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Optimal nonlinear pricing in social networks under

asymmetric network information

Yang Zhang∗ Ying-Ju Chen†

Forthcoming, Operations Research

Abstract

We study the optimal nonlinear pricing of products and services in social networks, where

customers are strategic and their consumption exhibits local externality. Customers know

about their local network characteristics (which are positively affiliated across neighbors) but

the selling firm only has knowledge of the global network. We develop a solution approach

based on calculus of variations and positive neighbor affiliation to tackle this non-standard

principal-agent problem faced by the firm. We show that the optimal pricing compromises the

capitalization of the susceptibility to neighbor consumption with the motivation of one’s own

consumption, which gives rise to a menu of quantity premium or quantity discount. In the

Erdös and Rényi graph (a special case of the social network model we use), we find that the

pricing scheme does not screen network positions; consequently, the firm can offer a simple

uniform price. We conduct robustness checks of our results with two way connections, where

the firm-optimal consumption becomes linear in customer degree in the scale free network.

Compared to linear pricing, we show that nonlinear pricing allows the firm to respond more

effectively to the changes of network topology and economic factors.

Keywords: network formation, local network effects, game theory, information asymmetry,

nonlinear pricing.
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1 Introduction

Social networks reflect the complications inherent to relationships among humans, and one’s

daily life decisions are frequently affected by the choices of her social contacts. Examples

abound, ranging from video games, cell phones, movies, game consoles, to social clubs and on-

line platform services. This state of affairs challenges a long line of research on the economics

of networks, where individual activities (e.g. adoption, consumption) have global impacts on

the activities of others (see Rohlfs 1974, Katz and Shapiro 1985, Farrell and Saloner 1986, and

the references therein). Consider, for example, a person who engages in online games. His

or her time spent on the game might be positively associated with the time that his or her

friends spend on the same game, but at the same time unaffected by the play of the game from

strangers. In other words, the externalities of network activities are localized within social

neighborhoods.

Being aware of these localized externalites, firms shall devise their marketing, promotion,

and pricing strategies accordingly. In 1990, for example, MCI Communications proposed its

Friends and Family Plans, which charged customers different prices based on their number of

friends. A more recent instance is that of Airbnb, which offers coupons for those who invite

friends to join its platform. Facebook, Twitter, Klout, and Vocalpoint all have implemented

sophisticated tools to facilitate such network-based pricing; see Bloch and Quérou (2013), Can-

dogan et al. (2012), and Fainmesser and Galeotti (2016) for comprehensive overviews of these

target marketing and pricing efforts.

Notwithstanding the advanced technologies now available, firms are still greatly challenged

by network pricing, particularly because of lack of precise network information. On the one hand,

social networks are so complicated that an individual customer usually has limited knowl-

edge about the entire network structure (i.e. who is connected to whom). Hence, a customer

may have to make her consumption decisions with only local information and some specu-

lation about other customers’ choices. This creates information heterogeneity among customers

owing to their heterogeneous network positions. On the other hand, the firm is at an infor-

mation disadvantage with respect to individual customers because it cannot directly observe

their respective positions in the network. This leads to information asymmetry between the firm

and customers. An additional obstacle of pricing arises from social comparison. Even for the

firms facing no information asymmetry (such as Facebook or Twitter, who know well enough

about the connectivity of their users), it might be still difficult to price directly based on the

customer’s network position, because the customer may easily compare the price she got with

that offered to her friend, and rejects any price that she thinks is “unfair”.

The presence of these two hurdles, information asymmetry and customers’ counteractions,

partially explains why in the era of modern Internet, we still see seemingly coarse pricing
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schemes for products whose local externalities are widely documented. In the aforementioned

examples, movies are predominantly sold via fixed pricing or volume discounts; e.g., Goodrich

quality theaters in the United States offer their movie tickets at a discount through VIP cards,

but the benefit can be redeemed with a minimum order of 50 tickets.1 For mobile carriers like

China Mobile in Hong Kong, although there may be some sophisticated combinations between

cellphone pricing and data usages, the major differentiator among these plans remains volume-

based: e.g., 6GB vs 10GB/ month for data usage, 2,000 vs 3,700 minutes of local calls, and etc.2

These practical plans strike us as firms should definitely be aware of how crucial the local

network structure is to customers who purchase movie tickets or use cellphones, and yet it

remains a nomenclature that they, unwillingly maybe, abandon more sophisticated offers.

This paper acknowledges the above issues and investigates the firm’s optimal nonlinear

pricing problem when customers are embedded in a network and possess private informa-

tion about their network positions. The pricing scheme is nonlinear in that the average unit

price for a customer is not constant, depending on her total consumption. Nonlinear pric-

ing emerges as the solution because in the presence of information asymmetry, the firm can

offer a menu that couples quantity with price, from which customers choose by themselves.

Through self-selection, a customer’s choice then reveals her network position. Nonlinear pric-

ing also bypasses the issues of social comparison because the discrimination is implicit: the same

quantity-price menu is offered to all customers. At the same time, as the means to implement

second-degree price discrimination, nonlinear pricing is superior to a fixed price offer because

it solicits customers’ private information more effectively.

We consider a model of social network that evolves via the framework put forth by Jackson

and Rogers (2007). The stochastic network formation process describes how each new node

identifies extant nodes at random and further searches the neighborhoods of these nodes, and

admits a tractable mean field approximation of the degree distribution. This framework high-

lights the correlation across neighbor degrees, and entails several notable special cases, including

the graphs studied by Callaway et al. (2001) and Erdös and Rényi (1960), a variant of the prefer-

ential attachment model of Barabási and Albert (1999), and the model studied by Price (1976).

We build up our model upon the network topology generated by Jackson and Rogers (2007)

for its generality.3

1See the details via https://www.goodrichqualitytheaters.com/vip-cards.
2See details via

http://www.hk.chinamobile.com/en/corporate information/Service Plan s/Supreme Series/SupremeGlobal ServicePlan.html

and http://www.hk.chinamobile.com/en/corporate information/Service Plans/4.5G Service Plan/4Glocal serviceplan.html.
3It should be highlighted, though, that our model only uses the degree distribution and neighbor degree distribution

generated by the framework of Jackson and Rogers (2007); the specific network formation process in Jackson and Rogers

(2007) does not enter our model. This point will be further clarified as we proceed with the model.
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To describe the network game, we adopt the elegant linear-quadratic formulation presented

by Ballester et al. (2006) where each customer’s utility depends on her own consumption and

that of her neighbors. The customer infers neighbors’ consumption from their degrees (i.e. their

numbers of neighbors); yet the customer does not know the degree of her neighbor except for

information on its distribution as determined by the stochastic network formation process.

This imposes the uncertainty in the neighbor consumption faced by the focal customer. In our

paper we consider two alternative interpretations of how the payoff externalities are generated

through the network formation: In the out-neighbor model, a customer’s payoff is influenced by

her out-neighbors’ consumption levels. Whereas in the in-neighbor model, it is the in-neighbors’

consumptions that influence an individual customer’s payoff.

When the firm adopts nonlinear pricing to serve customers with heterogeneous and un-

observable degrees, maximizing its profit resembles a principal–agent problem, in which cus-

tomers’ degrees become their private types. These types are correlated among agents in our

setting, since one’s neighbor’s degree distribution is conditional on one’s own degree in the

network. In order to obtain the type distribution, we advance the results of Jackson and Rogers

(2007) by providing the in-degree distributions of both the out-neighbors and the in-neighbors

of a player of any given degree in the network. These results may prove useful in their own

right.

For both the out-neighbor and in-neighbor models, we find that the nonlinear pricing is

driven by a balance of rent extraction and sales promotion – On the one hand, the firm tends

to price higher for higher degree customers to profit from their increased susceptibility to peer

consumption; on the other hand, it also wants to discount the price in order to encourage

higher degree customers’ own consumptions. If the former dominates the latter, the optimal

menu is characterized by a quantity premium. Inversely, it will exhibit a quantity discount.

We also compare our results with those of linear pricing as in Fainmesser and Galeotti (2016),

and demonstrate the advantage of nonlinear pricing in responding to the changes of network

topology and economic factors.

The empirical literature on social networks has widely documented positive affiliations

among neighbor degrees (also referred as assortativity). See Barclay et al. (2014), Newman and

Park (2003), and the discussions and references in Jackson and Rogers (2007). In our model,

this positive neighbor affiliation is crucial in two aspects. On the one hand, it makes the play-

ers’ payoff functions satisfy the Spence-Mirrlees single-crossing condition, which allows us

to apply standard approach to reduce the incentive constraints in mechanism design. On the

other hand, positive neighbor affiliation is not featured in the networks based on which extant

pricing models are drawn (under incomplete network information – Fainmesser and Galeotti
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20164), and thereby sets our paper apart from the literature.

Applying our results of out-neighbor model to the Erdös and Rényi graph (Callaway et al.,

2001; Erdös and Rényi, 1960), we find that the pricing scheme should not screen network posi-

tions. As a consequence, the firm can optimally offer a simple uniform pricing scheme, under

which every customer is induced to choose the same consumption level in equilibrium. This

result echoes some prior work on social network pricing under complete information (such as

Bloch and Quérou (2013) and Candogan et al. (2012)), which emphasizes the prevalence of uni-

form pricing (e.g., when the interaction matrix is symmetric). Our analysis reveals that even if

the firm can implement more flexible (nonlinear) pricing schemes, in a Erdös and Rényi graph

uniform pricing emerges as the optimal choice.

We robustness-checked our findings with two-way connections, and find the results in this

new setting are well analogous to those of out-neighbor and in-neighbor models. In particular,

we show the consumption under optimal pricing is proportional to the player degree, when

the connections are two-way and the underlying network is scale free (Barabási and Albert,

1999).

The rest of our paper proceeds as follows. Section 2 reviews relevant literature. Section

3 presents the basic model. In Section 4 we characterize the degree distributions of both out-

neighbors and in-neighbors for a player of any given degree in the network. Sections 5 and 6

study the out-neighbor model and the in-neighbor model, respectively. We conclude in Section

7. All the proofs are relegated to the appendix.

2 Literature review

Our paper is related to the literature on network games. This research stream started with

discussions on the aggregate level of network externalities, where a player’s utility depends on

the aggregate consumption of all players (e.g., Rohlfs (1974), Katz and Shapiro (1985), Farrell

and Saloner (1986)). Under this assumption, a number of papers have examined the monopoly

pricing problem, including Dybvig and Spatt (1983), Cabral et al. (1999), and Ochs and Park

(2010), and assortment planning (Wang and Wang (2016)). Another stream of papers, including

ours, explicitly take into account the network structure and study local network effects among

players. We refer interested readers to the following surveys of the growing literature on eco-

nomics of networks: Jackson (2008); Ioannides (2012); Jackson and Zenou (2015); and Jackson

et al. (2016).

Our utility function is adapted from Ballester et al. (2006). It features concavity in own con-

4The network structure studied in Fainmesser and Galeotti (2016) exhibits correlation between one’s own in-degree

and out-degree, but not across neighbor degrees. See Section 5.1 for further illustration.
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sumption as well as strategic complementarity between neighbor consumption, so this func-

tion is appropriate for the product adoption problem we study. The linear quadratic form of

this utility function has the further advantage of making a study of the equilibrium behavior

of network games more tractable, as demonstrated in Ballester et al. (2006). Similarly to our

paper, those of Bloch and Quérou (2013) and Candogan et al. (2012) also build upon the frame-

work of Ballester et al. (2006) to study the pricing problem. These two papers concentrate on

linear pricing, i.e., a constant unit price for each player, while the firm can observe the network

structure and so can price discriminate based on players’ network positions. It is interesting

that, if the network effects are symmetric, then the optimal linear pricing turns out to be inde-

pendent of players’ network positions. Ehsani et al. (2012) and Swapna et al. (2012) employ a

dynamic pricing approach; they consider again complete network information and assume that

customers are not forward looking. Leduc et al. (2017) consider a two-period setting in which

customers face uncertain product qualities and can learn it from neighbor’s referrals. They ex-

amine the optimal referral and intertemporal pricing plan for the selling firm. Although Leduc

et al. (2017) also consider incomplete network information, the authors study a very different

problem than ours, where each customer has unit demand, and both product price and referral

reward are linear. As already mentioned, our paper is closely related to Fainmesser and Gale-

otti (2016), which focuses also on linear pricing but allows the firm to have partial information

about players’ in-degrees and/or out-degrees.5 Under the linear pricing scheme, the authors

show that optimal pricing exhibits price discount for influence on others’ consumption and

price premium for susceptibility to others’ consumption.

Our paper is distinguished from the above cited work in the following aspects. First, we

study the nonlinear pricing problem and assume that the firm cannot observe individual play-

ers’ network positions. This gives rise to a mechanism design (principal-agent) problem. Sec-

ond, we work on a network topology that incorporates positive affiliation of neighbor degrees,

as introduced in Jackson and Rogers (2007). The network model we employed nests classical

models (Callaway et al. 2001, Erdös and Rényi 1960, Barabási and Albert 1999, Price 1976) as

limiting cases. Third, because of these differences, the pricing implications of our paper are

radically different. We demonstrate that both quantity premium and quantity discount can

emerge as optimal schemes, and that, in a Erdös and Rényi graph (Callaway et al., 2001; Erdös

and Rényi, 1960), uniform pricing becomes optimal. Noticeably, uniform pricing has been ex-

amined in a number of contexts different than ours, including Fazeli and Jadbabaie (2012),

5Incidentally, Jadbabaie and Kakhbod (2016), Chen et al. (2011) and Shen and Basar (2007) study the problem of

pricing network goods when the customers’ intrinsic product values (Chen et al., 2011; Shen and Basar, 2007) or strength

of externalities (Jadbabaie and Kakhbod, 2016) are privately learned. These papers differ from ours in that the network

structure is observable by the firm.
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Banerji and Dutta (2009), Armstrong (2006), Rochet and Tirole (2006), and Caillaud and Jullien

(2003).

Finally, our work is to related to the literature on contracting with externalities. That re-

search stream considers a principal’s problem when facing multiple agents whose payoffs de-

pend on other agents’ decisions. In examining this multilateral contracting problem, many

papers allow the principal to make an individual agent’s contract contingent on other agents’

reports and selections. Thus, cross-checking agents’ decisions helps the principal to reduce

their information rents (especially when agents’ types are correlated) and sometimes facili-

tates more efficient allocations. This idea has been adopted in, among others, Genicot and Ray

(2006), Gomes (2005), Jehiel et al. (1996), Segal (1999), and Figueroa and Skreta (2011). In our

model, the firm sets individual pricing schemes under which the price charged to one player

does not depend on other players’ choices. We view this as a natural restriction in a large

stochastic network, because firms can hardly devise complicated pricing plans that specify

how the entire profile of all customers’ choices determines the payment of a single customer.

This is aligned with the ”publicly bilateral contracting” setting studied in Segal (1999). Csorba

(2008) explores the contracting problem in a setting where one’s consumption has impact on

the entire population. Thus we could view the network effect reflected in Csorba (2008) as

“global”, which differs from the local network effect we study. The paper that is closest to

ours in this stream of literature is Jadbabaie and Kakhbod (2016), which studies optimal con-

tracting with local network externalities. Specifically, Jadbabaie and Kakhbod (2016) compares

the performance of multilateral contracting with that of bilateral contracting upon various net-

work structures. Unlike our work, however, Jadbabaie and Kakhbod (2016) assumes complete

knowledge of network structure by both the firm and the customers, yet private information

on the strength of externalities.

3 Model

We consider a model in which the firm intends to sell products to a group of N strategic cus-

tomers in a social network. The customers have incomplete information on the network topol-

ogy. For expositional convenience, we will navigate through each component of our model.

We shall use “customer”, “node”, and “player” interchangeably.

Social networks. We adopt the elegant framework by Jackson and Rogers (2007) and for

completeness we describe it in detail. The network evolves in discrete time via the following

process. In each time epoch t, a new node t is born. Upon birth, the node links or extant nodes

at random (called tier-1 neighbors), and further searches the neighborhoods of these nodes and

randomly links on of their neighbors (called tier-2 neighbors). The initial network is assumed

7
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to be structurally supportive. The linked nodes are called out-neighbors to the node in question,

and the number of one’s out-neighbors is one’s out-degree, which is denoted by m := or + on.

Conversely, if a node gets linked by a new born node as just described, the node gains an

in-neighbor, and the number of in-neighbors is one’s in-degree. Therefore in expectation, nodes

born earlier get higher in-degree, and one’s in-neighbors have lower in-degree than oneself.

Hereafter, we simply refer in-degree as degree, when no confusion could arise. Let r := or
on

measure the randomness of the network and at the same time capture the correlation of degrees

among players.6

This framework includes several notable special cases. For example, when or → 0, on = 1,

the model degenerates to the one studied in Price (1976). When r → 0, it becomes a variant

of the preferential attachment model introduced by Barabási and Albert (1999).7 At the other

extreme, when r → ∞, the model is a variant of the graph studied by Erdös and Rényi (1960) (as

presented in Callaway et al. (2001)). We view customers as nodes, and their social relationships

are described by the links in this network.

Degree distributions. The above network formation process admits a tractable mean field

approximation with large enough N.8 Under mean field approximation, Jackson and Rogers

(2007) show that the degree distribution of network nodes is characterized by the following

cdf. F(∙):

F(k) = 1 −
{

rm
k + rm

}1+r

. (1)

The pdf. is denoted by lower case f (k) (a convention that is followed for all the distribution

functions in this paper). Hence, the inverse hazard rate is H(k) := 1−F(k)
f (k) = k+rm

1+r .9

Information structure. We amend the above model and introduce information asymmetry.

Specifically, the global network characteristics r, m are common knowledge. However, each

6In the original model of Jackson and Rogers (2007), the node upon birth identifies mr tier-1 neighbors and mn tier-2

neighbors, and then link to the identified tier-1 [-2] neighbors with probability pr [pn]. The linked nodes are called

out-neighbors to the focal node. We adopt a simplified version of this model by assuming a deterministic linking

process (which is compatible with the mean field approximation). Our version of the model produces identical degree

distribution and neighbor degree distributions as does Jackson and Rogers (2007), when we normalize or = prmr and

on = pnmn.
7A strict resemblance to preferential attachment requires that the nodes be attached with d0 in-degrees upon birth.

