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We introduce a novel class of Gaussian random fields (GRFs), called generalized integrated Brownian

fields (GIBFs), focusing on the use of GIBFs for Gaussian process modeling in deterministic and stochastic

simulation metamodeling. We build GIBFs from the well-known Brownian motion and discuss several of their

properties, including differentiability that can differ in each coordinate, no mean reversion, and the Markov

property. We explain why we desire to use GRFs with these properties, and provide formal definitions of

mean reversion and the Markov property for real-valued, differentiable random fields. We show how to use

GIBFs with stochastic kriging, covering trend modeling and parameter fitting, discuss their approximation

capability, and show that the resulting metamodel also has differentiability that can differ in each coordinate.

Lastly, we use several examples to demonstrate superior prediction capability as compared to the GRFs

corresponding to the Gaussian and Matérn covariance functions.
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1. Introduction

Stochastic simulations are often used to model complex systems in industrial engineering and

operations research. Because simulation models are typically not limited by the complexity of the
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underlying system, simulation runs may be time-consuming to execute, especially when there are

many scenarios that need to be evaluated. This limits the use of simulation models for supporting

real-time decision making. When the simulation model can be run for a significant amount of time

before decisions must be made, we can use the output from the simulation to build a statistical

model of the response surface. We call this statistical model a simulation metamodel. Using the

metamodel, we can predict the value of the response surface for any scenario, even if it has not

been simulated.

A great deal of research has been directed towards fitting linear regression models to simulation

output. However, we are particularly interested in general metamodeling approaches that assume

less structure than linear models. In the deterministic computer experiments literature, the use

of Gaussian process models has been remarkably successful for global metamodeling (Santner

et al. 2010). Following the introduction of Gaussian process models into the design and analysis

of deterministic computer experiments, Mitchell and Morris (1992) introduced Gaussian process

models for representing the response surface in stochastic simulation. Since the predictions are

made by fitting a Gaussian process, we are able to obtain a measure of uncertainty in predictions,

which gives rise to confidence intervals. Furthermore, the measure of uncertainty in predictions

facilitates sequential, adaptive experiment designs, and can provide statistical inference about the

fitted model (Ankenman et al. 2010).

In simulation metamodeling using Gaussian processes, the response surface is modeled as a

sample path of a Gaussian random field (GRF). A critical choice in fitting Gaussian process models

is specifying the GRF. To obtain better prediction capability, the GRF should have desirable

properties and be flexible enough to capture the characteristics of the response surface, such as

its level of differentiability. A GRF is completely specified by its mean function (often assumed

to be identically zero) and covariance function. Thus, selecting the proper covariance function is

crucial for determining the prediction capability of the resulting Gaussian process model. Indeed,

much research has been done that discusses the choice of covariance functions for Gaussian process

modeling (Santner et al. 2010, Xie et al. 2010, Paciorek and Schervish 2004).
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Gaussian process models were initially used in geostatistics to predict the amount of gold in

underground deposits (Krige 1951). For these applications, if we were interested in predicting the

amount of gold underneath a region, knowing the amount of gold underneath the boundary of

the region would not be sufficient information for our prediction. For example, if we knew there

was a lot of gold near the region, but none necessarily underneath its boundary, we would still

expect gold to be underneath the region. However, we are mainly concerned with response surfaces

in operations research, which are different than response surfaces in geostatistics. In operations

research, if we are interested in predicting the value of the response surface in a region, then given

sufficient information about the response surface on the boundary, information about the response

surface outside of the region often would not assist in our predictions. By sufficient information,

we mean the level of the response surface and perhaps some derivatives. For GRFs, this property

is analogous to the Markov property: given sufficient information (level and derivatives) about

the GRF on the boundary, the GRF on the inside of a region is independent of the GRF on the

outside. A contribution of this paper is establishing the Markov property as an important property

for GRFs to have for Gaussian process modeling in operations research, as well as providing a

novel definition of the Markov property for real-valued, differentiable GRFs.

The ability to control the differentiability of the GRF is a characteristic that has received con-

siderable attention in the literature (Santner et al. 2010). A common class of GRFs that are used

for metamodeling corresponds to the power exponential covariance function (Santner et al. 2010),

for which the differentiability is controlled by a single parameter. However, these GRFs can only

be non-differentiable or infinitely differentiable, depending on the value of the parameter. Another

class of covariance functions is the radial basis function form of the class of Matérn covariance

functions (Santner et al. 2010), which also has a single parameter that controls the differentiability

of the GRF. In contrast to the power exponential covariance function, the GRFs corresponding to

the radial basis function form of the Matérn class can have differentiability of any order, although

the differentiability cannot differ in each coordinate. Another form of the Matérn class, the product
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form, can have differentiability that differs in each coordinate. However, the radial basis function

form of the Matérn class is more often used and studied in the literature. See the beginning of

Section 3 for further discussion.

Mean reversion can be an undesirable characteristic of a metamodel that arises from using a

mean-reverting GRF. Mean reversion results because the covariances among the design points

(the scenarios at which we run the simulation) and prediction points (the scenarios at which we

want to make a prediction) gets weaker as the distance between them becomes greater. Thus, the

prediction reverts to the prior mean of the GRF for prediction points that are sufficiently far from

design points. Mean reversion can be undesirable when the rate of reversion is too fast, causing

predictions to revert to the prior mean of the GRF even for prediction points not too far from any

design points. Any GRF in which the covariance between two points monotonically decreases to

zero as the distance between the points increases is mean-reverting. Due to the poor predictions

that can result from mean reversion, many methods have been proposed to reduce it in Gaussian

process modeling (see, for example, Joseph et al. (2008), Joseph (2006), and Li and Sudjianto

(2005)). Furthermore, for these covariance functions, extrapolation causes severe mean reversion

since the design points will not contain the prediction point. As in the procedure in Liu and Staum

(2010), it can sometimes be very expensive to avoid extrapolation, especially in high dimension,

since an extremely large number of design points would be needed to cover a high-dimensional

design space, the space of all possible design points. Thus, we would prefer to use a GRF that

has no mean reversion. Another contribution of this paper is providing a novel definition of mean

reversion, allowing us to discuss it in a rigorous setting.

The central contribution of this paper is the introduction of a novel class of GRFs, called gen-

eralized integrated Brownian fields (GIBFs), which have all of the desired properties mentioned

above. As will be shown in Section 6, these GRFs lead to better predictions and avoid mean rever-

sion simply by changing the covariance function used with the desired Gaussian process modeling

method. We consider the use of GIBFs for Gaussian process modeling in deterministic and stochas-

tic simulation metamodeling. The two ways to construct GIBFs are using a probabilistic approach
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and the theory of reproducing kernels. In the latter, the covariance functions of GIBFs can be

constructed using a novel parametrization of the reproducing kernel corresponding to the Sobolev-

Hilbert space (Berlinet and Thomas-Agnan 2004), which is a tensor-product Hilbert space. By

placing the constuction of GIBFs in the probabilistic setting, we can discuss their properties such

as differentiability that can vary in each coordinate, no mean reversion, and the Markov property.

We also show how to implement stochastic kriging with GIBFs, and use several examples to com-

pare the prediction ability of GIBFs with the GRFs corresponding to the Gaussian and Matérn

covariance functions. In the following, we call the GRFs corresponding to the Gaussian and Matérn

covariance functions simply the Gaussian and Matérn GRFs, respectively.

Gaussian process modeling with GIBFs is a generalization of using smoothing splines with

integrated Brownian motion in one dimension (Berlinet and Thomas-Agnan 2004). Berlinet and

Thomas-Agnan (2004) provides general guidelines for creating smoothing splines in a tensor-

product Hilbert space. These guidelines assume the user has decomposed the tensor-product Hilbert

space into all of its subspaces, and has chosen which subspaces to penalize and which subspaces

to disregard altogether by performing a model selection. Furthermore, the user must specify how

each subspace is penalized. Instead of decomposing the Sobolev-Hilbert space into all of its sub-

spaces, we use the entire space by parameterizing its reproducing kernel, which also automatically

handles how much each subspace is penalized. Thus, the method presented in this paper is much

easier to implement; once the trend is chosen, the reproducing kernel (covariance function) follows

automatically, and the parameters of the reproducing kernel are chosen from the simulation output

using maximum likelihood estimation and cross-validation.

