorem 4 can be used

to bound the performance of more sophisticated implementations of the Phase 2 cycle-packing

algorithm. One example is the following integer linear programming (ILP) method for the clearing

problem, formulated as:

µ∗ILP := max
∑

c∈C(M)

wcxc

s.t.
∑

{c∈C(M), v∈c}
xc ≤ 1, ∀ nodes v (15)

xc ∈ {0,1}

where w(c) denotes the weight of cycle c, C(M) denotes a set of cycles with sizes no more than

M and chains of arbitrary sizes. The ILP (15) was first proposed by Abraham et al. (2007) and

improved upon in subsequent studies (Dickerson et al. (2012b, 2013)). This ILP serves as the basis

of the allocation scheme currently used by UNOS in clearing its exchange.

One challenge of using this method is that the number of chains in C(M) is exponentially

increasing with the graph size and the cap on the length of chains, so the ILP can be solved

in real time only for small and medium-size graph (less than 200 nodes) and short chains (no

longer than 20) (Dickerson et al. (2012b)). For this reason, the current UNOS solver uses a column

generation method to strategically add potentially valuable chains and cycles into the collection

C(M) (Dickerson et al. (2013)). The next corollary states that as long as C(M) contains the chains

that are generated in Phase 1 and all two-way cycles, then the ILP matches at least as many

H-nodes as our two-phase procedure. The lower bound for the two-phase procedure in Theorem 4

can therefore be used to lower bound the value of the ILP (15).



Ding et. al.: A non-asymptotic approach to kidney exchange
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

Corollary 3. Let wc denote the number of H-nodes contained in the cycle or chain c, and assume

C(M) contains the t random walks that are generated during Phase 1. Suppose r= 0 and that cycles

of at least length two are permitted in (15) (that is, M ≥ 2). We have

E[µ∗ILP ]≥H − ν∗C
≥ 1

hpH

(
(h− `)+ +

(1− pLpH)|h−`|+1− (1− pLpH)max{h,`}+1

pLpH

)
log(1 +

1

(T 0(h) + 1
4
t)pH

).

Proof. Since C(M) contains the t random walks that are generated during Phase 1, as well

as all the two-way cycles that are used during Phase 2, any clearing generated by our two-phase

procedure is actually a feasible solution to the ILP (15). According to the definition of wc, the ILP

maximizes the number of matched H-nodes. Therefore, the expected number of H-nodes matched

by the two-phase procedure H− ν∗C gives a lower bound for the expected optimal value of the ILP

E[µ∗ILP ]. Using the lower bound (10) for ν∗C , and the strengthened upper bound (8) for E[Yh,t] in

the r= 0 case, we get the analytical lower bound in the statement of the corollary. �

Section 6 contains a careful numerical comparison of the two-phase procedure and an ILP-based

formulation inspired by (15) to complement this basic analytical result.

5. Prioritizing chains versus cycles

According to our two-phase procedure, H-L cycles (two-way cycles connecting an H-node and an L-

node) are matched after allocating all random walks. However, in practice, transplant centers may

myopically transplant such cycles without even submitting the patients involved to the national-

wide exchange. The analysis in this section shows that allowing such two-way cycles to be matched

in chains via an exchange leads to more transplants than myopically transplanting short cycles.

In particular, we provide an analytical lower bound on the average number of extra transplants

that can be created by prioritizing the H kidney in an H-L cycles for chain matching when the

exchange pools is of medium size. Our analysis focuses on the H-L cycles only due to analytical

tractability, but our numerical studies shows that there are benefits (albeit smaller) of allowing

chains to take nodes that would otherwise in cycles of other forms (i.e., three-way cycles and H-H

cycles).

Recall the set CHL as defined after Lemma 2 in Section 4. Let M⊆ CHL denote a maximum

cardinality matching on this bipartite graph. Clearly, the set M depends solely on the edge set

CHL not on the edges wholly inside the H- or L- subgraphs of the random graph D. We consider

two algorithms. The first is called the “Prioritize Chains” or PriCh algorithm, which is precisely

the two-phase procedure studied up until now. We give a new name that emphasizes the fact

it prioritizes allocating chains in the first phase in order to contrast with the second algorithm
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we consider. The “Prioritize Cycles” or PriCy algorithm simply inverts the two phases of the

PriCh algorithm. Phase 1 of the PriCy algorithm removes all two-way H-L cycles corresponding

to matchings in M, and then in Phase 2 identifies chains via random walk on the residual graph.

To avoid confusion we write PriCh.1 and PriCh.2 for Phases 1 and 2 of the PriCh algorithm and

PriCy.1 and PriCy.2 for Phases 1 and 2 of the PriCy algorithm.

We still use the number of unmatched H-nodes as a performance criterion to evaluate the above

two algorithms. To this end, ζPriCh and ζPriCy denote the number of unmatched H-nodes by applying

the PriCh and PriCy algorithms, respectively. The next theorem shows that the PriCh algorithm

always outperforms the latter. We set m := |M| and use the notation set in Section 3 for Yh,t to

represent the random number of unmatched H-nodes after applying the two-phase procedure on

an H-subgraph.

Theorem 6. Consider random kidney exchange graph D(h, `, t) with r = 0. Then, the expected

difference E[ζPriCy− ζPriCh|m] in the number of unmatched H nodes under the PriCy algorithm as

compared to the PriCh algorithm, conditional on there being m nodes in a maximal matching, is

always positive. Moreover, we can derive lower and upper bounds on E[ζPriCy−ζPriCh|m] as follows:

0< (h−m)

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
≤E[ζPriCy− ζPriCh|m]≤min{m,E[Yh−m,t]} (16)

Proof. We first prove the upper bound on E[ζPriCy− ζPriCh|m]. By matching all two-way cycles

in M in Phase PriCy.1, there will be h−m H-nodes left for Phase PriCy.2. Because the selection

of M is independent of edges inside the H-subgraph, on the residual H-subgraph R(m), each

edge appears according to an independent Bernoulli distribution with mean pH . Thus, the number

of unmatched H-nodes after the two-phase procedure has the same distribution as the random

variable Yh−m,t. As a result,

E[ζPriCy|m] =E[Yh−m,t], (17)

which implies

E[ζPriCy|m]−E[ζPriCh|m]≤E[ζPriCy|m] =E[Yh−m,t]. (18)

Alternatively, if we execute chains first, then there will be Yh,t H-nodes left after the two-phase

procedure. Because m is the size of the maximum bipartite matching on the original graph, it

must be larger than the size of the maximum bipartite matching on the graph where H-nodes have

been removed by the random walk. Thus, in Phase PriCh.2 at most m H-nodes can be matched.

Consequently,

E[ζPriCh|m]≥E[Yh,t]−m. (19)

Because Yn,t is increasing in n, inequality (17) and (19) imply that

E[ζPriCy|m]−E[ζPriCh|m]≤E[Yh−m,t]− (E[Yh,t]−m)≤m. (20)
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Inequalities (18) and (20) lead to the upper bound for E[ζPriCy− ζPriCh|m] in (16).

To derive the lower bound for E[ζPriCy − ζPriCh|m], we need to derive an upper bound for

E[ζPriCh|m], or equivalently, E[Yh,t]−m because of (17). According to the PriCh algorithm, whether

an H-node remains unmatched after Phase PriCh.1 is independent from whether it is covered by

cycles in M or not. Thus, any remaining H-node has an independent probability of m/h to be

covered by M. Therefore, if we use the two-way H-L cycles in M to match the remaining H-

nodes in Phase PriCh.2, there will be an expected number of (1− m
h

)E[Yh,t] nodes left after Phase

PriCh.2. Nevertheless, the PriCh algorithm will perform even better, because in Phase PriCh.2

the algorithm would use the maximum matching on the remaining bipartite H-L graph rather

than M to cover the remaining H-nodes. Therefore, the expected number of unmatched H-nodes

after the PriCh algorithm, E[ζPriCh|m], is no more than (1− m
h

)E[Yh,t]. With this upper bound for

E[ζPriCh|m], together with the expression for E[ζPriCy|m], (17), we have

E[ζPriCy− ζPriCh|m]≥E[Yh−m,t]− (1− m
h

)E[Yh,t] = (h−m)

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
,

which gives the lower bound for E[ζPriCy− ζPriCh|m] in (16).

At last, we show that
E[Yh−m,t]
h−m − E[Yh,t]

h
> 0 for any m≥ 1. For all integers n≥ 1 and t≥ 0 (Note

Yn,0 = n by its definition), define

∆t
n :=EYn,t−EYn−1,t.

Then
E[Yh−m,t]
h−m and

E[Yh,t]
h

is exactly the average of the first h−m entries and the first h entries

of the sequence {∆t
n|n= 1,2, . . .}. By (A1) in Lemma EC.4 in Appendix EC.4, ∆t

n decreases in n,

therefore
E[Yh−m,t]
h−m − E[Yh,t]

h
> 0 for any m≥ 1. �

The lower bound in Theorem 6 shows that the expected number of transplants always increases

when the nodes in H-L cycles are prioritized for use in chains. To get a more precise sense of these

benefits, we propose to measure the benefit by the number of extra H-nodes that could be cleared

by prioritizing each H-L cycle for use in chains. The upper bound given in Theorem 6 then shows

that the average benefit for prioritizing each H-L cycle is at most one H-node (coming from the

m in the upper bound term), and we provide a strengthened lower bound for the average benefit

for prioritizing chains in the next theorem, for a particular class of parameter settings.

Theorem 7. Suppose λ≤ 0.28, t≤ 3, h≥ 3.3
pH

ln 1
pH

, and r= 0, then

h−m
m

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
≥ 0.089

ch
(21)

where ch = h
1
pH

ln 1
pH

> 3.3. As a result we derive upper and lower bounds on the average benefit

1
m
E[ζPriCy− ζPriCh|m] of prioritizing chains as follows

0.089

ch
≤ 1

m
E[ζPriCy− ζPriCh|m]≤min{1, E[Yh−m,t]

m
}. (22)
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The proof of Theorem 7 is involved and found in Appendix EC.4. The main idea is to prove

that E[Yn,t], as a function of n, is sufficiently concave (Lemma EC.4 and Lemma EC.5), so the

difference between the slopes
E[Yh−m,t]
h−m and

E[Yh,t]
h

can be lower bounded for a given m. This will

prove inequality (21). Inequality (22) then follows directly from Theorem 6.