In this paper we focus on the case d0 = 0 (as in most of Jackson and Rogers (2007)).
8We require the network size to be large enough so that the difference of using N as the upper bound in degree

distributions is negligible versus using infinity. This is illustrated in the proofs.
9Under large enough network size, we are able to approximate individual’s degree as a continuous variable. This

also allows for closed form expressions for degree distributions under the mean field approach. The continuous degree

is a common setup in the complex network literature, e.g. Jackson and Rogers (2007), Callaway et al. (2001), Barabási

and Albert (1999), among others.
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customer privately learns her degree k. In that sense, both the customers and the firm have

stochastic knowledge on the global network, whereas each customer has private (deterministic)

knowledge of her local connectivity.

Payoffs. We describe the game by specifying customers’ payoffs from interacting with

each other. For that purpose, we embed the neat payoff formulation by Ballester et al. (2006),

in which the uncertainty is induced by the social network. Given their ex ante symmetry, the

players can be labeled by their degrees rather than their individual identities. For a degree-k

customer, we use x(k) to denote her consumption level 10, and P(x(k)) to denote the corre-

sponding transfer payment made to the firm.

The customer’s utility is given as follows:

πk(x(∙), P(∙)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈Nz

k

x(j)|k] − P(x(k)), (2)

where a measures the intrinsic marginal utility and b the degree of diminishing marginal re-

turns. The parameter δ captures the strength of product externality: a higher value corresponds

to a greater dependence on other customers’ choices. Here Nz
k represents the set of in-neighbors

(out-neighbors) of a degree-k player, when z = i(o). Thus E[∑j∈Nz
k

x(j)|k] is the expected con-

sumption of all in-neighbors (out-neighbors) of the degree-k player when z = i(o), based on

the degree-k player’s local knowledge.

Given consumption x(∙) and payment scheme P(∙), the firm’s payoff is as follows:

π0(x(∙), P(∙)) = N
∫ N

0
(P(x(k)) − cx(k)) f (k)dk, (3)

where we use index 0 to denote the firm. The parameter c is the per-unit cost of providing the

products. The term P(x(k)) − cx(k) represents the profit from selling to each degree-k player,

and the total profit is collected over the network according to the degree distribution.

As inferred from (2) and (3), our model only uses the degree distribution and neighbor

degree distribution derived from Jackson and Rogers (2007), but does not rely on how the

network is formed. Thus in principle, one could specify our model without recourse to the

specific network formation process, which increases the robustness of our results.

Time line. The sequence of events proceeds as follows. First, the firm announces the pricing

scheme P(x) for any consumption level x. Second, customers observe their own degrees and

simultaneously choose their consumption levels conditional on their degrees, that is, x(k) for

degree k. Note that the firm cannot observe the customers’ degrees. Using the revelation

principle, it suffices to consider the truth-telling mechanism. Thus the game can be transformed

as follows. First, the firm announces an allocation {x(k), P(x(k))} for each degree k. Second,

the customers report their degrees to the firm. Third, the firm implements the allocation in

10The pricing scheme in our model screens the customer’s in-degree only, given that one’s out-degree is constant.
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accordance with the customers’ reports. The payoff function of a degree-k customer reporting

k̂ when others report their own types is

πk(k̂, x(∙), P(∙)) = ax(k̂) − bx2(k̂) + x(k̂)δE[ ∑
j∈Nz

k

x(j)|k] − P(x(k̂)),

z ∈ {i, o}, while the mechanism ensures truth telling is optimal for each customer.

Optimization formulation. The firm’s problem that we have described can be formally stated

as

max
x(∙),P(∙)

π0(x(∙), P(∙)) = N
∫ N

0
(P(x(k)) − cx(k)) f (k)dk (4)

s.t. πk(k, x(∙), P(∙)) ≥ πk(k̂, x(∙), P(∙)), ∀k, k̂ (5)

πk(k, x(∙), P(∙)) ≥ 0, ∀k (6)

where (5) is the incentive compatibility (IC) constraint, and (6) is the individual rationality (IR)

constraint. The IC constraint (5) ensures that, for a degree-k customer, reporting her true degree

(type) yields a higher expected payoff than pretending to be any other type k̂. At the same time,

the IR constraint (6) ensures that upon accepting the offer, a degree-k customer receives a non-

negative payoff that is at least weakly better than not buying at all. We impose the following

conditions, where k̄ denotes the highest possible degree in the network.

Assumption 1. a > c, δk̄ < 2b.

We assume that δk̄ < 2b in order to prevent an unbounded equilibrium for the consump-

tion game that exhibits strategic complementarity. This assumption is a direct analogy of that

employed in Fainmesser and Galeotti (2016), and is analogous also to Assumption 1 of Cando-

gan et al. (2012) in the environment of incomplete network information. To see this, consider

a variant game in which the customers produce the goods themselves. Obviously, the player

consumption level in this variant game should be higher than that in the presence of double

marginalization.

The payoff function of this variant game is

π̄k(x(∙)) = (a − c)x(k) − bx2(k) + x(k)δE[ ∑
j∈Nz

k

x(j)|k], (7)

z ∈ {i, o}. The best response to given neighbor strategy, E[∑j∈Nz
k

x(j)|k], can be written as

x̄(k) = 1
2b{a − c + δE[∑j∈Nz

k
x(j)|k]}. Then δk̄ < 2b implies that the effect of one’s own action

on payoff dominates that of an average action of one’s neighbors; as a result, the best response

dynamics constitute a contraction mapping and the equilibrium of the variant game will exist

uniquely and be finite. That sets a finite upper bound for the equilibrium of the original game.

The (omitted) proof is the same as that for part 1 of Proposition 1 in Fainmesser and Galeotti
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(2016), except that their problem uses b = 1/2. Assumption 1 applies in the rest of our paper

unless otherwise noted.

In the section that follows, we present an analysis of the degree distributions of one’s neigh-

bors in the network, which will be useful for characterizing the consumption game. Since the

underlying network formation process does not determine the influence structure (i.e. who

exerts influence and who is influenced), we explore two possible models in this paper. In the

out-neighbor model in Section 5, the customers are influenced by the consumption of their out-

neighbors; that is, E[∑j∈Nz
k

x(j)|k] in (2) refers to the expected total out-neighbor consumption

(z = o). The in-neighbor model analyzed in Section 6 handles the case where E[∑j∈Nz
k

x(j)|k]

represents the expected total in-neighbor consumption (z = i).

4 Neighbors’ degree distributions and consumption

Suppose the firm adopts nonlinear pricing to serve customers with heterogeneous and unob-

servable in-degrees. Under nonlinear pricing the firm faces a principal-agent problem: cus-

tomers are the agents, and their in-degrees are the agents’ private types. The type distribu-

tion corresponds to the (unconditional) in-degree distribution (1), as characterized by Jackson

and Rogers (2007). However, another critical aspect of the firm’s problem in this case is the

in-degree distribution of the customer’s neighbors. By (2), neighbors’ in-degree distribution

directly affects the neighbors’ expected consumption, which in turn influences the individual

customer’s willingness to pay.

This section advances the results of Jackson and Rogers (2007) to better serve our purpose.

We show that the network modelled by Jackson and Rogers exhibits the following degree dis-

tributions of a player’s neighbors:

Proposition 1. The cdf. of in-degree distribution for out-neighbors of an indegree-k player is as follows:

For tier-1 out-neighbors,

Fo1
k (d) = 1 −

(
k + rm
d + rm

)r+1

, ∀d > k. (8)

For tier-2 out-neighbors,

Fo2
k (d) = 1 −

(
k + rm
d + rm

)r ( r(d − k)
d + rm

+ 1

)

, ∀d > k. (9)

The cdf. of in-degree distribution for in-neighbors of an indegree-k player is as follows:

Fk(d) = 1 −
(k + rm) rm

d+rm − rm

k
, ∀d < k (10)

Both distributions Fo1
k (∙), Fo2

k (∙) first-order stochastically increase with m. The distribution Fk(∙) first-

order stochastically increases with r and m.
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All proofs are given in the appendix. We can use (8)-(10) to verify the following remark.

Remark 1 (Positive neighbor affiliation). The network exhibits positive out-neighbor affiliation:

1 − Fo1
k (d) and 1 − Fo2

k (d) increase with k for all d > k, and positive in-neighbor affiliation: 1 −

Fk(d) increases with k for all d < k.

The concept of positive neighbor affiliation is adapted from Galeotti et al. (2010). It im-

plies the positive correlation between neighbor degrees – a property suggested by a variety of

empirical research (e.g., Barclay et al. (2014) and Newman and Park (2003)). As we will see,

the presence of positive neighbor affiliation will help qualify the single-crossing condition (to-

gether with the monotonicity of x(∙)), thus laying the foundation for the pricing mechanism

design.

Besides that, notice 1 − Fo1
k (d) < 1 − Fo2

k (d) ∀d > k. Therefore, the in-degree of tier-2

out-neighbors first-order stochastically dominates (FOSD) that of tier-1 out-neighbors. This

outcome reflects the idea that searching through neighborhoods yields neighbors of higher

degree than does making random connections. Not surprisingly, the degree distributions of all

three kinds of neighbors are FOSD shifted by the average degree m (Proposition 1). In addition,

the in-neighbor degree distribution is positively FOSD shifted by r. The intuition here is that

a low value of r corresponds to high degree correlation, which makes it difficult for late-born

players to accumulate in-degrees. Hence for each degree type player, the in-degree distribution

of her in-neighbors (who are born later than she was) stochastically increases with r.

Next, we build upon Proposition 1 to characterize the expected consumption of all neigh-

bors of the degree-k player (E[∑j∈Nz
k

x(j)|k]). This critical term is imperative for the consump-

tion equilibrium among the customers. Recall that Nz
k , with z ∈ {i, o}, represents (respectively)

the in- and out-neighborhood of a degree-k player.

Proposition 2. The expected sums of neighbor consumption for a degree-k customer are as follows.

• For out-neighbor consumption

E[ ∑
j∈No

k

x(j)|k] = (k + rm)r rm
∫ N

k

x(y)
(y + rm)r+1 dy, (11)

which increases in k if x(∙) is increasing.

• For in-neighbor consumption

E[ ∑
j∈Ni

k

x(j)|k] = (k + rm)rm
∫ k

0

x(y)
(y + rm)2 dy, (12)

which increases in k.

The intuition for Proposition 2 is as follows. Consider a specific player in the network and

suppose that the player’s degree k increases. By Remark 1, that will lead the FOSD shift of

12
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both out- and in-neighbor degree distributions (Fo1
k (∙), Fo2

k (∙), Fk(∙)). If the consumption level

x(∙) increases with the degree, it follows that the expected consumption of a (out- and in-)

neighbor to the focal player, E[x(j)|j∈Nz
k
k], increases in k (z ∈ {o, i}). Then the aggregate neigh-

bor consumption, E[∑j∈Nz
k

x(j)|k], also rises with k (z ∈ {o, i}). 11 This gives rise to a boost

of the positive product externality and thereby increases the value of marginal consumption

to the player. The mathematical implication is that the compensation rate for the indifference

curve is uniformly higher under higher player degree, thereby introducing the Spence-Mirrlees

single-crossing condition as required for standard mechanism design (see e.g. Fudenberg and

Tirole 1991, Theorem 7.3). These results pave the way for further derivations of optimal pricing

and consumption.

5 Out-neighbor model

In this section we focus on the out-neighbor model, where the customers are influenced by the

consumption of their out-neighbors. We will show that, in the out-neighbor model, the firm

can implement consumption equilibria both dependent and independent of agent’s degree,

and that the degree-dependent implementation is superior to the degree-independent one from

both perspectives of the firm and the customers. Hence our focus is given to degree-dependent

implementation (which involves the screening of degrees in the contract).

Assumption 2. r ≥ 1, b > δm.

Assumption 2 is required by the out-neighbor model in this section. Recall that r := or
on

represents the correlation of degrees among players. Thus, the condition r ≥ 1 suggests that

the degrees among neighbors do not exhibit strong correlation. Notably, Assumption 2 applies

to an important special case – the Erdös and Rényi graph (r → ∞). The second condition in the

assumption can be interpreted as a bound imposed on the strength of the payoff externality

δ. This is in line with Assumption 1, although there the upper bound on δ was motivated by

ensuring the existence of an equilibrium.

11In the case of out-neighbor consumption, we have E[∑j∈No
k

x(j)|k] = mE[x(j)|j∈No
k
k]; therefore E[∑j∈No

k
x(j)|k] rises

in k as long as E[x(j)|j∈No
k
k] increases in k. In the in-neighbor case, E[∑j∈Ni

k
x(j)|k] = kE[x(j)|j∈Ni

k
k], which implies that

E[x(j)|j∈Ni
k
k] inclines in k is no longer necessary for E[∑j∈Ni

k
x(j)|k] to increase in k. In fact, simple algebra reveals that

x(∙) being increasing is not required for E[∑j∈Ni
k

x(j)|k] to increase in k. That said however, the monotonicity constraint

x′(∙) > 0 remains present in the in-neighbor model in Section 6, because it is a standard requirement for local concavity

of truth reporting in the agent’s problem. See, for example, step (i) in the proof of Theorem 1.

13
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5.1 Pricing with degree-screening

In the out-neighbor model, the firm can price the goods via screening the agents’ degrees.

That makes the optimal agent consumption contingent on their degrees, as characterized in

the following theorem. For the ease of presentation, we refer to a degree-screening payment

scheme as a DS scheme. Let xo := a−c
2(b− δrm

r+1 )
, which is shown in the proof as a lower bound of

consumption (i.e. x(k) ≥ xo for all k) and is independent of degree.

Theorem 1. In the out-neighbor model, suppose that Assumptions 1 and 2 hold. The optimal solution

to the firm’s problem (4)-(6), {x∗(∙), P∗(∙)}, is such that:

The induced consumption x∗(∙) solves the following equation:

δ(r − 1)
2(b + br − δrm)

E[ ∑
j∈No

k

x∗(j)|k] + x∗(k) − (k + rm)x∗′(k) − xo = 0 (13)

The corresponding payment scheme is

P∗(x∗(k)) = ax∗(k) − b(x∗(k))2 + x∗(k)δE[∑j∈No
k

x∗(j)|k]

−
∫ k

0 x∗(u)δ d
du E[∑j∈No

u
x∗(j)|u]du.

(14)

Although the consumers are not influenced by their in-neighbors, the resulting consump-

tions, as revealed by Theorem 1, varies with their in-degrees. To understand this phenomenon,

note when the player’s degree k increases, E[∑j∈No
k

x(j)|k] increases assuming increasing neigh-

bor strategy (Proposition 2), as a result of positive neighbor affiliation (Remark 1). Given strate-

gic complementarity, the focal player will raise his consumption x(k) in response. That rein-

forces an equilibrium increasing in player degree. As the reader may suspect, the firm can also

implement a consumption profile that is independent of agent’s degree. However, as we argue

in Section 5.2, the degree-dependent implementation presented in Theorem 1 is superior to the

degree-independent one (c.f. Proposition 4), from both the perspective of the customers and

that of the firm. Last but not least, although P∗(∙) in Theorem 1 appears to involve one’s neigh-

bor consumption, the contract remains bilateral because the expected neighbor consumption

E[∑j∈No
k

x∗(j)|k] is specified in the contract according to the optimal x∗(∙) instead of depend-

ing on the neighbors’ actual inputs. This feature also resolves the coordination issue in the

consumption game (by imposing a fixed belief), and ensures that the equilibrium x∗(∙) (or

truth reporting) is uniquely implemented by the scheme P∗(∙).

To understand Theorem 1, one can uncover the marginal price from (14) as follows. 12

P∗′(x∗(k)) = a − 2bx∗(k) + δE[ ∑
j∈No

k

x∗(j)|k], (15)

12The marginal price (15) can be obtained by differentiating (14) and applying P∗′(x∗(k)) = dP∗(x∗(k))/dk
x∗′(k) .
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Observe that the marginal price P∗′(x∗(k)) increases in E[∑j∈No
k

x∗(j)|k], while declining in

x∗(k). The former suggests the firm to capitalize one’s susceptibility to peer consumption,

while the latter characterizes the discount offered to motivate one’s own consumption. When

δ = 0, the marginal price reduces to P∗′(x∗(k)) = a − 2bx∗(k), which resembles the standard

pricing result without network effect. The pricing strategy, as elaborated above, results in the

consumption equilibrium characterized by (13), which can be obtained by calculus of varia-

tion (as illustrated in the next paragraph). Note that the term
∫ k

0 x∗(u)δ d
du E[∑j∈No

u
x∗(j)|u]du

captures the information rent that a degree-k agent reserves in equilibrium, and ax∗(k) −

b(x∗(k))2 + x∗(k)δE[∑j∈No
k

x∗(j)|k] corresponds to the maximal revenue associated with the

consumption level x∗(k). Thus the optimal menu (14) reflects that, while the firm attempts

to maximize the revenue, it must subject itself to the customer’s manipulation enabled by the

private network information.

Because the payoff externalities render our problem nonstandard in mechanism design, we

shall explicate our solution approach to Theorem 1. First, we show that the positive neigh-

bor affiliation joint with the consumption monotonicity leads the player payoff to satisfy the

single-crossing condition. Hence we can retain the classical approach to focus on the local in-

centive compatibility constraints, given that the single-crossing property will implicitly ensure

the global incentive compatibility. That enables us to rewrite the firm’s objective as a function

of product consumption only:

max
x(∙)

π0(x(∙)) = N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]










 f (k)dk. (16)

The term H(k) d
dk E[∑j∈No

k
x(j)|k] parallels the classical distortion that arises from information

asymmetry. Here k denotes the lowest degree type of players to which the firm sells.

Then, we find the transformed problem can be tackled by calculus of variations, since (16)

contains E[∑j∈No
k

x(j)|k] as well as some variant of its derivative (corresponding to the term

associated with x(k)).13 Finally, we show that the candidate solution from the Euler equation

admits monotonicity (i.e., an individual’s consumption level increasing in her degree), which

in turn implies that the local incentive compatibility is satisfied. Similar solution approaches

are adopted for deriving Theorems 2 (in-neighbor model) and 3 (two-way influences).

Comparative statics. Having characterized the solution for optimal nonlinear pricing (in

Theorem 1), we now explore its structural properties.