Brownian motion and fractional Brownian field have recently been proposed for Gaussian process

modeling (Sun et al. 2014, Zhang and Apley 2014). Although both processes have no mean reversion

and Brownian motion has the Markov property, neither process has controllable differentiability

and are non-differentiable almost everywhere. Furthermore, fractional Brownian field does not have

the Markov property. To create smoother GRFs based on fractional Brownian field, Zhang and
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Apley (2016) use the white noise integral representation of fractional Brownian field and replace

the white noise process by any stationary GRF. The differentiability of the resulting processes,

called BI GRFs, is not clear and they still do not have the Markov property. Furthermore, the

covariance functions of BI GRFs are difficult to compute and need to be numerically approximated.

In contrast, the covariance functions of GIBFs are intuitive and simple to compute, with convenient

closed-form expressions.

Although the use of Gaussian process models in simulation metamodeling has led to several

different metamodeling methods (see, for example, van Beers and Kleijnen (2003), Kleijnen and van

Beers (2005), and Yin et al. (2011)), we will focus on the simulation metamodeling method called

stochastic kriging, which we discuss in Section 2. We then present GIBFs using a probabilistic

approach in Section 3, discuss their properties in Section 4, and provide a guide to using these GRFs

with stochastic kriging, as well as discuss their approximation capability, in Section 5. We conclude

the paper with numerical experiments in Section 6 which show the improved prediction accuracy

as compared to the well-known and highly used Gaussian and Matérn GRFs. The Electronic

Companion to this paper provides additional numerical experiments and discussion concerning the

properties of GIBFs, as well as recommendations for using GIBFs and the proofs of all theorems.

2. Stochastic Kriging

Gaussian process models have been used for approximating the output of deterministic computer

experiments following the work of Sacks et al. (1989), which introduced kriging into the design

and analysis of deterministic computer experiments. In kriging, the response surface y(·) at x is

modeled as a realization of the random variable

YM(x) = f(x)>β +M(x), (1)

where x is a point in the design space X (the space of all possible design points), f(·) is a p×

1 vector of known functions, i.e., f(·) = (f1(·), f2(·), . . . , fp(·))>, β is a p × 1 vector of unknown

parameters, and M(·) is a zero mean GRF. In other words, sample paths of M(·) can be thought of
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as being randomly sampled from a space of functions mapping Rd→ R, according to a Gaussian

measure (Ankenman et al. 2010). The GRF M(·) is assumed to exhibit spatial covariance, which is

determined by the covariance function ΣM(·, ·;θ), where θ denotes a generic vector of parameters,

with the number of components implied from the context. Specifically, the covariance between M(·)

at two points x and x′ in the design space is given by Cov[M(x),M(x′)] = ΣM(x,x′;θ).

For deterministic computer experiments where the output of the experiment contains no noise,

the response surface can be observed exactly at each of the design points at which the computer

experiment is run. Kriging results in an interpolation of the data, i.e., the metamodel is equal to

the computer experiment output at each of the scenarios run, which fits the deterministic nature

of the problem.

In the stochastic simulation case, we no longer observe the response surface without noise.

Rather, we run the simulation model at k design points x1,x2, . . . ,xk for a total of ni replications

at design point xi. Replication j at design point xi is denoted by Yj(xi). At design point xi we

collect the sample mean Ȳ(xi) = (1/ni)
∑ni

j=1Yj(xi) and the sample variance s2(xi) = (1/(ni −

1))
∑ni

j=1(Yj(xi)− Ȳ(xi))
2. In general, Gaussian process modeling in stochastic simulation utilizes

the sample means and sample variances at the design points to build the Gaussian process model.

In stochastic kriging (Ankenman et al. 2010), the response surface is modeled as a sample path

of the GRF YM(·), given by Equation (1), with mean function f(·)>β and covariance function

ΣM(·, ·;θ). The simulation output on replication j at design point x is modeled as a realization of

the random variable YM(x)+εj(x), where the zero mean sampling noise in the replications {εj(x)}j

at a design point x is independent and identically distributed across replications. The sampling

noise is referred to as intrinsic uncertainty, since it is inherent in the stochastic simulation. The

stochastic nature of M is called extrinsic uncertainty, since it is imposed on the problem to aid in

the development of the metamodel (Ankenman et al. 2010).

Suppose that the simulation model has been run at the k design points x1,x2, . . . ,xk yielding the

vector of observed simulation output Ȳ = (Ȳ(x1), Ȳ(x2), . . . , Ȳ(xk))
>, and we now want to predict
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the response surface at x0. Let F = [f(x1) f(x2) . . . f(xk)]
>

be the k × p regression matrix, let

ΣM(θ) be the k × k variance-covariance matrix with ijth entry ΣM(xi,xj;θ), and let ΣM(x0, ·;θ)

be the k× 1 vector of spatial covariances between the design points and the prediction point, i.e.,

the ith entry of ΣM(x0, ·;θ) is ΣM(x0,xi;θ). Also, let Σε be the k× k intrinsic covariance matrix

with ijth entry Cov[
∑ni

k=1 εk(xi)/ni,
∑nj

k=1 εk(xj)/nj]. Assuming that β, θ, and Σε are known, the

stochastic kriging prediction (Ankenman et al. 2010) at x0 is given by

ŶM(x0) = f(x0)>β + ΣM(x0, ·;θ)>(ΣM(θ) + Σε)
−1(Ȳ −Fβ). (2)

The mean-squared error of the prediction ŶM(x0) is

MSE(ŶM(x0)) = ΣM(x0,x0;θ)−ΣM(x0, ·;θ)>(ΣM(θ) + Σε)
−1ΣM(x0, ·;θ). (3)

In practice, β, θ, and Σε are not known and must be estimated from the simulation output.

Parameter estimation for GIBFs is discussed in Section 5.2. Although derivative information can

be used with the covariance functions introduced in this paper, we do not discuss incorporating

derivative information here and refer the reader to Chen et al. (2013) for details on implementation.

3. Generalized Integrated Brownian Fields

In stochastic kriging, the response surface is modeled as a sample path of the GRF YM(·), given

by Equation (1), with mean function f(·)>β and covariance function ΣM(·, ·;θ). The GRFs we

construct in this section, called GIBFs, have desirable properties such as differentiability that can

differ in each coordinate, no mean reversion, and the Markov property. We want to use GRFs with

these properties in an effort to obtain better predictions.

A widely used GRF is the Gaussian GRF for which the covariance between the two points

x and x′ is given by ΣM(x,x′;θ) = σ2 exp{−
∑

i θi(xi − x′i)2}, where θi, xi, and x′i are the ith

coordinates of θ, x, and x′, respectively, and σ2 is the variance of the GRF. The Gaussian

GRF is mean-reverting and is often criticized as being too smooth since it is infinitely con-

tinuously differentiable in every coordinate. Another widely-used GRF is the radial basis func-

tion class of the Matérn GRF for which the covariance between the two points x and x′ is
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given by ΣM(x,x′;θ) = σ2(21−v/Γ(v))
(√

2v||θ>(x−x′)||2
)v
Kv

(√
2v||θ>(x−x′)||2

)
, where Γ(·) is

the gamma function and Kv(·) is the modified Bessel function of the second kind. The differ-

entiability of the Matérn GRF is controlled by the single parameter v, so its differentiability

cannot differ in each coordinate. The product class of the Matérn GRF, given by ΣM(x,x′;θ) =

σ2
∏d

i=1(21−vi/Γ(vi))
(√

2vi|θ>i (xi−x′i)|
)viKv

(√
2vi|θi(xi−x′i)|

)
, has a separate parameter, vi, con-

trolling the differentiability in each coordinate. Both classes of the Matérn GRF are mean-reverting

and the product class of the Matérn GRF is not often used or studied in the literature. Further-

more, for the product class of the Matérn GRF, each vi is continuous and there is not a one-to-one

correspondence between values of vi and the resulting differentiability of the GRF in that coor-

dinate. For example, an uncountably infinite number of values of vi correspond to a GRF that is

once differentiable in the ith coordinate. For GIBFs, there is a one-to-one correspondence between

the values of the parameters controlling the differentiability of the GRF and its differenitability.

This lends itself to a simple search algorithm to find the optimal values.