The parameter settings we considered here (λ≤ 0.28, t≤ 3, pH ≤ 0.1, and h≥ 3.3
pH

ln 1
pH

) covers a

broad class of kidney exchange graphs. The qualitative insight implied by Theorem 7 is that the

extra transplants created by using an H-L cycle in a chain rather than myopically transplanting

it has a uniform lower bound that only depends on the size of the H-subgraph. Note that the

machinery used in the proof of Theorem 7 (Appendix EC.4) can be adapted to derive lower bounds

under other parameter settings (the choices λ≤ 0.28, t≤ 3, pH ≤ 0.1, and h≥ 3.3
pH

ln 1
pH

are somewhat

arbitrary) but there is no closed-form expression for the value corresponding to 0.0089 in (21). If

precise values for λ, t, and h are known (or that they lie in a small specified range) the bounds can

be sharpened by adapting the reasoning of the proof.

One may notice that the lower bound 0.089
ch

provided in Theorem 6 diminishes when the graph

size (and thus ch) gets larger. This is not because our bound is less tight for large-size graphs, but

because the average number of transplants per H-L cycle prioritized for use in chains diminishes

when the graph grows in size. To see this, note that E[Yh−m,t] will remain in the order of 1
pH

ln 1
pH

regardless of the size of h, according to our discussions after Theorem 3. Since the total benefit is

nearly a constant, the average benefit created by using an H-L cycle in a chain tends to diminish

when the size of matching (m) grows with the graph size. One may also draw this conclusion by

observing that the upper bound
E[Yh−m,t]

m
tends to diminish for large-size graphs.

We have assumed m is the size of a maximum H-L bipartite matching for ease of interpretation.

In fact, M can be any subset of CHL, as long as M depends on the edge set CHL only and not on

the edge distribution inside the H- nor L-subgraphs.

6. Numerical experiments

Our two-phase procedure presented in Section 2.2 is simple by design. It handles the issue of chains

in as simple a way as possible (via random assignment) so that the probabilistic implications of

allocating chains is minimal. Our initial purpose for defining this procedure was to aid in analysis.

This section serves as a reality check. Numerical tests give us some confidence in the strength of

our analysis and how our procedure compares to other procedures implemented in the literature

and in practice. Surprisingly, the performance loss from randomly assigning chains is not as great

as one might expect.

This section consists of three subsections that numerically test different aspects of the two-phase

procedure. The purpose of the first subsection is to examine the tightness of the bounds derived
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in Section 4. The second subsection provides a sense of the overall effectiveness of the two-phase

procedure. We examine the performance of our two-phase procedure as compared to a heuristic

(due to Ashlagi et al. (2013)) and an ILP implementation (based on an algorithm proposed by

Dickerson et al. (2014)). The third subsection examines the order of assigning chains and cycles,

to numerically verify and extend the insights dervived in Section 5.

Due to the specification of the two-phase procedure, and to fit our purposes, we conduct our

numerical tests on simulated random graphs based on the model in Section 2.1 instead of the

more complicated setting of a fully-simulated exchange or using data based on fielded exchanges.

A thorough numerical investigation undertaken with more realistic data is left for future work.

We test random graphs with 40, 60, 80, 100, 150, 200 and 300 nodes. Unless otherwise stated, we

set parameter values of pH = 0.03 or 0.05, pL = 0.45 and λ= 0.27. We also test a variety of values for

the number of NDD donors including t= 0, 1, and 5, depending on the context of the comparison.

These parameter choices follows that made by Ashlagi et al. (2012) to allow for straightforward

comparison with their results. We repeated the experiment for different parameters values and

reached similar qualitative conclusions. For each random graph specification, we randomly generate

100 graph instances, apply the algorithm to be studied, and record the number of unmatched H-

nodes at termination. Values are averaged across these observations to yield average performance

measures of our algorithm and various comparisons. The performance metric we favor is the number

of unmatched H-nodes in the graph (unless otherwise stated). The smaller is this number, the

better is the performance.

6.1. Tightness of theoretical bounds

In our first numerical experiment, we compare the actual performance of the two-phase procedure

as defined in Section 2.2 with bipartite matching in Phase 2 on simulated random graphs (in the

third column of Table 1 with the theoretical upper bounds for ν∗C derived in Theorem 4. This will

give a sense of the tightness of our theoretical analysis in comparison to simulated instances. We

calculate upper bounds using (10) and record these values in the fourth column of Table 1. The

simulated values are within 15% of the upper bounds for most instances, although the upper bound

weakens as the number of nodes and NDDs increase. If we compare across the different values for

t, we find a significant reduction in the number of unmatched H-nodes when chains are allowed

(t > 0). The fifth and sixth columns of Table 1 provide a comparison of simulated values for the

ratio
ν∗C
ν∗2

and our bound in Theorem 5. We used an optimal blossom algorithm to calculate the

optimal matching with two-way cycles only, which gives v∗2 . We do not conduct the tests when

there were no NDDs, in which case comparing v∗2 and v∗C makes no sense. We conclude that our

analytical bounds are sufficiently tight to have confidence in the strength of our analysis.
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Table 1 Tightness of bounds derived in Section 4.

No. nodes No. NDDs ν∗C via simulation Bound for ν∗C
ν∗C
ν∗2

via simulation Bound for
ν∗C
ν∗2

40 0 26.67 27.08
40 1 25.53 25.79 0.98 1.00
40 5 20.88 21.94 0.80 0.85
60 0 37.09 37.76
60 1 34.82 35.23 0.98 0.99
60 5 27.50 29.19 0.78 0.82
80 0 47.91 48.83
80 1 43.20 45.68 0.95 1.00
80 5 33.41 36.66 0.74 0.82
100 0 56.66 58.01
100 1 50.82 54.10 0.97 1.00
100 5 36.75 42.08 0.70 0.80
150 0 78.36 80.85
150 1 63.91 68.44 0.91 0.99
150 5 38.81 44.25 0.55 0.65
200 0 100.22 102.88
200 1 71.65 78.47 0.84 0.96
200 5 37.22 45.55 0.43 0.56
300 0 142.67 145.47
300 1 66.85 85.59 0.61 0.85
300 5 27.72 44.56 0.25 0.44

Notes: Table entries are the number of unmatched H-nodes remaining. A lower number means better performance. In
the column labels, ν∗

C and ν∗
2 denote the expected number of unmatched H-nodes after applying the two-phase algorithm

and the optimal two-way cycle packing algorithm to the random graph, respectively. Accordingly, ν∗
C/ν

∗
2 thus gives the

performance ratio between algorithms that use both chains and two-way cycles or use two-way cycles only. The theoretical
upper bounds for ν∗

C and ν∗
C/ν

∗
2 are provided in (10) and (14), respectively.

6.2. Overall performance

In a second set of experiments we compare the performance of our two-phase procedure (defined

in Section 2.2) with more sophisticated clearing algorithms, such as the heuristic algorithm by

Ashlagi et al. (2012) and the ILP with chains generated as random walks. We find that our two

phase algorithm, which uses a heuristic algorithm to match the three-way and two-way cycles in the

residual graph in Phase 2, achieves comparable performance as the heuristic algorithm of Ashlagi

et al. (2012). We also identify parametric settings in which the two-phase algorithm is competitive

with ILP, which can be regarded as a proxy for the optimal algorithm. The gap between the

two-phase algorithm and the ILP is narrowed for larger graph sizes, greater numbers of NDDs,

denser exchange graphs, and larger proportions of L-nodes (relative to H-nodes). We also find that

the above gap widened when cycles are not permitted at all, suggesting that the random walk is

actually not good at picking the longest chains. This, however, does not result in a large gap when

cycles are used. This can be explained by the fact that the random walk of Phase 1 preserves the

density of the edge distribution in the residual graph, an advantage for cycle matching in Phase 2.

Our first comparison is with results given in Table 5 of Ashlagi et al. (2012), which records the

number of matched H-nodes after running their heuristic algorithm. Their matching algorithm
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uses three-way cycles, and so to make the comparison fair, we also allow three-way cycle matching

in the Phase 2 of the algorithm. The comparison is displayed in Table 2, where the third column

records the average number of unmatched H-nodes using Phase 1 and Phase 2 of our procedure

across 100 randomly generated graphs in each setting, and the fourth column records the number

of unmatched H-nodes inferred by Table 5 of Ashlagi et al. (2012). Note that Ashlagi et al. (2012)

only reported values for exchanges up to 100 nodes in size. These results are encouraging. Although

the number of unmatched H-nodes from our procedure increases relative to Ashlagi et al. (2012)’s

heuristic, the performance is nonetheless comparable.

Next, we attempted to compare our algorithm to an optimal clearing algorithm. However, as the

problem is NP-hard (Abraham et al. 2007), we cannot expect that the optimal solution is readily

computed, particularly as the number of nodes grows larger. Existing heuristics typically tightly

cap the length of chains. If chains are long (which does happen in practice, see (Sack 2012)) it

requires the generation of many variables in an ILP formulation such as (15). We worked with

the optimization code provided by Dickerson et. al. at https://github.com/johndickerson/

kidneyexchange that accompanied the publication of Dickerson et al. (2014). When we removed

the chain cap, the code was unable to find optimal solutions on larger instances in a reasonable run

time. In response, we developed a modified version of Dickerson et. al.’s code that uses random walk

to sample a (reasonably-sized) set of chains that enter an ILP formulation as variables (inspired by

personal communication with John P. Dickerson). The generated random walks prioritize H-nodes

as in our two-phase procedure. Following standard practice, we capped the length of cycles at

three due to the limitation that cycles must be transplanted simultaneously and hence logistically

infeasible at lengths greater than four. This makes the number of variables associated with cycles

also manageable. In our simulations, we capped the number of chain variables at 100,000, meaning

the ILP formulation worked with at most 100,000 chains generated as random walks and all cycles

up to length three.