13In basic mechanism design problems, the actions from different types of agent are separable in the principal’s

(transformed) objective function, which makes pointwise optimization sufficient for solving the problem. In our case,

however, the decision vector x(∙) is nonseparable and coupled through the integral term that represents expected

neighbor consumption. That necessitates the solution approach by calculus of variation.
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Proposition 3. In the out-neighbor model, and under the optimal nonlinear pricing scheme P∗(∙) with

induced consumption x∗(∙), the following statements hold.

• If b
b+br−δrm > r

r−1 ,

– the optimal payment scheme charges a lower marginal price per unit of goods for higher-

degree customers;

– the optimal payment scheme exhibits quantity discount.

• If

2b(r − 1)
[

1 −
b

b + br − δrm

]

− δrm > 0,

−δ2r2m2(r − 1) − 2b2(r + 1)2 + bδrm(r2 + 3) > 0,

– the optimal payment scheme charges a higher marginal price per unit of goods for higher-

degree customers.

– the optimal payment scheme exhibits quantity premium.

When the customer degree increases, the firm faces the tradeoff between raising the price

to extract the rent of customers attributed to increasing peer consumption, versus lowering the

price to offset the increasing disutility from the customer’s own consumption. Given higher

degree types consume more, if the former strategy dominates the latter, the pricing scheme will

exhibit quantity premium. In opposite, it will feature a quantity discount. To be specific, recall

the optimal marginal price

P∗′(x∗(k)) = a − 2bx∗(k) + δE[ ∑
j∈No

k

x∗(j)|k], (17)

where the term −2bx∗(k) captures the decline in marginal utility in the usage of the product,

and δE[∑j∈No
k

x∗(j)|k] the social utility derived from neighbor usage of the product. Then we

have

P′′(x∗(k)) =
dP′(x∗(k))

dk

/
x∗′(k)

= −2b + δ
d
dk

E[ ∑
j∈No

k

x∗(j)|k]
/

x∗′(k). (18)

Thus, whether the optimal contract exhibits quantity premium or quantity discount (P′′(x∗(k)) >

0 or < 0) depends on whether the increment of return from one’s local network (δ d
dk E[∑j∈No

k
x∗ (j)|k])

relative to the increment of one’s own consumption (x∗′(k)) dominates the associated reduc-

tion of marginal standalone utility (2b), or vice versa. Further algebra (substituting (52) and

(13) to remove x∗′(k)) leads to the sufficient conditions for quantity-discount and -premium,
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b
b+br−δrm > r

r−1 and 2b(r − 1)
[
1 − b

b+br−δrm

]
− δrm > 0 & − δ2r2m2(r − 1) − 2b2(r + 1)2 +

bδrm(r2 + 3) > 0, respectively given in Proposition 3.

When the firm is informed of the customer degrees and uses linear pricing, Fainmesser and

Galeotti (2016) show that it is optimal for the firm to offer price discount [price premium] with

respect to the customer’s in-degree [out-degree]. In doing so, the firm makes profit by facilitat-

ing one’s influence on [exploiting one’s susceptibility to] others’ consumption. When no such

topological information is available, the firm is not able to discriminate with linear pricing; and

as suggested in Fainmesser and Galeotti (2016), uniform pricing becomes optimal. However

as shown in our paper, allowing for nonlinear pricing in this case leads to substantially differ-

ent strategy recommendations. The firm could impose a price premium or price discount with

respect to the self selected quantity by the customer, which conveys her private knowledge on

ego-network. Hence the firm is able to conduct second-degree price discrimination when the

consumer network position is unobservable. In the out-neighbor model we currently study,

both quantity premium and quantity discount can arise at optimum. Since higher-degree cus-

tomers choose higher consumption levels in equilibrium, a quantity premium implies that the

firm discriminates against higher-degree customers, whereas a quantity discount implies that

the firm favors them.

We work on a network architecture that exhibits positive neighbor affiliation, which reflects

an important regularity (assortativity) in real social and economic networks (e.g. Barclay et al.

2014; Newman and Park 2003). Positive neighbor affiliation qualifies the single crossing con-

dition for the mechanism design, while it also makes our network structure fundamentally

different from the one examined in Fainmesser and Galeotti (2016). To be specific, positive

neighbor affiliation in our model regards the correlation across neighbors’ in-degrees. On the

contrary, Fainmesser and Galeotti (2016) refers to the correlation between one’s own in-degree

and out-degree (in their Section 5). As such, positive neighbor affiliation is not featured in Fain-

messer and Galeotti (2016). Therefore in summary, our setup differs from that of Fainmesser

and Galeotti in that, 1) we allow for nonlinear pricing, and we contrast with the results of lin-

ear pricing in details in Appendix B; 2) we adopt a network topology that embraces neighbor

degree correlation.

We now conduct some comparative statics regarding the consumption equilibrium and the

firm’s profit.

Corollary 1. In the out-neighbor model:

• the firm reaps more profit from higher-degree customers;

• the induced consumption level x∗(∙) is downward distorted from the first-best consumption;

• x∗(∙) increases with customer degree k, and increases with the average degree m;
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• the firm’s profit at optimum also increases with m.

These results are intuitive and affirms that our modeling and analysis are appropriate. The

first observation from Corollary 1 indicates that the firm finds higher-degree customers to be

more profitable. The second observation states that asymmetric network information leads

consumption to become distorted, as each customer unambiguously lowers her consumption

in equilibrium in comparison to when the firm has complete information on customer degrees

(referred as first-best scenario). We also find that a more connected network leads to higher

consumption levels and greater firm profit at the optimum.

5.2 Pricing without degree-screening

In the current section we assume players are influenced by their out-neighbors, whereas it is

the number of in-neighbors that varies across players. As such, one may wonder whether it

is necessary for the pricing scheme to screen players’ in-degrees in the out-neighbor model.

In this section we will show that, a non-degree-screening scheme (called a NDS scheme) will

necessarily degenerate to uniform pricing and therefore, cannot improve the firm’s profit.

Proposition 4. The optimal NDS scheme in the out-neighbor model

• induces the consumption level x∗ = a−c
2(b−δm) for every customer independent of his or her degree,

where x∗ increases with m;

• charges everyone a payment of P∗ = a2−c2

4(b−δm) , which increases with m ;

• generates the maximum profit of N (a−c)2

4(b−δm) for the firm, which increases with m and is lower than

the profit earned under optimal DS scheme;

• leaves every customer with no information rent.

In Proposition 4, r does not affect the induced consumption x∗, because the equilibrium is

independent of player degree and thereby not affected by how the degrees are correlated. m

enters the expression of x∗, due to the fact that one’s number of out-neighbors matters for her

consumption in the out-neighbor model. We see that x∗ is increasing in m. In other words, if the

average degree is higher, then the induced consumption level is also higher for each individual

customer. It follows that both the equilibrium price and firm’s profit are increasing in m.

Unlike the DS contract analyzed in Section 5.1, NDS contract extracts all the rent of the

customers at optimum. This happens because the customers do not utilize their private in-

formation in making the consumption. In contrast, the customers are able to seize a positive

information rent under degree-screening scheme (Section 5.1). Therefore, the customers would

favor the degree-screening scheme over the non-degree-screening one. For the firm, the ineffi-

ciency of NDS pricing lies in the fact that it cannot solicit the social network information, which
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matters for the agent’s incentive of consumption. Consequently, the performance of NDS pric-

ing is dominated by that of DS pricing. The firm would thus prefer the DS pricing to NDS

pricing, too.

Erdös and Rényi graph. Although the NDS scheme is in general disfavored by both the

firm and the customers, it is relevant for pricing in an important special case of our model.

In our framework, if r → ∞ then the limiting case becomes a variant of the graph studied by

Erdös and Rényi (1960) (see Callaway et al. (2001)). It turns out that, NDS scheme performs

equally well as DS scheme in the Erdös and Rényi graph. To understand this result, note

that in the Erdös and Rényi network everyone is influenced by a same number of uniformly

randomly sampled out-neighbors. 14 That means customers of different degree types should

have the same level of susceptibility to consumption. Therefore they are induced to consume

independent of their degrees by the pricing mechanism. As a consequence, the pricing results

with and without screening customer degrees coincide in the Erdös and Rényi graph.

Proposition 5. In the out-neighbor model, the NDS pricing specified in Proposition 4 is optimal for the

Erdös and Rényi graph.

As suggested by Proposition 5, uniform pricing emerges as the optimal choice in the Erdös

and Rényi graph, even when the firm could implement more sophisticated pricing schemes

which involve the screening of the network structure. This result echoes some prior work on

social network pricing, in which the optimality of uniform pricing is driven by the symmetry of

the interaction matrix under complete information (see Corollary 1 of Candogan et al. 2012, as

well as Bloch and Quérou 2013), or by symmetry of the degree prior under incomplete network

information (Fainmesser and Galeotti 2016, Proposition 2). Also shown in Proposition 5, cus-

tomers’ information rent is completely reaped by the firm; that indicates higher connectivity of

the network benefits the firm but not the customers in an Erdös and Rényi graph.

6 In-neighbor model

This section discusses our model’s alternative specification, where customers are influenced by

their in-neighbors. We term it as the in-neighbor model. The firm’s problem is unchanged from

(4)-(6) except that now E[∑j∈Ni
k

x(j)|k] represents the expected total neighbor consumption.

The following assumption applies in the present section.

Assumption 3. r < 1.

14This stems from the fact that Erdös and Rényi network is formed by uniformly random connections (i.e. pure tier-1

linking) since r → ∞.
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Assumption 3 means that the degrees have to be enough correlated for the in-neighbor

model to well behave. The essence of this assumption is to limit one’s in-neighbor degree

distribution (which, recall by Proposition 1, stochastically increases in r), so that one’s own

consumption remains higher than that of her in-neighbor. This enforces the desired mono-

tonicity of consumption in degree, given that one’s in-neighbor’s degree is lower than that of

oneself. Note that with respect to r, Assumption 3 and Assumption 2 are mutually exclusive. In

a flavor similar to the out-neighbor model, the next theorem shows that the consumption level

induced at optimality can be characterized by a simple differential equation. For the ease of

presentation, let xi := a−c
2(b+δ rm

1+r )
, which is shown in the proof as a lower bound of consumption

(i.e. x(k) ≥ xi for all k) and is independent of degree.

Theorem 2. Suppose that Assumptions 1 and 3 hold for the in-neighbor model. The optimal solution

to the firm’s problem (4)-(6), {x∗(∙), P∗(∙)}, is such that:

The induced consumption x∗(∙) solves the following equation:

δ(1 − r)r
2(b + br + δrm)

E[ ∑
j∈Ni

k

x∗(j)|k] + r(x∗(k) − xi) − (k + rm)x∗′(k) = 0. (19)

The corresponding payment scheme is

P∗(x∗(k)) = ax∗(k)− b(x∗(k))2 + x∗(k)δE[ ∑
j∈Ni

k

x∗(j)|k]−
∫ k

0
x∗(u)δ

d
du

E[ ∑
j∈Ni

u

x∗(j)|u]du. (20)

In the in-neighbor model in this section (and the two-way influence model in Appendix A),

it is clear that the optimal contract will screen the agents’ in-degrees because one’s consumption

is influenced by his in-neighbors. The optimal marginal price for the firm, as implied from

Theorem 2, is

P∗′(x∗(k)) = a − 2bx∗(k) + δE[ ∑
j∈Ni

k

x∗(j)|k]. (21)

Therefore, the firm also faces the tradeoff between capitalizing one’s willingness-to-pay in-

duced by neighbor consumption, and incentivizing one’s own consumption in presence of

declining marginal return. The optimal consumption (19) can be too worked out by calculus

of variation. We shall now build on Theorem 2 to examine some structural properties of the

pricing menu.

Proposition 6. In the in-neighbor model, and under the optimal nonlinear pricing scheme P∗(∙) with

induced consumption x∗(∙):

• the firm reaps more profit from higher-degree customers;

• the optimal payment scheme charges a higher marginal price per unit of goods for higher-degree

customers;
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• the optimal payment scheme exhibits quantity premium.

In the in-neighbor model, higher-degree customers are more profitable from the firm’s

standpoint – but in a way that differs from the out-neighbor model. As shown in Proposi-

tion 6, the firm sets the price higher for higher degree customers to exploit their surplus ac-

cumulated from neighbor consumption. In other words, as the player degree increases, the

tendency of raising the price to extract the rent from increased social susceptibility unambigu-

ously outweighs that of discounting to stimulate the customer’s self consumption. That shapes

the quantity premium in the optimal payment scheme.

We then describe the comparative statics of the consumption equilibrium. This exercise

shows, inter alia, the presence of information asymmetry reduces the sales to customers of

each degree type.

Corollary 2. In the in-neighbor model, the induced consumption x∗(∙) is downward distorted from the

first-best consumption. Moreover, x∗(∙) increases with customer degree k.

7 Conclusion and discussion

In this paper, we investigate the optimal nonlinear pricing of products and services in social

networks, where customers are strategic and their consumptions exhibit local externality. Our

model features information asymmetry: customers know about their local network character-

istics (which are positively correlated across neighbors), while the selling firm has only ag-

gregate network information. The firm may adopt nonlinear pricing to serve customers with

heterogeneous and unobservable network positions. The firm’s profit maximization resembles

a principal-agent problem, complicated with the consumption externalities.

We consider two configurations of product externalities: the out-neighbor model and the

in-neighbor model, both of which are solved by an approach based on calculus of variations.

We show that the optimal pricing balances the extraction of rent due to neighbor consump-

tion with the incentivization of one’s own consumption. This can give rise to either a quantity

premium or a quantity discount menu. Applying the results to Erdös and Rényi graphs, w̧e

show that the optimal scheme does not screen network positions, thereby offering a uniform

price for all customers. As robustness checks, we extend the model to a setting of two-way

connections (Appendix A), where we find the results are analogous to those in the main mod-

els. In addition, we compare our results to those of linear pricing as in Fainmesser and Galeotti

(2016), and demonstrate the advantage of nonlinear pricing in responding to the changes of

topological and economic factors (Appendix B).

As implied from Galeotti et al. (2010), the warranty of single crossing condition in the net-

work game extends to the more general setting where the utility function features strategic
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complementarity between neighbor consumptions while the network displays positive neigh-

bor affiliation (joint with the increasing-ness of consumption in degree). While that may sug-

gest a possibility of generalizing our present model, there exists a few technical challenges in

doing so: The derivation of optimal menu requires specific forms of degree distribution and

neighbor degree distribution.15 The qualification of a candidate solution (i.e. nonnegativity

and monotonicity) and the subsequent comparative statics also rely on a specific form of util-

ity function. That said, we focused on a parameterized family of network configurations based

on Jackson and Rogers (2007), because of its generality (covering a full topological spectrum

ranged from Erdös and Rényi graphs to scale free networks) and reality (empowered to fit

real-life social and economic networks as explained in their Section III).

When degrees are correlated in the network, there is correlation among players’ private

information. Thus, a multi-lateral contract could be possibly designed to exploit players’ sur-

plus as indicated by Cremer and McLean (1988), McAfee and Reny (1992), and Riordan and

Sappington (1988), among others. However, the implementation of such contracts requires the

principal to cross-check the reports by (potentially) all players to detect an individual’s devi-

ation. This can be daunting when the network size is large. A future research could focus on

some partial implementation of multi-lateral contracting. For example, a firm could employ a

group buying mechanism to encourage referrals and coordinated purchases from neighbors,

and determine the individual payment according to the joint purchase outcome (Jing and Xie,

2011). See Leduc et al. (2017) and Lobel et al. (2016) for the studies of strategic referral programs

in the network context.

As another direction of future research, one might incorporate network formation process

so as to consider dynamic pricing in transient states of the network. A firm in this setup may,

over time, learn the network structure from customers’ responses; simultaneously, individual

customers could use the firm’s price adjustments to infer the network’s structure outside their

neighborhoods. This dynamic setup is intriguing and challenging to handle, and it remains a

research priority.

15While there seem to be opportunities to develop a model by directly making assumptions on the general forms of

degree distribution and conditional neighbor degree distributions, it is generally hard to justify these assumptions in

terms of topological consistency (i.e. whether these assumptions can be met in a well defined stochastic graph). This

issue does not exist with our setup, as the network formation process employed in our model specifies how the graph

is generated in a consistent manner.
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Appendix for Online Publication

A Two-way Influences

The models in the main text feature separate social influences from one’s out-neighbors (Sec-

tion 5) and in-neighbors (Section 6). In some situations, the player can be simultaneously in-

fluenced by out-neighbors and in-neighbors. This section will explore the robustness of our

results in the context of two-way social influences. We employ the famous model of scale free

network developed by Barabási and Albert (1999) in this section. In this model, every moment

there is a player arriving at the system, who connects to M existing players. The connection

follows the rule of preferential attachment – such that the probability that an extant node i with

degree-ki
16 gets connected by a single link from the arriving node equals ki

∑j kj
, of which the

denominator is the total degree of all existing nodes at that moment. Consistent with the fore-

going terminology, we refer to the neighbors that a node obtains at its arrival by preferential at-

tachment as its out-neighbors, and the arriving node as an in-neighbor to the node reached in this

way. As shown in Barabási and Albert (1999), the player degree distribution f (k) = 2M2/k3

and F(k) = 1 − M2

k2 for k ∈ (M, ∞). Thereby the mean degree m = 2M, and the inverse hazard

rate H(k) = k
2 . The problems faced by the firm and each individual customer are the same as

in the main text, except that the customers are influenced by both their out- and in-neighbors.

Proposition 7. For a degree-k player in the scale free network, the cdf. of degree distribution of her

out-neighbors is

Fo
k (d) = 1 −

k
d

; ∀d ∈ (k, ∞) (22)

that of her in-neighbors is

Fi
k(d) =

k(d − M)
d(k − M)

, ∀d ∈ (M, k) (23)

which first-order stochastically increases in M.

Observe that both 1 − Fo
k (d) and 1 − Fi

k(d) increase in k. Therefore, both positive out- and

in-neighbor affiliations exist for the scale free network. Furthermore, 1 − Fi
k(d) increases in

M, which means Fi
k(∙) first-order stochastically increases in M. To depict two-way interaction,

we denote by λ and 1 − λ the weight on out-neighbors’ and in-neighbors’ influences on one’s

own consumption, respectively. In the extreme case, λ = 1[0] means that the social influence

comes exclusively from one’s out-neighbors [in-neighbors], which reduces to the out-neighbor

[in-neighbor] model studied in Section 5 [6].