GIBFs are generalized versions of integrated Brownian fields (Fill and Torcaso 2004), which are

multivariate versions of integrated Brownian motions. We first construct one-dimensional general-

ized integrated Brownian fields, which we call generalized integrated Brownian motions (GIBMs),

and then construct multi-dimensional generalized integrated Brownian fields. In the following, let

∧ and ∨ denote the functions min and max, respectively.

3.1. One-Dimensional Generalized Integrated Brownian Motions

Consider one-dimensional Brownian motion B(·;θ) on R≥0 with volatility θ, where R≥0 , [0,∞).

This process is a real-valued, zero mean Gaussian stochastic process with continuous, non-

differentiable sample paths. The covariance between B(·;θ) at x,x′ ∈R≥0 is given by ΣB(x,x′;θ) =

θ(x ∧ x′). An m-times differentiable stochastic process can be obtained by integrating B(·;θ) for

m times, which gives us the well-known m-integrated Brownian motion Bm(·;θ) with volatility θ.

The integral representation of m-integrated Brownian motion with volatility θ at x is

Bm(x;θ) =

∫ x

0

Bm−1(u;θ)du=

∫ x

0

(x−u)m

m!
dB(u;θ), (4)
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where the first equality expresses Bm(x;θ) recursively with B0(·;θ) =B(·;θ), and the second equal-

ity follows from integration by parts, which expresses Bm(x;θ) as an integral with respect to

Brownian motion with volatility θ. From the first integral in Equation (4), it is clear that the

process Bm(·;θ) and its m derivatives B(i)
m (·;θ), for i= 1,2, . . . ,m, are zero at the boundary x= 0.

These boundary conditions make Bm(·;θ) unsuitable for metamodeling, since the response sur-

face and its derivatives may not be zero at the boundary x= 0. We modify Bm(·;θ) by adding a

random polynomial whose coefficients are m+ 1 independent standard normal random variables,

Z0,Z1, . . . ,Zm, scaled by some parameters, creating the novel stochastic process we call generalized

m-integrated Brownian motion (m-GIBM). This process, denoted by Gm(·;θ), is defined by

Gm(x;θ),
m∑
n=0

√
θnZn
n!

xn +Bm(x;θm+1), (5)

where θ has been relabelled as θm+1 for convenience, θ = (θ0, θ1, . . . , θm+1)>, and Bm(·;θm+1) is

independent of Zn for all n= 1,2, . . . ,m. For the Gaussian and Matérn covariance functions, the

number of components of θ is equal to the dimension of x, i.e., d. For GIBMs, the number of

components of θ is equal to the number of integrations plus two, i.e., m + 2. The first m + 1

parameters, θ0, θ1, . . . , θm, are the coefficients of the random polynomial, while the last parameter,

θm+1 always corresponds to the volatility of the Brownian motion. Note that adding the random

polynomial to Bm(·;θm+1) does not change its mean at x = 0. Figure 1 shows sample paths of

GIBMs of different orders, with θ = (1,1, . . . ,1)>, on the unit interval. Directly from the definitions

of Bm(·;θ) and Gm(·;θ), it follows that the covariance between Gm(·;θ) at x,x′ ∈R≥0 is given by

ΣGm(x,x′;θ) =
m∑
n=0

θn
xn(x′)n

(n!)2
+ θm+1

∫ ∞
0

(x−u)m+ (x′−u)m+
(m!)2

du.

For any m, the integral can be easily computed and has a convenient closed-form solution,

composed of terms that are products of the functions min and max. Indeed, we have

ΣGm(x,x′;θ) =
m∑
n=0

θn
xn(x′)n

(n!)2
+ θm+1

2m+1∑
i=m+1

(−1)i−m+1 (x∧x′)i(x∨x′)2m+1−i

i!(2m+ 1− i)!
. (6)

For m= 0 and m= 1, one can easily check that the last sum in Equation (6) reduces to the covari-

ance functions of the well-known Brownian motion and integrated Brownian motion, respectively.
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(a) 0-GIBM (b) 1-GIBM (c) 2-GIBM

Figure 1 Sample paths of GIBMs on the unit interval.

3.2. Multi-Dimensional Generalized Integrated Brownian Fields

In the multi-dimensional case, consider d-dimensional Brownian field B(·;θ) on Rd≥0 with volatility

θ (Holden et al. 2010), where θ = (θ1, θ2, . . . , θd)
> is a vector of parameters. Here B(·;θ) is the tensor

product of d independent copies of one-dimensional Brownian motions with varying volatilities.

This field is a real-valued, zero mean GRF with continuous, non-differentiable sample paths. The

covariance between B(·;θ) at x,x′ ∈Rd≥0 is given by ΣB(x,x′;θ) =
∏d

i=1 θi(xi ∧ x′i). Similar to the

one-dimensional case, we can integrate Brownian field with volatility θ over each coordinate to get

a differentiable process. In the multi-dimensional case, each coordinate can be integrated a different

number of times. If we integrate mi times in the ith coordinate for i= 1,2, . . . , d, the resulting GRF

is the well-known m-integrated Brownian field Bm(·;θ) with volatility θ (Fill and Torcaso 2004),

where m = (m1,m2 . . . ,md)
>. Using integration by parts, Bm(x;θ) can be expressed as a multiple

integral with respect to Brownian field with volatility θ,

Bm(x;θ),
∫ x1

0

· · ·
∫ xd

0

d∏
i=1

(xi−ui)mi

mi!
dB(u;θ).

It follows immediately (Fill and Torcaso 2004) from this representation that the covariance between

Bm(·;θ) at x and x′ in Rd≥0 is given by

ΣBm(x,x′;θ) =
d∏
i=1

θi

∫ ∞
0

(xi−ui)mi
+ (x′i−ui)

mi
+

(mi!)2
dui.

The covariance function ΣBm(·, ·;θ) is the product of the covariance functions of the one-

dimensional integrated Brownian motions Bm1
(·;θ1),Bm2

(·;θ2), . . . ,Bmd
(·;θd). Similar to the
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one-dimensional case, m-integrated Brownian field with volatility θ has boundary conditions

Bm(x;θ) = 0 and B(α)
m (x;θ) = 0 for all α≤m, i.e., all α such that αi ≤mi for all i, and x ∈Rd≥0

such that xi = 0 for some i. We define a novel process whose covariance function is the product of

covariance functions of d GIBMs, in the same way that the covariance function of Bm(·;θ) is the

product of the covariance functions of Bm1
(·;θ1),Bm2

(·;θ2), . . . ,Bmd
(·;θd). This novel process, we

call generalized m-integrated Brownian field, is defined next:

Definition 1. The zero mean Gaussian random field Gm(·;θ) on Rd≥0 whose covariance at x and

x′ is given by

ΣGm(x,x′;θ) =
d∏
i=1

(
mi∑
n=0

θi,n
xni (x′i)

n

(n!)2
+ θi,mi+1

∫ ∞
0

(xi−ui)mi
+ (x′i−ui)

mi
+

(mi!)2
dui

)
, (7)

where θ = (θ1,0, . . . , θ1,m1+1, θ2,0, . . . , θd,md+1)> ∈RM>0 is a vector of parameters and M =
∑d

i=1(mi +

2), is called generalized m-integrated Brownian field (m-GIBF).

Similar to the one-dimensional case, the number of components of θ corresponding to each

coordinate i is equal to the number of integrations with respect to that coordinate plus two, i.e.,

mi + 2. Thus, the total number of components of θ is
∑d

i=1(mi + 2). We restrict θ to RM>0 instead

of RM≥0 to avoid improper GRFs, i.e. GRFs with positive-semidefinite covariance matrices. Figure

2 shows sample paths of GIBFs of different orders, with θ = (1,1, . . . ,1)>, on the unit square.