The performance of this modified ILP algorithm, that uses elements of integer programming and

random walks, is reported in the final column on Table 2. We believe this hybrid algorithm gives

a good approximation to an optimal clearing algorithm. Indeed, for graphs of 300 nodes, it leaves

almost no unmatched H-nodes even without using any chains. The gap between the two-phase

algorithm and the ILP stays below thirty H-nodes across all scenarios.

Our goal is not to advocate that the two-phase procedure as states in Section 2.2 be used in

practice in its simple form, instead our motivation is to show that a very simple allocation of

chains via random walk in the first stage may be useful in incorporating into more elaborate

methods, such as the ILP. Using random walks can greatly speed the computational burden of

finding optimal clearings. Our simple two-phase procedure runs very quickly with less than 0.1
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Table 2 Performance of two-phase procedure compared to heuristic in Ashlagi et al.

(2012) and the ILP with chains generated as random walks.

No. nodes No. NDDs Two-phase procedure Ashlagi et al. (2012) ILP
40 0 23.46 23.81 20.22
40 1 22.20 22.80 15.23
40 5 18.52 19.97 13.18
60 0 28.68 30.79 25.42
60 1 26.47 27.21 16.16
60 5 22.91 21.98 13.41
80 0 33.54 36.59 26.93
80 1 31.17 29.68 15.95
80 5 24.17 21.87 12.72
100 0 36.11 40.67 27.00
100 1 32.75 29.91 14.72
100 5 24.46 19.13 11.57
150 0 39.66 Unavailable 19.60
150 1 34.41 Unavailable 10.29
150 5 22.67 Unavailable 7.57
200 0 40.37 Unavailable 8.40
200 1 32.19 Unavailable 5.26
200 5 19.37 Unavailable 3.24
300 0 35.68 Unavailable 0.18
300 1 24.37 Unavailable 0.13
300 5 12.92 Unavailable 0.12

Notes: Table entries are the number of unmatched H-nodes remaining. A lower number means
better performance.

second for all instances, while the more elaborate ILP formulation can take up to 1000 seconds for

instances with larger graph sizes.

An interesting question is under what parameter settings does our two-phase procedure come

close to being optimal. We use the proportion of unmatched H-nodes instead of number of H-

nodes as performance measure as it provides a fair comparison across instances with different graph

sizes. Figure 6 illustrates that the performance of the two-phase procedure improves as (a) the

total number of nodes get larger, (b) the number of NDD nodes t get larger, and (c) pH gets

larger, and (d) the proportion of L-nodes λ get larger. In (a), we find that when the graph size

expands, the gap between the two-phase procedure and the ILP reduces quickly. For graph with

more than 200 nodes, our algorithm matches more than 80% of the H-nodes, which shows that

the two-phase algorithm is most competitive when the graph size is sufficiently large. In (b), we

notice that increasing the number of NDDs steadily improves the performance of the two-phase

algorithm, but not the ILP. The intuition is that the ILP is always able to identify very long chains,

so one NDD often suffices; whereas in our algorithm we cannot expect a single random walk to

match most H-nodes, so extra NDDs (more random walks) helps. In (c) and (d), we find that the

performance of both our algorithm and the ILP improve, while their gap shrinks, when the graph

contains more edges in the H-subgraph or contains a larger proportion of L-nodes. In these cases,



Ding et. al.: A non-asymptotic approach to kidney exchange
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

the cycle matching phase becomes relatively more important, which diminishes the suboptimality

introduced in Phase 1 of the two-phase procedure.

Figure 6 An illustration of how the performance of the two-phase procedure compared to an ILP formulation

under various parameter changes. In each sub-figure, we compare the proportion of unmatched H-nodes

by varying the total number of nodes (h+ l), t, pH , and λ, respectively. When one parameter is changing,

the other parameters are set to the default values: h+ l= 100, t= 1, pH = 0.05, λ= 0.27.
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Thinking more systematically, observe that our two-phase procedure cannot perform as well as

the ILP for two separate reasons. First, the ILP formulation can choose the best combination

of cycles and chains out a large set of generated random walks; whereas our procedure can only

optimize cycle matching after chains have been removed. Second, the chains generated by the

random walks cannot, in general, match as many nodes as those generated by the ILP. To further

understand what is the main reason that leads to the performance gap, we consider a special

case when the graph only contains H-nodes and no cycles are allowed. We then compare the

number of nodes that are covered by chains generated by random walk versus our ILP formulation,
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Table 3 Performance of two-phase as compared to an ILP

formulation when there are no cycles

No. nodes No. NDDs Two-phase procedure ILP
40 1 33.84 20.40
40 5 22.87 11.52
60 1 48.15 16.90
60 5 27.77 10.70
80 1 56.23 16.95
80 5 28.88 10.67
100 1 61.72 16.51
100 5 11.15 30.61
200 1 67.34 16.38
200 5 31.05 7.58
300 1 68.95 12.39
300 5 31.12 6.45

Notes: Table entries are the number of unmatched H-nodes remain-
ing. A lower number means better performance.

respectively, and summarize the results in Table 3. We set pH = 0.05 and λ= 0 as there is no need

to consider L-nodes for this experiment.

Table 3 shows that the gap could be as large as 50 H-nodes between the random walk and the

ILP. However, in Table 2 we observe that the gap is less than 30 in the presence of cycles. One

explanation is that although random walks are a suboptimal way to allocate chains, in the presence

of cycles this suboptimality is lessened. Optimally allocating chains may preclude an efficient

allocation of cycles in the second stage, but this effect is weakened under random walk allocation.

As discussed above, random walk allocation in the first phase maintains the probabilistic density

of the residual graph, enhancing cycle matching. Hence, we believe the major loss of optimality

from our procedure is not that it may choose a chain that is too short, but that it is unable to look

forward to assess the impact of choosing a chain on the cycle formation phase. This returns us to

a discussion of the impact of prioritizing chains versus cycles that we initiated in Section 5.

6.3. Prioritizing cycles before chains

In Section 5 we showed that if we must prioritize either chains or cycles in our two-phase procedure,

it is preferable to prioritize chains. These results were analytical and focused attention on H-L

cycles for purposes of tractability. In this section we reinforce numerically, and in greater generality,

the same general conclusion by allowing a wider variety of cycles.

Figure 7 illustrates the benefit of prioritizing chains over prioritizing cycles. The vertical axis

captures the difference in the number of nodes and the horizontal axis is the net increase in the

number of H nodes matched when prioritizing chains when compared to prioritizing cycles. That

is, the vertical axis captures simulated values of E[ζPriCy−ζPriCh]. Larger values on the vertical axes

corresponds to increased benefits of prioritizing chains. The figure illustrates three curves. The
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first is when bipartite matching between H-L-nodes is used in the PriCy and PriCh algorithms

– the setting discussed in Section 5. This case is denoted “H-L” in the figure, meaning the cycle

formation phase employs H-L cycles only. The second curve still prioritizes H-L cycles, but in the

PriCy algorithm adds an additional step after chains are formed to use three-way matching in the

residual graph that remains. This case is denoted “H-L then 3-way” in the figure. This is a first

attempt to “improve” the PriCy algorithm beyond what was studied in Section 5. Observe that

the improvement is significant but still performs worse than the PriCh algorithm. Finally, the third

curve is a second attempt to improve the PriCy algorithm, where instead of only prioritizing H-L

cycles, all cycles involving up to three patients are prioritized. This case is denoted “3-way” in the

figure. The improvement is dramatic over the previous two curves, but, somewhat surprisingly, still

reveals a small benefit for prioritizing chains over cycles. Figure 7 is drawn for the case of a single

NDD, we did similar simulations for 3 and 5 NDDs and the basic pattern was similar.

One implication of these results is that initially prioritizing H-L can undermine subsequent

matching in chains and additional cycles and this impact is lessened when a wider variety of

cycles are prioritized. This has practical relevance since individual hospitals are more likely to

transplant H-L cycles before declaring their patients in an exchange than any other transplant

combination involving an H-node. A more general implication one can infer from this is that

myopically transplanting the easiest cases has the greatest negative impact on the quality of clearing

in an exchange. Indeed, further numerical investigation (not reported on here) suggests that the

more L-nodes in the chains that are prioritized (for instance H-L or H-L-L compared to H-H-L),

the worse is the overall performance.

Another observation is that the loss of transplants created by matching H-L cycles increases

significantly as the graph size expands. This is in line with the lower bound in Theorem 7 that

increases with the size of the graph. However, since we have used a sophisticated heuristic algorithm

to match the three-way cycles, the loss incurred by prioritizing up to three-way cycles stays low

irrespective of the graph size. The reason is that a sophisticated heuristic algorithm will intelligently

use H-H-H or H-H-L cycles, in which H-nodes take a larger proportion. As suggested by Figure

7, removing those cycles first do not result in a big loss. This underscores how the impact of the

order of prioritizing chains versus cycles is not robust when attention is isolated to H-L cycles,

but is robust to when up to three-way cycles are considered, provided that a sophisticated cycle

matching heuristic is used.

7. Directions for future work

In this paper we have developed a non-asymptotic approach to analyzing kidney exchange graphs

that complements previous work that relies on asymptotic analysis. We demonstrate the power of
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Figure 7 Comparing the benefits of prioritizing chains versus prioritizing cycles, with λ= 0.27, pH = 0.05, t= 1.
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this approach by providing analytical performance bounds on a two-phase procedure for matching

donors and recipients, and demonstrate how these bounds allow us to analytically show the benefit

of chains in “medium-sized” (that is, non-limit) graphs.

We developed our approach in the stylized setting introduced by Ashlagi et al. (2012) with one

additional restriction in our procedure to facilitate analysis. The chains in our two-phase procedure

consist entirely of H-nodes (initiated, of course, by an NDD donor). We did this to maintain the

stochastic independence structure of residual graphs that was leveraged at several points in our

proofs. Nonetheless, extending to “mixed chains” of both H- and L-nodes may be approachable

by adjusting our methodology and is a topic of further investigation.