16including the initial M degrees
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Proposition 8. In the scale free network: For a degree-k player, the expected weighted neighbor con-

sumption is

E[ ∑
j∈Nk

x(j)|k] = kM

(

λ
∫ N

k

x(d)
d2 dd + (1 − λ)

∫ k

M

x(d)
d2 dd

)

, (24)

which increases in k if x′(∙) > 0.

Using the neighbor degree distributions laid out in Proposition 7, one can obtain the ex-

pected weighted neighbor consumption as in (24). Following similar arguments in the main

text (below Proposition 2), positive neighbor affiliation together with increasing consumption

renders E[∑j∈Nk
x(j)|k] increasing in k, which warrants the single crossing condition required

in mechanism design.

Theorem 3. (Analogous to Theorems 1 and 2) Under Assumption 1, the firm-optimal consumption

is linear in the degree,

x∗(k) = θk +
a − c

2b + δ(1 − 2λ)M
, (25)

for θ > 0, and the corresponding payment is

P(x∗(k)) = ax∗(k) − bx∗2(k) + x∗(k)δE[ ∑
j∈Nk

x∗(j)|k] −
∫ k

k
ˉ

x∗(u)δ
d

du
E[ ∑

j∈Nu

x∗(j)|u]du. (26)

According to Theorem 3, the optimal unit price offered for degree-k is

P∗′(x∗ (k)) = a − 2bx∗(k) + δE[ ∑
j∈Nk

x∗(j)|k], (27)

which decreases in own consumption and increases in neighbor consumption. Therefore, The-

orem 3 bears a similar interpretation to that of Theorems 1 and 2, namely, the compromise of

raising price to exploit network externality and discounting to compensate decreasing return.

Moreover, in the case of scale free network, we find that the resultant consumption is rather

simple – it is proportional to the agent’s degree.

Proposition 9. (Analogous to Propositions 3 and 6) Under the optimal nonlinear pricing scheme

P∗(∙) with induced consumption x∗(∙), the following statements hold.

• If λ > 1/2 and M(1 − 2λ) + a−c
θ(2b+δ(1−2λ)M) < 0,

– the optimal payment scheme charges a lower marginal price per unit of goods for higher-

degree customers;

– the optimal payment scheme exhibits quantity discount.

• If λ < 1/2,

– the optimal payment scheme charges a higher marginal price per unit of goods for higher-

degree customers.
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– the optimal payment scheme exhibits quantity premium.

When λ < 1/2, one’s consumption is predominately influenced by those guys of lower de-

gree than oneself (in-neighbors). Proposition 9 implies that the optimal contract should charge

a premium for the purchase. That echoes our results in the in-neighbor model in Section 6,

where quantity premium contracts emerge as optimal. When λ > 1/2, one is primarily influ-

enced by higher degree neighbors (out-neighbors). Analogous to the result of the out-neighbor

model in Section 5, Proposition 9 suggests that the firm may favor quantity discount schemes

conditionally. Like that in the main models, the emergence of quantity premium or discount is

leveraged by the relative strengths of susceptibility exploitation and sales promotion, and how

those counter forces vary with degree types (c.f. (27)).

Corollary 3. (Analogous to Corollaries 1 and 2) In scale free networks with two-way influences,

• the firm reaps more profit from higher-degree customers;

• the induced consumption level x∗(∙) is downward distorted from the first-best consumption;

• x∗(∙) increases with customer degree k, and increases [decreases] with the network density M if

1 − 2λ < [>]0;

• the firm’s profit at optimum increases with M if 1 − 2λ < 0.

The downward distortion and monotonicity in consumption as revealed in Corollary 3 par-

allel those of Corollary 1 and 2. That the firm’s profit increases in the agent’s degree confirms

the findings of both out-neighbor model (Corollary 1) and in-neighbor model (Proposition 6).

Besides, Corollary 3 also extends the existing results regarding the effect of network topol-

ogy: It shows that, when the influence from out-neighbors is adequately dominant (λ > 1/2),

both the equilibrium consumption and the maximum profit of the firm increase in the network

density (analogous to Corollary 1 for the out-neighbor model). In contrast, the induced con-

sumption decreases in M when λ < 1/2. To comprehend this finding, note a player of degree

k is influenced by M out-neighbors and k − M in-neighbors, and λ < 1/2 indicates that the in-

neighbors’ influence dominates. Therefore when M increases, the aggregate influence declines

and so does the consumption of the degree-k player in question (by strategic complementarity).

B Difference from linear pricing

Featuring nonlinear pricing, our model is by construction different from Fainmesser and Ga-

leotti (2016) which concentrates on linear pricing. To elaborate the differences, we apply the

linear pricing framework of Fainmesser and Galeotti (2016) to our setting, and compare the re-

sults with those derived under nonlinear pricing. Denote by p the unit price that the customer
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pays under linear pricing. Given others play strategy x(∙), suppose degree-k type chooses a

consumption level xk̂.

∂πk(xk̂, x(∙), P(∙))
∂xk̂

= a − 2bx(k̂) + δE[ ∑
j∈Nz

k

x(j)|k] − P′(x(k̂)) (28)

=︸︷︷︸
P(x)≡p x

a − 2bx(k̂) + δE[ ∑
j∈Nz

k

x(j)|k] − p, (29)

z ∈ {i, o}. Since
∂πk(xk̂ ,x(∙),P(∙))

∂xk̂
decreases in xk̂ regardless of the price p, the first order condition

is sufficient for the customer’s optimization. Hence for any given p, the incentive compatible

x(∙) is determined by the following differential equation,

a − 2bx(k) + δE[ ∑
j∈Nz

k

x(j)|k] = p, (30)

z ∈ {i, o}. Comparing (30) with (15) reveals that, when committed to a constant marginal price,

the firm can implement fewer equilibria of the customer game than it does when choosing

different marginal prices for different purchase quantities. This explains why nonlinear pricing

increases the profit.

To proceed, substitute (30) into the firm’s problem to remove transfer payment:

π0(x(∙), P(∙)) = N
∫ N

k
(p − c)x(k) f (k)dk (31)

= N
∫ N

k



a − c − 2bx(k) + δE[ ∑
j∈Nz

k

x(j)|k]



 x(k) f (k)dk,(32)

for z ∈ {i, o}, and let Π(k) :=



a − c − 2bx(k) + δE[ ∑
j∈Nz

k

x(j)|k]



 x(k) (33)

= (a − c)x(k) − 2bx2(k) + δx(k)E[ ∑
j∈Nz

k

x(j)|k]. (34)

Out-neighbor model. Recall the profit from degree-k under nonlinear pricing:

Π0(k) =
(a − c)x(k) −

(
b − δrm

1+r

)
x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}

For given x(∙) > 0,

Π0(k) − Π(k) = x(k)





(
b + δrm

1+r

)
x(k)

− r
1+r δE[∑j∈No

k
x(j)|k]



 (35)

= x(k)



bx(k) −
δr

1 + r



E[ ∑
j∈No

k

x(j)|k] − mx(k)







 , (36)
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which captures the additional incentive for increasing consumption under nonlinear pricing, rel-

ative to that with linear pricing. When m decreases, E[∑j∈No
k

x(j)|k] − mx(k) decreases (which

stems from the fact that the consumption of an additional out-neighbor is greater than that of

the focal player 17). Then the bracketed multiplier of x(k) increases. When δ decreases, the

bracketed multiplier of x(k) also rises since E[∑j∈No
k

x(j)|k] − mx(k) > 0. Therefore, nonlinear

pricing shifts more emphasis to sales generation than does linear pricing, when the network

becomes sparser or the social interaction becomes weaker (both hindering the consumption).

In-neighbor model. For the in-neighbor model and under nonlinear pricing, recall

Π0(k) =
(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k]
(

1 − 1
1+r

)
− H(k)

(
rm

k+rm

)
x(k)

} (37)

=
(a − c)x(k) −

(
b + δrm

1+r

)
x2(k)

+x(k)δ
(

1 − 1
1+r

)
E[∑j∈Ni

k
x(j)|k]

(38)

For given x(∙) > 0,

Π0(k) − Π(k) =
(

b −
δrm
1 + r

)

x2(k) −
1

1 + r
δx(k)E[ ∑

j∈Ni
k

x(j)|k] (39)

=




(

b −
δrm
1 + r

)

x(k) −
1

1 + r
δE[ ∑

j∈Ni
k

x(j)|k]



 x(k) (40)

When m decreases, b − δrm
1+r increases and E[∑j∈Ni

k
x(j)|k] decreases (by Proposition 1 and in-

creasing x(∙)); hence the bracketed multiplier of x(k) increases. So does it when δ declines.

In other words, nonlinear pricing adds more emphasis onto sales generation than does linear

pricing, when the network becomes sparser or the interaction becomes weaker (which deters

consumption).

Thus in both out- and in-neighbor models, the firm is able to respond more effectively with

nonlinear pricing to the changes of network topology and economic factors, than it is with

linear pricing.

C Proofs

Proof of Proposition 1. Jackson and Rogers (2007) provide valuable information regarding the

degree distributions, but they do not explicitly lay out the relevant neighbor degree distribu-

17To see, note that the expected consumption of a single out-neighbor of degree-k, E[x(j)|j∈No
k
k] =

or
m

∫ N
k x(y) f o1

k (y)dy + on
m

∫ N
k x(y) f o2

k (y)dy = r
r+1

∫ N
k x(y) f o1

k (y)dy + 1
r+1

∫ N
k x(y) f o2

k (y)dy. Since both Fo1
k and Fo2

k first

order stochastically increase with m (Proposition 1) and x(∙) is increasing, E[x(j)|j∈No
k
k] increases in m. Therefore,

d
dm E[∑j∈No

k
x(j)|k] = E[x(j)|j∈No

k
k] + m d

dm E[x(j)|j∈No
k
k] > E[x(j)|j∈No

k
k] > x(k), given the out-neighbor’s degree is

greater than k.
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tions. We now build upon their analysis and characterize the neighbor degree distributions in

detail to serve our purpose. Consistent with Jackson and Rogers (2007), let di(t) denote the

in-degree of node i at time t. Under mean field approximation, the network formation process

described in Section 3 leads to the following differential equation:

d
dt

di(t) =
on

tm
di(t) +

or

t
, (41)

where the initial in-degree of nodes upon birth is denoted by d0. To understand (41), note when

on = pnmn, or = prmr it is equivalent to equation (1) in Jackson and Rogers (2007), for which

one should refer to the explanation in their paper. 18

Equation (41) pins down the in-degree function:

di(t) = (d0 + rm)
(

t
i

) 1
1+r

− rm. (42)

For completeness we keep a general value of d0, and at times derive the explicit formulas

for the case d0 = 0 (as does the majority of analysis in Jackson and Rogers (2007)). Under

the mean field approximation, there is a unique mapping between node identity i, time t, and

node in-degree k, so that one can use two of the variables to infer the third one. Let it(d) be the

birthdate (or the identity) of the node that has degree-d at time t. (42) implies:

it(d) = t

{
d0 + rm
d + rm

}1+r

. (43)

In-neighbors. For now, denote by Ft
i (∙) the cdf. of the in-degree distribution of in-neighbors

of node i at time t, and we will later make the expression time-invariant (i.e. removing t). Recall

(Jackson and Rogers, 2007, p.911, under the proof of Theorem 4 ):

1 − Ft
i (d) =

di(it(d))
di(t)

,

Substituting the expression of di(t), we obtain

di(it(d)) = (d0 + rm)
(

it(d)
i

) 1
1+r

− rm = (d0 + rm)
(

t
i

) 1
1+r
{

d0 + rm
d + rm

}

− rm,

so that

1 − Ft
i (d) =

di(it(d))
di(t)

=
(d0 + rm)

( t
i

) 1
1+r
{

d0+rm
d+rm

}
− rm

(d0 + rm)
( t

i

) 1
1+r − rm

, (44)

for d < di(t) (one’s in-neighbor’s in-degree must be lower than the in-degree of oneself).

18Same as (1) of Jackson and Rogers (2007), (41) is not an exact calculation since it ignores the potential overlapping

of search ranges. However, it remains a reasonable approximation for large networks (N >> or, on) and on is small

relative to orm. See footnote 20 of Jackson and Rogers (2007).
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As an important step, we will transform the degree distribution to be independent of time.

For this purpose, observe by (42) that for a degree-k player at time t,

(
t
i

) 1
1+r

=
k + rm
d0 + rm

, (45)

and hereby rewrite (44):

1 − Ft
i (d) =

(k + rm) d0+rm
d+rm − rm

k
. (46)

Since the distribution is now time-invariant, we denote it by Fk(∙), indicating the in-neighbor

degree distribution of a degree-k node.

When d0 = 0, we obtain from (46) that:

1 − Fk(d) =
(k + rm) rm

d+rm − rm

k
,

which was included in the presentation of Proposition 1 in the main text.

Out-neighbors. Above we have solved for the degree distribution of in-neighbors. Next

we study that of out-neighbors. First note that the foregoing approach of calculating neighbor

degree distribution based on the equation

1 − Ft
i (d) =

di(it(d))
di(t)

, (47)

is no longer useful, because one’s out-degree does not cumulate in time; in other words, one’s

out-neighbors are all formed at one shot upon arrival at the system (so that the fraction of

neighbors whose degree is higher than d cannot be derived by comparing the birth dates).

To proceed, we need to analyze the formation of out-neighbors upon a now-degree-k player’s

arrival at the system. There are two types of out-neighbors obtained at that moment: tier-1

out-neighbors who are connected by the player in question by random connection, and tier-2

out-neighbors who are reached via the out-degree links from tier-1 out-neighbors. Moreover,

we can infer from equation (1) of Jackson and Rogers (2007) the probability of being a tier-1 or

tier-2 out-neighbor of the node conditional on the node’s own degree is k at time t as follows.

Pr{tier-1 out-neighbor|degree = d} =
or

it(k)
(48)

=︸︷︷︸
(43)

or

t
{

d0+rm
k+rm

}1+r

=︸︷︷︸
d0=0

or

t
{

rm
k+rm

}1+r

where (48) is the probability that the degree-d node is found at random by the new born node

who has now degree k at time t, under mean field approximation. Note this probability is
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independent of d, given that the selection of tier-1 out-neighbors is random rather than degree-

based.

As for the tier-2 out-neighbors,

Pr{tier-2 out-neighbor|degree = d}

=
(

ordj(it(k))

it(k)

)(
on

orm

)

(49)

=
dj(it(k))

it(k)
on

m

=︸︷︷︸
j is such that dj(t)=d,(43),(42)






d+rm
k+rm (d0 + rm) − rm

t
(

d0+rm
k+rm

)1+r





( on

m

)

=︸︷︷︸
d0=0






d−k
k+rm rm

t
(

rm
k+rm

)1+r





( on

m

)

=
ron(k + rm)r

t(rm)1+r (d − k)

To understand (49), one should refer to the explanation of equation (1) in Jackson and

Rogers (2007), and note the changes we made to equation (1) of Jackson and Rogers (2007)

to adapt it for our purpose. Here we will briefly describe the intuition: Refer to node i the node

in question, who has degree-k at time t, and we trace back to his birthdate, it(k), to investigate

the likelihood that he gets another node j, who has degree-d at time t, as his tier-2 out-neighbor.

Note 1) The term
ordj(it(k))

it(k) is the probability that some node with a link to j, is reached by node

i as tier-1 out-neighbor, so that j has the potential of being met in this way. 19 2) The term on
orm is

then the probability that j is found, given that some in-neighbor of him has been met randomly

in 1)20. 21

Now, what we have obtained is the probability of connecting to a node with certain degree,

yet the concept of neighbor degree distribution is about, given the connection, the probability

of the connected node having certain degree. This gap can be filled by applying the Bayes’

19The probability that one link reaches an in-neighbor of j at the time it(k) is
dj(it(k))

it(k) , given there were it(k) players

in the system and dj(it(k)) of them were j’s in-neighbors. Since there are or such links, the probability that any of these

links reaches an in-neighbor of j is approximated by or multiplied by the above probability.
20Since some in-neighbor of hers has been linked in 1), node j must lie among the orm nodes which node i could

possibly reach as tier-2 out-neighbors. Then the probability that node j is reached by the neighborhood search with on

links is on
orm .

21Same as (1) of Jackson and Rogers (2007), (49) is not an exact calculation since it ignores the potential overlapping

of search ranges. However, it remains a reasonable approximation for large networks (N >> or, on) and on is small

relative to orm. See footnote 20 of Jackson and Rogers (2007).
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theorem:

f q
k (d) =

Pr{type-q out-neighbor|degree = d} f (d|d > k)
∫ k̄

k Pr{type-q out-neighbor|degree = d} f (d|d > k)dd
, q ∈ {o1, o2}

=
Pr{type-q out-neighbor|degree = d} f (d)/(1 − F(k))

∫ k̄
k Pr{type-q out-neighbor|degree = d} f (d)/(1 − F(k))dd

, q ∈ {o1, o2}

=
Pr{type-q out-neighbor|degree = d} f (d)

∫ k̄
k Pr{type-q out-neighbor|degree = d} f (d)dd

, q ∈ {o1, o2} (50)

where the condition d > k is imposed upon the original degree distribution for the discussion

of out-neighbors (who are born prior to the now-degree-k player in question, thus having larger

in-degrees).

Note then the term 1 − F(k) is cancelled off. This gives us

f o1
k (d) =︸︷︷︸

(50)

f (d)
∫ k̄

k f (d)dd
(51)

=
f (d)

1 − F(k)

=︸︷︷︸
(1)

(1 + r)(k + rm)1+r

(d + rm)r+2 .

(51) results from the fact that Pr{tier-1 out-neighbor|degree = d} is independent of d, so that

it cancels off from the fraction. Integrating , we have the cdf.

Fo1
k (d) = 1 −

(
k + rm
d + rm

)r+1

, ∀d > k.