Equivalently, we can define m-GIBF as

Gm(x;θ),
m∑

n=0

Cn(θ)xnZn +
d∑
i=1

∑
j1<···<ji

Cj1,...,ji(x,θ)Bj1,...,ji
(mj1

,...,mji
)(xj1 , . . . , xji ;1), (8)

where the multi-dimensional sum is over all n = (n1, n2, . . . , nd) such that 0≤ n≤m. Equation (8) is

the multi-dimensional analog of Equation (5). The first term in Equation (8) is a random polynomial

of degree m, which is the linear combination of standard normal random variables with coefficients

that are monomials of degree at most m. The second term is the sum of integrated Brownian fields

over every i-face of Rd≥0, for i= 1,2, . . . , d. In other words, we sum integrated Brownian fields over

each edge, face, cell, 4-face, 5-face, etc. of Rd≥0. The functions Cn(·) and Cj1,...,ji(·, ·) are deterministic
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(a) (0,0)-GIBF (b) (1,1)-GIBF

(c) (1,2)-GIBF (d) (2,2)-GIBF

Figure 2 Sample paths of GIBFs on the unit square.

functions of x and θ, and although closed-form expressions can be obtained for each, they are not

needed for implementation and do not add any insight into the process. Since the functions Cn(·)

and Cj1,...,ji(·, ·) are deterministic functions of x and θ, the randomness in Gm(·;θ) is due to the

standard normal random variables Zn and the integrated Brownian fields Bj1,...,ji
(mj1

,...,mji
)(·;1), which

are all independent from each other. From the formulation of Gm(·;θ) given by Equation (8), it

is clear that m-GIBF does not have any boundary conditions. Furthermore, one can easily check

that this representation is equivalent to Definition 1 by multiplying out each term in the product

in the covariance function given by Equation (7), and comparing it to the covariance function of

the GRF given by the right-hand side of Equation (8). Since a GRF is completely determined by

its mean and covariance functions, and the sum of Gaussian random variables is Gaussian, the

equivalence between Definition 1 and Equation (8) follows.



Salemi, Staum, and Nelson: Generalized Integrated Brownian Fields for Simulation Metamodeling
14 Article submitted to Operations Research; manuscript no. OPRE-2017-06-339

4. Properties

In Gaussian process modeling, using methods such as kriging and stochastic kriging, the response

surface is modeled as a sample path of a Gaussian random field. When m-GIBF is used as the

Gaussian random field, the response surface is modeled as a sample path of m-GIBF. To obtain

the best predictions possible, we would like the Gaussian random field that we use to have prop-

erties that make it suitable for metamodeling. Three desirable properties that GIBFs have are

differentiability that can differ in each coordinate, no mean reversion, and the Markov property.

In this section, we discuss these properties, as well as another property that has implications for

metamodeling, namely, the non-stationarity of GIBFs.

4.1. Differentiability

For one-dimensional m-GIBM, the differentiability can easily be seen from the representation of

m-GIBM, given by Equation (5). The random polynomial given by the first term on the right

hand side of Equation (5) is the linear combination of standard normal random variables whose

coefficients are monomials of degree at most m, and is thus infinitely differentiable. The second

term on the right hand side of Equation (5) is an m-integrated Brownian motion. By definition,

m-integrated Brownian motion is m times differentiable. Specifically, the derivative of m-integrated

Brownian motion is (m− 1)-integrated Brownian motion. Thus, one-dimensional m-GIBM is m

times differentiable.

The equivalent definition of m-GIBF, given by Equation (8), can be used to determine the dif-

ferentiability of m-GIBF. As with one-dimensional m-GIBM, the random polynomial given by the

first term on the right hand side of Equation (8) is the linear combination of standard normal

random variables whose coefficients are monomials of degree at most m, and is thus infinitely

differentiable with respect to every coordinate. The functions Cj1,...,ji(·,θ) are also linear combi-

nations of monomials, and are, thus, also infinitely differentiable with respect to every coordinate.

The only other terms in Equation (8) that depend on x are the integrated Brownian fields. A
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(p1, p2, . . . , ph)-integrated Brownian field, for any h≥ 1, is pi times differentiable in the ith coor-

dinate. Specifically, the derivative of (p1, p2, . . . , ph)-integrated Brownian field with respect to the

ith coordinate is a (p1, p2, . . . , pi − 1, . . . , ph)-integrated Brownian field. Thus, the ith coordinate

of m-GIBF is mi times differentiable. Furthermore, we are able to control the differentiability of

m-GIBF in each coordinate by specifying each entry of the vector m = (m1,m2, . . . ,md).

4.2. No Mean Reversion

As mentioned in the introduction, Gaussian process models can exhibit mean reversion if the GRF

used is mean-reverting. In this paper, we assume that the application of Gaussian process modeling

is such that mean reversion should be avoided, since some algorithms can use mean reversion

to their benefit. For example, the practical performance of the correlated Knowledge Gradient

(cKG) algorithm (Powell and Ryzhov 2012) can sometimes be improved by purposefully setting the

unconditional mean of the GRF to a small value (for minimization problems). If mean reversion

is present in the fitted Gaussian process model, then the cKG algorithm will tend to over-sample.

This is because we are not confident about the current optimal solution, since several other feasible

solutions also have a small conditional mean (due to mean reversion). Thus, more exploration is

encouraged, which can help prevent early stopping. In Section 6, we focus on comparing to the

Gaussian and Matérn GRFs when mean reversion is not present, since we assume mean reversion

should be avoided. For experiments comparing to the Gaussian and Matérn GRFs when mean

reversion is present, see the Electronic Companion.

The concept of mean reversion is well-defined for stochastic processes that are parameterized

on the time domain: the process is mean-reverting if it tends to drift towards its long-term mean

over time. A well-known example of a mean-reverting stochastic process is the Ornstein-Uhlenbeck

process. In contrast, the concept of mean reversion has not been formally defined in terms of

random fields parameterized on a multi-dimensional spatial domain. In this case, we no longer

have a concept of time. We introduce the following definition of mean reversion for random fields

parameterized on a multi-dimensional spatial domain:
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Definition 2. Let M(·) be a random field with mean function m(·) defined on a convex cone C.

The random field M(·) is mean-reverting if

E [M(λx)−m(λx)|M(x1),M(x2), . . . ,M(xk)]
p−→ 0 (9)

as λ→∞, for any k≥ 1 points x1,x2, . . . ,xk ∈ C and any x∈ C not equal to 0.

Essentially, we can think of the points x1,x2, . . . ,xk as being the design points at which we are

able to observe the value of the random field M(·). Then, E[M(λx)|M(x1),M(x2), . . . ,M(xk)] is the

kriging predictor at the point λx, based on the observations at the design points. The difference

E[M(λx)|M(x1),M(x2), . . . ,M(xk)]−m(λx) is the difference between the kriging predictor and the

unconditional mean. Thus, a random field is mean-reverting if the difference between the kriging

predictor and the unconditional mean converges in probability to zero as we move away from the

design points. The next theorem shows that this definition of a mean-reverting random field is

consistent with the behavior of the Gaussian and Matérn GRFs.

Theorem 1. Let M(·) be a GRF defined on Rd≥0 with mean function m(·) and covariance function

Cov[M(x),M(y)] = τ 2r(x− y;θ), for some scalar τ and function r(·;θ) such that r(x;θ)→ 0 as

||x|| →∞ and r(0;θ) = 1. Then M(·) is mean-reverting.

The main property of the covariance function τ 2r(x−x′;θ) on which the proof of Theorem 1 relies

is that r(x;θ) decays to zero as ||x|| →∞. As we will see in the next theorem, GIBFs do not exhibit

mean reversion because their covariance functions do not have this property.

Theorem 2. Let Gm(·;θ) be a non-trivial m-GIBF on Rd≥0. Then, Gm(·;θ) is not mean-reverting.

This theorem ensures us that when we use GIBFs as the GRFs for Gaussian process modeling,

mean reversion will not be present in the resulting metamodel. This is a key property of GIBFs

and a significant reason for why we prefer to use GIBFs for stochastic kriging.
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4.3. Markov Property

Definitions of the Markov property for random fields have been proposed in the stochastic analysis

literature, such as those found in Pitt (1971) and Künsch (1979). However, these definitions are too

abstract for our purposes; we only need a notion of independence across a ‘simple’ boundary, given

sufficient information about the random field on the boundary, and do not require the Markov

property to hold for exotic sets. Furthermore, since we are dealing with differentiable random

fields, we would like a definition that explicitly makes use of the random fields differentiability. We

introduce the following definition of a real-valued Markov random field, where σ(A) denotes the

sigma-algebra generated by the set A.

Definition 3. A real-valued random field M(·) on Rd≥0 is called p-order Markov if σ (M(x)) is

independent of σ
({

M(s) : ∀s∈×di=1[0, ti)
})

given σ
({

M(α)(s) : ∀s∈ ∂(×di=1[0, ti]), ∀α≤ p
})

, for

all x∈ (×di=1[0, ti])
c, where 0< ti <∞ for all i and ∂(O) is the boundary of O.