Of course, there are several important assumptions inherent in the random graph model of

Ashlagi et al. (2012) itself. Discussion of the validity of these assumptions and the possibility

of extension is well-documented (see, for instance Ashlagi et al. (2012, 2013), Dickerson et al.

(2012b, 2013)). A test bed for the power of our non-asymptotic approach is to systematically

attempt to relax certain assumptions and see what tractability remains. Since our approach has

important distinctions with the standard asymptotic methods, it is conceivable that we can achieve

further generality in ways that are not amenable to other methods. Some promising avenues include

embedding random walks in a dynamic setting of kidney exchange within an evolving patient and

donor base. We feel the memoryless properties of random walks should prove useful in a dynamic

setting.

Finally, although we introduced our procedure primarily for analytical investigation, we feel it

is useful to comment on the practicality of the approach. Allocating organs on the basis of random

walks may strike practitioners and patients alike as somewhat arbitrary and unfair. However, there
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is some flexibility in our procedure that could make it more palatable in practice. One can specify

a priority by which to process the nodes. This priority could increase the likelihood that a given

patient (potentially a very deserving one) could get a kidney sooner than others. One way of

doing this is to evaluate the potential of each node on the kidney exchange graph, as proposed in

Dickerson and Sandholm (2015). Of course, a benefit of the random walk approach is its scalability

and easy of implementation, which might complement some of the more sophisticated algorithms

proposed by other researchers.
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Remaining Proofs for “A Non-Asymptotic Approach to
Analyzing Kidney Exchange Graphs”

EC.1. Proof of Theorem 2

Theorem EC.2.

Pr(Yh,t ≤ k)≥
{

exp(T (h)−T (k)) if t= 1

exp(T (h)−T (k))
(1+

∑h
i=k+1 ri)

t−1

(t−1)! if t≥ 2.
(EC.1)

Proof. For the t= 1 case, Theorem 1(a) has Pr(Yh,1 ≤ k) =
∏h

i=k+1(1− ri). Plugging µi = ri
1−ri

into exp(−µi) yields

exp(−µi) = exp(− ri
1− ri

)

=
1

exp( ri
1−ri )

≤ 1

1 + ri
1−ri

= 1− ri

where the inequality follows from the inequality exp(x)≥ 1 +x for all x. Thus,

Pr(Yh,1 ≤ k) =
h∏

i=k+1

(1− ri) (EC.2)

≥
h∏

i=k+1

exp(−µi)

= exp(−
h∑

i=k+1

µi)

= exp(T (h)−T (k))

where the last equation follows from the definition of T (k), i.e., (2).

Plugging the above inequality into the expression of Pr(Yh,t ≤ k) in the t ≥ 2 case, i.e., (3) in

Theorem 1, yields

Pr(Yh,t ≤ k) =
h∏

i=k+1

(1− ri)
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij)

≥ exp(T (h)−T (k))
∑

k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij).

Thus, to prove inequality (EC.1) for the t≥ 2 case, it suffices to show that∑
k≤it−1≤...≤i1≤h

t−1∏
j=1

ξk(ij)≥
(1 +

∑h

i=k+1 ri)
t−1

(t− 1)!
.
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If we look into the expansion of (1+
∑h

i=k+1 ri)
t−1, each term takes the form of

∏t−1
j=1 zj, where each

zj is either 1 or one of {rk+1, rk+2, . . . , rh}. Suppose {z1, . . . , zt−1} consists of t− 1− t′ entries in

{rk+1, rk+2, . . . , rh} and t′ ones (0≤ t′ ≤ t− 1), then the coefficient before
∏t−1
j=1 zj in the expansion

is the total number of such draws, which is (t − 1 − t′)!Ct′
t−1 = (t−1)!

t′! , where Ct′
t−1 denotes the

number of combinations of t′ objects chosen from t− 1 objects. Since ξk(i) = 1 if i ≥ k + 1 and

ξk(i) ∈ {rk+1, rk+2, . . . , rh} if i≤ k, each term
∏t−1
j=1 zj can be uniquely represented in the form of∏t−1

j=1 ξk(ij), with k≤ it−1 ≤ . . .≤ i1 ≤ h. If {zj} consists of t′ ones, then we have i1 = i2 = . . .= it′ =

k < it′+1 ≤ . . .≤ h. As a result, the coefficient before
∏t−1
j=1 ξk(ij) is exactly (t−1)!

t′! , which is uniformly

upper bounded by (t− 1)! for all values of t′. Thus, we have

(1 +
h∑

i=k+1

ri)
t−1 ≤

∑
k≤it−1≤...≤i1≤h

(t− 1)!
t−1∏
j=1

ξk(ij).

Dividing both sides by (t− 1)! leads to inequality (EC.3), and completes the proof for inequality

(EC.1) in the t≥ 2 case. �

EC.2. Proof of Theorem 3

Theorem EC.3. The following conditions hold:

(a) {T (X(n)) + t(n)|n≥ 0} is a martingale. As a consequence,

E[Yh,t]≥ T−1(T (h) + t). (6)

(b)
{
X(n)+T−1(T (X(n)+t(n)))

2
|n≥ 0

}
is a super-martingale. As a consequence,

E[Yh,t]≤
1

2

(
T−1(T (h) + t) +h

)
. (7)

(c) In the case of r= 0 and pH ≤ 0.1, we have the following strengthened upper bound,

E[Yh,t]≤
1

pH
log

(
1 +

1

(T 0(h) + 1
4
t)pH

)
(8)

where T 0(h) defined in (2) calculates the expected number of NDDs required to reduce the

number of H-nodes from +∞ to h.

Proof. We first provide some intuition towards the proof. (a) and (b) follow the transition

probabilities of the Markov process X(n). The key idea to establish (c) is to figure out the functional

form of the right-hand side of inequality (8). The logic is as follows. Let C(h, t) denote the expected

number of NDDs required to reduce the number of H-nodes from +∞ to E[Yh,t], so

C(h, t) =
∞∑

i=E[Yh,t]+1

(1− pH)i

1− (1− pH)i
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≤ 1

1− (1− pH)E[Yh,t]+1

∞∑
i=E[Yh,t]+1

(1− pH)i

=
(1− pH)E[Yh,t]+1

pH(1− (1− pH)E[Yh,t]+1)

It then leads to

E[Yh,t] + 1≤ 1

log(1− pH)
log(1 +

1

(C(h, t))pH
)≈ 1

pH
log(1 +

1

(C(h, t))pH
).

The right-hand-side of the above inequality gives a rough estimation of the functional form of

the upper bound. To further figure out C(h, t), note that T 0(h) and C(h, t)−T 0(h) represent the

expected number of NDDs required to reduce the number of H-nodes from +∞ to h, and from

h to E[Yh,t], respectively. Thus, we conjecture that C(h, t)− T 0(h) should stay close to t by the

definition of E[Yh,t], and that C(h, t) is likely to take the form of T 0(h) + ct for some positive

constant c. By working through the algebra, we prove that 1
pH

log(1 + 1
(T0(h)+ct)pH

) is actually a

valid upper bound for c= 1/4 or smaller.

We next give the formal proofs for (a)–(c).

(a) At a given non-absorbing state (X(n), t(n)), compute T (X(n+1))+ t(n+1) by the transition

probabilities as

E[T (X(n+ 1)) + t(n+ 1)] = rX(n)(T (X(n)) + t(n)− 1) + (1− rX(n))(T (X(n)− 1) + t(n))

= rX(n)(T (X(n)) + t(n)− 1) + (1− rX(n))

(
T (X(n)) +

rX(n)

1− rX(n)

+ t(n)

)
= T (X(n)) + t(n).

Hence, T (X(n+1)+ t(n+1) is a martingale; that is, the expectation of E[T (X(n))+ t(n)] is always

T (h) + t, its value at the initial state. Recall that τ0 corresponds to the time at which either X(n)

hits zero or t(n) hits zero, and so the optional stopping theorem for martingales implies

T (h) + t = Pr(t(τ0) = 0)E[T (Yh,t) + 0] + (1−Pr(tτ0 = 0))E[T (Yh,t) + t(τ0)]

= E[T (Yh,t)] + (1−Pr(tτ0 = 0))t(τ0)

≥ E[T (Yh,t)].

By the convexity of T (·) and Jensen’s inequality, T (E[Yh,t])≤E[T (Yh,t)]≤ T (h) + t, which implies

inequality (6) by the decreasing property of the inverse function T−1.
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(b) By the transition of the Markov chain, we have

E
[
X(n+ 1) +T−1[T (X(n+ 1)) + t(n+ 1)]

2

]
=(1− rX(n))

X(n)− 1 +T−1[T (X(n)− 1) + t(n)]

2
+ rX(n)

X(n) +T−1[T (X(n)) + (t(n)− 1)]

2

≤X(n) +T−1[T (X(n)) + t(n)]

2
− 1− rX(n)

2
+ rX(n)

T−1[T (X(n)) + (t(n)− 1)]−T−1[T (X(n)) + t(n)]

2

≤X(n) +T−1[T (X(n)) + t(n)]

2
− 1− rX(n)

2
+
rX(n)

2

1

µX(n)

=
X(n) +T−1[T (X(n)) + t(n)]

2

where the last inequality follows since the slope of T−1(x) is upper bounded by 1
µX(n)

for x >

T (X(n)).

Then the optional stopping theorem implies

E
[
X(τ0) +T−1(T (X(τ0)) + t(τ0))

2

]
≤ h+T−1(h+ t(0))

2
.

Note that when t(τ0)> 0 then X(τ0) must be zero whence T−1(T (0) + t(0)) = 0 (since t(0)≥ 0), so

the left-hand-side always equals E
[
Yh,t+T

−1(T (Yh,t)+0)

2

]
=E[Yh,t] as in the statement of the theorem.