For tier-2 out-neighbors,

f o2
k (d) =︸︷︷︸

(50)

(d − k) f (d)
∫ k̄

k (d − k) f (d)dd

=︸︷︷︸
(90)

(d − k)/(d + rm)r+2

∫ k̄
k (d − k)/(d + rm)r+2dd

=
r(r + 1)(d − k)(k + rm)r

(d + rm)r+2 .

Integrating, we get the cdf.

Fo2
k (d) = 1 −

(
k + rm
d + rm

)r ( r(d − k)
d + rm

+ 1

)

, ∀d > k.

To see that Fo1
k (∙), Fo2

k (∙) first-order stochastically increase with m, note that

∂

∂m
{1 − Fo1

k (∙)} =
(d − k)r(r + 1)

(d + rm)2

(
k + rm
d + rm

)r

> 0,

∂

∂m
{1 − Fo2

k (∙)} =
(d − k)2r2(r + 1)

(d + rm)3

(
k + rm
d + rm

)r−1

> 0,
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given d > k. To see Fk(∙) first-order stochastically increases with r and m, rewrite

1 − Fk(d) =
(k + rm) rm

d+rm − rm

k
=
(

1 −
d

d + rm

)
k − d

k
.

Then observe that 1 − Fk(d) increases with r and m given d < k. �

Proof of Proposition 2. Out-neighbors. Let us first deal with out-neighbors. Recall that for

tier-1 out-neighbors,

Fo1
k (d) = 1 −

(
k + rm
d + rm

)r+1

, ∀d > k.

For tier-2 out-neighbors,

Fo2
k (d) = 1 −

(
k + rm
d + rm

)r ( r(d − k)
d + rm

+ 1

)

, ∀d > k.

The probability density functions are:

f o1
k (d) =

r + 1
d + rm

(
k + rm
d + rm

)r+1

, ∀d > k,

f o2
k (d) =

r(r + 1)(d − k)
(d + rm)2

(
k + rm
d + rm

)r

, ∀d > k.

For the out-neighbors, denote the set of degree-k’s tier-1 and tier-2 out-neighbor degree

types by No1
k and No2

k , respectively. Then we can calculate:

E[ ∑
j∈No

k

x(j)|k]

= E[ ∑
j∈No1

k

x(j) + ∑
j∈No2

k

x(j)|k]

= orE[x(j)|j∈No1
k

k] + onE[x(j)|j∈No2
k

k]

= or

∫ N

k
x(y) f o1

k (y)dy + on

∫ N

k
x(y) f o2

k (y)dy.

where the upper bound of integration is set to be the network size, given it being large enough

and thus trivializing the differences from setting it to infinity or to N − 1. Since the consump-

tion is only determined by in-degree, one can further combine notations and express the above

as (using r = or
on

):

E[ ∑
j∈No

k

x(j)|k] = on

∫ N

k
x(y)

[
r f o1

k (y) + f o2
k (y)

]
dy.

Plug in the definitions of f o1
k (d) and f o2

k (d):

r f o1
k (y) + f o2

k (y) = r
(r + 1)
y + rm

(
k + rm
y + rm

)r+1

+
r(r + 1)(y − k)

(y + rm)2

(
k + rm
y + rm

)r

=
r(r + 1)
y + rm

(
k + rm
y + rm

)r

.
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Therefore, we have

E[ ∑
j∈No

k

x(j)|k]

= on

∫ N

k
x(y)

r(r + 1)
y + rm

(
k + rm
y + rm

)r

dy

= onr(r + 1) (k + rm)r
∫ N

k
x(y)

1
(y + rm)r+1 dy

= rm (k + rm)r
∫ N

k

x(y)
(y + rm)r+1 dy,

Now suppose x(∙) is increasing. Notice

d
dk

E[ ∑
j∈No

k

x(j)|k]

= rm






r (k + rm)r−1 ∫ N
k x(y) 1

(y+rm)r+1 dy

− (k + rm)r x(k) 1
(k+rm)r+1






= rm






r (k + rm)r−1 ∫ N
k x(y) 1

(y+rm)r+1 dy

− x(k)
k+rm






=
r

k + rm






E[∑j∈No
k

x(j)|k]

−mx(k)






=
r

k + rm
E[ ∑

j∈No
k

x(j)|k] −
rm

k + rm
x(k). (52)

Since one’s out-neighbors have higher in-degree than oneself, and that the consumption is as-

sumed increasing in in-degree, each out-neighbor should have higher consumption than does

oneself. That is, E[∑j∈No
k

x(j)|k] > mx(k). Elaborated in detail,

E[ ∑
j∈No

k

x(j)|k] = rm (k + rm)r
∫ N

k
x(y)

1
(y + rm)r+1 dy

>︸︷︷︸
x(∙) increasing

rm (k + rm)r x(k)
∫ N

k

1
(y + rm)r+1 dy

=︸︷︷︸
N large enough

mx(k)

Therefore, d
dk E[∑j∈No

k
x(j)|k] > 0 if x(k) increases in k.
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In-neighbors. Now we consider the case with in-neighbors.

E[ ∑
j∈Ni

k

x(j)|k] = ∑
j∈Ni

k

E[x(j)|k]

= ∑
j∈Ni

k

{

x(0) +
∫ k

0

dx(y)
dy

[1 − Fk(y)] dy

}

= k

{

x(0) +
∫ k

0

dx(y)
dy

rm(k − y)
k(y + rm)

dy

}

= kx(0) +
∫ k

0

dx(y)
dy

rm(k − y)
y + rm

dy

=︸︷︷︸
integration by parts

kx(0) + 0 − kx(0) −
∫ k

0
x(y)d

rm(k − y)
y + rm

= (k + rm)rm
∫ k

0

x(y)
(y + rm)2 dy

It easily follows that E[∑j∈Ni
k

x(j)|k] is increasing in k. �

Proof of Theorem 1. The proof is composed of three steps. Step (i): We explore the struc-

tural properties of the optimization problem. Step (ii): We rewrite the firm objective as a func-

tion of consumption only. Step (iii): Using the change of variables, we show that the objective

can be optimized by calculus of variations. We also verify that the candidate solution from

calculus of variations indeed satisfies the remaining constraints.

Step (i): Structural properties of the optimization problem. As the standard mechanism

design approach, we first explore some properties of (4)-(6) that are essential to reducing the

firm’s problem.

Recall the consumer’s payoff when others report the truth

πk(k̂, x(∙), P(∙)) = ax(k̂) − bx2(k̂) + x(k̂)δE[ ∑
j∈No

k

x(j)|k] − P(x(k̂)).

The first-order condition for IC constraints implies:

dπk(k̂, x(∙), P(∙))/dk̂
∣
∣
∣
k̂=k

= ax′(k̂) − 2bx(k̂)x′(k̂) + x′(k̂)δE[ ∑
j∈No

k

x(j)|k] − P′(x(k̂))x′(k̂)
∣
∣
∣
k̂=k

= ax′(k) − 2bx(k)x′(k) + δx′(k)E[ ∑
j∈No

k

x(j)|k] − P′(x(k))x′(k)

=



a − 2bx(k) + δE[ ∑
j∈No

k

x(j)|k] − P′(x(k))



 x′(k)

= 0. (53)
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The local second-order condition for IC constraints is

d2

dk̂2
πk(k̂, x(∙), P(∙))

∣
∣
∣
k̂=k

=
[

−2bx′(k̂) −
d

dk̂
P′(x(k̂))

]

x′(k̂) +



a − 2bx(k̂) + δE[ ∑
j∈No

k

x(j)|k] − P′(x(k̂))



 x′′(k̂)
∣
∣
∣
k̂=k

=︸︷︷︸
(53)

[

−2bx′(k) −
d
dk

P′(x(k))
]

x′(k)

=︸︷︷︸
(53)



−δ
d
dk

E[ ∑
j∈No

k

x(j)|k]



 x′(k)

< 0 if x′(k) > 0 (54)

Therefore the local concavity for truth reporting requires the monotonicity condition, x′(k) > 0,

which in our problem also leads to d
dk E[∑j∈No

k
x(j)|k] > 0 by Proposition 2. (53) and (54)

constitute the local IC condition, under which the customer does not attempt to lie locally. We

will soon show that the single crossing condition, justified in Proposition 2, extends local IC to

global. Define the payoff in the truth telling equilibrium:

V(k) := πk(k, x(∙), P(∙)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈No

k

x(j)|k] − P(x(k)), (55)

and IR constraints (6) imply that V(k) ≥ 0, ∀k.

d
dk

V(k) = ax′(k) − 2bx(k)x′(k) +
dx(k)δE[∑j∈No

k
x(j)|k]

dk
− P′(x(k))x′(k) (56)

= ax′(k) − 2bx(k)x′(k) + x′(k)δE[ ∑
j∈No

k

x(j)|k] +

x(k)δ
d
dk

E[ ∑
j∈No

k

x(j)|k] − P′(x(k))x′(k)

=︸︷︷︸
(53)

x(k)δ
d
dk

E[ ∑
j∈No

k

x(j)|k],

which is positive if x′(k) > 0 (which leads to d
dk E[∑j∈No

k
x(j)|k] > 0 by Proposition 2).

The above result can be reached by the envelope theorem as well, in consideration of the IC

constraints:
d
dk

V(k) =
∂

∂k
πk(k̂∗, x(∙), P(∙))

∣
∣
∣
k̂∗=k

= x(k)δ
d
dk

E[ ∑
j∈No

k

x(j)|k].

Accordingly, (from Fundamental Theorem of Calculus)

V(k) = V(k) +
∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈No
u

x(j)|u]du,

39



Authors: Yang Zhang and Ying-Ju Chen; Optimal Pricing in Networks

where k is the lowest degree type considered. One can write

V(k) − πk(k̂, x(∙), P(∙))

= V(k) −



V(k̂) − x(k̂)δE[ ∑
j∈No

k̂

x(j)|k̂] + x(k̂)δE[ ∑
j∈No

k

x(j)|k]





= V(k) − V(k̂) + x(k̂)δ



E[ ∑
j∈No

k̂

x(j)|k̂] − E[ ∑
j∈No

k

x(j)|k]





=
∫ k

k̂
x(u)δ

d
du

E[ ∑
j∈No

u

x(j)|u]du

+x(k̂)δ



E[ ∑
j∈No

k̂

x(j)|k̂] − E[ ∑
j∈No

k

x(j)|k]





=︸︷︷︸
Integration by parts

(x(k) − x(k̂))δE[ ∑
j∈No

k

x(j)|k] −
∫ k

k̂
x′(u)δE[ ∑

j∈No
u

x(j)|u]du

=
∫ k

k̂
x′(u)δE[ ∑

j∈No
k

x(j)|k]du −
∫ k

k̂
x′(u)δE[ ∑

j∈No
u

x(j)|u]du

≥ 0,

If k > k̂, the above quantity is nonnegative given x′(∙) > 0 (which also means E[∑j∈No
k

x(j)|k]

increases in k). If k < k̂, rewrite the above as

∫ k̂

k
x′(u)δE[ ∑

j∈No
u

x(j)|u]du −
∫ k̂

k
x′(u)δE[ ∑

j∈No
k

x(j)|k]du,

which is also nonnegative given x′(∙) > 0 (which also means E[∑j∈No
k

x(j)|k] increases in k).

Thus IC is achieved globally. The payment P(x(k)) is

P(x(k)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈No

k

x(j)|k] − V(k
ˉ
) −

∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈No
u

x(j)|u]du. (57)

As a result, IC and IR constraints (5)-(6) can reduce to a single monotonicity constraint x′(∙) >

0.

Step (ii): Rewriting the objective. Now we return to the firm’s problem. Its objective can

be rewritten as follows:

N
∫ N

k
ˉ

(P(x(k)) − cx(k)) f (k)dk (58)

= N
∫ N

k
ˉ






(a − c)x(k) − bx2(k) + x(k)δE[∑j∈No
k

x(j)|k] − V(k
ˉ
)

−
∫ k

k
ˉ

x(u)δ d
du E[∑j∈No

u
x(j)|u]du





f (k)dk.

Note for any random variable Y ∈ [y, ȳ] with pdf., cdf. f , F, and any generic function g(∙),

40



Authors: Yang Zhang and Ying-Ju Chen; Optimal Pricing in Networks

we have:

E[g(Y)] =
∫ ȳ

y
g(y) f (y)dy

= g(y
ˉ
) +

∫ ȳ

y
ˉ

g
′
(y)[1 − F(y)]dy.

In that way,

∫ N

k

{∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈No
u

x(j)|u]du

}

f (k)dk

=
∫ N

k
H(k)x(k)δ

d
dk

E[ ∑
j∈No

k

x(j)|k] f (k)dk,

where in the last equality we recall the definition H(k) = [1− F(k)]/ f (k). Given the above, we

rewrite the objective function as:

π0(x(∙)) (59)

= N
∫ N

k






(a − c)x(k) − bx2(k) + x(k)δE[∑j∈No
k

x(j)|k] − V(k
ˉ
)

−
∫ k

k
ˉ

x(u)δ d
du E[∑j∈No

u
x(j)|u]du





f (k)dk.

= N
∫ N

k






(a − c)x(k) − bx2(k) + x(k)δE[∑j∈No
k

x(j)|k] − V(k
ˉ
)

−H(k)x(k)δ d
dk E[∑j∈No

k
x(j)|k]





f (k)dk

=︸︷︷︸
V(k

ˉ
)=0 at optimum

N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]










 f (k)dk

The expression in (59) shows that the firm’s expected payoff is decreasing in V(k
ˉ
). Thus, at

optimality V(k
ˉ
) = 0.

The firm’s (transformed) problem is

max
x(∙)

N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]










 f (k)dk (60)

s.t. x(∙) is increasing. (61)

For the moment, let us first ignore the constraint (61) and study the firm’s objective (60).

Step (iii): Calculus of variations and verification of the candidate solution and its prop-

erties. From Proposition 2, the aggregate out-neighbor consumption of a degree-k customer

is

E[ ∑
j∈No

k

x(j)|k] = rm (k + rm)r
∫ N

k

x(y)
(y + rm)r+1 dy,
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and

d
dk

E[ ∑
j∈No

k

x(j)|k]

=
r

k + rm
E[ ∑

j∈No
k

x(j)|k] −
rm

k + rm
x(k). (62)

Based on that, we rewrite the firm’s transformed objective function π0(x(∙), P(∙)) as

π0(x(∙)) = N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]










 f (k)dk (63)

= N
∫ N

k










(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k)




r

k+rm E[∑j∈No
k

x(j)|k]

− rm
k+rm x(k)



















f (k)dk

= N
∫ N

k










(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

− r
1+r




E[∑j∈No

k
x(j)|k]

−mx(k)



















f (k)dk

= N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






1
1+r E[∑j∈No

k
x(j)|k]

− r
1+r

(
−mx(k)

)










 f (k)dk

= N
∫ N

k




(a − c)x(k) −

(
b − δrm

1+r

)
x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}



 f (k)dk (64)

where we recall that H(k) = k+rm
1+r . Since δ

1+r > 0, the presence of externality term E[∑j∈No
k

x(j)|k]

will positively shift the optimal consumption. That implies a lower bound on optimal con-

sumption, denoted by x(∙), is the solution to the following objective that ignores the external-

ity.

max
x(∙)

π0(x(∙)) = N
∫ N

k

[

(a − c)x(k) −
(

b −
δrm
r + 1

)

x2(k)
]

f (k)dk.

Pointwise maximization of π0(x(∙)) (or by Euler equation approach) yields

x(k) ≡
a − c

2
(

b − δrm
r+1

) ,

for which the second-order condition holds obviously. It follows x(k) > 0 given Assumptions

1, 2 (a > c and b > δm > δ rm
r+1 ). Thus the nonnegativity of x(∙) is guaranteed. Denote x(k) by

xo for clarity.
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Define

zo(k) :=
∫ N

k

x(y)
(y + rm)r+1 dy.

Given this definition, we have:

E[ ∑
j∈No

k

x(j)|k] = rm (k + rm)r zo(k),

x(k) = −(k + rm)r+1(zo)
′
(k).

Then one can rewrite the integrand within the objective function π0(x(∙)), in terms of zo(k)

and its derivative (zo)
′
(k):

Go(k, zo(k), (zo)
′
(k)) :=




(a − c)x(k) − (b − δrm

1+r )x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}



 f (k)

= −



 (a − c)(k + rm)r+1(zo)
′
(k) + (b − δrm

1+r )
(
(k + rm)r+1(zo)

′
(k)
)2

+(k + rm)2r+1(zo)
′
(k) δrm

r+1 zo(k)



 f (k).

From (1), one can derive:

f (k) =
(1 + r)(rm)1+r

(k + rm)2+r

⇒ f
′
(k) =

−(1 + r)(2 + r)(rm)1+r

(k + rm)3+r = −
r + 2

k + rm
f (k).

Taking the partial derivatives of Go w.r.t. zo(k) and (zo)
′
(k) gives

Go
zo(k)(k, zo(k), (zo)

′
(k)) = −δ

m
r + 1

r(rm)r+1(r + 1)(k + rm)r−1(zo)
′
(k)

Go
(zo)′ (k)

(k, zo(k), (zo)
′
(k)) =

1
k + rm






(rm)r+1(r + 1)
[
− (a − c) + (k + rm)r

(
−δ m

r+1 rz(k) + 2(k + rm)(−b + δ m
r+1 r)(zo)

′
(k)
) ]






From the standard argument of calculus of variation, the optimal solution zo∗(∙) for the firm

is the solution to the following Euler equation:

Go
zo(k)(k, zo(k), (zo)

′
(k)) =

d
dk

Go
(zo)′ (k)

(k, zo(k), (zo)
′
(k)).

That is, zo∗(∙) solves:

(a− c)+ (k + rm)r
[

−
δrm
r + 1

(r − 1)zo(k) + 2(k + rm)
(

−b +
δrm
r + 1

)(
r(zo)

′
(k) + (k + rm)(zo)

′′
(k)
)]

= 0 ∀k.

(65)

(65) takes form of a second-order differential equation with regard to zo(∙), whose solution

is explicit but cumbersome. Fortunately, we can verify the required monotonicity without re-

course to the explicit solution (see below). The second-order condition, also called the Legendre
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condition, is satisfied under Assumption 2:

Go
zo′(k)zo′(k)(k, zo(k), zo′(k)) = −2(rm)r+1(r + 1)(k + rm)r

(

b − δ
m

r + 1
r

)

≤ 0, ∀k.