It is easy to see that our definition reduces to the standard definition of one-dimensional Markov

processes with no derivative information, i.e., p= 0. Essentially, a random field is p-order Markov

if information about the random field (level and derivatives) on the boundary of a d-dimensional

rectangle is sufficient for predicting the values that the random field takes at points outside of the

d-dimensional rectangle, i.e., our predictions do not change if we know the level and derivatives of

the random field inside. Similarly, information about the random field (level and derivatives) on

the boundary of a d-dimensional rectangle is sufficient for predicting the values that the random

field takes at points inside of the d-dimensional rectangle. We have the following result:

Theorem 3. The Gaussian random field Gm(·;θ) defined on Rd≥0 is m-order Markov.

This theorem shows that GIBFs indeed have the Markov property, as defined in Definition 3. This

is another key property of GIBFs, as well as another significant reason for why we prefer to use

GIBFs for stochastic kriging.
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4.4. Non-Stationarity

Multi-dimensional m-GIBF at x∈Rd≥0 is a Gaussian random variable with mean zero and variance

given by

σ2
Gm

(x;θ) =
d∏
i=1

(
mi∑
k=0

θk
x2k

(k!)2
+ θmi+1

∫ ∞
0

(x−u)2mi
+

(mi!)2
du

)
.

Since the distribution of m-GIBF depends on x, it follows that m-GIBF is not stationary. Indeed,

σ2
Gm

(x;θ) is an increasing function of x, so the variance increases as we move away from the origin.

This is in contrast to the stationary Gaussian and Matérn GRFs. However, the conditional distri-

bution of any GRF, stationary or not, is always non-stationary; as we move away from the design

points, the conditional variance increases. The key difference between the conditional variances of

GIBFs and the conditional variances of stationary GRFs is that the conditional variances of GIBFs

can be asymmetric, given symmetrically placed design points.

In the case of 1-GIBM with θ = 1 on the unit interval, the conditional variance at x, given the

value of the process at two design points, for two different sets of design points is plotted in Figure

3. From this plot, we can see that the conditional variance is smaller near x= 0 and larger near

x= 1, even though the design points have been placed symmetrically with respect to the center of

the design space. Note that the conditional variance of GIBM is positive at the origin, even though

the prior and conditional variances of integrated Brownian motion at the origin are zero. This is

because the random polynomial added to integrated Brownian motion to form GIBM contributes

to the prior (and conditional) variance at the origin. Thus, we do not need to be concerned with

having an overconfident prediction at the origin, as would be the case if we were using integrated

Brownian motion.

Although the conditional variances of GIBFs can be asymmetric, given symmetrically placed

design points, the conditional variances still possess the property we desire for metamodeling:

namely, the conditional variance increases as we move away from the design points. Consider kriging

with Brownian motion: although Brownian motion is non-stationary (as we move away from the

origin, the variance of Brownian motion increases), when we condition on the simulation output
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(a) Design points x = 0.2 and x = 0.8. (b) Design points x = 0.2, x = 0.5, and x = 0.8.

Figure 3 Plots of the conditional variance of G1(x;1) given the value of the process at the design points.

at two design points, the resulting process between the design points is a Brownian bridge. The

variance of the Brownian bridge will be largest in the center of the design points, and decrease as

we get closer to either design point. In the Electronic Companion, we show that the conditional

variances of GIBFs provide highly-desirable inference and can be employed in methods utilizing

the conditional distribution (e.g., expected improvement methods in global optimization (Jones

et al. 1998)) since they possess this property.

5. Stochastic Kriging with Generalized Integrated Brownian Fields

For stochastic kriging with m-GIBF, the response surface y(·) at x is modeled as a realization

of the random variable YGm(x;θ) = f(x)>β + G̃m(x;θ), where f(·) and β are as before, and

G̃m(·;θ) is a modified version of m-GIBF, discussed in Section 5.1, which accounts for the basis

functions in f(·). To implement stochastic kriging with GIBFs, we need to choose the vector of

basis functions f(·) to be used for trend modeling and values for the parameters m, β, and θ. This

section discusses these aspects of fitting GIBFs, including trend modeling in Section 5.1, followed

by parameter estimation in Section 5.2, assuming that the vector of basis functions has been fixed.

The approximation capability and the resulting differentiability of metamodels built using GIBFs

is discussed in Sections 5.3 and 5.4, respectively.
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5.1. Trend Modeling

To maintain the differentiability of the metamodel (discussed in Section 5.4 below), we assume that

each basis function in the p×1 vector of basis functions f(·) is mi times continuously differentiable

in the ith coordinate. Any function can be a basis function as long as it satisfies this differentiability

condition. If any prior information about the response surface is known, the trend model should

be chosen to reflect it. However, if no prior information about the response surface is known, we

recommend using a constant trend model.

For certain basis functions, the covariance function needs to be modified. For stochastic kriging

with m-GIBF, when a basis function is a monomial xα, where α = (α1, α2, . . . , αd)
> and αi ≤mi

for i = 1,2, . . . , d, we need to subtract
∏d

i=1 θi,αi
xαi
i y

αi
i /(αi!)

2 from the covariance function given

by Equation (7). The need for this modification of the covariance function is the following. For

stochastic kriging with the GRF YM(·), given by Equation (1), the difference y(·)− f(·)β is modeled

as a sample path of the zero mean GRF M(·). When xα is included in f(·), the variability of

the simulation output Ȳ associated with the subspace spanned by xα is eliminated by taking the

difference Ȳ −Fβ̂, where β̂ is the maximum likelihood estimator (MLE) of β (see Section 5.2).

To avoid redundancy when we use an m-GIBF as the zero mean GRF M(·), we remove the term

Cα(θ)xαZα in the random polynomial in Equation (8). This term is the GRF whose covariance at

x,y ∈ [0,1]d is given by
∏d

i=1 θi,αi
xαi
i y

αi
i /(αi!)

2.

Another explanation for the modification of the covariance function can be given in terms of

boundary conditions. The formulation of m-GIBF given by Equation (8) is the sum of a term

involving an m-integrated Brownian field and other terms that compensate for its boundary con-

ditions. When the basis function xα is included in f(·), we do not need the term Cα(θ)xαZα in

the random polynomial
∑m

n=0Cn(θ)xnZn, since the corresponding boundary condition is compen-

sated for by the term involving xα in the trend function. For example, consider the GRF YGm(·;θ)

with f(·) = (1)>, whose value at x is given by YGm(x;θ) = β0 + G̃m(x;θ), where G̃m(x;θ) =

Gm(x;θ)−C0(θ)Z0. Although G̃m(·;θ) has the boundary condition G̃m(0;θ) = 0, YGm(·) has no
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boundary conditions since the constant trend compensates for the boundary condition of G̃m(·;θ)

at the origin, i.e., YGm(0;θ) = β0. In general, we define the GRF G̃m(·;θ) to be the zero mean

GRF whose covariance function is the covariance function of the m-GIBF with the proper terms

subtracted. We denote the covariance function of G̃m(·;θ) by ΣG̃m
(·, ·;θ).

5.2. Parameter Estimation

We first discuss finding the MLEs β̂ and θ̂ of β and θ, respectively, with the order m of the GIBF

fixed, in Section 5.2.1. Then, we discuss finding the optimal order m̂ of the GIBF in Section 5.2.2. In

the following, we assume that the vector of basis functions has been chosen and fixed. Furthermore,

following Ankenman et al. (2010) and Chen et al. (2012), we assume independent sampling (i.e.,

no CRN) and use the plug-in estimator Σ̂ε , diag{s2(x1)/n1, s
2(x2)/n2, . . . , s

2(xk)/nk} for Σε.

After we obtain β̂, θ̂, and m̂ using the methods in this section, we substitute them and Σ̂ε into

Equation (2) to get the estimated stochastic kriging prediction
̂̂
YGm̂

(x0) at x0 (Ankenman et al.

2010). Furthermore, the estimated MSE of
̂̂
YGm̂

(x0) is given by substituting β̂, θ̂, m̂, and Σ̂ε into

Equation (3) and adding the term η>(F>(ΣG̃m̂
(θ̂) + Σ̂ε)

−1F)−1η, where η, f(x0)−F>(ΣG̃m̂
(θ̂) +

Σ̂ε)
−1ΣG̃m̂

(x0, ·; θ̂). This additional term accounts for the uncertainty introduced by estimating the

vector β of regression coefficients.