When t(τ0) = 0 this same property follows automatically. Therefore, we have proved (6).

(c) We prove (8) by induction on t and h. We first prove two base cases: (1) h= 1 and t≥ 0; (2)

h≥ 1 and t= 0.

If h= 1, the unmatched number of H-nodes is either 1 (the H-node cannot be matched by any

NDD) or 0 (the H-node can be matched by at least one NDD). Thus, E[Y1,t] = (1−pH)t. Note that

T 0(1) =
∑∞

k=2
(1−pH )k

1−(1−pH )k
≤ 1

pH

∑∞
k=1(1− pH)k ≤ 1−pH

p2
H

. So we have

pH ≤
1

1 +T 0(1)pH
. (EC.3)

Since (1− pH)t ≤ exp(−pHt) for all t≥ 0 and exp(pHt)≥ 1 + pHt, we have

(1− pH)t ≤ 1

1 + tpH
. (EC.4)

Multiplying (EC.3) and (EC.4) leads to pH(1− pH)t ≤ 1
1+T0(1)pH

1
1+tpH

≤ 1
1+(T0(1)+t)pH

, which fur-

ther implies that exp(pH(1− pH)t)≤ 1 + 1
(T0(1)+t)pH

by the inequality exp(x)≤ 1
1−x for x ∈ (0,1).

Rearranging, we get

E[Y1,t] = (1− pH)t ≤ 1

pH
log

(
1 +

1

(T 0(1) + t)pH

)
≤ 1

pH
log

(
1 +

1

(T 0(1) + 1
4
t)pH

)
,

which is exactly inequality (8).
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If t= 0, then Yh,0 ≡ h. So it suffices to prove that h≤ 1
pH

log(1 + 1
T0(h)pH

). To see this note

T 0(h) :=
∞∑

m=h+1

(1− pH)m

1− (1− pH)m

≤ 1

1− (1− pH)h+1

∞∑
m=h+1

(1− pH)m

=
1

pH

(1− pH)h+1

1− (1− pH)h+1
(EC.5)

≤ 1

pH

exp(−pH(h+ 1))

1− exp(−pH(h+ 1))

where the last inequality follows from 1− pH ≤ exp(−pH) and x
1−x is increasing in x over (0,1).

The above inequality implies that h+ 1≤ 1
pH

log(1 + 1
T0(h)pH

), which verifies (8) in the t= 0 case.

To prove (8) for the general cases of h≥ 2 or t≥ 1, we need to use induction. The induction step

actually reduces to verifying a single inequality, which is detailed below.

To simplify the notation, define functions F (x) := log(1+ 1
x
) and x(t, h) := (T 0(h)+ 1

4
t)pH . Under

this notation, proving (8) is equivalent to proving

E[Yh,t]≤ F (x(t, h)). (EC.6)

Suppose (8) holds for E[Yh−1,t] and E[Yh,t−1] with h, t≥ 2. Then the two-phase procedure implies

that

E[Yh,t] = (1− (1− pH)h)E[Yh−1,t] + (1− pH)hE[Yh,t−1] (EC.7)

≤ (1− (1− pH)h) log

(
1 +

1

(T 0(h− 1) + 1
4
t)pH

)
+ (1− pH)h log

(
1 +

1

(T 0(h) + 1
4
(t− 1))pH

)
= (1− (1− pH)h)F (x(t, h− 1)) + (1− pH)hF (x(t− 1, h)).

Therefore, in order to prove (EC.6), it suffices to establish

0 ≤ F (x(t, h))−
(
(1− (1− pH)h)F (x(t, h− 1)) + (1− pH)hF (x(t− 1, h))

)
(EC.8)

= (1− (1− pH)h)(F (x(t, h))−F (x(t, h− 1))) + (1− pH)h(F (x(t, h))−F (x(t− 1, h))).

Since F ′(x) =− 1
x(x+1)

< 0, using convexity of F (·), we have

(1− pH)h(F (x(t, h))−F (x(t− 1, h))) ≥ (1− pH)hF ′(x(t, h− 1))(x(t, h)−x(t− 1, h))(EC.9)

= − (1− pH)hpH
4x(t− 1, h)(x(t− 1, h) + 1)

,

and

(1− (1− pH)h)(F (x(t, h))−F (x(t, h− 1)))
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≥(1− (1− pH)h)F ′(x(t, h− 1))(x(t, h)−x(t, h− 1))

=− 1− (1− pH)h

x(t, h− 1)(x(t, h− 1) + 1)
pH(T 0(h)−T 0(h− 1))

=
(1− pH)hpH

x(t, h− 1)(x(t, h− 1) + 1)
(EC.10)

where the last equality follows from (T 0(h)− T 0(h− 1))(1− (1− pH)h) = −µh(1− (1− pH)h) =

−(1−pH)h. Therefore, in order to prove inequality (EC.8), it suffices to verify that the right-hand

side of (EC.9) and (EC.10) has a positive sum, which is equivalent to the following condition,

x(t, h− 1)(x(t, h− 1) + 1)

x(t− 1, h)(x(t− 1, h) + 1)
≤ 4. (EC.11)

Therefore, the induction step reduces to verifying (EC.11). We call (EC.11) the induction condition.

We next prove (8) by discussing various sub-cases of t ≥ 1 or h ≥ 2. In each case, we either

directly prove (EC.6), or verify the induction condition (EC.11).

1. t= 1, h= 2.

In this case, we prove (EC.6) directly. Using (EC.5), we deduce

T 0(h)≤ 1

pH

(1− pH)h+1

1− (1− pH)h+1

=
1− pH
pH

(1− pH)h

1− (1− pH)h+1

≤ 1− pH
pH

(1− pH)h

1− (1− pH)h

=
1− pH
pH

µh.

Plugging h= 2 into the above inequality yields

T 0(2)pH + 1≤ 1 + (1− pH)
(1− pH)2

1− (1− pH)2

≤ pH(2− pH) + (1− pH)3

pH(2− pH)

=
1− (1− pH)2 + (1− pH)3

pH(2− pH)

=
1− (1− pH)2pH
pH(2− pH)

≤ 1− pH/2
pH(2− pH)

≤ 1− pH/2
pH(2− pH)

=
1

2pH
.

Thus,

(1 +T 0(2)pH + 1
4
pH)pH(2− p2H)(1− pH)≤ ( 1

2pH
+ 1

4
pH)2pH(1− pH)
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≤ (1 + 1
2
p2H)(1− pH)

= 1− pH + 1
2
p2H − 1

2
p3H

≤ 1 (EC.12)

where the last inequality follows from pH ≤ 0.1. Using the concavity of log(x), we know that

log(x+ 1)− log(x)≥ 1
1+x

. Thus, by replacing x with T 0(2)pH + 1
4
pH , we get

1

1 +T 0(2)pH + 1
4
pH
≤ log

(
1 +

1

T 0(2)pH + 1
4
pH

)
. (EC.13)

According to the two-phase procedure, E[Y2,1] = 2r2 + 1(1− r2)r1 + 0(1− r2)(1− r1) = (2−
p2H)(1− pH). Therefore, using (EC.12) and (EC.13),

E[Y2,1] =
1

(1 +T 0(2)pH + 1
4
pH)pH

(
(1 +T 0(2)pH + 1

4
pH)pH(2− p2H)(1− pH)

)
≤ 1

pH
log

(
1 +

1

T 0(2)pH + 1
4
pH

)
= F (x(1,2)).

2. t= 1, T 0(h)≤ 1
e
− 1

4
, h≥ 3.

We still prove (EC.6) directly in this case. Let n0 := d 1
pH

log( 1
pH

)e. Using the upper bound

on Pr(Yh,1 ≤ k) given in (EC.1), we have

E[Yh,1] =
h∑
k=0

(1−Pr(Yh,1 ≤ k))

≤ n0− 1 +
1

pH

h∑
k=n0−1

(
(1− pH)k+1− (1− pH)h+1

)
≤ n0− 1 +

1

pH

∞∑
k=n0−1

(1− pH)k+1− h−n0 + 1

pH
(1− pH)h+1

= n0− 1 +
(1− pH)n

0

p2H
− h−n0 + 1

pH
(1− pH)h+1

≤ n0− 1 +
(1− pH)n

0

p2H
≤ 1

pH
log( 1

pH
) + 1

pH
. (EC.14)

When T 0(h)< 1
e
− 1

4
, log

(
1 + 1

(T0(h)+ 1
4 )pH

)
> log( e

pH
) = 1 + log( 1

pH
). Thus, (EC.14) implies

E[Yh,1]≤ 1
p

(
log
(

1
pH

)
+ 1
)
<

1

pH
log

(
1 +

1

(T 0(h) + 1
4
)pH

)
.

3. t= 1, T 0(h)≥ 1
e
− 1

4
, h≥ 3.
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We proceed by verifying the induction condition (EC.11). First, we show that µh ≤ 11
18
T 0(h)

for h≥ 3. This follows from the following inequality that holds for all m≥ k

µm+1

µm
= (1− pH)

1− (1− pH)m

1− (1− pH)m+1
= (1− pH)

(
1− pH(1− pH)m

1− (1− pH)m+1

)
≥ (1− pH)

(
1− pH(1− pH)m

1− (1− pH)m

)
= (1− pH)(1−µmpH)≥ (1− pH)(1−µkpH).

Thus,

T 0(h) =
∞∑

k=h+1

µk ≥
( ∞∑
m=0

(1− pH)m(1−µhpH)m

)
µh

=

(
1

1− (1− pH)(1−µhpH)
− 1

)
µh. (EC.15)

Since (1− pH)h ≤ exp(−pHh)≤ 1
1+pHh

, we derive an upper bound for µh as µh = (1−pH )h

1−(1−pH )h
≤

1
pHh

. Plugging this bound for µh into (EC.15) leads to an lower bound for T 0(h) as

T 0(h)≥
(

1

1− (1− pH)(1− 1
h
)
− 1

)
µh

≥ (h− 1)(1− pH)

1 + (h− 1)pH
µh.