To check for monotonicity, we put Euler equation into x-notation,

(a − c) − δ m
r+1 (r − 1)r(k + rm)r

∫ N
k

x∗(y)
(y+rm)r+1 dy

+2
(
b − δ m

r+1 r
)
(−x∗(k) + (k + rm)x∗′(k))

= 0,

and rearrange it as follows:

−(a − c) + δ m
r+1 (r − 1)r(k + rm)r

∫ N
k

x∗(y)
(y+rm)r+1 dy

+2
(
b − δ m

r+1 r
)

x∗(k)
= 2

(

b − δ
m

r + 1
r

)

(k + rm)x∗′(k). (66)

Under Assumption 2, b − δ m
r+1 r > 0. Observe that

2

(

b − δ
m

r + 1
r

)

x∗(k) > 2

(

b − δ
m

r + 1
r

)

xo

= 2

(

b − δ
m

r + 1
r

)
a − c

2
(

b − δrm
r+1

)

= a − c.

Thus, the right-hand side of (66) is greater than δ m
r+1 (r − 1)r(k + rm)r

∫ N
k

x∗(y)
(y+rm)r+1 dy, which

suggests x∗′(k) being positive if r ≥ 1. Therefore, the monotonicity constraint is satisfied if

r ≥ 1 (Assumption 2).

Lastly, for the ease of presentation, we recollect the Eular equation using more existing

notations:

−(a − c) + δrm
r+1 (r − 1)(k + rm)r

∫ N
k

x∗(y)
(y+rm)r+1 dy

+2
(

b − δrm
r+1

)
x∗(k)

= 2

(

b −
δrm
r + 1

)

(k + rm)x∗′(k)

⇔ −(a − c) + δ
r − 1
r + 1

E[ ∑
j∈No

k

x∗(j)|k] + 2

(

b −
δrm
r + 1

)

x∗(k) = 2

(

b −
δrm
r + 1

)

(k + rm)x∗′(k)

⇔ −

(
a − c

b − δrm
r+1

)

+
δ(r − 1)

b + br − δrm
E[ ∑

j∈No
k

x∗(j)|k] + 2x∗(k) = 2(k + rm)x∗′(k)

⇔
δ(r − 1)

2(b + br − δrm)
E[ ∑

j∈No
k

x∗(j)|k] + x∗(k) − (k + rm)x∗′(k) − xo = 0

This form of Eular equation is presented in Theorem 1. Plugging x∗(∙) into the payment func-

tion (57) gives the optimal payment scheme P∗(∙) below.22

P∗(x∗(k)) = ax∗(k) − b(x∗(k))2 + x∗(k)δE[ ∑
j∈No

k

x∗(j)|k] −
∫ k

0
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du

22Note the induced consumption below k is zero.
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Given the nature of coordination in the consumption game, one may suspect whether a cer-

tain pricing scheme can lead to multiple consumption equilibria. To address this issue, we

will show that the equilibrium optimal to the firm can be uniquely implemented. Consider a

prescribed menu {x∗(∙), P∗(∙)} determined optimally from Theorem 1 and agents report their

degrees under this menu. Denote by k̃(∙) the strategy that the focal customer perceives that

his neighbors will play (which maps true degree to a reported one). Then let x̃(k) := x∗(k̃(k))

be the resulting consumption from the pattern of neighbors’ misreporting as speculated by the

focal customer. Note that x̃(k) may not be consistent with the desired consumption x∗(k). We

will show that any belief x̃(∙) other than x∗(∙) will not get implemented by P∗(∙). The degree-k

customer’s payoff when reporting k̂ is

πk(k̂, x̃(∙), x∗(∙), P∗(∙)) = ax∗(k̂) − bx∗2(k̂) + x∗(k̂)δE[ ∑
j∈No

k

x̃(j)|k] − P∗(x∗(k̂)) (67)

=︸︷︷︸
(14)

x∗(k̂)δE[ ∑
j∈No

k

x̃(j)|k] − x∗(k̂)δE[ ∑
j∈No

k̂

x∗(j)|k̂] +
∫ k̂

0
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du(68)

= x∗(k̂)δ



E[ ∑
j∈No

k

x̃(j)|k] − E[ ∑
j∈No

k̂

x∗(j)|k̂]



+
∫ k̂

0
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du(69)

Define k0 such that E[∑j∈No
k

x̃(j)|k] = E[∑j∈No
k0

x∗(j)|k0]. Note that k = k0 if x̃(∙) coincides

with x∗(∙) (or truth reporting k̃(k) = k). Thus

πk(k0, x̃(∙), x∗(∙), P∗(∙)) = x∗(k0)δ



E[ ∑
j∈No

k

x̃(j)|k ] − E[ ∑
j∈No

k0

x∗(j)|k0]





+
∫ k0

0
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du (70)

=
∫ k0

0
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du (71)

πk(k0, x̃(∙), x∗(∙), P∗(∙)) − πk(k̂, x̃(∙), x∗(∙), P∗(∙)) =
∫ k0

k̂
x∗(u)δ

d
du

E[ ∑
j∈No

u

x∗(j)|u]du

−x∗(k̂)δ



E[ ∑
j∈No

k0

x∗(j)|k0] − E[ ∑
j∈No

k̂

x∗(j)|k̂]



(72)

> 0 given x∗(∙) increasing (73)

Therefore under P∗(∙), the degree-k player anticipating others to play x̃(∙) will optimally de-

clare k0. The resulting consumption x∗(k0) generally does not equal x̃(k), by definition of k0,

unless x̃(∙) coincides with x∗(∙). That means x∗(∙) (or truth reporting) will be the only equilib-

rium implemented by the scheme P∗(∙). �

Proof of Proposition 3. To study the marginal price in variation with degree, note that
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incentive compatibility (53) implies

P′(x(k)) = a − 2bx(k) + δE[ ∑
j∈No

k

x(j)|k] (74)

dP′(x(k))
dk

= −2bx′(k) +
r

k + rm



δE[ ∑
j∈No

k

x(j)|k] − δmx(k)



 (75)

Substituting the optimal solution into the above expression,

dP′(x∗(k))
dk

= −2bx∗′(k) +
r

k + rm



δE[ ∑
j∈No

k

x∗(j)|k] − δmx∗(k)





<︸︷︷︸
(13), x∗(∙)≥x

−2bx∗′(k) +
r

k + rm

[
r + 1
r − 1

2

(

b −
δrm
r + 1

)

(k + rm)x∗′(k) − δmx∗(k)
]

The above quantity is negative if the multiplier of x∗′(k) is negative, which can reduce to
b

b+br−δrm > r
r−1 . In this case, the scheme charges a lower marginal price for higher degree

customers at optimum. Then,

P′′(x∗(k)) =
dP′(x∗(k))

dk

/
x∗′(k) < 0.

which gives rise to a quantity discount menu.

For the out-neighbor model, recall the upper bound of consumption, derived from the vari-

ant game, x̄(k) =
a−c+δE[∑j∈No

k
x(j)|k]

2b , or equivalently,

E[ ∑
j∈No

k

x(j)|k] >
2bx(k) − (a − c)

δ
. (76)
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In seeking for conditions for quantity premium menu, we obtain

dP′(x∗(k))
dk

= −2bx∗′(k) +
r

k + rm



δE[ ∑
j∈No

k

x∗(j)|k] − δmx∗(k)





=
1

k + rm



−2b(k + rm)x∗′(k) + δr



E[ ∑
j∈No

k

x∗(j)|k] − mx∗(k)









=︸︷︷︸
(13)

1
k + rm

[
− b

(

−
(

a−c
b− δrm

r+1

)

+ δ
b− δrm

r+1

r−1
r+1 E[∑j∈No

k
x∗(j)|k] + 2x∗(k)

)

+δr



E[ ∑
j∈No

k

x∗(j)|k] − mx∗(k)




]

>
δ

k + rm

[
−
(

b
b− δrm

r+1

r−1
r+1 E[∑j∈No

k
x∗(j)|k] + 2 b

δ x∗(k)
)

+



rE[ ∑
j∈No

k

x∗(j)|k] − rmx∗(k)




]

=
δ

k + rm









(

r −
b

b − δrm
r+1

r − 1
r + 1

)

E[ ∑
j∈No

k

x∗(j)|k] −
(

rm +
2b
δ

)

x∗(k)









>︸︷︷︸
(76)

δ

k + rm

[((

r −
b(r − 1)

b + br − δrm

)(
2bx∗(k) − (a − c)

δ

)

−
(

rm +
2b
δ

)

x∗(k)
)]

=
1

k + rm

[((

r −
b(r − 1)

b + br − δrm

)

(2bx∗(k) − (a − c)) − (δrm + 2b) x∗(k)
)]

>︸︷︷︸
x∗(k)>xo ,(77)

1
k + rm

[((

r −
b(r − 1)

b + br − δrm

)

(2bxo − (a − c)) − (δrm + 2b) xo
)]

=
a − c

k + rm

[
−δ2r2m2(r − 1) − 2b2(r + 1)2 + bδrm(r2 + 3)

2(b + br − δrm)2

]

>︸︷︷︸
(78)

0

where the sufficient conditions include

2b(r − 1)
[

1 −
b

b + br − δrm

]

− δrm > 0, (77)

−δ2r2m2(r − 1) − 2b2(r + 1)2 + bδrm(r2 + 3) > 0. (78)

In this case, the firm charges a higher marginal price for higher degree customers at optimum.

This implies quantity premium, since P′′(x∗(k)) = dP′(x∗(k))
dk

/
x∗′(k) > 0. �

Proof of Corollary 1

Denote by Πo(k) := P(x(k)) − cx(k) the profit earned from a single degree-k customer.
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Therefore we obtain

d
dk

Πo(k) = x ′(k)
(

P′(x(k)) − c
)

=︸︷︷︸
(53)

x ′(k)



a − c − 2bx(k) + δE[ ∑
j∈No

k

x(j)|k]





At optimality, x∗′(k) > 0, and a − c − 2bx∗(k) + δE[∑j∈No
k

x∗(j)|k] > 0 (as x∗ (k) < x̄(k)). Thus
d
dk Π∗o(k) > 0. That is, the firm grasps higher profit from higher degree customers at optimum.

Comparing the firm’s second-best objective to that of the first-best, denoted as πoFB
0 (x(∙)),

max
x(∙)

πo
0(x(∙)) = N

∫ N

k




(a − c)x(k) − (b − δrm

1+r )x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}



 f (k)dk,

= N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δE[∑j∈No
k

x(j)|k]

−x(k)δ r
1+r E[∑j∈No

k
x(j)|k] + δrm

1+r x2(k)





 f (k)dk,

= N
∫ N

k




(a − c)x(k) − bx2(k) + x(k)δE[∑j∈No

k
x(j)|k]

−x(k) δr
1+r

(
E[∑j∈No

k
x(j)|k] − mx(k)

)



 f (k)dk

max
x(∙)

πoFB
0 (x(∙)) = N

∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δE[∑j∈No
k

x(j)|k]



 f (k)dk

Since any feasible second-best solution will satisfy E[∑j∈No
k

x(j)|k] − mx(k) > 0 (given the

consumption must be increasing in degree), the difference between first-best and second-best

objectives,

x(k)
δr

1 + r



E[ ∑
j∈No

k

x(j)|k] − mx(k)



 ,

consists of x(k) and a positive multiplier. Thus the incentive for consumption in second-best

is less than that in first-best, under any feasible choice of x(∙) in the second-best case. That

suggests downward distortion in consumption in the second-best scenario.23

That x∗(∙) increases by k is a direct consequence of being a feasible solution to the firm’s

23Note that the value of k is lower in the first-best profit function than that of the second-best case, as the firm earns

more in FB from each degree type-k customers (extracting the information rent), thus selling to more customers down

the list of types in FB. Therefore, the downward distortion result still holds in the range of types between k of FB and

k of SB, where the induced consumption is positive for FB and 0 for SB. For types lower than k of FB, consumptions in

both FB and SB are 0. (As shown before:) In types higher than k of SB, consumption in FB dominates that in SB (both

nonzero). Hence, downward distortion holds for all degree types.
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problem (4)-(6). Now we show that x∗(∙) also increases in m. Recall the firm’s profit

πo
0(x(∙)) = N

∫ N

k




(a − c)x(k) −

(
b − δrm

1+r

)
x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}



 f (k)dk,

where the bracketed term

(a − c)x(k) −
(

b −
δrm
1 + r

)

x2(k) + x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}
(79)

captures the profit gathered from a single degree-k customer under consumption x(∙). We

start with the hypothesis that E[∑j∈No
k

x(j)|k] increases in m, and will show that this can be

reinforced at optimum. Now suppose m increases. Then the disutility coefficient b − δrm
1+r in

(79) is reduced, and E[∑j∈No
k

x(j)|k] increases (by hypothesis). Therefore, the induced incentive

for consumption for the customer in question increases. The optimal consumption level thus

increases in m. Given that x(k) increases in k (at optimum) and that increasing m triggers a

first-order stochastic increase of the out-neighbor degree distributions Fo1
k , Fo2

k (Proposition 1),

it follows that E[∑j∈No
k

x(j)|k] increases in m,24 which reinforces the foregoing hypothesis and

concludes the proof.

It remains to show that the optimal profit of the firm also increases in m. Given that the

coefficient b − δrm
1+r declines in m, and E[∑j∈No

k
x(j)|k] increase in m at optimum (as shown

above), it follows that the profit earned from one single degree-k player, (79), also increases

in m at optimum. Since the degree distribution F(∙) first-order stochastically increases in m

(c.f. Theorem 7 of Jackson and Rogers (2007)), and (79) is at optimum an increasing function

of degree k (c.f. the first bullet point of Corollary 1), we conclude that the firm’s overall profit

πo
0(x(∙)) (aggregated over all degree types) increases in m at optimum. �

Proof of Proposition 4. To allow for arbitrary price discrimination, suppose that the firm

draws a random number η ∈ [0, 1] for each agent from cdf. Q(∙), based on which the allocation

{x(η), P(η)} is made to that agent. The agent will then decide to accept or reject. Notice that,

since the firm does not know who is connected to whom, it cannot enforce any correlation

between random numbers of neighbors. So everyone will perceive his neighbor’s number as

samely randomly distributed according to Q(∙). Note that the topological correlation is not

explored here, exactly because the pricing does not solicit the degree information. If it does,

the firm can then utilize the knowledge of neighbor degree distribution to refine individual

allocations.

For any player with number η, the expected total out-neighbor consumption when neigh-

bors accept the contract is E[∑j∈No
η

x(j)|η] = m
∫ 1

0 x(j)q(j)dj. Furthermore, the expected out-

neighbor consumption does not change with one’s own number because neighbors’ numbers

24Recall that E[∑j∈No
k

x(j)|k] = or
∫ N

k x(y) f o1
k (y)dy + on

∫ N
k x(y) f o2

k (y)dy, where or = rm
r+1 and on = m

r+1 both increase

in m.
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are independent, i.e. d
dη E[∑j∈No

η
x(j)|η] = 0. For given Q(∙), the firm’s optimization resembles

a first-best pricing problem, where the agent’s type – his number – is observable to the firm.25

If accepting the firm’s offer, the type-η agent’s payoff, while others accepting the contract, is

given by

πη(x(∙), P(∙)) = ax(η) − bx2(η) + x(η)δE[ ∑
j∈No

η

x(j)|η] − P(η),

Under first-best, we should have πη(x(∙), P(∙)) = 0 (no information rent for the agent). That

leads to the pricing scheme is P∗(η) = ax(η) − bx2(η) + x(η)δE[∑j∈No
η

x(j)|η]. The firm then

obtains the maximum social welfare as follows (where E, V respectively represents expectation

and variance).

max π0(x, P(∙)) = NE





(a − c)x(η) − bx2(η) + x(η)δE[ ∑

j∈No
η

x(j)|η]





(80)

= N
{
(a − c)E[x(η)] − bE[x2(η)] + E[x(η)]δmE[x(j)|j∈No

η
η]
}

(81)

= N
{
(a − c)E[x(η)] − bE[x2(η)] + δmE[x(η)]2

}
(82)

= N
{
(a − c)E[x(η)] − b

(
V[x(η)] + E[x(η)]2

)
+ δmE[x(η)]2

}
(83)

= N
{
(a − c)E[x(η)] − bV[x(η)] − (b − δm)E[x(η)]2

}
(84)

Thus the firm at optimum wants to minimize the variance of x(η) by providing a menu that

contains only a single consumption level x, i.e. V[x(η)] = 0, E[x(η)] = x. So the firm’s problem

reduces to

max π0(x, P(∙)) = N
[
(a − c)x − (b − δm)x2

]
(85)

Provided b > δm (Assumption 2), the optimal consumption level x∗(η) = a−c
2(b−δm) ; and the op-

timal payment is P∗(η) = ax∗(η) − bx∗2(η) + x∗(η)δE[∑j∈No
η

x∗(j)|η] = a2−c2

4(b−δm) . Substituting

x∗ into (85), the firm’s profit at the optimum is N (a−c)2

4(b−δm) .

Observe the firm’s profit with the DS pricing, (87), and that under NDS, (85),

π0(x(∙)) =︸︷︷︸
(16)

N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]










 f (k)dk (86)

=︸︷︷︸
(64)

N
∫ N

k




(a − c)x(k) −

(
b − δrm

1+r

)
x2(k)

+x(k)δ
{

1
1+r E[∑j∈No

k
x(j)|k]

}



 f (k)dk (87)

25The decision of Q(∙) is cosmetic since η merely serves a proxy for the firm to arbitrarily price-discriminate the

customers. As shown in Proposition 4, the induced consumption and optimal pricing are independent of Q(∙).
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and note that (87) reduces to (85) if x(k) ≡ x and k → 0 (i.e. all customers served in a homoge-

nous equilibrium). Since the firm is strictly better off with more flexible control of x(k) over all

k (as in (87)) than restricting to a single x (as in (85)), 26 the profit earned through NDS pricing

is dominated by that under DS pricing. �

Proof of Proposition 5. In case of the Erdös and Rényi graph, r → ∞, limr→∞ H(k) :=

limr→∞
k+rm
1+r = m. We obtain:

lim
r→∞

E[ ∑
j∈No

k

x(j)|k]

= lim
r→∞

{

rm (k + rm)r
∫ N

k

x(y)
(y + rm)r+1 dy

}

=
∫ N

k
x(y)

{

lim
r→∞

rm (k + rm)r

(y + rm)r+1

}

dy

=
∫ N

k
x(y) exp

(
k − y

m

)

dy.