5.2.1. Finding the MLEs of β and θ, with m Fixed Assume that the order m of the GIBF

has been fixed. Finding the MLEs β̂ and θ̂ involves solving an optimization problem with continuous

decision variables. Given a fixed value for θ, the MLE of β is β̂(θ), (F>Σ(θ)−1F)
−1

F>Σ(θ)−1Ȳ,

where Σ(θ) = ΣG̃m
(θ) + Σ̂ε, and β̂ and Σ have been written as functions of θ to explicitly show

dependence. If we profile over the MLE of β and ignore constants, then the profile log-likelihood

function (Shao 2010) is given by

L
(
θ|Ȳ

)
=−1

2
log (|Σ(θ)|)− 1

2

(
Ȳ −Fβ̂(θ)

)>
Σ(θ)−1

(
Ȳ −Fβ̂(θ)

)
,

where Ȳ is the vector of simulation output. Note, since we use the plug-in estimator Σ̂ε for Σε,

the likelihood function L
(
θ|Ȳ

)
is not the full data likelihood (Binois et al. 2018). Assuming that
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unknown variances and hyperparameters of the GRF are indeed known can be a problem if doing

so leads to underestimation of the uncertainty in the metamodel. However, in this paper, we are

only concerned with obtaining a metamodel that yields point estimates, so we use the plug-in

estimator Σ̂ε for Σε. The MLE θ̂ is given by the solution to arg minθ

{
−L

(
θ|Ȳ

)
|θ ∈RM>0

}
, where

M =
∑d

i=1(mi + 2) and RM>0 is the set of feasible values for θ.

Instead of searching over the unbounded space RM>0 for the MLE of θ, we add a dummy parameter

τ which allows θ to be restricted to the M -dimensional unit hypercube. In other words, only the

magnitudes of the parameters in θ relative to each other are important since the actual magnitude

is absorbed in τ . The re-parameterized covariance function for m-GIBF is

ΣGm(x,y;θ, τ) = τ
d∏
i=1

(
mi∑
k=0

θi,k
xki y

k
i

(k!)2
+ θi,mi+1

∫ ∞
0

(xi−ui)mi
+ (yi−ui)mi

+

(mi!)2
dui

)
,

where now θ lies in the M -dimensional unit hypercube and τ ≥ 0. The MLE θ̂ can now be found

by solving arg minθ

{
−L(θ, τ ∗(θ)|Ȳ) |θ ∈ [0,1]M

}
, where

L
(
θ, τ |Ȳ

)
=−1

2
log (|Σ(θ, τ)|)− 1

2

(
Ȳ −Fβ̂(θ, τ)

)>
Σ(θ, τ)−1

(
Ȳ −Fβ̂(θ, τ)

)

is the re-parameterized profile log-likelihood function, β̂ and Σ have been written as functions

of θ and τ to explicitly show dependence, and τ ∗(θ) is the value of τ that minimizes L(θ, τ |Ȳ)

with θ fixed. Finding τ ∗(θ) can be done efficiently using a line search method and supplying the

solver with the gradient ∂L(θ, τ |Ȳ)/∂τ . We can now solve the constrained optimization problem

by evaluating −L(θ, τ ∗(θ)|Ȳ) at a low-discrepancy point-set in the M -dimensional unit hypercube

and use the point that minimizes this quantity as the starting solution for a non-linear optimization

algorithm.

5.2.2. Finding the Optimal m The set of feasible values for m is the set Zd≥0, since m must

be a vector of integers. To find the optimal order m̂, we first fix m to some value m′ ∈ Zd≥0 and

calculate the Monte Carlo cross-validation error for m′-GIBF as follows:
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0. (Initialization) Let Ξ denote the set of indices of the design points not on the boundary of

the convex hull of the design points (to avoid extrapolation). Let pCV denote the number of design

points in Ξ to hold out on each iteration, where 1≤ pCV ≤ |Ξ|. Furthermore, let nCV denote the

number of iterations. Set i= 1.

1. Randomly select pCV indices from Ξ and let ΞCV denote the set of these indices. Similarly,

let Ξ\CV denote the set of indices Ξ \ΞCV .

2. Build a metamodel
̂̂
YGm′ using the design points {xj|j ∈Ξ\CV }. The MLE of θ for G̃m′(·;θ)

and the MLE of β are obtained using the method in Section 5.2.1 with the order fixed to m′.

3. Calculate

MSEi
m′ =

1

pCV

∑
j∈ΞCV

(̂̂
YGm′ (xj)−Ȳ(xj)

)2

.

4. If i= nCV , go to 5. Else, set i← i+ 1 and go to 1.

5. Calculate

CVm′ =
1

nCV

nCV∑
i=1

MSEi
m′ .

The cross-validation error CVm′ is used to evaluate m′-GIBF. After we have calculated CVm′ , we

choose a different value of m 6= m′ in Zd≥0 and repeat the process until we are satisfied with our

solution in terms of the cross-validation error, i.e., we do not exhaust the search space Zd≥0 of m.

The optimal order m̂ is the order that gave the smallest cross-validation error. Our justification

for using cross-validation instead of maximum likelihood estimation to choose the order is given in

the Electronic Companion.

Instead of searching over the unbounded space Zd≥0 for the optimal order m̂, we limit our search

to the bounded set {1,2}d, which has 2d elements. We only search the bounded set {1,2}d for

m̂, since we have found in our practical experience with metamodeling of engineering simulations

that it is sufficient to only consider GIBFs that are at least once-differentiable in each coordinate

and at most twice-differentiable in each coordinate, i.e., m-GIBF with 1≤mi ≤ 2 for all i. These

GIBFs are flexible enough for most response surfaces. When the order of the GIBF is increased

in a coordinate, the computational cost of finding the MLE of θ increases since the number of



Salemi, Staum, and Nelson: Generalized Integrated Brownian Fields for Simulation Metamodeling
24 Article submitted to Operations Research; manuscript no. OPRE-2017-06-339

parameters in θ increases. When mi is at most two in each coordinate, the number of parameters

is manageable.

Assuming, without loss of generality, that the coordinates are ordered in terms of least important

to most important (using any variable importance method), we recommend first evaluating m = 1>

and then, starting at i = 1, setting the ith coordinate of m to 2. If the cross-validation error is

improved, then set the (i+1)st coordinate to 2, leaving the ith coordinate set to 2 and repeat until

i = d+ 1. Finally, evaluate m = 2> if it has not already been evaluated. When mi = 0 for some

i= 1,2, . . . , d, the metamodel will be non-differentiable in that coordinate. If prior knowledge about

the response surface suggests that this might be appropriate, then we recommend broadening the

search space to allow for this possibility.

5.3. Approximation Capability

Although we investigate the approximation capability on several real-world examples and test

functions in Section 6, we discuss the approximation capability in a theoretical setting here. We

first discuss the case of approximating polynomials and then provide the space of functions for

which linear combinations of ΣGm(·, ·;θ) are dense. For ease of discussion, we focus on the case of

deterministic simulations, i.e., kriging with GIBFs.

Roughly and asymptotically speaking, when the underlying response surface y is a polynomial,

we can reproduce y exactly if a polynomial trend model and GIBF of sufficiently high order

(determined by the order of y) is used. Indeed, when a trend model is used in kriging with GIBFs,

the deviations from the trend are modeled as a realization of a GIBF. When a polynomial trend

model of sufficiently high order is used, the polynomial trend itself will be able to reproduce y

since it is a polynomial of appropriate order. Even without a polynomial trend model (or any

trend model), we can reproduce polynomials exactly by using a GIBF of sufficiently high order.

This follows from the fact that the integral part of ΣGm(s, t;θ) coincides with a polynomial in s

of degree less than or equal to 2m+ 1 for s≤ t, and with a polynomial in s of degree less than or
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equal to m for s≥ t (Berlinet and Thomas-Agnan 2004). Thus, the resulting metamodel will be

the linear combination of polynomial terms.

To provide the space of functions for which linear combinations of ΣGm(·, ·;θ) are dense, we first

construct the reproducing kernel Hilbert space corresponding to the reproducing kernel ΣGm(·, ·;θ)

(which we now denote by Km+1(·, ·;θ) to be consistent with the functional analysis literature).

For more details or proofs regarding this construction, see Berlinet and Thomas-Agnan (2004).