Since pH ≤ 0.1, when h ≥ 3, the above inequality implies that T 0(h) ≥ 0.9(h−1)
1+0.1(h−1)µh ≥ 18

11
µh.

Using the inequality µh ≤ 11
18
T 0(h), we upper bound the LHS of (EC.11) as follows,

x(t, h− 1)(x(t, h− 1) + 1)

x(t− 1, h)(x(t− 1, h) + 1)
=

(
T 0(h) +µh + 1

4

T 0(h)

)(
1 + (T 0(h) +µh + 1

4
)pH

1 +T 0(h)pH

)
≤
( 29

18
T 0(h) + 1

4

T 0(h)

)(
1 + ( 29

18
T 0(h) + 1

4
)pH

1 +T 0(h)pH

)

=

( 29
18
T 0(h) + 1

4

T 0(h)

) 29
18
T 0(h) + 1

4

T 0(h)
+

1−
29
18T

0(h)+ 1
4

T0(h)

1 +T 0(h)pH

 . (EC.16)

It is straightforward to check that the right-hand side in the second row in (EC.16) is increasing

in pH . Thus, it suffices to prove that when pH = 0.1, the right-hand side of (EC.16) is upper

bounded by 4, which is equivalent to showing

g(T 0(h)) :=

(
29

18
T 0(h) +

1

4

)(
1 + 0.1

(
29

18
T 0(h) +

1

4

))
− 4T 0(h)

(
1 + 0.1T 0(h)

)
≤ 0.

It is not difficult to verify that g′(x) ≤ 0 for all x ≥ 0, and g( 1
e
− 1

4
) = −0.0178 ≤ 0. Since

T 0(h)≥ 1
e
− 1

4
, we deduce that g(T 0(h))≤ 0, which verifies (EC.11).

4. t≥ 2, h≥ 2

We first show that T 0(h)≥ µh for all h≥ 2. In the previous case, we already showed T 0(h)≥
18
11
µh ≥ µh for all h≥ 3. It remains to show for h= 2; that is, T 0(2)≥ µ2. Note that T 0(2) =
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µ3 + T 0(3)≥ 29
11
µ3, and the ratio µ2

µ3
=
(

(1−pH )2

1−(1−pH )2

)(
(1−pH )3

1−(1−pH )3

)−1
is upper bounded by 1.585

(the maximum is attained at pH = 0.1). Therefore, T 0(2)≥ 29
11
µ3 ≥ 29

11
1

1.585
µ2 ≥ µ2.

Given that t≥ 2 and T 0(h)≥ µh for all h≥ 2, we have the inequality

2x(t− 1, h) = 2(T 0(h) + 1
4
(t− 1))pH ≥ (T 0(h) +µh + 1

4
t)pH = x(t, h− 1). (EC.17)

Using the above inequality, we further deduce that

2(x(t− 1, h) + 1) := 2((T 0(h) + 1
4
(t− 1))pH + 1)≥ (T 0(h) +µh + 1

4
t)pH + 1 = x(t, h− 1) + 1.

(EC.18)

Multiplying (EC.17) and (EC.18) leads to (EC.11).

According to the above, the induction step works for all combinations of (h, t), so (8) is proved.

�

EC.3. Proof of Lemma 2

Lemma EC.2. The expected number f(h) of unmatched H-nodes remaining after running the

bipartite matching algorithm described above to D(h, `, t) is convex in h.

Proof. Given any realization of a random graph D=D(h, `, t). Let VH and VL denote the sets of

H-nodes and L-nodes in D, respectively. For any set VS ⊆ VH , define a set function F (·) : 2H→Z+

such that F (VS) denotes the number of unmatched H-nodes in set VS after the bipartite matching

algorithm in Phase 2 has been applied to the bipartite subgraph DS = VS ∪VL. We next prove that

F (·) is a supermodular set function. To do that, observe that F (VS) = |VS| −G(VS) where

G(VS) = max
∑
i∈VS

∑
j∈L

xij

st.
∑
j∈L

xij ≤ 1 for all i∈ VS∑
i∈H

xij ≤ 1 for all j ∈L (EC.19)

xij ∈ {0,1} for all (i, j)∈ Ẽ

xij = 0 for all (i, j) /∈ Ẽ

where Ẽ := {(i, j)|i ∈ VH , j ∈ VL, (i, j), (j, i) ∈ E} denotes the edge set we define on the bipartite

graph (node i and j can be matched using a two-way cycle if and only if the directed arcs (i, j)

and (j, i) both lie in the edge set E of graph D). According to the linear integer programming

formulation,G(VS) gives the maximum number ofH-nodes being matched in the bipartite subgraph

DS. If we can show that G(VS) is submodular then since |VS| is a modular function this implies

that F (VS) is supermodular.
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To show that G is submodular we use an approach similar in spirit to Theorem 3.4.1 of Topkis

(1998). Recall the well-known fact that (EC.19) has no integrality gap compared to its linear

relaxation:

G(VS) = max
∑
i∈VS

∑
j∈L

xij

st.
∑
j∈L

xij ≤ 1 for all i∈ VS∑
i∈H

xij ≤ 1 for all j ∈L

xij ≥ 0 for all (i, j)∈ Ẽ

xij = 0 for all (i, j) /∈ Ẽ.

Taking the linear programming dual yields

G(VS) = min
∑
i∈VS

yi +
∑
j∈L

zj

st. yi + zj ≥ 1 for all (i, j)∈ Ẽ

y, z ≥ 0.

Replacing z by −z gives

G(VS) = min
∑
i∈VS

yi−
∑
j∈L

zj

st. yi− zj ≥ 1 for all (i, j)∈ Ẽ

y≥ 0

z ≤ 0.

Note that the feasible region of this linear program is a lattice. This is useful to know because we

can then apply the following lemma to deduce that G(·) is a submodular set function.

Lemma EC.3. Let

h(a) = min a>w

st. w ∈W ⊆Rn

where W ⊂Rn lattice. Then h is submodular in a.

Proof. Follows directly from Theorem 2.7.6 in Topkis (1998). �
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We then leverage Lemma EC.3 to prove submodularity of G(·). We define a function G̃ as

G̃(χVS ) = min (χVS )>y− (χL)>z

st. yi− zj ≥ 1 for all(i, j)∈ Ẽ

y≥ 0

z ≤ 0.

Observe that G(VS) = G̃(χVS ), where χVS is a the indicator function of VS. Clearly, if G̃ is submod-

ular then G is submodular. Since G̃ is in the form of h in the claim, we can conclude that G(·) is

a submodular set function.

By applying Lemma EC.3, we prove that G(·) is supermodular and therefore F (·) is also super-

modular. The remaining task is to show that f is convex by leveraging the supermodularity of F (·).
The connection between f and F is the following. As the function f(h) represents the expected

number of remaining H-nodes for the random graph D(h, `, t), then f(h) is the expectation over

F (H) over all realized sets H of size h. To show that f is discrete convex, the target is to show

that f has increasing differences:

f(h)− f(h− 1)≤ f(h+ 1)− f(h) (EC.20)

for every h≥ 1 (we require h≥ 1 since f can only take nonnegative arguments and still make sense

as defined).

Now, assume that |VS|= h−1 for some h≥ 1, and i, j /∈ VS, i 6= j. Then |VS∪{i}|= h, |VS∪{j}|=
h, |VS ∪{i, j}|= h+ 1. Then by the supermodularity of F we have

F (VS ∪{i}) +F (VS ∪{j})≤ F (VS ∪{i, j}) +F (VS)

and putting this in terms of f (and using the fact that expectations is monotone and additive)

yields:

f(h) + f(h)≤ f(h+ 1)− f(h− 1).

A little rearranging yields (EC.20). �

EC.4. Proof of Theorem 7

Theorem EC.7. Suppose λ≤ 0.28, t≤ 3, h≥ 3.3
pH

ln 1
pH

, and r= 0, then

h−m
m

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
≥ 0.089

ch
. (21)
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where ch = h
1
pH

ln 1
pH

> 3.3. As a result we derive upper and lower bounds on the average benefit

1
m
E[ζPriCy− ζPriCh|m] of prioritizing chains as follows

0.089

ch
≤ 1

m
E[ζPriCy− ζPriCh|m]≤min{1, E[Yh−m,t]

m
}. (22)

Proof. The proof focuses on inequality (21), as inequality (22) follows from inequality (21)

and Theorem 6 directly. To do this, we need to investigate the property of E[Yn,t] as a function

of n. To facilitate subsequent analysis, we define ∆t
n := EYn,t − EYn−1,t for all n ≥ 1 and t ≥ 0,

γtn :=
EYn,t
n

for n≥ 1 and t≥ 0, a sequence of scalars, {δn|n= 1,2, . . .} as

δn :=

{
0 if n= 1
1−(1−pH )n−1

pH (1+pH )

(
1 + pH(1− pH)δn−1

)
if n≥ 2,

(EC.21)

and βtn := (1− p)−n∆t
n for t≥ 1 and n≥ 1. The sequence of scalars {δn|n= 1,2, . . .} are sophisti-

catedly selected to establish the bounds.

Using the above notation, the next lemma derives useful functional properties of EYh,t. Specifi-

cally, (A1) in the lemma says that the difference ∆t
n =EYn,t−EYn−1,t is monotonically decreasing

in n, so EYn,t is (discrete) concave; (A2) gives an upper bounds for ∆t
n using βtn; and (A3) further

shows that the increment speed of βtn is upper bounded. Later, we will use (A2) and (A3) to show

that EYn,t is “sufficiently concave” in a sense made precise below.

Lemma EC.4. The following hold:

(A1) ∆t
n ≥∆t

n+1 for all t≥ 0 and n≥ 1.

(A2) ∆t−1
n ≤

(
pH + (1− pH)n− p3Hδn

)
βtn for all t≥ 1 and n≥ 1.

(A3)
βtn+1

βtn
≤ (1 + pH − p3Hδn) for t≥ 1 and n≥ 1.

Proof of Lemma EC.4: We prove (A1)-(A3) by induction on n and t. We first prove two base

cases: (A1) holds for t= 0, n≥ 1, and (A2) holds for t≥ 1, n= 1.