Accordingly, its derivative is:

d
dk

E[ ∑
j∈No

k

x(j)|k]
∣
∣
∣
r→∞

=
r

k + rm
E[ ∑

j∈No
k

x(j)|k]
∣
∣
∣
r→∞

−
rm

k + rm
x(k)

=
1
m

E[ ∑
j∈No

k

x(j)|k]
∣
∣
∣
r→∞

− x(k).

Recall that in the firm’s objective (16); the profit earned from a single degree-k player in the

Erdös and Rényi graph can be rewritten as:

ΠR
o (x(∙)) = (a − c)x(k) − bx2(k) + x(k)δ






E[∑j∈No
k

x(j)|k]

−H(k) d
dk E[∑j∈No

k
x(j)|k]






= (a − c)x(k) − bx2(k) + x(k)δ






E[∑j∈No
k

x(j)|k]

−m
[

1
m E[∑j∈No

k
x(j)|k] − x(k)

]






= (a − c)x(k) − (b − δm)x2(k).

Notice that the externality term is cancelled off in the deduction. The resulting objective

function of the firm becomes identical to (85). The proof follows from that of Proposition 4. �

Proof of Theorem 2. The proof is similar to that of Theorem 1, except for the modification

of expected neighbor consumption. In steps (i) and (ii), the analysis is identical and therefore

26Note that maximizing (87) will necessarily result in degree-heterogeneous consumption that differs from the solu-

tion to (85), provided that the degree distribution and neighbor degree distributions are not symmetric across degrees.

Only in the Erdös and Rényi graph where the network externalities are cancelled off, the solutions of DS pricing and

NDS pricing will become identical. See Proposition 5.
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we omit it. We start directly with step (iii). We decompose it into two sub-steps: (a) Calculus

of variations and (b) Verification of the candidate solution and its properties.

(a) Calculus of variations. Let

z(k) ≡
∫ k

0

x(y)

(y + rm)2 dy =
1

(k + rm)rm
E[ ∑

j∈Ni
k

x(j)|k].

Hence we have

x(k) = z′(k)(k + rm)2,

z′(k) =
x(k)

(k + rm)2 ,

z′′(k) =
x′(k)

(k + rm)2 −
2x(k)

(k + rm)3 .

Using this definition, we convert the firm’s profit (16) as a function of z(k) and z
′
(k) below.

π0(x(∙))

= N
∫ N

k






(a − c)z
′
(k)(k + rm)2 − b[z

′
(k)]

2
(k + rm)4

+z
′
(k) (k + rm)2δ



 rm(k + rm)z(k)

−H(k) d
dk {rm(k + rm)z(k)}










f (k)dk

= N
∫ N

k






(a − c)z
′
(k)(k + rm)2 − b[z

′
(k)]

2
(k + rm)4

+z
′
(k) (k + rm)2δ







rm(k + rm)z(k)

−H(k)rmz(k)

−H(k)rm(k + rm)z
′
(k)












f (k)dk. (88)

Then (88) exhibits the structure of calculus of variations. Let

Gi(k, z(k), z
′
(k)) :=






(a − c)z
′
(k)(k + rm)2 − b[z

′
(k)]

2
(k + rm)4

+z
′
(k) (k + rm)2δ



 rm(k + rm)z(k) − H(k)rmz(k)

−H(k)rm(k + rm)z
′
(k)










f (k).

We obtain its partial derivatives as follows:

Gi
z(k)(k, z(k), z

′
(k)) = {z

′
(k) (k + rm)2δ[rm(k + rm) − H(k)rm]} f (k)

Gi
z′(k)(k, z(k), z

′
(k)) = f (k)






(a − c)(k + rm)2 − 2bz
′
(k) (k + rm)4

+δ(k + rm)2



 rm(k + rm)z(k)

−2H(k)rm(z(k) + (k + rm)z′(k))









.

The optimal solution z∗(∙) is identified by the first-order condition below (referred as the

Euler equation):

Gi
z(k)(k, z(k), z

′
(k)) = dGi

z′(k)(k, z(k), z
′
(k))/dk. (89)
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Note that (89) takes form of a second-order differential equation with regard to z(∙), whose

solution is explicit but cumbersome. In our case, we can verify the required monotonicity

without writing down the explicit form of the solution (see later Step (b) of the proof).

Recall that

H(k) =
1 − F(k)

f (k)
=

k + rm
1 + r

⇒ H
′
(k) =

1
r + 1

, (90)

f (k) =
(1 + r)(rm)1+r

(k + rm)2+r ⇒ f
′
(k) =

−(r + 1)(r + 2)(rm)r+1

(k + rm)r+3 .

Putting the Euler equation in x-notation, we have

(a − c)r(1 + r) + δm(r − 1)r2(k + rm)
∫ k

0
x∗(y)

(y+rm)2 dy

+2(b + br + δrm)(−rx∗(k) + (k + rm)x∗′(k)) = 0.
(91)

The second-order condition for optimality (Legendre condition)

Gi
z′(k)z′(k)(k, z(k), z

′
(k)) ≤ 0, ∀k,

can be easily shown satisfied. Thus, the Euler equation (89) identifies the maximum point of

the firm’s objective function.

(b) Verification of the candidate solution and its properties. Now we proceed to show the

solution to Euler equation (91) does qualify the monotonic constraint (61). First, we need to

derive some lower bound on the induced consumption. As suggested in Proposition 2,

E[ ∑
j∈Ni

k

x(j)|k] = (k + rm)rm
∫ k

0

x(y)
(y + rm)2 dy.

Its derivative is

d
dk

E[ ∑
j∈Ni

k

x(j)|k] = rm

(∫ k

0

xj(y)

(y + rm)2 dy +
xj(k)

k + rm

)

=
E[∑j∈Ni

k
x(j)|k]

k + rm
+

rmx(k)
k + rm

. (92)
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Rewrite the firm’s transformed objective function by substituting d
dk E[∑j∈Ni

k
x(j)|k] above:

max
x(∙)

π0(x(∙))

= N
∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k] − H(k) d
dk E[∑j∈Ni

k
x(j)|k]

}



 f (k)dk

= N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ

{

E[∑j∈Ni
k

x(j)|k] − H(k)

(
E[∑j∈Ni

k
x(j)|k]

k+rm + rmx(k)
k+rm

)}





 f (k)dk

= N
∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k]
(

1 − H(k)
k+rm

)
− H(k)

(
rm

k+rm

)
x(k)

}



 f (k)dk

= N
∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k]
(

1 − 1
1+r

)
− H(k)

(
rm

k+rm

)
x(k)

}



 f (k)dk.

Since 1 − 1
1+r > 0, the presence of externality term E[∑j∈Ni

k
x(j)|k] will positively shift the

optimal consumption. That implies a lower bound on optimal consumption, denoted by x(∙),

is the solution to the following objective that ignores the externality.

max
x(∙)

π0(x(∙)) = N
∫ N

k




(a − c)x(k) − bx2(k)

+x2(k)δ
{
−H(k)

(
rm

k+rm

)}



 f (k)dk

Pointwise maximization of π0(x(∙)) (or by Euler equation approach equivalently) yields

x(k) ≡
a − c

2
(

b + δH(k) rm
k+rm

) =
a − c

2
(
b + δ rm

1+r

) =
(a − c)(1 + r)

2(b + br + δrm)
, (93)

for which the second-order condition holds obviously. x(k) > 0 given a > c. Thus the nonneg-

ativity of x(∙) is guaranteed. Denote x(k) by xi for clarity.

Now note the Euler equation

(a− c)r(1 + r)+ δm(r− 1)r2(k + rm)
∫ k

0

x∗(y)
(y + rm)2 dy + 2(b + br + δrm)(−rx∗(k)+ (k + rm)x∗′(k)) = 0

implies

(k + rm)x∗′(k)

= rx∗(k) −
(a − c)r(1 + r)

2(b + br + δrm)
−

δm(r − 1)r2(k + rm)
2(b + br + δrm)

∫ k

0

x∗(y)
(y + rm)2 dy

=︸︷︷︸
(93)

r(x∗(k) − xi) +
δm(1 − r)r2(k + rm)

2(b + br + δrm)

∫ k

0

x∗(y)
(y + rm)2 dy

>
δm(1 − r)r2(k + rm)

2(b + br + δrm)

∫ k

0

x∗(y)
(y + rm)2 dy

> 0 if r < 1
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This suggests that the monotonicity constraint, x∗′(∙) > 0, is satisfied if r < 1 (Assumption 3).

For the ease of presentation, we rewrite Eular equation using more existing notations:

(k + rm)x∗′(k) = r(x∗(k) − xi) +
δm(1 − r)r2(k + rm)

2(b + br + δrm)

∫ k

0

x∗(y)
(y + rm)2 dy

= r(x∗(k) − xi) +
δ(1 − r)r

2(b + br + δrm)
E[ ∑

j∈Ni
k

x∗(j)|k], (94)

which then gives us the optimality condition presented in Theorem 2:

δ(1 − r)r
2(b + br + δrm)

E[ ∑
j∈Ni

k

x∗(j)|k] + r(x∗(k) − xi) − (k + rm)x∗′(k) = 0.

Finally, one can substitute x∗(∙) back to (57) (and note the consumption of degree types below

k is zero) to obtain the payment function P∗(∙) at optimum. Similar to Theorem 1, it can also

be shown that the equilibrium x∗(∙) can be uniquely implemented under P∗(∙). �

Proof of Proposition 6. The first-order condition of IC constraints (53) implies that, at

optimum,

P′(x(k)) = a − 2bx(k) + δE[ ∑
j∈Ni

k

x(j)|k],

dP′(x(k))
dk

= −2bx′(k) + δ
dE[∑j∈Ni

k
x(j)|k]

dk

=︸︷︷︸
(92)

−2bx′(k) + δ

(
E[∑j∈Ni

k
x(j)|k]

k + rm
+

rmx(k)
k + rm

)
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Substituted into the derivative of incentive-compatible marginal price,

dP′(x∗(k))
dk

= −2bx∗′(k) + δ

(
E[∑j∈Ni

k
x∗(j)|k]

k + rm
+

rmx∗(k)
k + rm

)

(95)

=
1

k + rm



−2b(k + rm)x∗′(k) + δ



E[ ∑
j∈Ni

k

x∗(j)|k] + rmx∗(k)









=︸︷︷︸
(19)

1
k + rm



−2b




r(x∗(k) − xi)

+ δ(1−r)r
2(b+br+δrm) E[∑j∈Ni

k
x∗(j)|k]



+ δ



E[ ∑
j∈Ni

k

x∗(j)|k] + rmx∗(k)









=
1

k + rm




δrmx∗(k) − 2br(x∗(k) − xi)

+
(

δ − bδ(1−r)r
b+br+δrm

)
E[∑j∈Ni

k
x∗(j)|k]





>
1

k + rm




δrmx∗(k) − 2br(x̄(k) − xi)

+
(

δ − bδ(1−r)r
b+br+δrm

)
E[∑j∈Ni

k
x∗(j)|k]





=
1

k + rm




δrmx∗(k) + 2brxi − r(a − c + δE[∑j∈Ni

k
x∗(j)|k])

+
(

δ − bδ(1−r)r
b+br+δrm

)
E[∑j∈Ni

k
x∗(j)|k]





=
1

k + rm




δrmx∗(k) + 2brxi − r(a − c)

+
(

δ(1 − r) − bδ(1−r)r
b+br+δrm

)
E[∑j∈Ni

k
x∗(j)|k]





>
1

k + rm




(δrm + 2br)xi − r(a − c)

+
(

δ(1 − r) − bδ(1−r)r
b+br+δrm

)
E[∑j∈Ni

k
x∗(j)|k]





>︸︷︷︸
r<1

0 (96)

Notice br
b+br+δrm < 1, and that r < 1 implies 2rδm

1+r < δm, which then leads to xi > a−c
2b+δm .

Altogether it gives (96). This indicates the optimal payment scheme charges higher marginal

price at optimum for higher degree customers. In this case we also conclude

P′′(x∗(k)) =
dP′(x∗(k))

dk
/x∗′(k) > 0.

which gives rise to a quantity premium menu.

Next we will show that the firm, at optimality, reaps more profit from higher degree cus-

tomers. The profit grasped from a degree-k consumer is given by

Π(k) := P(x(k)) − cx(k).

Note

d
dk

P(x(k)) = P′(x(k))x′(k)

=



a − 2bx(k) + δE[ ∑
j∈Ni

k

x(j)|k]



 x′(k)
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So

d
dk

Π(k) = x′(k)



a − c − 2bx(k) + δE[ ∑
j∈Ni

k

x(j)|k]





At optimality, x∗′(k) > 0, and a − c − 2bx∗(k) + δE[∑j∈Ni
k

x∗(j)|k] > 0 (as x∗(k) < x̄(k)). Thus
d
dk Π∗(k) > 0. �

Proof of Corollary 2. We first show the induced consumption is downward shifted com-

pared to the consumption if the firm had complete information on customer degrees (first-best

scenario). To be brief, the firm’s first-best objective is

max
x(∙)

πFB
0 (x(∙)) = N

∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k]
}



 f (k)dk, (97)

while recall the second-best firm’s objective as

max
x(∙)

π0(x(∙)) = N
∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k] − H(k) d
dk E[∑j∈Ni

k
x(j)|k]

}



 f (k)dk

= N
∫ N

k




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k] − 1
1+r

(
E[∑j∈Ni

k
x(j)|k] + rmx(k)

)}



 f (k)dk

= N
∫ N

k




(a − c)x(k) −

(
b + δrm

1+r

)
x2(k)

+x(k)δ
{

E[∑j∈Ni
k

x(j)|k]
(

1 − 1
1+r

)}



 f (k)dk. (98)

Compared to that of first-best (97), the linear benefit of consumption is discounted in the

second-best objective (98) since 1− 1
1+r < 1, while the quadratic disutility term is strengthened.

Thus the resulting consumption x∗(k) in second-best should be lower than that in first-best. In

other words, the firm faces a downward distortion in the consumption when its information

regarding the social network is incomplete.27 Lastly, note that the monotonicity of x∗(k) with

regard to k follows from its feasibility to the firm’s problem (4)-(6). �

Proof of Proposition 7. The derivation of f t
k(∙), i.e. the pdf of neighbor degree distribution

for a degree-k player (he) at time t involves the following steps:

Under mean field approximation, the preferential attachment gives rise to ki(t) = M(t/it(k))1/2

(Barabási and Albert, 1999), where it(k) is the birthdate of the focal player. Thereby we have

it(k) = M2t/k2.

Observe (i) at his birthdate, the focal player already had M out of the k neighbors that he

has now. If a now-degree-d player (referred as player j) was of degree d′ at the moment it(k),

we must have d′ = dM/k. 28

27By the same argument as in footnote 23, it can be shown the downward distortion holds for the whole range of

degree types, although the first-best and second-best profit functions possess different values of k.
28which can be obtained by solving the simultaneous equations kj(t) = M(t/j)1/2 = d and kj(it(k)) = d′.

57



Authors: Yang Zhang and Ying-Ju Chen; Optimal Pricing in Networks

Therefore, the probability that player j became a neighbor to the focal player is Md′

2Mit(k) =
d′

2it(k) = dM/k
2it(k) = dMk

2M2t
= dk

2Mt .29 Applying Bayes’ theorem,

f t
k(d) =

Pr{neighbor|degree = d} f (d|d > k)
∫ k̄

k Pr{neighbor|degree = d} f (d|d > k)dd

=
Pr{neighbor|degree = d} f (d)

∫ k̄
k Pr{neighbor|degree = d} f (d)dd

=
dk

2Mt f (d)
∫ k̄

k
dk

2Mt f (d)dd

=
d f (d)

∫ k̄
k d f (d)dd

=
1/d2

∫ k̄
k 1/d2dd

=
1/d2

d−1|kN

=︸︷︷︸
N→∞

k
d2 (99)

which is time-invariant. Redenote f t
k(d) by f o

k (d), and we have

Fo
k (d) =

∫ d

k
f o
k (y)dy

= 1 −
k
d

(100)

One can verify the legitimacy of Fo
k (∙) on (k, ∞) by Fo

k (k) = 0, Fo
k (∞) = 1.

(ii) After his birth, the focal player i got his k − M neighbors over time. The probability of

a now-degree-d player being his neighbor is calculated as follows. At date it(d) = M2t/d2,

suppose the focal player i’s degree was k′. Then it must be that k′ = kM/d. 30

The now-degree-d player reaches the focal player w.p. M k′

2Mit(d) = k′

2it(d) = kM/d
2it(d) =

kM/d
2M2t/d2 = kd

2Mt . Applying Bayes’ theorem,

29Note that the total degrees of all players at the moment is 2Mit(k), since each player brings in M links which raise

2M degrees systemwise. Thus the probability j is reached by any of the M links under preferential attachment is Md′

2Mit(k) .
30which can be obtained by solving the simultaneous equations k = M(t/i)1/2 and k′ = M(it(d)/i)1/2.
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f t
k(d) =

Pr{neighbor|degree = d} f (d|d < k)
∫ k

M Pr{neighbor|degree = d} f (d|d < k)dd

=
Pr{neighbor|degree = d} f (d)

∫ k
M Pr{neighbor|degree = d} f (d)dd

=
dk

2Mt f (d)
∫ k

M
dk

2Mt f (d)dd

=
d f (d)

∫ k
M d f (d)dd

=
1/d2

∫ k
M 1/d2dd

=
1/d2

d−1|Mk

=
1/d2

1/M − 1/k

=
kM

d2(k − M)
, (101)

which is time-invariant. Redenote f t
k(d) by f i

k(d).

Fi
k(d) =

∫ d

M
f i
k(y)dy

=
k(d − M)
d(k − M)

(102)

One can verify that Fi
k(M) = 0 and Fi

k(k) = 1, so that Fi
k(∙) is a legitimate distribution on [M, k).