Let D′(R) denote the space of continuous linear functionals (Schwartz functions or generalized

distributions), i.e., the topological dual space of the space of infinitely differentiable functions with

compact support. Let D denote the derivative operator and let L2(0,1) denote the space of square

integrable functions on (0,1) with respect to Lebesgue measure defined up to almost everywhere

equality. Furthermore, for the purposes of this section, consider GIBFs restricted to (0,1)d. The

Sobolev-Hilbert space of functions

Hm+1(0,1),
{
φ∈D′(R) |Dαφ∈L2(0,1), α≤m+ 1

}
is a reproducing kernel Hilbert space endowed with the inner product

〈φ1, φ2〉Hm+1(0,1) =
m∑
n=0

1

θn
φ

(n)
1 (0)φ

(n)
2 (0) +

1

θm+1

∫ 1

0

φ
(m+1)
1 (t)φ

(m+1)
2 (t)dλ(t),

where φ1, φ2 ∈Hm+1(0,1) and λ denotes Lebesgue measure on the set R. The reproducing kernel

of Hm+1(0,1) is given by

Km+1(s, t;θ) =
m∑
n=0

θn
sntn

(n!)2
+ θm+1

∫ 1

0

(s−u)m+ (t−u)m+
(m!)2

du.

Now, let H =
⊗d

i=1H
mi+1(0,1) denote the functional completion of the tensor product⊗̃d

i=1H
mi+1(0,1) of the vector spaces Hmi+1(0,1) for i = 1,2, . . . , d. H is a reproducing kernel

Hilbert space endowed with the reproducing kernel

Km+1(s, t;θ) =
d∏
i=1

(
mi∑
n=0

θi,n
sni t

n
i

(n!)2
+ θi,mi+1

∫ 1

0

(si−ui)mi
+ (ti−ui)mi

+

(mi!)2
dui

)
.

Theorem 4. The span of the functions {Km+1(·,x;θ) |x∈ (0,1)d} is dense in H.
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This theorem is a direct corollary of the Moore-Aronszajn theorem (Berlinet and Thomas-Agnan

2004). Thus, asymptotically speaking, i.e., as the number of design points goes to infinity, we are

able to approximate any function in H to within a given level of error using kriging with GIBFs.

Here, error is measured with respect to the norm induced by 〈·, ·〉Hm+1(0,1).

5.4. Metamodel Differentiability

To analyze the differentiabilty of metamodels constructed using stochastic kriging with GIBFs, we

rewrite the estimated stochastic kriging predictor
̂̂
YGm̂

(·) as the affine combination of the k basis

functions ΣG̃m̂
(·,xi; θ̂), for i= 1,2, . . . , k. Indeed, for x∈X , we have

̂̂
YGm̂

(x) =

p∑
i=1

fi(x)β̂i +
k∑
i=1

ciΣG̃m̂
(x,xi; θ̂),

where c = Σ(θ̂)−1(Ȳ − Fβ̂). Using this formulation of the stochastic kriging predictor, we can

see that fi(·) and ΣG̃m̂
(·,xi; θ̂) are the only terms that depend on x in this expression, so the

differentiability of the metamodel is determined by f(·) and ΣG̃m̂
(·, ·; θ̂). If each function, fi(·), in

the trend vector is a polynomial then it is infinitely differentiable with respect to the ith coordinate.

The ith term in the product of ΣGm̂
(·, ·; θ̂) is 2m̂i times differentiable with respect to the ith

coordinate with the (2m̂i + 1) derivative with respect to the ith coordinate having a discontinu-

ity (Berlinet and Thomas-Agnan 2004). Thus, the metamodel is 2m̂i times differentiable in the

ith coordinate. Of course, the result that we can control the differentiability separately for each

coordinate is expected since Gm̂(·; θ̂) is m̂i times differentiable with respect to the ith coordinate.

6. Numerical Experiments

The purpose of the experiments is to assess the prediction capability of stochastic kriging with

GIBFs. We are mainly concerned with how different types of response surfaces and different levels

of Monte Carlo noise, including no noise in the simulation output (i.e., we are able to observe the

actual response surface at the design points), affect our predictions.

We compare stochastic kriging with GIBFs to stochastic kriging with the Gaussian and Matérn

GRFs. The Gaussian and Matérn GRFs can result in metamodels with mean reversion. Since we
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wish to demonstrate the superiority of GIBFs to the Gaussian and Matérn GRFs even when the

latter do not exhibit mean reversion, we use experiment designs with sufficiently many design

points; the case where the latter exhibit mean reversion is left to the Electronic Companion. Since

the Markov property is a theoretical, rather than practical, property we desire of a GRF, we do

not investigate the effect this property has on prediction capability directly; isolating the impact

of the Markov property on the prediction capability is also left to the Electronic Companion.

In addition to comparing to the Gaussian and Matérn GRFs, we also compare to standard inte-

grated Brownian fields (IBFs) to assess the impact of using GIBFs over IBFs, and thus determining

whether accounting for the boundary conditions of IBFs is indeed necessary.

In our experiments, we use a constant trend model (i.e., f(x) = (1)>) for all of the GRFs, and

set the number pCV of design points to hold out on each CV iteration to 3 and the number nCV of

CV iterations to find the optimal order to 50. In each experiment, the design points are the first

k points from a scrambled Sobol point-set rescaled to fit within the design space. The prediction

points p1,p2, . . . ,p1023 are the first 1023 points from the Halton point-set rescaled to fit within the

design space and the measure of prediction ability is the Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

1023

1023∑
i=1

(ŷm(pi)− ya(pi))2
,

where ŷm(pi) is the value of the simulation metamodel ŷm at pi, and ya(pi) is the actual value of

the response surface at pi. We perform 50 macroreplications, i.e., we repeat each experiment 50

times. Plots of the response surfaces and some metamodels, as well as further recommendations

and discussion for using GIBFs, are given in the Electronic Companion. Metamodels corresponding

to the Gaussian GRF were fit using the R package mlegp and the metamodels corresponding to

the Matérn GRF were fit using maximum likelihood estimation.

6.1. Credit Risk Simulation

In this example, the response surface is the expected loss of a credit portfolio, given values of latent

variables that trigger the default of the obligors (Glasserman et al. 2008). Consider a credit portfolio
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with n obligors, and let Yk be the default indicator (= 1 for default, = 0 otherwise) and lk be the

deterministic loss resulting from default of the kth obligor. The dependence among the default

indicators Yk is modeled by a multifactor Gaussian copula model with a finite number of types,

which is a function of the d-dimensional standard Gaussian random vector Z. The total loss from

defaults is Ln =
∑n

k=1 lkYk, which is a discrete random variable. The response surface is ycr(x) =

E[Ln|Z = x] and a closed-form expression for ycr(x) is available and is used to obtain noiseless

observations of the response surface, as well as to determine the accuracy of the predictions.

To obtain noisy observations (simulation output) of the response surface, we use the importance

sampling method of Glasserman et al. (2008) to estimate the expected loss E[Ln|Z = x] of the

credit portfolio.

In our experiments, the number of replications run at scenario x is chosen so that the sample

standard deviation across replications is σycr(x), where we control σ to achieve different levels

of noise in the simulation output. For our particular example, consider the case with two factors

and four types of obligors: a>1 = (0.85,0),a>2 = (0.25,0),a>3 = (0,0.85), and a>4 = (0,0.25). The ai,

i= 1,2, . . . ,4, are defined in Glasserman et al. (2008) and provided here so that the experiments

can be reproduced. Each type has three obligors, i.e., n= 12, with lk = 1 and pk = 0.01 for every

obligor. The design space for this example is the square [−5,10]2. The actual value of the response

surface is computed using the closed-form expression given in Glasserman et al. (2008).