If t = 0, Yn,t ≡ n as no chain can be used, so ∆0
n = EYn,0 − EYn−1,0 ≡ 1 for all n ≥ 1, which

proves (A1) for t = 0, n ≥ 1. When t ≥ 1, n = 1, ∆t
1 = EY1,t − EY0,t = EY1,t = (1− pH)t. So βt1 =

(1− pH)−1∆t
1 = (1− pH)t−1 = ∆t−1

1 . Thus, given that δ1 = 0,

(pH + (1− pH)1− p3Hδ1)βt1 = βt1 = ∆t−1
1 ,

which proves (A2) for all t≥ 1 and n= 1.

We then prove the following induction steps

(a) (A1) true for t− 1, n and (A2) true for t, n ⇒ (A2) true for t, n+ 1.

(b) (A1) true for t− 1, n and (A2) true for t, n ⇒ (A3) true for t, n.

(c) (A3) true for t, n ⇒ (A1) true for t, n.
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Because we have proved (A1) for t= 0 and all n≥ 1, and (A2) for t= 1 and n= 1, we can deduce

(A2) for t= 1 and all n≥ 2 by recursively invoking (a) for t= 1 and n= 2,3, . . .. Then by invoking

(b), we prove (A3) for t= 1 and all n≥ 1. At last, we invoke (c) to prove (A1) for t= 1 and all

n≥ 1. Since we have proved (A2) for all t≥ 1 and n= 1 for the base case, we may repeat the above

induction steps and prove (A1)-(A3) for all t≥ 1, n≥ 1, and therefore Lemma EC.4.

Proof of (a) Using the recursive expression (EC.7) for EYn+1,t and EYn,t, we have

EYn+1,t− (1− pH)EYn,t
= [(1− (1− pH)n+1)EYn,t + (1− pH)n+1EYn+1,t−1]
− [(1− pH − (1− pH)n+1)EYn−1,t + (1− pH)n+1EYn,t−1]

= (1− (1− pH)n+1)∆t
n + pHEYn−1,t + (1− pH)n+1∆t−1

n+1

which leads to

EYn+1,t−EYn,t + pH(EYn,t−EYn−1,t) = (1− (1− pH)n+1)∆t
n + (1− pH)n+1∆t−1

n+1.

By substituting the expression for ∆t
n into the above equation, we get

∆n+1,t = (1− pH − (1− pH)n+1)∆t
n + (1− pH)n+1∆t−1

n+1.

Multiplying the above equation by (1− pH)−(n+1) at both sides leads to

βtn+1 = (1− (1− pH)n)βtn + ∆t−1
n+1 (EC.22)

≥ 1− (1− pH)n

pH + (1− pH)n− p3Hδn
∆t−1
n + ∆t−1

n+1 (EC.23)

≥
( 1− (1− pH)n

pH + (1− pH)n− p3Hδn
+ 1
)
∆t−1
n+1 (EC.24)

≥ 1

pH + (1− pH)n+1− p3Hδn+1

∆t−1
n+1 (EC.25)

where inequality (EC.23) and (EC.24) follow from induction assumption (A2) and (A1), respec-

tively. To prove inequality (EC.25), note that

1−(1−pH )n

pH+(1−pH )n−p3
H
δn

+ 1− 1
pH+(1−pH )n+1−p3

H
δn+1

=
(1−(1−pH )n)(pH+(1−pH )n+1−p3Hδn+1)+(pH+(1−pH )n−p3Hδn)(pH+(1−pH )n+1−p3Hδn+1−1)

(pH+(1−pH )n−p3
H
δn)(pH+(1−pH )n+1−p3

H
δn+1)

=
−p3Hδn+1+p

2
H+pH (1−pH )n+1−p4Hδn+1+p

3
H (1−pH )δn−p3H (1−pH )n+1δn+p

6
Hδnδn+1

(pH+(1−pH )n−p3
H
δn)(pH+(1−pH )n+1−p3

H
δn+1)

≥ p2H (1−(1−pH )n)+p3H (1−pH )(1−(1−pH )n)δn−p3H (1+pH )δn+1

(pH+(1−pH )n−p3
H
δn)(pH+(1−pH )n+1−p3

H
δn+1)

=
p2H (1−(1−pH )n)(1+pH (1−pH )δn)−p3H (1+pH )δn+1

(pH+(1−pH )n−p3
H
δn)(pH+(1−pH )n+1−p3

H
δn+1)

= 0.

The inequality follows by dropping the positive term p6Hδnδn+1, and the last equality follows by

the definition of δn in equation (EC.21). Thus, we have proved inequality (EC.22), or equivalently

(A2) for t and n+ 1.
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Proof of (b) The first equality in equation (EC.22) implies that

βtn+1 =(1− (1− pH)n)βtn + ∆t−1
n+1

≤(1− (1− pH)n)βtn + ∆t−1
n

≤(1− (1− pH)n + pH + (1− pH)n− p3Hδn)βtn

=(1 + pH − p3Hδn)βtn

where the first and second inequality follows from induction assumption (A1) for t− 1 and n, and

(A2) for t and n, respectively.

Proof of (c) We first prove that 1 +pH −p3Hδn > 0 by induction. When n= 1, δ1 = 0, so 1 +pH −
p3Hδ1 = 1 + pH > 0. Suppose the inequality holds for n≥ 1, so δn <

1+pH
p3
H

. Then

δn+1 =
1− (1− pH)n

pH(1 + pH)

(
1 + pH(1− pH)δn

)
(EC.26)

<
1− (1− pH)n

p3H(1 + pH)
(EC.27)

<
1 + pH
p3H

, (EC.28)

which proves the induction step. Thus, 1 + pH − p3Hδn > 0 for all n≥ 1. We then have

∆t
n+1 = (1− pH)n+1βtn+1

≤ (1− pH)n+1(1 + pH − p3Hδn)βtn
= (1− pH)(1 + pH − p3Hδn)∆t

n

< ∆t
n

where the first inequality follow from induction assumption (A3) for t and n, and the last inequality

follows from 0< (1− pH)(1 + pH − p3Hδn)< (1− pH)(1 + pH)< 1. �

The next lemma, which builds on Lemma EC.4, shows that ∆t
n+1 can be no more than (1−

0.3pH)∆t
n. Since ∆t

n represents the slope of EYn,t at n, this lemma suggests that the slope of EYn,t
decreases at an exponential rate with respect to n, or intuitively, it shows that EYn,t is “sufficiently

concave”. That helps us to lower bound the difference
E[Yh−m,t]
h−m − E[Yh,t]

h
.

Lemma EC.5. For all n≥ d 2
pH

ln 1
pH
e and t≥ 1,

δn > 0.3p−2H

∆t
n+1 < (1− 0.3pH)∆t

n. (EC.29)

Proof. Throughout this proof, we will use the following facts regarding the exponential distri-

bution: for all x∈ (0,1)

1−x ≥ exp(
−x

1−x), and (EC.30)

(1−x)−1 ≥ exp(x). (EC.31)
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Since δn can be expressed as a function of δn−1 as equation (EC.21), we can derive a closed-form

expression for δn as follows

δn = 1−(1−pH )n−1

pH (1+pH )
+ (1−pH )(1−(1−pH )n−1)

1+pH
δn−1

= 1−(1−pH )n−1

pH (1+pH )
+ (1−pH )(1−(1−pH )n−1)

1+pH

(
1−(1−pH )n−2

pH (1+pH )
+ (1−pH )(1−(1−pH )n−2)

1+pH
δn−2

)
=
∑n−1

k=1
1−(1−pH )k

pH (1+pH )

∏n−1
j=k+1

(1−pH )(1−(1−pH )j)

1+pH

=
∑n−1

k=1
1−(1−pH )k

pH (1+pH )
( 1−pH
1+pH

)n−k−1
∏n−1
j=k+1(1− (1− pH)j)

(EC.32)

where the third equality follows by applying equation (EC.21) recursively.

By inequality (EC.30), we have 1− (1−pH)j ≥ exp( −(1−pH )j

1−(1−pH )j
) for all j ≥ 1. We can further derive

the following lower bound for δn based on equation (EC.32),

δn ≥
n−1∑
k=1

1− (1− pH)k

pH(1 + pH)
(
1− pH
1 + pH

)n−k−1
n−1∏
j=k+1

exp(− (1− pH)j

1− (1− pH)j
)

≥
n−1∑
k=k

1− (1− pH)k

pH(1 + pH)
(
1− pH
1 + pH

)n−k−1 exp(−
n−1∑
j=k+1

(1− pH)j

1− (1− pH)j
) (EC.33)

≥
n−1∑
k=k

1− (1− pH)k

pH(1 + pH)
(
1− pH
1 + pH

)n−k−1 exp(− 1

1− (1− pH)k+1

n−1∑
j=k+1

(1− pH)j)

=
n−1∑
k=k

1− (1− pH)k

pH(1 + pH)
(
1− pH
1 + pH

)n−k−1 exp(−(1− pH)k+1− (1− pH)n

pH(1− (1− pH)k+1)
) (EC.34)

≥ 1− (1− pH)k

pH(1 + pH)

n−1∑
k=k

(1− pH)2(n−k−1) exp(− (1− pH)k+1

pH(1− (1− pH)k+1)
) (EC.35)

=
(1− (1− pH)k

pH(1 + pH)

)(1− (1− pH)2(n−k)

pH(2− pH)

)
exp(− (1− pH)k+1

pH(1− (1− pH)k+1)
) (EC.36)

where inequality (EC.33) follows by omitting the first k−1 terms in the summation, and k denotes

a positive integer whose value will be assigned later, equality (EC.34) and (EC.36) both follow

from the summation formula of geometric series, inequality (EC.35) follows from 1
1+pH

≥ 1− pH
and (1− pH)k ≤ (1− pH)k for k≥ k.