Also notice that 1 − Fo
k (d) > 1 − Fi

k(d) ∀d, which indicates that one’s out-neighbors have a

stochastically higher degree distribution than in-neighbors do. Note that 1 − Fi
k(d) increases

with M. That means one’s in-neighbor’s degree distribution first-order stochastically increases

in M. �

Proof of Proposition 8. We have

E[ ∑
j∈Nk

x(j)|k] = λM
∫ N

k
x(d) f o

k (d)dd + (1 − λ)(k − M)
∫ k

M
x(d) f i

k(d)dd

= λM
∫ N

k
x(d)

k
d2 dd + (1 − λ)(k − M)

∫ k

M
x(d)

kM
d2(k − M)

dd

= λkM
∫ N

k

x(d)
d2 dd + (1 − λ)kM

∫ k

M

x(d)
d2 dd

= kM

(

λ
∫ N

k

x(d)
d2 dd + (1 − λ)

∫ k

M

x(d)
d2 dd

)

(103)
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In order for E[∑j∈Nk
x(j)|k] increasing in k, it suffices to have

d
dk

{

kM
∫ N

k

x(d)
d2 dd

}

= M

(∫ N

k

x(d)
d2 dd −

x(k)
k

)

= M

(

−
∫ N

k
x(d)d

1
d
−

x(k)
k

)

=︸︷︷︸
Integration by part

M

(∫ N

k

1
d

x′(d)dd −
x(d)

d

∣
∣
∣

N

k
−

x(k)
k

)

=︸︷︷︸
N→∞

M
∫ N

k

1
d

x′(d)dd

> 0 if x′(∙) > 0

Therefore, the single crossing condition is met if the consumption strategy is increasing in

degree. �

Proof of Theorem 3. The proof is analogous to that of Theorem 1, and we recombine it into

two steps. Step (i): We explore the structural properties of the optimization problem. Step (ii):

We rewrite the firm objective as a function of consumption only. Using the change of variables,

we show that the objective can be optimized by calculus of variations. We then verify that the

candidate solution from calculus of variations indeed satisfies the remaining constraints.

Step (i): Structural properties of the optimization problem. As the standard mechanism

design approach, we first reduce the constraints of incentive compatibility and individual ratio-

nality by single crossing property. Recall the payoff function of a degree-k customer reporting

k̂ when others report their own types is

πk(k̂, x(∙), P(∙)) = ax(k̂) − bx2(k̂) + x(k̂)δE[ ∑
j∈Nk

x(j)|k] − P(x(k̂)),

The first-order condition for IC constraints implies:

dπk(k̂, x(∙), P(∙))/dk̂
∣
∣
∣
k̂=k

= ax′(k̂) − 2bx(k̂)x′(k̂) + x′(k̂)δE[ ∑
j∈Nk

x(j)|k] − P′(x(k̂))x′(k̂)
∣
∣
∣
k̂=k

=



a − 2bx(k̂) + δE[ ∑
j∈Nk

x(j)|k] − P′(x(k̂))



 x′(k̂)
∣
∣
∣
k̂=k

=



a − 2bx(k) + δE[ ∑
j∈Nk

x(j)|k] − P′(x(k))



 x′(k)

= 0. (104)

So we have a − 2bx(k) + δE[∑j∈Nk
x(j)|k] = P′(x(k)), which implies

d
dk

P′(x(k)) = −2bx′(k) + δ
d
dk

E[ ∑
j∈Nk

x(j)|k] (105)
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The local second-order condition for IC constraints is

d2

dk̂2
πk(k̂, x(∙), P(∙))

∣
∣
∣
k̂=k

=
[

−2bx′(k̂) −
d

dk̂
P′(x(k̂))

]

x′(k̂) +



a − 2bx(k̂) + δE[ ∑
j∈Nk

x(j)|k] − P′(x(k̂))



 x′′(k̂)
∣
∣
∣
k̂=k

=︸︷︷︸
(104)

[

−2bx′(k) −
d
dk

P′(x(k))
]

x′(k)

=︸︷︷︸
(105)



−δ
d
dk

E[ ∑
j∈Nk

x(j)|k]



 x′(k)

< 0 if x′(k) > 0 (106)

Therefore the local concavity for truth reporting requires the monotonicity condition, x′(k) > 0,

which in our problem also leads to d
dk E[∑j∈Nk

x(j)|k] > 0 by Proposition 8. (104) and (106)

constitute the local IC condition, under which the customer does not attempt to lie locally. We

will soon show that the single crossing condition, justified in Proposition 8, extends local IC to

global. Define the payoff in the truth telling equilibrium:

V(k) := πk(k, x(∙), P(∙)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈Nk

x(j)|k] − P(x(k)), (107)

and IR constraints (6) imply that V(k) ≥ 0, ∀k.

d
dk

V(k) = ax′(k) − 2bx(k)x′(k) +
dx(k)δE[∑j∈Nk

x(j)|k]

dk
− P′(x(k))x′(k)

= ax′(k) − 2bx(k)x′(k) + x′(k)δE[ ∑
j∈Nk

x(j)|k] +

x(k)δ
d
dk

E[ ∑
j∈Nk

x(j)|k] − P′(x(k))x′(k)

=︸︷︷︸
(104)

x(k)δ
d
dk

E[ ∑
j∈Nk

x(j)|k],

The above result can be reached by the envelope theorem as well, in consideration of the IC

constraints:
d
dk

V(k) =
∂

∂k
πk(k̂∗, x(∙), P(∙))

∣
∣
∣
k̂∗=k

= x(k)δ
d
dk

E[ ∑
j∈Nk

x(j)|k].

Accordingly, (from Fundamental Theorem of Calculus)

V(k) = V(k) +
∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈Nu

x(j)|u]du,
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where k is the lowest degree type considered. One can write

V(k) − πk(k̂, x(∙), P(∙))

= V(k) −



V(k̂) − x(k̂)δE[ ∑
j∈N

k̂

x(j)|k̂] + x(k̂)δE[ ∑
j∈Nk

x(j)|k]





= V(k) − V(k̂) + x(k̂)δ



E[ ∑
j∈N

k̂

x(j)|k̂] − E[ ∑
j∈Nk

x(j)|k]





=
∫ k

k̂
x(u)δ

d
du

E[ ∑
j∈Nu

x(j)|u]du

+x(k̂)δ



E[ ∑
j∈N

k̂

x(j)|k̂] − E[ ∑
j∈Nk

x(j)|k]





=︸︷︷︸
Integration by parts

x(k)δE[ ∑
j∈Nk

x(j)|k] −
∫ k

k̂
E[ ∑

j∈Nu

x(j)|u]δx′(u)du

+x(k̂)δ



−E[ ∑
j∈Nk

x(j)|k]





= (x(k) − x(k̂))δE[ ∑
j∈Nk

x(j)|k] −
∫ k

k̂
x′(u)δE[ ∑

j∈Nu

x(j)|u]du

=
∫ k

k̂
x′(u)δE[ ∑

j∈Nk

x(j)|k]du −
∫ k

k̂
x′(u)δE[ ∑

j∈Nu

x(j)|u]du

≥ 0,

if k̂ < k, since x′(∙) > 0 (which also means E[∑j∈Nk
x(j)|k] increases in k). When k̂ > k, simply

rewrite the above as

V(k) − πk(k̂, x(∙), P(∙))

=
∫ k̂

k
x′(u)δE[ ∑

j∈Nu

x(j)|u]du −
∫ k̂

k
x′(u)δE[ ∑

j∈Nk

x(j)|k]du

≥ 0,

where the last inequality follows from x′(∙) > 0 (which also means E[∑j∈Nk
x(j)|k] increases in

k). Thus IC is achieved globally. Since V(k) = 0, the payment P(x(k)) is

P(x(k)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈Nk

x(j)|k] −
∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈Nu

x(j)|u]du. (108)

As a result, IC and IR constraints (5)-(6) can reduce to a single monotonicity constraint x′(∙) >

0.
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Step (ii): Rewriting the firm’s objective. The firm’s problem can be transformed as

max
x(∙)

N
∫ N

k







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈Nk
x(j)|k]

−H(k) d
dk E[∑j∈Nk

x(j)|k]










 f (k)dk (109)

s.t. x(∙) is increasing.

Observe

d
dk

E[ ∑
j∈Nk

x(j)|k] =
E[∑j∈Nk

x(j)|k]

k
+ kM

(

−λ
x(k)
k2 + (1 − λ)

x(k)
k2

)

=
E[∑j∈Nk

x(j)|k]

k
+ M(1 − 2λ)

x(k)
k

(110)

d2

dk2 E[ ∑
j∈Nk

x(j)|k] =
M(1 − 2λ)

k
x′(k)

Therefore

k
d
dk

E[ ∑
j∈Nk

x(j)|k] − E[ ∑
j∈Nk

x(j)|k] = M(1 − 2λ)x(k) (111)

x(k) =
1

M(1 − 2λ)

(

k
d
dk

E[ ∑
j∈Nk

x(j)|k] − E[ ∑
j∈Nk

x(j)|k]

)

(112)

Let

G :=







(a − c)x(k) − bx2(k)

+x(k)δ






E[∑j∈Nk
x(j)|k]

−H(k) d
dk E[∑j∈Nk

x(j)|k]










 f (k) (113)

and z(k) := E[∑j∈Nk
x(j)|k]. Thus G can be expressed as a function of z(k) and z′(k), which

makes the transformed objective (109) readily solvable by calculus of variation.

Substituted with (112), (113) becomes a function of G(k, z(k), z′(k)). The Eular equation

Gz(k)(k, z(k), (z)
′
(k)) =

d
dk

G
(z)′ (k)

(k, z(k), (z)
′
(k)).

yields a surprisingly simple formula (in x-terms):

x∗(k) − kx∗′(k) =
a − c

2b + δ(1 − 2λ)M
. (114)

This means that the induced consumption is linear in degree, i.e.

x∗(k) = θk +
a − c

2b + δ(1 − 2λ)M
, (115)

where θ is a positive real number (to satisfy the monotonicity constraint x′(∙) > 0). Also note

that Assumption 1 implies 2b > δM, which ensures the non-negativity of the consumption

regardless of λ ∈ [0, 1] and k.
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The second order condition, known as Legendre condition, is satisfied:

Gz′(k)z′(k)(k, z(k), z′(k)) = −
2(2b + δ(1 − 2λ)M)

k(1 − 2λ)2 ≤ 0, ∀k, z(k).

Plugging x∗(∙) into the payment function (108) gives the optimal payment scheme P∗(∙). Sim-

ilar to Theorems 1 and 2, it can be shown that x∗(∙) can be uniquely implemented by P∗(∙).

�

Proof of Proposition 9. Recall that

P∗′′(x∗(k)) =
dP′(x∗(k))

dk

/
x∗′(k)

= −2b + δ
d
dk

E[ ∑
j∈Nk

x∗(j)|k]
/

x∗′(k). (116)

Substituted with d
dk E[∑j∈Nk

x(j)|k] =
E[∑j∈Nk

x(j)|k]
k + M(1− 2λ) x(k)

k = 1
k

(
E[∑j∈Nk

x(j)|k] + M(1 − 2λ)x(k)
)

and x∗′(k) = θ, it yields

P∗′′(x∗(k)) = −2b + δ
1
kθ

(

E[ ∑
j∈Nk

x∗(j)|k] + M(1 − 2λ)x∗(k)

)

= −2b +
1
kθ

(

δE[ ∑
j∈Nk

x∗(j)|k] + δM(1 − 2λ)x∗(k)

)

>
1
kθ

(2b(x∗(k) − kθ) − (a − c) + δM(1 − 2λ)x∗(k))

=︸︷︷︸
(25)

1
kθ

(

2b

(
a − c

2b + δ(1 − 2λ)M

)

− (a − c) + δM(1 − 2λ)x∗(k)
)

=︸︷︷︸
(25)

δ(1 − 2λ)M
kθ

((
−(a − c)

2b + δ(1 − 2λ)M

)

+ x∗(k)
)

= δ(1 − 2λ)M

The inequality “>” above stems from the fact that x∗(k) < 1
2b{a − c + δE[∑j∈Nk

x∗(j)|k]} ⇔

δE[∑j∈Nk
x∗(j)|k] > 2bx∗(k)− (a− c). Therefore, we can conclude that, if λ < 1/2, P∗′′(x∗(k)) >

0 (quantity premium). Since x∗′(∙) > 0, we also have dP∗′(x∗(k))
dk > 0.
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When λ > 1/2,

P∗′′(x∗(k)) = −2b + δ
1
kθ

(

E[ ∑
j∈Nk

x∗(j)|k] + M(1 − 2λ)x∗(k)

)

< −2b + δM(1 − 2λ) +
1
kθ

(

δE[ ∑
j∈Nk

x∗(j)|k]

)

< −2b + δM(1 − 2λ) +
1
θ

δx∗(k̄)

=︸︷︷︸
(25)

−2b + δM(1 − 2λ) + δ

(

k̄ +
a − c

θ(2b + δ(1 − 2λ)M)

)

= −2b + δk̄ + δM(1 − 2λ) + δ
a − c

θ(2b + δ(1 − 2λ)M)

Given Assumption 1, P∗′′(x∗(k)) < 0 (quantity discount) holds so long as M(1− 2λ)+ a−c
θ(2b+δ(1−2λ)M) <

0. Since x′(k) > 0, we also have in this case dP∗′(x∗(k))
dk < 0. �

Proof of Corollary 3. Recall that of first best,

GFB :=




(a − c)x(k) − bx2(k)

+x(k)δ
{

E[∑j∈Nk
x(j)|k]

}



 f (k). (117)

and G defined in (113), so that

GFB − G =



x(k)δH(k)
d
dk

E[ ∑
j∈Nk

x(j)|k]



 f (k)

= x(k)δ(1 − F(k))
d
dk

E[ ∑
j∈Nk

x(j)|k]. (118)

For the expression of GFB − G, the coefficient for x(k) is positive given that E[∑j∈Nk
x(j)|k]

increases in k (for any feasible x′(∙) > 0). Thus the incentive for consumption is lower in second

best case than that in first best scenario. That implies downward distortion of consumption in

the second best case.

To see that the profit earned from degree-k customer increases in k, recall

P(x(k)) = ax(k) − bx2(k) + x(k)δE[ ∑
j∈Nk

x(j)|k] −
∫ k

k
ˉ

x(u)δ
d

du
E[ ∑

j∈Nu

x(j)|u]du

d
dk

P(x(k)) =



a − 2bx(k) + δE[ ∑
j∈Nk

x(j)|k]



 x′(k)

Therefore for Π(k) := P(x(k)) − cx(k),

Π′(k) =
d
dk

P(x(k)) − cx′(k)

=



a − c − 2bx(k) + δE[ ∑
j∈Nk

x(j)|k]



 x′(k)
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Notice that x∗′(k) > 0 and a − c − 2bx∗(k) + δE[∑j∈Nk
x∗(j)|k] > 0 (since x∗(k) < x̄(k)). Thus

Π∗′(k) > 0.

That x∗(k) increases in k directly follows from the monotonicity constraint. Next we show

how the consumption and the profit change with the network density. Since the average degree

in the network is 2M, the parameter M captures the density of network. Recall

x∗(k) = θk +
a − c

2b + δ(1 − 2λ)M
, (119)

If 1 − 2λ > 0, the induced consumption x∗(k) declines in M. If 1 − 2λ < 0, x∗(k) increases in

M.

To show that the firm’s maximum profit increases with M if 1 − 2λ < 0, we need more no-

tations. Let x̃(k) := θk; and note x̃(k) is independent of M and x∗(k) = x̃(k) + a−c
2b+δ(1−2λ)M . De-

fine ξ(k) := kM a−c
2b+δ(1−2λ)M

(
λ
∫ N

k
1
d2 dd + (1 − λ)

∫ k
M

1
d2 dd

)
= a−c

2b+δ(1−2λ)M [(2λ − 1)M + (1 − λ)k],

which increases in M given 1 − 2λ < 0. It follows that E[∑j∈Nk
x∗(j)|k] = E[∑j∈Nk

x̃(j)|k] +

ξ(k). Observe that

d
dM

E[ ∑
j∈Nk

x̃(j)|k] =
E[∑j∈Nk

x̃(j)|k]

M
− k(1 − λ)

x̃(M)
M

=
k
M

[
E[x̃(j)|j∈Nk

k] − (1 − λ)x̃(M)
]

> 0, given x̃(∙) increasing and M the lowest degree

Thus, d
dM E[∑j∈Nk

x∗(j)|k] = d
dM E[∑j∈Nk

x̃(j)|k] + d
dM ξ(k) > 0. Also recall that

δE[ ∑
j∈Nk

x∗(j)|k] > 2bx∗(k) − (a − c)

= 2b

(

θk +
a − c

2b + δ(1 − 2λ)M

)

− (a − c)

> 2bθk since 1 − 2λ < 0 (120)

Π0(k) = (a − c)x(k) − bx2(k) + x(k)δ






E[∑j∈Nk
x(j)|k]

−H(k) d
dk E[∑j∈Nk

x(j)|k]






= (a − c)x(k) − bx2(k) + x(k)δ






E[∑j∈Nk
x(j)|k]

− 1
2

(
E[∑j∈Nk

x(j)|k] + M(1 − 2λ)x(k)
)






= (a − c)x(k) − bx2(k) +
1
2

x(k)δ



E[ ∑
j∈Nk

x(j)|k] − M(1 − 2λ)x(k)




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At optimum,

Π∗
0(k) = (a − c)x∗(k) + x∗(k)



1
2

δE[ ∑
j∈Nk

x∗(j)|k] −
(

b +
1
2

δM(1 − 2λ)
)

x∗(k)





=︸︷︷︸
(119)

x∗(k)



1
2

δE[ ∑
j∈Nk

x∗(j)|k] −
(

b +
1
2

δM(1 − 2λ)
)

θk +
1
2
(a − c)





=
1
2

x∗(k)



δE[ ∑
j∈Nk

x∗(j)|k] − (2b + δM(1 − 2λ)) θk + (a − c)





Note that both x∗(k) and the bracketed term δE[∑j∈Nk
x∗(j)|k]− (2b + δM(1 − 2λ)) θk +(a− c)

are positive (given (120)) and increase in M. Hence, Π∗
0(k) increases in M. Furthermore, since

F(∙) first-order stochastically increases with M and Π∗
0(k) increases in k (as shown above), the

firm’s overall profit rises with the network density M at optimum. �
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