Experiment Results The experiment results for the credit risk simulation are given in Figure

4 for varying numbers of design points and Monte Carlo noise. An interesting characteristic of the

credit risk response surface ycr occurs in regions of the design space where there is a change in

the number of types of obligors that are likely to default. In these regions of the design space,

there is an abrupt change in the response surface, which causes a rapid change in the first partial

derivatives. We can see from the experiment results that using GRFs whose differentiability can

be controlled, i.e., GIBF and the Matérn GRF, resulted in better predictions than the infinitely

differentiable Gaussian GRF. When we use a GRF whose differentiability can be controlled, the
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Figure 4 Box-plots of RMSE for the credit risk simulation.

order of differentiability can be adjusted to account for these abrupt changes (or lack of smoothness)

in the response surface. In this example, the optimal values for the parameters of both GIBF and

the Matérn GRF resulted in GRFs with lower orders of differentiability. Between GIBF and the

Matérn GRF, the metamodels constructed using GIBF resulted in better predictions. When the

variance of the noise in the simulation output was increased, the RMSE corresponding to all GRFs

increased as expected. However, the benefit (in terms of the ratio between RMSEs) of using GIBF

over the Gaussian and Matérn GRFs was greatest when no noise was present in the simulation

output and decreased as the noise level increased.

In Figure 4, as well as following figures displaying experiment results, a solid horizontal line is

plotted in each plot for the row corresponding to k = 40 design points. This solid horizontal line

marks the median of the GIBF RMSEs from the experiment with the same level of noise and k= 20

design points. In general, we can see that roughly half as many design points are needed by GIBF to

obtain similar RMSEs for the Gaussian and Matérn GRFs; this becomes even clearer in following

experiments. Furthermore, for fixed k, the median RMSEs of GIBF using noisy simulation output

(σ= 0.1) is similar to the RMSEs of the Gaussian and Matérn GRFs using simulation output with

no noise.
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The optimal order for GIBF, obtained using the method in Section 5.2.2, gave the best predic-

tions in every case; this optimal order was (1,1). Although there are more parameters for GIBFs

(specifically, in the vector θ) than the Gaussian and Matérn GRFs, finding the MLE of θ for

GIBFs can be done very fast since, from our practical experience, the prediction ability of GIBFs

is not sensitive to θ. The prediction ability of the Gaussian and Matérn GRFs is sensitive to their

θ parameters (as defined in the beginning of Section 3). For example, if the θ parameters for

the Gaussian are too large, then the metamodel will exhibit mean reversion. Conversely, if the θ

parameters for the Gaussian are too small, then the correlations among the design points and the

prediction point will be too strong and more likely to result in an ill-conditioned covariance matrix.

By comparing the experiment results for GIBFs and IBFs in Figure 4, we can see that a benefit

is obtained from accounting for the boundary conditions of IBFs. The optimal order of IBF (for

this experiment and following experiments) was also obtained using the method in Section 5.2.2.

6.2. Expected Profit of a Two Product Assortment

In this example, the response surface is the expected profit of a two product assortment, as a

function of their prices, where the stock levels are chosen optimally for each price pair (Aydin

and Porteus 2008). We provide the necessary simulation model inputs used for our experiments

and refer the reader to Aydin and Porteus (2008) for specific details about calculating the optimal

stock levels and simulating the system. We assume the demand model of Aydin and Porteus (2008)

and consider a two product inventory and pricing problem with stochastic logit demand, where

α1 = 10, α2 = 25, c1 = 12, c2 = 24, (defined in Aydin and Porteus (2008) and provided here so that

the experiments can be reproduced) and the random error terms are uniformly distributed between

100 and 400. The price of the two products, denoted by the vector x, varies over the rectangle

[7,17]× [21,51], i.e., the price of the first product varies over [7,17] and the price of the second

product varies over [21,51]. Similar to the credit risk simulation, the number of replications run

at scenario x is chosen so that the sample standard deviation across replications is σyep(x), where

the closed-form solution yep is obtained using the method in Aydin and Porteus (2008).
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Figure 5 Box-plots of RMSE for the expected profit simulation.

Experiment Results The experiment results for the expected profit simulation are given in

Figure 5 and are similar to the results of the credit risk simulation. Namely, using GIBF resulted in

better predictions than the Gaussian and Matérn GRFs. We can also see that when twice as many

design points (k= 40) were used with the Gaussian and Matérn GRFs, the prediction ability was

still not as accurate as when using GIBF with half as many design points (k= 20). Furthermore, for

both k= 20 and k= 40, GIBF built a more accurate metamodel using noisy observations (σ= 0.1)

than the Gaussian and Matérn GRFs using observations with no noise. In each experiment, the

optimal order of GIBF was either (1,1) or (2,2), and in every case the optimal order found using

the method in Section 5.2.2 also gave the best predictions.

6.3. Test Functions

In this section, we use three test functions with varying properties to see how GIBFs can handle

different types of response surfaces. The three test functions we use are:

yAlpine−1(x) = |x1 sin(x1) + 0.1x1|+ |x2 sin(x2) + 0.1x2| on [0,4]× [−1,1]

yCamel−6(x) = (4− 2.1x2
1 +

x4
1

3
)x2

1 +x1x2 + (−4 + 4x2
2)x2

2 on [−2,2]× [−1,1]

yCamel−3(x) = 2x2
1− 1.05x4

1 +
x6

1

6
+x1x2 +x2

2 on [−2,2]2.
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Figure 6 Box-plots of RMSE for the Alpine−1 test function.

The Alpine-1 test function, on the region we have chosen, is non-differentiable in the first coordinate

and differentiable in the second coordinate. We use this test function to assess the benefit gained

from utilizing the differentiability property of GIBFs, namely, the differentiability of GIBFs can

vary in each coordinate. The Camel-6 and Camel-3 test functions represent other complicated

response surfaces. To obtain noisy observations, we add a mean zero Gaussian random variable

with standard deviation σy(x) to the test function value.

Experiment Results The experiment results for each of the test functions are given in Figures

6, 7, and 8. As can be seen in these figures, stochastic kriging with GIBFs resulted in better

predictions than with the Gaussian and Matérn GRFs. Similar to the credit risk and expected

profit simulation results, the benefit (in terms of the ratio between RMSEs) was greatest when no

noise was present in the simulation ouput and decreased as the noise level increased.

As mentioned earlier, the Alpine-1 test function on the region we have chosen is non-differentiable

in the first coordinate and differentiable in the second coordinate. The optimal order of GIBF

chosen using the method in Section 5.2.2 was (1,2) for every experiment with the Alpine-1 test

function and gave the best predictions in every case. For the other test functions, the optimal order
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Figure 7 Box-plots of RMSE for the Camel−6 test function.

Figure 8 Box-plots of RMSE for the Camel−3 test function.

obtained using the method in Section 5.2.2 did not always give the best predictions. In two cases

(Camel-6 with k = 20 and no noise, and Camel-3 with k = 40 and no noise), the order obtained

using the method in Section 5.2.2 for some macroreplications led to the second best predictions out

of all GIBFs. From our practical experience, these situations occur when the GIBF whose order
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is chosen by the method in Section 5.2.2 and the GIBF whose order leads to the best predictions

result in metamodels with similar accuracy and quality. In other words, if both metamodels are

sufficiently accurate, then the method in Section 5.2.2 may choose the order of GIBF leading to the

slightly less accurate metamodel. However, in our practical experience, if there is an order of GIBF

that results in a clearly better metamodel, the method in Section 5.2.2 will choose that order.

For the Camel-3 test function, with k= 40 and no noise, using the Gaussian GRF led to numerical

instabilities in the inversion of the covariance matrix. Thus, a stochastic kriging metamodel could

not be constructed (and, thus, is ommitted from the plot). However, GIBF and the Matérn GRF

did not experience numerical instabilities in any case.

7. Conclusion

In this paper, we introduced a novel class of GRFs called generalized integrated Brownian fields

(GIBFs), focusing on their use with Gaussian process modeling for deterministic and stochastic

simulation metamodeling. We constructed GIBFs in a probabilistic setting and discussed several

of their properties, including differentiability that can differ in each coordinate, no mean reversion,

and the Markov property. We showed how to build Gaussian process metamodels using stochastic

kriging with GIBFs, discussed their approximation capability and metamodel differentiability, and

used several examples to assess their prediction capability. These examples exhibited both the

flexibility and the substantial improvement in predictions when using stochastic kriging with GIBFs

instead of the Gaussian and Matérn GRFs. The Electronic Companion for this paper provides

additional material, including 1) proofs of all theorems, 2) a justification for using cross-validation

to choose the optimal order, 3) plots of the response surfaces and some metamodels from the

numerical experiments, 4) further experiments investigating the impact of no mean reversion, and

the non-stationarity and Markov property of GIBFs, 5) a discussion of when GIBFs should be

used, and 6) how the number of design points, the number of replications, and the dimensionality

of the problem influence performance.
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