Inequality (EC.31) implies that

(1− pH)
1
pH

ln 1
pH ≤ exp(−pH(

1

pH
ln

1

pH
)) = pH . (EC.37)

If we set k=: d c
pH

ln 1
pH
e with 0< c< 2, then

(1− pH)k ≤ (1− pH)
c
pH

ln 1
pH ≤ pcH .

Consequently, the exponential term on the right-hand side of equation (EC.36) can be lower

bounded as

exp(− (1− pH)k+1

pH(1− (1− pH)k+1)
)≥ exp(− pcH

pH(1− pcH)
) = exp(− pc−1H

1− pcH
).
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If n≥ d 2
pH

ln 1
pH
e, then n−k≥ 2−c

pH
ln 1

pH
. Using a similar argument as we derived inequality (EC.37),

we get

(1− pH)2(n−k) ≤ p2(2−c)H .

So far, we have derived bounds for (1− pH)k, exp(− (1−pH )k+1

pH (1−(1−pH )k+1)
), and (1− pH)2(n−k). Plugging

those bounds into (EC.36) leads to

δn ≥
( 1− pcH
pH(1 + pH)

)( 1− p2(2−c)H

pH(2− pH)

)
exp(− pc−1H

1− pcH
)

= [
(1− pcH)(1− p2(2−c)H )

(1 + pH)(2− pH)
exp(− pc−1H

1− pcH
)]p−2H

≥ [
(1− 0.1c)(1− 0.12(2−c))

(1 + 0.1)(2− 0.1)
exp(− 0.1c−1

1− 0.1c
)]p−2H (EC.38)

where inequality (EC.38) follows by our assumption that pH ≤ 0.1 and that the function inside

[·] is monotonically decreasing in pH when pH ≤ 0.1. The right-hand side of (EC.38) attains its

maximum of 0.304p−2H at c= 1.57, so we have shown that δn > 0.3p−2H .

Via (A3) in Lemma EC.4, for all n> d 2
pH

ln 1
pH
e,

βtn+1 ≤ (1 + pH − p3Hδn)βtn ≤ (1 + 0.7pH)βtn,

and

∆t
n+1 = (1− pH)n+1βtn+1 ≤ (1− pH)n+1(1 + 0.7pH)βtn = (1− pH)(1 + 0.7pH)∆t

n < (1− 0.3pH)∆t
n.

This proves inequality (EC.29) and Lemma EC.5. �

With the functional properties of Yh,t established in Lemmas EC.4 and EC.5, we are ready

to prove Theorem 7. Define k := d 2
pH

ln 1
pH
e. Define η = m

h
. Because the size of maximum H-L

bipartite matching m is capped by the total number of L-nodes, `, and λ = `
`+h

< 0.28, we have

η = m
h
≤ `

h
< λ

1−λ < 0.39. Since ch > 3.3 and m = ηh = 0.39h, h−m ≥ .61h > d 0.61∗3.3
pH

ln 1
pH
e > k.

Thus, for all t≥ 1 we have

γth−m =
EYh−m,t
h−m

= 1
h−m

(∑k

k=1 ∆t
k +
∑h−m

k+1 ∆t
k

)
≥ 1

h−m
∑k

k=1 ∆t
k

≥ k

h−m∆t
k

≥ k

h−m(1− 0.3pH)−(h−m−k)∆t
h−m

(EC.39)

where the first inequality follows from ∆t
k ≥ 0 for all k, the second inequality follows since ∆t

k is

monotonically decreasing in k (Lemma EC.4), and the last inequality follows from ∆t
k ≥∆t

h−m(1−
0.3pH)−(h−m−k) as a result of inequality (EC.29) (Lemma EC.5) and the fact that h−m≥ k.
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Moreover h−m≥ k, and so

hγth = EYh,t
= EYh−m,t +

∑m

n=1 ∆t
h−m+n

≤ (h−m)γth−m +
(∑m

n=1(1− 0.3pH)n
)
∆t
h−m

= (h−m)γth−m + 1−0.3pH−(1−0.3pH )m+1

0.3pH
∆t
h−m

≤ (h−m)γth−m + 1−0.3pH−(1−0.3pH )m+1

0.3pH

(
h−m
k

(1− 0.3pH)h−m−k
)
γth−m

= (h−m)
(
1 + (1−0.3pH )h−k+1((1−0.3pH )−m−1)

0.3pHk

)
γth−m

≤ (h−m)
(
1 + (1−0.3pH )h−k+1((1−0.3pH )−m−1)

0.6 ln1/pH

)
γth−m

(EC.40)

where the first inequality follows from inequality (EC.29) in Lemma EC.5, the second inequality

follows from inequality (EC.39), and the last inequality follows from k := d 2
pH

ln 1
pH
e ≥ 2

pH
ln 1

pH
.

Since h− k+ 1≥ ch−2
pH

ln 1
pH

, inequality (EC.37) implies

(1− 0.3pH)h−k+1 ≤ exp(−0.3pH
ch− 2

pH
ln

1

pH
) = p

0.3(ch−2)
H . (EC.41)

Inequality (EC.30) and m= ηh= ηch
pH

ln 1
pH

imply that

(1− 0.3pH)−m ≤ exp(
0.3ηch ln 1

pH

1− 0.3pH
) = p

−0.3ηch
1−0.3pH
H ≤ p−0.31ηchH (EC.42)

where the last inequality follows from our assumption pH < 0.1.

By plugging the upper bound for (1 − 0.3pH)h−k+1 from (EC.41) and the upper bound for

(1−0.3pH)−m from (EC.42) into the right-hand side of inequality (EC.40), we obtain a lower bound

for hγth:

hγth ≤ (h−m)
(
1 +

p
0.3(ch−2)

H
(p
−0.31ηch
H

−1)
0.6 ln1/pH

)
γth−m

= h(1− η)
(
1 +

p
(0.3−0.31η)ch−0.6

H
−p0.3ch−0.6

H
0.6 ln1/pH

)
γth−m

= h(1− η)ρ(pH , η, ch)γth−m,

(EC.43)

by defining the function ρ(pH , ch, η) := 1 +
p
0.3ch−0.6

H
(p
−0.31ηch
H

−1)
0.6 ln1/pH

. Looking into this function, observe

that when pH ≤ 0.1, η ≤ 0.39, the partial derivative ∂ρ(pH ,ch,η)

∂ch
< 0, so ρ(pH , ch, η) ≤ ρ(pH ,3.3, η)

since ch > 3.3. Similarly, when ch = 3.3 and η ≤ 0.39, the partial derivative ∂ρ(pH ,3.3,η)

∂pH
> 0, so

ρ(pH ,3.3, η)≤ ρ(0.1,3.3, η) due to pH ≤ 0.1. Therefore, when pH ≤ 0.1, ch > 3.3, and η≤ 0.39,

ρ(pH , ch, η)≤ ρ(pH ,3.3, η)≤ ρ(0.1,3.3, η) = 1 +
0.10.39−1.023η − 0.10.39

0.6 ln10
.

Thus, inequality (EC.43) leads to the following lower bound for γth−m,

γth−m ≥
1

(1− η)ρ(0.1,3.3, η)
γth. (EC.44)
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We can then derive a lower bound for h−m
m

(
E[Yh−m,t]
h−m − E[Yh,t]

h

)
as

h−m
m

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
=

1− η
η

(γth−m− γth)

≥(1− η)

η
(

1

(1− η)ρ(0.1,3.3, η)
− 1)γth (EC.45)

=[1− 1

η
(1− 1

ρ(0.1,3.3, η)
)]γth (EC.46)

≥0.211γth (EC.47)

where inequality (EC.45) follows from inequality (EC.44), and inequality (EC.47) is due to the fact

that the function inside the [·] in the right-hand side of equation (EC.46) has a minimum value of

0.211 for η ∈ (0,0.39].

The rest of the proof is to bound γth from below. To do this, define h := 1−pH
pH

(ln 1
1.125tpH

). When

t≤ 3 and pH ≤ 0.1,
ln 1
pH

(1−pH ) ln 1
1.125tpH

≤ 2.356. Therefore,

h=
ch
pH

ln
1

pH
= ch

( ln 1
pH

(1− pH) ln 1
1.125tpH

)(1− pH
pH

ln
1

1.125tpH

)
≤ 2.356chh. (EC.48)

We note that inequality (EC.48) implies that

(1− pH)h > exp(−pHh
1−pH ) = exp(− ln 1

1.125tpH
) = 1.125tpH (EC.49)

(1− pH)h−h < exp(−pH(h−h))≤ exp(−2.3 ln 1
pH

) = p2.3H (EC.50)

where inequality (EC.49) follows from inequality (EC.30), and inequality (EC.50) follows from

inequality (EC.31) and the fact that h−h≥ 3.3
pH

ln 1
pH
− 1−pH

pH
ln 1

1.125tpH
> 2.3

pH
ln 1

pH
. Using our defi-

nition of T 0(h) in (2), we get

T 0(dhe)−T 0(h) =
h∑

k=dhe+1

(1− pH)k

1− (1− pH)k

≥
h∑

k=dhe+1

(1− pH)k

=
(1− pH)dhe+1(1− (1− pH)h−h)

pH
> 1.125t(1− pH)(1− p2.3H ) (EC.51)

> t (EC.52)

where inequality (EC.51) follows from (EC.49) and (EC.50), and inequality (EC.52) follows from

1.125(1 − pH)(1 − p2.3H ) > 1 for pH < 0.1. Because T 0(·) is monotonically decreasing, inequality

(EC.52) implies that

dhe ≤ (T 0)−1(T 0(h) + t)).
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Using the inequality EYh,t ≥ (T 0)−1(T 0(h) + t)) that we derived in Theorem 3, and inequality

(EC.48), we get

γth =
EYh,t
h
≥ dhe

h
≥ h

h
≥ 1

2.356ch
. (EC.53)

Using inequality (EC.47) and (EC.53), we deduce that

h−m
m

(
E[Yh−m,t]

h−m − E[Yh,t]

h

)
≥ 0.211γth ≥

0.211

2.356ch
≥ 0.089

ch
.

which proves inequality (22). �


