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There are different workforce models in the “gig” economy. While some on-demand service providers rely

strictly on either traditional employees or independent contractors, others rely on a blended workforce which

melds a layer of contingent workers with a core of permanent employees. In deciding on the “right number

of right people to staff at the right time”, managers must appropriately weigh the pertinent tradeoffs. In

this paper, we study cost-minimizing staffing decisions in service systems where the manager must decide

on how many flexible (contractors) and/or fixed (full-time) agents to staff in order to effectively balance

operating costs, varying customer demand patterns, and supply-side uncertainty, while not compromising on

the quality of service offered to customers. We consider a queueing-theoretic framework where the number of

servers is random because part of the workforce is flexible. Since the staffing problem with a random number

of servers is analytically intractable, we formulate two problem relaxations, based on fluid and stochastic-

fluid formulations, and establish their accuracies in large systems by relying on an asymptotic, many-server,

mode of analysis. We derive the optimal staffing policy, and glean insights into the appropriateness of

alternative workforce models in on-demand services. We also shed light on the distinction between demand-

side (customer arrival rates) and supply-side (number of servers) uncertainties in queueing systems.
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1. Introduction

The gig or on-demand economy has gradually become an integral part of the global economy,

and it is projected to continue to grow in the coming years (PWC 2017). Naturally, not all on-

demand services are delivered in the same manner. For example, ride-sharing applications, such as

Uber (uber.com) and Lyft (lyft.com), rely solely on independent contractors to fulfill ride requests

from customers. In such settings, the supply of workers available in each time period is uncertain

because those contractors are self-scheduled, i.e., they are free to set their own work schedules.

In contrast, several on-demand startups, such as Instacart (instacart.com) and Sprig (sprig.com),

have recently shifted away from staffing a workforce of independent contractors and rely on full-

time employees instead. There are also multiple companies, such as Walmart (walmart.com) and

Netflix (netflix.com), which rely on a blended workforce i.e., they meld, as a deliberate business

strategy, a layer of contingent workers with a core of permanent employees (Forbes 2015).
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Given that diverse landscape of alternative workforce models, a service provider must decide, as

a long-term business strategy in an initial planning stage, on the numbers of flexible (contractors)

and/or fixed (employees) agents to staff in order to effectively balance operating costs, varying

customer demand patterns, and supply-side uncertainty, while not compromising on the quality of

service offered to customers. This is the problem that we address in this paper.

1.1. Modeling Framework

We study a cost-minimizing service provider’s staffing problem in the context of a stylized queueing

model. We assume that both types of workers, fixed or flexible, have the same processing speeds,

i.e., service rates. However, the two types of workers differ in their unit operating costs, required

working periods, and show-up probabilities.

Customers are both impatient and delay sensitive. There are multiple working periods, customer

demand rates are deterministic yet time-varying, and the agent pool may include either fixed or

flexible agents (or both). Hereafter, we will use “agent” and “server” interchangeably. A fixed server

is compensated cfix per unit time. If a flexible server is available, then she earns cflex per unit time.

That is, cfix and cflex are staffing costs. We assume that the number of fixed servers is constant

throughout the horizon1, while the numbers of flexible servers can vary for different periods. When

there are flexible servers in the staffed agent pool, the total number of available servers in that

period is random. We provide more details about how we model the randomness in §2.4.

Why is our problem challenging? Since the number of servers in our queueing system is

random, we are facing a decision-making problem under parameter uncertainty. Because the opti-

mization problem faced by the system manager is analytically intractable, we rely instead on an

asymptotic mode of analysis. In particular, we consider a sequence of queueing systems indexed

by the arrival rate, λ, and we allow λ to increase without bound.

At a high level, systems with parameter uncertainty involve two “layers” of variability: (i)

stochastic variability, for any given realized value of the underlying uncertain parameter, because

interarrival, service, and patience times are random; and (ii) parameter uncertainty, because the

parameter itself, here the number of servers, is random. We address our capacity-planning question

by considering two alternative problem formulations, which correspond to two regimes, respec-

tively. The first formulation assumes that uncertainty effects dominate stochastic fluctuations. The

second formulation assumes that both uncertainty effects and stochastic fluctuations are negligible.

Our modelling approach is close to Bassamboo et al. (2010) who derive optimal staffing policies

with uncertain arrival rates. However, it is important to emphasize that the distinction between

1 We also considered an alternative setup where fixed workers are not required to show up in every period and are,
instead, subject to a requirement on the minimal number of periods during which they must be available. The main
insights that we obtain under either modeling framework are similar.
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uncertainty in demand (arrival rates) and uncertainty in supply (number of servers) is not a minor

technical point. Indeed, in capacity planning, the appropriate staffing level typically consists of a

nominal capacity requirement and an additional capacity hedge against exogenous uncertainty.

With self-scheduling servers, variability is endogenous because the distribution of the random

number of available servers depends, itself, on the selected pool size. For example, with endogenous

uncertainty, staffing a larger pool could also lead to increased variability and, potentially, a worse

service level in the system. Thus, it is unclear, a priori, what the optimal staffing policy should

be, and whether it would have a similar structure as with exogenous uncertainty. Indeed, we will

demonstrate that the optimal staffing policy in systems with endogenous uncertainty, i.e., in supply,

gives rise to different hedging regimes than with exogenous uncertainty, i.e., in demand.

1.2. Going Beyond Fluid Approximations

There is an extensive body of queueing-theoretic literature which is devoted to studying the clas-

sical capacity-sizing (staffing) problem when all servers are fixed, i.e., they must adhere to given

schedules that may change over time; e.g., see Whitt (2007). However, there are only a few papers

which consider the staffing problem when some or all servers are flexible, i.e., they are free to

choose whether or not to show up to work, so that the system’s capacity is uncertain. For the

most part, those papers have relied on fluid approximations to study the dynamics of large sys-

tems with random numbers of servers; e.g., see Whitt (2006b), Gurvich et al. (2018), and Ibrahim

(2018). Thus, a key first-order question to answer is whether there is a need to go beyond such

fluid approximations when making capacity-sizing decisions and, if so, then when?

In Figures 1-3, we provide preliminary numerical evidence which illustrates that there is a need

to go beyond fluid approximations for systems with a random capacity. We plot (dashed curves)

the scaled errors entailed in fluid-based staffing prescriptions, as a function of the arrival rate, for

various levels of variability in the number of servers. (Those errors are calculated as the absolute

differences between fluid solutions and optimal solutions, divided by the square root of the arrival

rate.) The bottom solid curves in the figures correspond to errors entailed in refined stochastic-

fluid approximations, which we will describe later on. Clearly, when variability in the number of

servers is “large enough”, there is a need to go beyond fluid-based prescriptions. The preliminary

observations in Figures 1-3 motivate our analysis in the remainder of this paper.

1.3. Main Contributions

At a high level, this paper may be divided into two main parts. In the first part, we consider a

system where the agent pool consists solely of flexible servers. And, in the second part, we consider

a blended workforce, i.e., where both fixed and flexible servers are allowed. When the workforce

consists solely of flexible servers, staffing decisions across the multiple periods may be decoupled so
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Figure 1 “Moderate” variability.
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Figure 2 “High” variability.
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Figure 3 “Very high” variability.

that we can focus on systems with a single period instead. In other words, we can make a staffing

decision for each period separately. However, when the workforce is blended, we can no longer

decouple staffing decisions across the different periods since the fixed servers show up in every

period. We consider those two workforce models separately because: (i) they are both prevalent in

practice; (ii) focusing on a system with only flexible servers enables us to glean clean insights about

the impact of supply-side uncertainty; (iii) the optimal staffing policy with only flexible servers is

a key building block in the derivation of the optimal staffing policy with a blended workforce; and

(iv) analyzing the blended workforce model provides further insights about the tradeoffs among

operating costs, supply-side flexibility (the ability to scale the pool of agents in response to seasonal

demand), and supply-side uncertainty. We next summarize our main theoretical and managerial

contributions.

Asymptotic results. In systems with a random number of servers, i.e., where at least part

of the capacity consists of flexible workers (this covers both the case with flexible servers only,

and the case with a blended workforce), we derive optimal staffing policies based on fluid and

stochastic-fluid approximations with multiple periods and time-varying demand rates; see Theorem

3, Lemma 2, and Theorem 6. We also rigorously justify the accuracies of those approximations

by quantifying their corresponding optimality gap in large systems. In particular, we demonstrate

that stochastic-fluid approximations are “extremely” accurate, especially when the magnitude of

uncertainty in supply is large; see Theorems 2 and 5.

Optimal staffing policy with flexible servers only. For the optimal staffing policy in a

system with flexible servers only, we distinguish among four regimes, depending on the magnitude

of variability of the random number of servers. Let n denote the expected number of servers, and

σn = anq, for a > 0 and 0≤ q ≤ 1, its standard deviation. The four regimes that we identify are:

(i) variability-dominated, for 0≤ q ≤ 1/2, where there is no concrete benefit from an uncertainty

hedge over the regular square-root staffing hedge; (ii) “moderately” uncertainty-dominated, for

1/2 < q ≤ 3/4, where the uncertainty hedge can be embodied in a simple newsvendor-problem-

based solution. In this regime, we can ignore the dependence between variability in supply and
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staffing prescription, i.e., approximating σn by σλ/µ, where λ is the arrival rate and µ is the

service rate, is extremely accurate; (iii) “strongly” uncertainty-dominated, for 3/4< q < 1, where

there is additional benefit from using an uncertainty hedge which accounts for the dependence

between variability in supply and staffing prescription. In this regime, using the simple newsvendor-

problem-based solution actually leads to a considerable loss in accuracy; and (iv) “extremely”

uncertainty-dominated, for q= 1, where the uncertainty hedge is on the order of the mean number

of servers (in the first three regimes, it is of a smaller order than the mean), so that the system

can be either underloaded or overloaded. In this regime, it is also important to account for the

dependence between variability in supply and staffing prescription.

Figures 4 and 5 illustrate the regime-dependent optimal staffing policy and demonstrate the

difference between exogenous and endogenous uncertainty. Our objective for now is to convey key

insights, so we keep our exposition here at a high level. In Figure 4, we consider a queueing system

with a random number of servers and a single period. We plot three curves: the optimal staffing

policy, i.e., the cost-minimizing prescription for the staffing problem specified in §2, the simple

newsvendor-based approximation which ignores the dependence between variability in supply and

staffing prescription, and the refined approximation which accounts for that dependence. Figure 4

illustrates that, while the newsvendor-based and refined solutions are almost indistinguishable in

the variability-dominated and moderately-uncertainty-dominated regimes, they are considerably

different when the level of uncertainty in supply is sufficiently large. For example, for the choice

of parameters in the figure and in the strongly uncertainty-dominated regime, the percent error

for the newsvendor solution, relative to the optimal solution, is over 20%, while for the refined

solution, it is less than 1%. Naturally, the staffing levels in the figures depend on our specific

choice of parameters. Nevertheless, we deliberately include those numbers in the figures to illustrate

the considerable differences between the alternative staffing prescriptions. In other words, we see

that there can be significant loss in accuracy when ignoring the dependence between variability in

supply and capacity prescription. However, this is not the case when considering staffing decisions

in queueing systems with other forms of parameter uncertainty, e.g., random arrival rates, as we

illustrate in Figure 5. In Figure 5, we keep the same parameters as in Figure 4, and consider a

random arrival rate which has the same distribution as the random number of servers in Figure 4,

while the number of servers is deterministic (nonrandom). It is shown in Bassamboo et al. (2010)

that the staffing policy with a random arrival rate gives rise to two regimes (instead of the four

regimes above), variability-dominated, for 0≤ q≤ 1/2, and uncertainty-dominated, for 1/2< q≤ 1.

In the uncertainty-dominated regime, a simple newsvendor-problem-based capacity prescription

is extremely accurate for all values of q; moreover, it is increasingly accurate for more variable

demand, i.e., as q increases. These two regimes are illustrated in Figure 5.
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Figure 4 Optimal staffing policy with a random

number of servers N(n) with n= E[N(n)] and

standard deviation σn = nq.

Figure 5 Optimal staffing policy with a random

arrival rate Λ(λ) with λ= E[Λ(λ)] and standard

deviation σλ = λq.

Optimal staffing policy with a blended workforce. For the optimal staffing policy with

both flexible and fixed servers, we show that when the fixed servers are cheaper than the flexible

servers, the optimal staffing policy is to rely solely on the fixed resource in the low-demand periods,

and to blend in the high-demand periods. The fixed resource is used to match all or part of the

demand, but not to hedge against supply-side uncertainty in the system. In contrast, the flexible

resource is used to both match the remaining demand in blended periods and to hedge against

variability in capacity. At a high level, the optimal staffing policy with a blended workforce may

be derived by first determining the level of the fixed resource. Then, we consider a staffing problem

with flexible servers only, albeit one where the arrival rate in each period is reduced by the service

capacity of the fixed resource in that period. Thus, the analysis reduces, in the second step, to

determining the staffing policy in a system with flexible servers only.

When supply-side uncertainty is not extreme, which corresponds to q < 1 for σn = anq, the

staffing level of the fixed resource may be derived based on a crude fluid approximation of the

problem. When supply-side uncertainty is extreme, which corresponds to q = 1 for σn = anq, the

level of the fixed resource may differ substantially from its fluid solution. Nevertheless, in this case

as well, we can begin by solving for the optimal number of fixed servers, and can then use that

solution to leverage our results from the setting with flexible servers only.

Benefits of blending the workforce. To gain a deeper understanding into the benefits of

a blended workforce, we investigate, numerically, the impact of blending the workforce on both

the cost incurred by the firm and on the quality of service offered to customers. We do so by

comparing a blended system to systems where the manager relies strictly on one of the two
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resources. We find that blending the workforce usually leads to significant cost reduction for the

firm, and to a more “balanced” level of service.

The rest of this paper is organized as follows. We conclude this section with a brief review of

the literature. In §2, we present this paper’s modeling framework. In §3, we consider the setting

with flexible servers only, and derive the corresponding optimal staffing policy. In §4, we study

the staffing problem with a blended workforce. We derive the optimal staffing policy and present

supporting numerics on the advantage of a blended workforce. In §5, we consider more general (not

exponential) distributions for patience time. In §6, we draw conclusions. We relegate all proofs to

the Appendices.

1.4. Related Literature and Organization

Our paper is part of the literature on staffing queueing systems under parameter uncertainty; e.g.,

see Harrison and Zeevi (2005) and Bassamboo et al. (2010). Our paper is also broadly related

to the extensive literature analyzing asymptotics of many-server queueing systems with impatient

customers (e.g., see Garnett et al. (2002), Zeltyn and Mandelbaum (2005), Whitt (2006a), Bassam-

boo and Randhawa (2010)), and to the extenstive literature on optimal staffing decisions in service

systems (e.g., see Maglaras and Zeevi (2003), Borst et al. (2004), Bassamboo et al. (2005)). How-

ever, none of those papers considers a random number of servers. Whitt (2006b) studies staffing

decisions in many-server queues with an uncertain arrival rate, an uncertain number of servers, and

a single period. Here, we go beyond the fluid approximation of that paper (We have illustrated the

importance of doing so in Figures 1-3 above), and study optimal staffing policies in the multi-period

setting with both fixed and flexible servers. Atar (2008) derives a diffusion limit for the number of

customers in the system with a random number of servers and random service rates. However, the

staffing question is not addressed there.

Our work is also related to papers on nurse staffing with absenteeism, such as Green et al. (2013)

and Wang and Gupta (2014). It is is also related to the literature on volunteer operations, e.g.,

harvest gleaning operations, where the the volunteers have uncertain availability; see Ata et al.

(2018) and references therein. In this paper, we consider more general show-up behavior, and

our asymptotic mode of analysis is different, as well as our consideration of a blended workforce.

Azriel et al. (2019) propose a new queueing model, Erlang-S model, for servers which change their

availability stochastically. A key difference between our setting and that of Azriel et al. (2019)

is the time scale of randomness in supply: In our setting, the randomness is realized at a longer

time scale than stochastic fluctuations in the system. In particular, the random number of servers

is realized at the beginning of each period, and can be considered to be fixed for that period.
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(Stochastic-fluid approximations are extremely accurate, in our setting, because of that difference

in time scale.) In contrast, the Erlang-S model assumes that randomness in the number of servers

is at the same time scale as stochastic fluctuations.

This paper is most closely related to recent papers on queues with a self-scheduling capacity.

Gurvich et al. (2018) were the first to study the operational management of systems with self-

scheduling agents. They consider a profit-maximizing firm which has three different levers of agent

control at its disposal: the pool size, a cap on the number of allowed agents, and the compensation

paid to agents. Ibrahim (2018) studies the capacity-sizing problem with a binomially-distributed

number of servers and impatient customers, and proposes using delay announcements as an effective

control in such systems. The focus in Gurvich et al. (2018) is different from ours, since that paper

does not consider asymptotic accuracy results. On the other hand, Ibrahim (2018) establishes the

asymptotic accuracy of fluid approximations, albeit when the number of servers is binomially-

distributed. We go beyond both the binomial assumption and fluid approximations in this paper. As

we illustrated in Figures 1-3, there may be a need to go beyond fluid approximations, depending on

the magnitude of variability in the number of servers. In this paper, we quantify the improvement

in accuracy entailed by refining the fluid solution to the stochastic-fluid solution. In §2.2, we

demonstrate the importance of going beyond the assumption of a binomially-distributed capacity.

More generally, there is a growing stream of literature on the management of on-demand service

platforms, e.g., see Ozkan and Ward (2018), Hu and Zhou (2018), Taylor (2018), and Cachon et al.

(2017). Our work compliments that line of literature.

2. Staffing Decisions with a Random Capacity

In this section, we present our modeling framework. We begin by describing our queueing model.

Then, we present different models for the distribution of the random number of servers in the

system (for now, we do not distinguish between the fixed and flexible resources). We also present

empirical evidence illustrating the orders of magnitude of supply-side variability in practice. This

evidence motivates our subsequent modeling assumptions and analysis in the paper.

2.1. Queueing Model

When there are flexible servers in the agent pool, the total number of available servers is random.

We consider a single-class M/M/N +M queueing model, with a random number of servers N .

Service times are independent and identically distributed (i.i.d.) exponential random variables with

rate µ. Customers are impatient, and their patience times are i.i.d. exponentially distributed with

rate θ. Customers are processed in the order in which they arrive, i.e., we use the first-come-first-

served discipline. The total number of servers, N , is a nonnegative integer-valued random variable.

It is realized at the beginning of each period. The arrival, service, and abandonment processes are
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all mutually independent, also independent of N . Abandonment makes the system stable, even

when N is random (Whitt 2006b). Specifically, conditional on a particular realization of N , a proper

steady-state distribution always exists. In this paper, we assume that each period is long enough,

e.g., relative to the average service time, so that we can focus on steady-state performances. Note

that steady-state performance measures can be calculated by conditioning and unconditioning on

N .

We assume that there are k periods, and that period i has length Ti. The different periods may

correspond to different work shifts in a single day, e.g., morning, afternoon, and evening shifts, or

to successive days, weeks, months, etc., depending on the time scale at which the manager decides

on her staffing requirements. The arrival rate of the Poisson arrival process in period i is given

by λi. We fix λ > 0 and let λi ≡ λξi, where ξi ≥ 0 for each i. We index all relevant quantities

by λ, to indicate the dependence on the arrival rates. In our asymptotic analysis, we let λ grow

without bound while keeping each ξi constant. Note that λi’s are of the same scale as λ. We also

assume, without loss of generality, that the alternative periods are numbered in order of increasing

λi values, i.e., λi ≤ λj for i ≤ j. In other words, we re-index the different periods so that the λi

values are ordered.

2.2. A Random Number of flexible servers

We assume that the pool sizes of flexible agents may vary across periods, i.e., they can be scaled

to meet seasonal demand fluctuations. Let niλ denote the total number of flexible servers scheduled

for period i. Let Nflex(n
i
λ) denote the random number of flexible servers who show up in period i,

which depends on niλ. Without loss of generality, we assume that

Nflex(n
i
λ) = ηni

λ
+ εni

λ
, (1)

where E[Nflex(n
i
λ)] = ηni

λ
and εni

λ
is a random variable with E[εni

λ
] = 0 and Var[εni

λ
] = σ2

ni
λ
. In (1),

we ignore the integrality assumptions on niλ and Nflex(n
i
λ): This is reasonable when the system

is large, which is the case of primary interest to us. We also note that the expected queue length

expression for Erlang-A queue can be extended to nonnegative real values for the number of servers

(Mandelbaum and Zeltyn 2007), i.e. the staffing problem faced by the manager is defined for both

integer and non-integer values of niλ.

In this paper, our aim is to characterize the manager’s optimal staffing decisions, i.e., what niλ

in (1) should be. To be able to do so, we must relate the show-up decisions of flexible workers, in

the pool of size niλ, to the distribution of Nflex(n
i
λ) in (1). Thus, a natural, first-order, question to

ask is: which agent show-up model would be appropriate to consider? We hasten to emphasize that

there is no single answer to this question, since different agent show-up models may be appropriate
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depending on the specific application context in mind. Thus, we do not attempt here to propose

a single model to “fit all” settings. Instead, we explore how different agent-participation models,

which may emerge in practice, impact the distribution of Nflex(n
i
λ). We are especially interested

in quantifying the order of magnitude for σ2
ni
λ

as a function of niλ. This is because, as we will

demonstrate later, this order of magnitude affects the structure of the optimal staffing policy.

2.3. Binomial Model and Extensions

For a starting point, we rely on the existing literature. With self-scheduling agents, one natural

model to consider is the classical Binomial model where agents are assumed to make their joining

decisions independently of each other, and with a constant joining probability, e.g., see Ibrahim

(2018), Gurvich et al. (2018), and Ata et al. (2018). In this section, we begin by discussing the

classical Binomial model and its implications on the variability of the number of available servers.

Then, we discuss possible modeling extensions; and justify the need for such extensions by pre-

senting supporting empirical evidence based on data collected from Uber.

For ease of exposition, we focus here on a single period; thus, we drop dependence on i. For

1≤ j ≤ nλ, we define the Bernoulli random variable Ij, where Ij = 1 if agent j is available for work,

and Ij = 0 otherwise. Then, Nflex(nλ) in (1) can be written as follows:

Nflex(nλ) =

nλ∑
j=1

Ij. (2)

The classical Binomial model. We begin by assuming that Ij in (2) are i.i.d. Bernoulli random

variables with a constant and deterministic success probability p. In this case, it is readily seen

that Nflex(nλ) has a binomial distribution with ηnλ = nλ · p and σ2
nλ

= nλ · p(1− p). In particular,

σnλ is of order
√
nλ.

In §2.3.1, we present empirical evidence illustrating that variability in practice is typically of

a larger order than that implied by the classical Binomial model. Indeed, despite its analytical

tractability, that model has several shortcomings; thus, there is a need to consider alternative

models as well. For example, it assumes that each agent makes her participation decision indepen-

dently of other agents. In practice, agent decisions typically exhibit correlations, e.g., because of

coordinated joining and leaving decisions facilitated by social-media platforms2. Such correlations

lead to over-dispersion, i.e., additional variability, compared with the classical Binomial model. For

another example, joining probabilities may be neither homogeneous across agents, nor determinis-

tic. Indeed, Chen et al. (2017) provide empirical evidence that each Uber driver faces a hierarchy

of random, unforeseen, shocks, e.g., linked to weather conditions or promotional events from com-

petitors. A labor supply decision, for each driver, depends on specific heterogeneous realizations

2 https://warwick.ac.uk/newsandevents/pressreleases/uber_drivers_are/
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of those shocks. Thus, ex-ante, the show-up probability of an agent is, itself, a random variable,

which also leads to over-dispersion.

Correlated Bernoulli sequences. We now describe extensions to the classical Binomial model

which capture higher orders of variance. We begin by describing a model for capturing correlations

between agent joining decisions, i.e., Ij in (2). While modeling correlated Bernoulli sequences is not

new, our intention here is not to provide an exhaustive review of the relevant literature. Rather, we

show how one intuitively appealing model, the Generalized Binomial model proposed by Drezner

and Farnum (1993), could be used to explain different orders of magnitude for σ2
nλ

.

We begin by assuming, without loss of generality, that agent j is the jth agent in the pool of size

nλ to make a joining decision. We define Īj ≡ (1/j)
∑j

k=1 Ik and let Fj be the σ-field generated by

the history {I1, ..., Ij}. As in Drezner and Farnum (1993), we assume that

P(Ij+1 = 1|Fj) = (1−α) · p+α · Īj, (3)

for some probability p and α ∈ [0,1). In other words, (3) assumes that an agent’s joining decision

is a convex combination of p and the relative frequency of agents who have already joined. In

particular, if Īj > p (< p), then P(Ij+1 = 1|Fj)> p (< p). That is, the more agents join, the more

likely it is that additional agents will join as well. We also note that letting α= 0 in (3) allows us to

retrieve the classical Binomial model. Heyde (2004) derives asymptotic properties for the variance,

σ2
nλ

, implied by (3). In particular, as nλ→∞, the following is shown to hold3:

σ2
nλ
∼


p(1−p)nλ

1−2α
for α< 1/2,

p(1− p)nλ log(nλ) for α= 1/2,
p(1−p)n2α

λ
(2α−1)Γ(2α)

for α> 1/2.

(4)

Based on (4), we note that for α> 1/2, σnλ is of a larger order of magnitude than
√
nλ, i.e., this

model allows for over-dispersion relative to the classical Binomial model. Asymptotic properties

of Bernoulli sequences with more general long-range dependence structures can also be found in

Romano and Wolf (2000).

A random joining probability. For an alternative extension of the classical Binomial framework,

we could also assume that for each period, the joining probability is a random variate drawn from

a distribution P with E[P] = p. Given P = p′, each agent makes a joining decision with probability

p′, independently of other agent. In this case, the expected number of agents who are available

is ηnλ = E[E[Nflex(nλ)|P]] = nλ ·E[P] = nλp, and its variance is given by the conditional variance

formula:

σ2
nλ

= Var[Nflex(nλ)] = E[Var[Nflex(nλ)|P]] + Var[E[Nflex(nλ)|P]]

= nλ ·E[P(1−P)] +n2
λ ·Var[P].

3 We write An ∼Bn, if An
Bn
→ 1 as n→∞.
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It is readily seen that if Var[P]> 0, σnλ is on the same order of magnitude as nλ.

2.3.1. How Much Variability Do We Observe in Practice? We next present some empir-

ical evidence substantiating the orders of magnitude of variability in the random number of servers,

that are observed in practice. In particular, we analyze Uber pickup data, which are made publicly

available by the website FiveThirtyEight4, to quantify variability in the numbers of drivers that

are on the road at different time epochs.

For the purposes of this section, we use the data set describing daily-aggregated Uber trip

statistics in January and February 2015 (59 days). It contains the total numbers of active cars from

each base serving New York City, on each day, in that time frame. For each day, we further sum

the numbers of active cars across all base codes to obtain the total number of active cars available

in the New York City area that day. We treat these numbers as realizations of the random numbers

of Uber drivers per day. We note that we do not use more granular data, e.g., at the hourly level,

since we do not have access to such detailed data.

In Table 1, we present the average, η̂n, and the standard deviation, σ̂n, for the number of cars

available per weekday (calculated across all data for the same weekday in our sample). We calculate

q̂ = log(σ̂n)/ log(η̂n) assuming σn = ηqn. While we focus here on the weekday effect due to data

availability, we expect that finer hour-of-day effect would also be quite relevant in describing trends

and patterns in the data. Table 1 provides evidence of considerable variability in the data, e.g.,

the values of q̂ are all higher than 0.5, which corresponds to the order implied by the classical

Binomial model. This indicates that there is a need to consider larger orders of variability. In this

paper, we consider q as high as 1, i.e., the extremely uncertainty-dominated supply. We hypothesize

that despite having self-scheduling agents, Uber is probably a conservative example for supply-side

variability relative to smaller size and less well controlled platforms.

Weekday η̂n σ̂n q̂

Sunday 7,075 701 0.74
Monday 7,155 707 0.74
Tuesday 7,364 1,639 0.83

Wednesday 8,129 450 0.68
Thursday 8,424 738 0.73

Friday 8,606 1,040 0.77
Saturday 7,976 795 0.74

Table 1 Statistics on the numbers of active Uber cars in New York City in January and February, 2015.

4 The data are publicly available at https://github.com/fivethirtyeight/uber-tlc-foil-response.
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2.4. This Paper’s Model

In §2.3, we considered alternative agent show-up models which may arise in practice, and illustrated

how different modeling assumptions lead to different orders of magnitude for σnλ . This is important

because, as we will demonstrate in subsequent sections, how σnλ scales with ηnλ plays a central role

in the optimal staffing policy. On the other hand, the fine detail of those specific agent show-up

models are of secondary importance for our purposes. Thus, for subsequent analysis, we consider

the simplified model:

Nflex(n
i
λ) = ηni

λ
+ση

ni
λ

εi, (5)

for i.i.d. random variables −1 ≤ εi ≤ 1 with E[εi] = 0. We assume that εi has a strictly positive

probability density function (pdf), fε, on (−1,1). Thus, its cumulative distribution function (cdf),

Fε, is invertible on that domain. Note that in this simplified model, the distribution of εi does not

depend on niλ. For the ease of exposition, we also assume the specific form σn = anq, for some a> 0

and 0< q ≤ 1. For q = 1, we also impose that a < 1 to ensure that Nflex(nλ)≥ 0. Assume that ηn

is strictly increasing in n. Then there is a one-to-one correspondence between niλ and ηni
λ
. This

implies that the manager’s staffing decision can be equivalently formulated in terms of ηni
λ
. For

example, for the three agent models discussed in §2.3, it holds that ηni
λ

= niλ · p. By a slight abuse

of notation, and for the ease of exposition, we denote hereafter the expected pool size by niλ. That

is, we consider the following model, which is equivalent to (5):

Nflex(n
i
λ) = niλ +σni

λ
εi, (6)

where the manager’s objective is to determine cost-effective niλ.

3. Capacity Sizing with Flexible Servers

In this section, we consider a workforce with flexible servers only, and study cost-minimizing staffing

decisions in this case. The goal is to understand the impact of supply-side uncertainty. In §4, we

consider a workforce with both fixed and flexible servers.

3.1. A Long-Term Staffing Problem

In this paper, we consider the long-term staffing question that the manager faces. In practice,

managers must make staffing decisions ahead of time to allow for agent training. The timeline of

decision-making is as follows: At time zero, i.e., the initial planning stage, the manager makes a

staffing decision on the average flexible pool size (the average numbers of flexible agents desired)

ni for each period i. Then, at the beginning of each period i, the staffing level realizes, i.e., we

observe a specific realization, Nflex(n
i) = si, which is drawn from the distribution of the random

variable Nflex(n
i). For the remainder of period i, the system operates like an Erlang-A queue with

si servers.
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We assume that the arrival rate, λi, is a deterministic constant for each period. We also assume

that λi is known, a priori, to the manager. With a deterministic λi, the optimal staffing level would

remain the same so long as the manager must decide on her staffing level, ni, before the start of

period i 5. Note that stochastic variation for given model parameters impacts system behavior on

the short-time scale, and is thus less important when uncertainty in model parameters is introduced

on a longer time scale. This motivates us to look at the stochastic-fluid optimization problem which

ignores stochastic variability.

Consistently with Bassamboo and Randhawa (2010) and Bassamboo et al. (2010), we consider

two customer-related costs: (i) A delay cost, h, per customer for each unit of time that this customer

spends waiting to be served, and (ii) an abandonment penalty cost, r, incurred per customer who

abandons before being served. Recall that the per unit time staffing cost is given by cflex for a

flexible server. Throughout this paper, we make the following assumption:

Assumption 1. We assume that cflex < (h/θ+ r)µ.

This assumption ensures that the flexible resource is cheap enough to avoid pathological cases

where the system manager would not staff from this resource.

We let Qi
λ(niλ) and ξiλ(niλ) denote the steady-state queue length and steady-state rate of customer

abandonment in period i. We let X i
λ(niλ) denote the steady-state number of customers in the

system, in period i, so that:

Qi
λ(niλ) = (X i

λ(niλ)−Nflex(n
i
λ))+,

where x+ ≡max{x,0}. With exponentially-distributed patience times, it is also well known that:

ξiλ(niλ) = θ ·E[Qi
λ(niλ)],

where θ is the rate of the patience-time distribution (Mandelbaum and Zeltyn 2007). Letting

nλ ≡ (n1
λ, . . . , n

k
λ), the system manager’s staffing problem is given by:

min
nλ

Πλ(nλ) (7)

≡
k∑
i=1

Ti
(
cflexn

i
λ +h ·E[Qi

λ(niλ)] + r · ξλ(niλ)
)
,

=
k∑
i=1

Ti
(
cflexn

i
λ + (h+ rθ)E[Qi

λ(niλ)]
)
,

5 In some applications, we could also consider the case where additional information could be gathered to yield
improved demand forecasts as we get closer to the start of the period. In that case, we may want to update our
staffing decision over time. As flexible servers may be more flexible to call upon in the last minute, these servers will
bring an extra layer of benefit. This case is beyond the scope of the current paper.
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When employing flexible servers only, the multi-period staffing problem (7) can be fully decom-

pose in to k single-period staffing problems. Particularly, for period i, 1≤ i≤ k, the system manager

is solving

min
nλ≥0

Πi
λ(nλ)≡ cflexnλ + (h+ rθ)E[Qi(nλ)]. (8)

For simplicity of exposition, we shall drop the dependence on the period index, i, for the rest of

the discussion in this section. We write n∗λ as the optimal solution of (8).

The problem formulation in (8) is prohibitively difficult to solve in closed form, because our

choice of nλ affects the distribution of the number of servers which, in turn, affects the distributions

of the queue-length, Qλ(nλ), and the abandonment rate, ξλ(nλ). Thus, we first formulate a fluid

(ignoring both stochastic variability and parameter uncertainty) relaxation, and then a stochastic-

fluid (ignoring stochastic variability only) relaxation of (8). We analyze the structure of the optimal

staffing rules based on these two problem relaxations.

3.2. Fluid Approximation

For the fluid relaxation of our problem, we ignore both uncertainty effects and stochastic fluctua-

tions in the system. In particular, the fluid abandonment rate in our problem is given by (λ−nµ)+,

which is obtained by substituting the random number of servers, Nflex(n), by its expected value,

n. This leads to the following fluid relaxation:

min
n

Π̄λ(n) ≡ cflexn+

(
h

θ
+ r

)
µ (λ/µ−n)

+
. (9)

We write

β ≡
(
h

θ
+ r

)
µ, (10)

which can be interpreted as the performance cost. We denote n̄λ as the optimal solution to (9). As

per Assumption 1, we have that cflex < β. Thus, n̄λ = λ/µ, i.e., it is most cost-effective to match

the mean supply with the mean demand. Given its simple form, the fluid approximation in (9) is

appealing, provided that it does not entail a significant loss in accuracy. We next characterize the

optimality gap of (9), in a regime where the arrival rate, λ, is large. To facilitate the asymptotic

analysis, we first introduce a few definitions.

Definition 1. Let f and g be two functions defined on some subset of R. Then, as n→∞,

(a) f(n) =O(g(n)) if there exists M > 0 and C > 0 such that |f(n)| ≤M |g(n)| for n≥C;

(b) f(n) = o(g(n)) if for any ξ > 0, there exists N(ξ) such that |f(n)| ≤ ξ|g(n)| for all n≥N(ξ);

(c) f(n) = Θ(g(n)) if there exist M > 0, L> 0 and C > 0 such that L|g(n)| ≤ |f(n)| ≤M |g(n)| for

n≥C.

We are now ready to state the optimality gap of the fluid approximation.
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Figure 6 Errors for optimal fluid staffing levels,

|n̄λ−n∗λ|/
√
λ, as a function of λ.
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Figure 7 Optimality gap in objective values,

|Πλ(n̄λ)−Πλ(n∗λ)|/
√
λ, as a function of λ.

Theorem 1. For large λ,

Πλ(n̄λ) = Πλ(n∗λ) +O
(

max
{
σλ,
√
λ
})

.

Theorem 1 shows that the accuracy of a first-order fluid approximation degrades as the uncer-

tainty in the number of servers increases. In particular, when σλ is “small”, i.e., of an order which

is smaller than the order of stochastic fluctuations in the system, the optimality gap for the fluid

solution is relatively small, i.e., O(
√
λ). However, when σλ is “large”, i.e., of an order which is

larger than the order of stochastic fluctuations in the system, fluid approximations may lead to a

considerable loss in accuracy.

Numerical example. We illustrate the results of Theorem 1 in Figures 6 and 7. In these figures, we

let Nflex(nλ) = nλ +σnλε and assume that ε has a uniform distribution, ε∼U(−1,1). We consider

σn = nq for q= 1/4,1/2, and 3/4. We let cflex = 1/3, and p= h= µ= θ= 1. In Figure 6, we plot the

scaled staffing-level errors, between the fluid and original solutions, |n∗λ− n̄λ|/
√
λ, as λ increases.

In Figure 7, we plot the corresponding scaled errors in the objectives, |Πλ(n̄λ) − Πλ(n∗λ)|/
√
λ.

Figure 6 illustrates the orders of magnitude for the asymptotic accuracy of fluid prescriptions. In

particular, the fluid approximation’s accuracy degrades as the level of uncertainty in the number

of servers increases. Figure 7 illustrates the orders of magnitude of gaps in Theorem 1: the fluid

approximation is considerably worse for larger values of q, which correspond to the uppermost

curve in the figure.

3.3. Stochastic-Fluid Approximation

For the stochastic-fluid relaxation, we ignore stochastic fluctuations in the system. In particular,

customers arrive at the rate of λ per unit of time. The processing capacity is Nflex(nλ)µ and, by con-
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servation of flow, the resulting stochastic-fluid abandonment rate is given by E[(λ−Nflex(nλ)µ)+].

Thus, the resulting stochastic-fluid approximation to (8) is:

min
nλ≥0

Π̃λ(nλ) ≡ cflexnλ +βE[(λ/µ−Nflex(nλ))+]

= cflexnλ +βE[(λ/µ−nλ−σnλε)
+] (11)

We denote ñλ as the optimal solution to (11).

Paralleling Theorem 1, we first study the accuracy of the stochastic-fluid staffing prescription in

(11), in a regime where the arrival rate, λ, is large.

Theorem 2. For large λ,

Πλ(ñλ) = Πλ(n∗λ) +O
(

min
{
λ/σλ,

√
λ
})

.

Theorem 2 shows that when σλ is “large”, i.e., of an order which is larger than the order of

stochastic fluctuations in the system, stochastic-fluid approximations are remarkably accurate.

Indeed, the stochastic-fluid approximation becomes increasingly accurate as the variability in the

number of servers increases. On the other hand, when σλ is “small”, i.e., of an order which is

smaller than the order of stochastic fluctuations in the system, the optimality gap for the stochastic-

fluid solution is on the order of stochastic fluctuations in the system, i.e., O(
√
λ). In other words,

when the variability in the number of servers is small, there is no distinct advantage from using

stochastic-fluid approximations over fluid approximations to the system (cf. Theorem 1).

Numerical example. We illustrate the asymptotic results of Theorem 2 in Figures 8 and 9. In

these figures, we compare the optimal stochastic-fluid solution, ñλ, to the optimal solution of the

original problem, n∗λ. We consider the same system parameters as in Figures 6 and 7. In contrast

with the fluid solution, Figures 8 and 9 illustrate the improvement in accuracy for ñλ as the

uncertainty in the number of servers increases. Indeed, for σn = n3/4 (bottom curve in the plots),

n∗λ and ñλ are practically indistinguishable. For σn = nq and q ≤ 1/2, comparing Figures 6 and 8

reveals that the improvement in accuracy entailed in refining the fluid solution by relying on the

stochastic-fluid solution, is asymptotically negligible. For example, while the curve corresponding

to σn = n1/4 is monotonically increasing in 6, it is constant in Figure 8 which indicates that the

order of magnitude of errors in the former case is larger than in the latter since we are scaling by

the same quantity in both cases, namely
√
λ, and studying monotonicity as λ grows.

3.3.1. Optimal Solution. While the stochastic fluid optimal solution, ñλ, achieves very small

optimality gap (Theorem 2), it can only be solved numerically. In this section, we study the

structural property of ñλ in order to gain additional insights. We also derive, when possible, simpler

closed-form staffing prescriptions that achieve the same optimality gap as ñλ. As we will explain,
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Figure 8 Errors for optimal stochastic-fluid

levels, |n̄λ−n∗λ|/
√
λ, as a function of λ.
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Figure 9 Optimality gap in objective values,

|Πλ(n̄λ)−Πλ(n∗λ)|/
√
λ, as a function of λ.

this rely on a detailed study of the endogeneity of uncertainty, i.e., the dependence of variability

on the staffing prescription itself.

We begin by verifying that this problem’s solution exists and is unique. To this end, we analyze

the first two derivatives of Π̃λ(nλ).

When nλ +σnλ ≤ λ/µ:

Π̃′λ(nλ) = cflex−β < 0.

Thus, in this region, we can reduce the objective cost by increasing nλ. When nλ−σnλ ≥ λ/µ,

Π̃′λ(nλ) = cflex > 0,

Thus, in this region, we can reduce the objective cost by decreasing nλ. The two cases combined

imply that the optimal ñλ is achieved in the following region:

Ωλ ≡ {nλ : nλ−σnλ <λ/µ< nλ +σnλ},

which implies that ñλ = Θ(λ). Now, when nλ ∈Ωλ,

Π̃′λ(nλ) = cflex−βFε
(
λ/µ−nλ
σnλ

)
−βσ′nλ

∫ λ/µ−nλ
σnλ

−1

xfε(x)dx (12)

Π̃′′λ(nλ) = βfε

(
λ/µ−nλ
σnλ

)
1

σnλ

(
1 +σ′nλ

λ/µ−nλ
σnλ

)2

︸ ︷︷ ︸
(A)

−βσ′′nλ

∫ λ/µ−nλ
σnλ

−1

xfε(x)dx︸ ︷︷ ︸
(B)

(13)

We first notice that both (A) and (B) are positive in (13). Thus, it is not clear a priori whether

(13) is positive, i.e., that the objective is strictly convex. However, we also notice that for nλ ∈Ωλ,

σnλσ
′′
nλ

= o(1) and σ′nλ = o(1); see Definition 1. This suggests that, for λ large enough, Π̃′′λ(nλ)≥ 0
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which, in turn, implies that Π̃′λ(nλ) = 0 in (12) has a unique solution, which is the minimizer of

(11), i.e., ñλ. Next, we analyze the properties of ñλ. To do so, it will be helpful to define

n̂λ ≡ λ/µ− γσλ/µ, for γ ≡ F−1
ε (cflex/β). (14)

It is important to explain why we introduce n̂λ in (14): Recall that a fundamental distinction

between uncertainty in demand and in supply is that, in the latter case, variability is endoge-

nous because the distribution of the number of servers depends itself on the staffing prescription.

Indeed, when the uncertain parameter is the arrival rate, as in Bassamboo et al. (2010), there

is no endogeneity between the staffing decision and the underlying randomness, and the optimal

staffing rule takes the form of n̂λ in (14). We also note that if σ′nλ = 0, Π̃′′λ(nλ)≥ 0 and n̂λ is the

solution of Π̃′λ(nλ) = 0. However, when σ′nλ > 0 as in our model, the endogeneity arises. A natural

question to ask, then, does the endogeneity matter or when would it be appropriate to ignore the

dependence between staffing prescription and that underlying randomness, i.e., σnλ can be approx-

imated by σλ/µ, without losing much in optimality? Lemma 1 provides an answer to this question

by quantifying the gap between ñλ and n̂λ.

Lemma 1. For γ in (14), assume that there exists δ > 0 such that fε(x)> 0 for x∈ (γ−δ, γ+δ).

Then, for λ large enough,

|n̂λ− ñλ|=O
(
σ2
λ/λ
)
,

and

Π̄λ(n̂λ) = Π̄λ(ñλ) +O
(
σ3
λ/λ

2
)
. (15)

To understand the significance of Lemma 1, we recall the optimality gap in Theorem 2 and let

σn = anq. We begin by noting that, based on Theorem 2: For q > 1/2, |Πλ(ñλ)−Πλ(n∗λ)|=O(λ/σλ).

Also, it holds that for q ≤ 3/4, σ3
λ/λ

2 ≤ λ/σλ. Thus, based on (15), we see that for 1/2< q ≤ 3/4,

we can ignore the dependence between the uncertainty and our staffing decision, and use the

simpler staffing rule n̂λ = λ/µ− γσλ/µ, as defined in (14), to achieve the O(λ/σλ) optimality gap

as in Theorem 2. The next theorem is the main result of this section. It summarizes the gaps

in approximating the optimal staffing level, n∗λ, based on the fluid or stochastic-fluid relaxations.

When the magnitude of uncertainty is not very large, we derive closed-from staffing prescriptions

that achieve the same order of optimality gap as ñλ (this corresponds to cases I and II in Theorem

3).

Theorem 3. Let σn = anq, for a> 0 and 0≤ q≤ 1, and distinguish among four cases:

(I) [Variability-dominated.] If 0≤ q≤ 1/2, we set nλ = n̄λ = λ/µ. In this case, we have

Πλ(nλ) = Πλ(n∗λ) +O(
√
λ).
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(II) [Moderately uncertainty-dominated.] If 1/2< q≤ 3/4, we set nλ = n̂λ = λ/µ− γσλ/µ. In

this case, we have

Πλ(nλ) = Πλ(n∗λ) +O(λ/σλ).

(III) [Strongly uncertainty-dominated.] If 3/4< q < 1, set nλ = ñλ. In this case,

Πλ(nλ) = Πλ(n∗λ) +O(λ/σλ).

(IV) [Extremely uncertainty-dominated.] If q= 1 and 0<a< 1, then set nλ = ñλ = λ
µ
η, where

η denotes the solution to

cflex +βa

∫ 1/(aη)−1/a

−1

Fε(u)du− β
η
Fε

(
1

aη
− 1

a

)
= 0. (16)

In this case,

Πλ(nλ) = Πλ(n∗λ) +O(λ/σλ) = Πλ(n∗λ) +O(1).

We emphasize that in cases I and II, nλ is not the optimal solution to (11), but rather a simplified

closed-form solution which we prove yields, asymptotically, the same order of accuracy as the actual

optimal solution (cf. Theorem 2). In contrast, nλ in cases III and IV is the actual solution to (11).

For case III and IV, simplifying as we did in the former cases can lead to substantial errors as

demonstrated in Lemma 1. We also note that in case III, ñλ is the solution to an implicit equation

since the dependence between staffing prescription and parameter uncertainty cannot be ignored

in this case.

It is also interesting to note that in case IV of Theorem 3, i.e., with q= 1, it may be beneficial to

underload or overload the system. For example, we obtain from (16) that η≥ 1, i.e., we underload,

if cflex ≤ βFε(0)− βa
∫ 0

−1
Fε(u)du, i.e., capacity is cheap. This lies in contrast with all cases where

q < 1. There the uncertainty hedge is of a smaller order than the expected number of servers.

Numerical evidence. We present numerical evidence substantiating the results of Theorem 3 in

Figures 10 and 11. The dashed curves in those figures correspond to the percent error in using

the solution from case (II) of Theorem 3 relative to the optimal solution of (8); the solid curves

correspond to using the solution from case (III) instead. We let σn = nq for 0< q ≤ 0.95, i.e., we

exclude case (IV) in the theorem, and assume that ε in (5) is uniformly distributed over (−1,1).

In both figures, we assume that λ= 200, cfix = 1/2, cflex = 1/4, and r= h= µ= 1. In Figure 10 we

let θ= 1, and in Figure 11 we let θ= 2, which gives a smaller β as defined in (10).

Clearly, there is considerable loss in accuracy if ignoring the dependence between the variability

in supply and the staffing prescription when there is considerable variability, i.e., q is large. This

loss is also exacerbated for more impatient customers (Figure 11). However, when the variability

is not too large (q < 3/4 in the figures, as in Theorem 3), there is no asymptotically discernable

gain from taking that dependence into account.
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Figure 10 Stochastic-fluid solution: Percent

relative errors in staffing for θ= 1.
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Figure 11 Stochastic-fluid solution: Percent

relative errors in staffing for θ= 2.

p= 0.4 and α= 0.5 in (3)

λ ñ nBin Π(ñ) Π(nBin)

100 295 270 45.1 47.1
200 579 525 83.5 87.9
300 841 778 121 127
400 1,109 1,036 158 164
500 1,353 1,293 195 201

p= 0.4 and α= 0.8 in (3)

λ ñ nBin Π(ñ) Π(nBin)

100 349 270 63.0 70.4
200 689 525 113 129
300 1,016 778 163 187
400 1,315 1,036 209 241
500 1,675 1,293 255 291

Table 2 Implications on staffing levels and costs: Classical Binomial versus Correlated Bernoulli models.

3.3.2. Revisiting Extensions of the Binomial Model: Staffing Implications. In Table

2, we revisit the classical Binomial model and the correlated Bernoulli model introduced in §2.3.

Our objective is to quantify the implications on optimal staffing prescriptions when wrongfully

relying on the classical Binomial model. In particular, we let r= h= µ= θ= 1, and cflex = 1/3. We

assume that the actual distribution of the number of available servers is according to the correlated

Binomial model in (3). In that model, we fix r= 0.4, and consider two values of α: 0.5 and 0.8. We

recall that the order of variability is σn =O(nα) for α > 1/2, as given in (4). We vary the value

of λ, and report the values of the optimal staffing prescription, ñ, to problem (11); see the second

column in the tables. To quantify the error obtained in approximating the correlated Bernoulli

model by the classical Binomial model, we also report the optimal staffing prescriptions according

to the the classical Binomial model, nBin; see the third column in the tables. Finally, we report the

objective costs under each staffing prescription. Table 2 illustrates that, depending on the value

of α, the increase in costs by wrongfully relying on the classical Binomial model can be great. For

example, for α= 0.8, the percent increase in cost between Π(ñ) and Π(nBin) ranges between 12%

for λ = 100 and 14% for λ = 500. Moreover, as expected, for α = 0.5, the difference between the

two costs is almost negligible: It is about 2% for λ= 500.



22

4. Capacity Sizing with a Blended Workforce

In this section, we study the optimal staffing level with a blended workforce. We focus here on

analyzing the tradeoffs between the staffing cost, the flexibility to scale up or down supply with

seasonal demand, and supply-side uncertainty. We also highlight how the staffing policy with

a blended workforce “builds on” the staffing policy with flexible servers only, developed in the

previous section.

4.1. Staffing Problem and Approximations

We assume that the number of fixed servers is fixed throughout the time horizon, but the number

of flexible servers can vary for different periods. Let mλ denote the number of fixed servers, and

nλ = (n1
λ, . . . , n

k
λ) denote the number of flexible servers. The total number of servers in period i is

given by:

N(mλ, n
i
λ) =mλ +Nflex(n

i
λ) =mλ +niλ +σni

λ
εi, (17)

where Nflex(n
i
λ) is given in (6). At the initial planning stage, the manager must decide on the

numbers of fixed and flexible servers. Recall that we denote cfix as the per unit time staffing cost

of a fixed server, and cflex is the per unit time staffing cost for a flexible server. In addition to

Assumption 1, we make the following parallel assumption on cfix, to avoid pathological cases.

Assumption 2. We assume that cfix < (h/θ+ r)µ.

We are now ready to formulate the staffing problem with a blended workforce, paralleling (7):

min
mλ,nλ

Πλ(mλ,nλ) (18)

≡
k∑
i=1

Ti
(
cfixmλ + cflexn

i
λ +hE[Qi(mλ, n

i
λ)] + rξ(mλ, n

i
λ)
)
,

=
k∑
i=1

Ti
(
cfixmλ + cflexn

i
λ + (h+ rθ)E[Qi(mλ, n

i
λ)]
)
,

A fundamental difference between the problem formulations in (7), with flexible servers only, and

in (18), with a blended workforce, is that (18) may no longer be decomposed into k single-period

problems due to the fixed servers.

Solving (18) is challenging as discussed in §3. We thus consider two relaxations: the fluid approx-

imation and the stochastic-fluid approximation. The fluid approximation takes the form:

min
mλ,nλ

Π̄λ(mλ,nλ) ≡
k∑
i=1

Ti

(
cfixmλ + cflexn

i
λ +β

(
λi/µ−mλ−niλ

)+
)
. (19)

The stochastic-fluid approximation takes the form:

min
mλ,nλ

Π̃λ(mλ,nλ)≡
k∑
i=1

Ti

(
cfixmλ + cflexn

i
λ +βE

[(
λi/µ−N(mλ, n

i
λ)
)+
])
. (20)
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4.2. Asymptotic Accuracy

In this section, we derive the asymptotic orders of accuracy of the fluid and stochastic-fluid approx-

imations with a blended workforce. Let n
(m)
λ ≡minnλ and n

(M)
λ ≡maxnλ. Denote m∗λ and n∗λ as the

optimal solution of (18), m̄λ and n̄λ as the optimal solution of (19), and m̃λ and ñλ as the optimal

solution of (20). Theorem 4 parallels Theorem 1 and corresponds to the fluid approximation, (19).

Theorem 4. For large λ,

Πλ(m̄λ, n̄λ) = Πλ(m∗λ,n
∗
λ) +O

(
max

{
σ
n̄

(M)
λ

,
√
λ
})

;

i.e., if n̄
(M)
λ = Θ(λ), then Πλ(m̄λ, n̄λ) = Πλ(m∗λ,n

∗
λ) +O

(
max

{
σλ,
√
λ
})

.

Theorem 5 parallels Theorem 2 and corresponds to the stochastic-fluid approximation, (20).

Theorem 5. For large λ,

Πλ(m̃λ, ñλ) = Πλ(m∗λ,n
∗
λ) +O

(√
λ
)
.

Moreover, if ñ
(m)
λ = Θ(λ), then Πλ(m̄λ, ñλ) = Πλ(m∗λ,n

∗
λ) +O

(
min

{
λ/σλ,

√
λ
})

.

4.3. Optimal Staffing Policies

In this section, we derive the optimal staffing policy. We shall start by deriving the optimal staffing

policy for the fluid problem in (19). We then derive the optimal staffing policy for the stochastic-

fluid problem in (20).

Solution to the fluid problem. Since the fluid approximation ignores parameter uncertainty, the

optimal staffing policy captures the tradeoff between the costs of staffing and the flexibility of

scaling the number of flexible servers to meet seasonality in demand. In contrast, we notice that if

we decide to staff enough fixed servers to meet the demand in a given period, h, then we must staff

these servers for all other periods as well. Thus, we define the time “modified” cost, chfix, which

will be useful in describing the fluid-optimal solution:

chfix ≡ cfix ·
∑k

i=1 Ti∑k

i=h Ti
for h≥ 1. (21)

We summarize the fluid-optimal staffing policy in the following lemma.

Lemma 2. The solution to the fluid problem in (19), with a blended workforce, is given by
m̄λ = 0, for k0 = 0,

m̄λ =
λk0
µ

for k0 > 0,

n̄iλ = 0, for 1≤ i≤ k0,

n̄iλ =
λi−λk0

µ
, for k0 < i≤ k,

where k0 is defined as follows:

k0 =

{
0, if cflex < cfix,

max{1≤ h≤ k : cflex ≥ chfix}, otherwise.
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As the pool of flexible agents can be dynamically adjusted to meet seasonality in customer

demand, the only case where the manager would staff fixed servers is if cflex ≥ cfix, i.e., they are

cheaper. However, even in this case, she may still staff the more expensive flexible servers, i.e., she

would blend her workforce, unless fixed servers are “very” cheap, e.g., if cfix <
Tk∑k
i=1 Ti

cflex. The

general form of the optimal staffing policy in Lemma 2 shows that a manager who blends should

rely solely on the fixed resource in the low-demand periods, and blend in the high-demand periods.

It is useful to comment on how the solution in Lemma 2 relates to the optimal solution when

no flexible servers are allowed in the pool. We notice that when there are no flexible agents, the

manager will set mλ = λkβ/µ where β is defined in (10), and the index kβ is given by the following

equation:

kβ ≡max{1≤ h≤ k : β ≥ chfix}.

Recalling that, by Assumption 1, cflex < β, we see that, given the option of a blended workforce,

the manager will use less fixed servers, i.e., we have that kβ > k0. In addition, the smaller cflex is,

the smaller k0 is, implying that the manager will staff fewer fixed servers.

Solution to the stochastic-fluid problem. While the optimal solution to the fluid staffing problem

is readily obtainable and easy to interpret, Theorem 4 shows that it may not be reliable when

uncertainty in the number of available servers is large. Thus, there is a need to consider a stochastic-

fluid refinement. Compared with the fluid approximation, the stochastic-fluid approximation does

take parameter uncertainty into account. Thus, in solving the stochastic-fluid optimal staffing

policy, we can capture the tradeoffs among three factors: the staffing cost, the flexibility in scaling

the workforce to meet seasonality in demand, and supply-side uncertainty. However, as our main

result in this section (Theorem 6) will show, for σn = nq, when q < 1 (Case 1), the first-order

factors are only the staffing cost and the scaling flexibility. Particularly, the optimal staffing level

follows closely the fluid-based prescription in Lemma 2. Supply-side uncertainty only affects the

magnitude of the hedge that we add to the fluid-based prescription. When q = 1 (Case 2), the

uncertainty plays a first-order role. In this case, we need to add a “risk premium” on the cost of

the flexible servers, due to that large magnitude of uncertainty. Thus, the optimal staffing rule may

differ substantially from the fluid-based prescription.

We note that there are only two cases in Theorem 6, because the structure of the optimal staffing

policy is the same in the variability-dominated, moderately and strongly uncertainty-dominated

regimes. Thus, we group these three regimes into only one case, namely Case 1 of Theorem 6. Case

2 in Theorem 6 is reserved to the case of “extreme” uncertainty.

We define:

g(c)≡ c+ caF−1
ε (c/β)−βa

∫ F−1
ε (c/β)

−1

Fε(u)du. (22)
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Theorem 6. For the solution of the stochastic-fluid problem in (20), there are two cases:

• Case 1. Variability-dominated, moderately and strongly uncertainty-dominated

regimes. If σn = anq for 0< q < 1 and a > 0, then for m̄λ and k0 as given by Lemma 2, the

optimal solution is:

— m̃λ = m̄λ,

— For i≤ k0, ñiλ = 0,

— For i > k0, ñiλ is the minimizer of the following single-period problem:

min
nλ≥0

cflexnλ +βE[(λi/µ− m̄λ−nλ−σnλε)
+], (23)

as given by cases I, II, and III of Theorem 3, depending on the value of q.

• Case 2. Extremely uncertainty-dominated regime. If σn = an, for 0< a < 1, then for

chfix in (21) and g(·) in (22), let:

k1 =

{
0, if cflex < g(cfix)

max{1≤ h≤ k : cflex ≥ g(chfix)}, otherwise.

The optimal solution is:

— m̃λ = λk1
/µ,

— For i≤ k1, ñiλ = 0,

— For i > k1, ñiλ is the minimizer of the following single-period problem:

min
nλ≥0

cflexnλ +βE[(λi/µ− m̄λ−nλ− anλε)+], (24)

as given by case IV in Theorem 3.

Recall from Lemma 2 that the optimal solution to the fluid problem is to rely strictly on the

fixed resource in lower-demand periods, up to some period index k0, and to blend resources in

higher-demand periods. Theorem 6 shows that the optimal staffing policy for the stochastic-fluid

problem has a similar structure when σn = anq for q < 1. Indeed, in lower-demand periods, up

to period k0, the manager should also rely strictly on the fixed resource. Moreover, the optimal

staffing level for the fixed resource in the stochastic-fluid problem remains the same as for the fluid

problem, i.e., m̃λ = m̄λ and ñiλ = 0 for i≤ k0. In higher-demand periods, i.e., periods whose index

exceeds k0, the manager should blend her workforce. The staffing levels for the flexible resource in

the stochastic-fluid problem are slightly different than those given by the fluid solution in Lemma

2. In particular, for each period i > k0, we must solve (23), as in Theorem 3. The solution to (23)

essentially adds an uncertainty hedging of order σλ to the fluid solution.

When σn = an, for 0 < a < 1, it remains optimal to rely on the fixed resource in low-demand

periods and to blend in high demand periods. However, the fluid-based prescription of Lemma 2



26

could lead to substantial errors in this case. In particular, as g(chfix)< chfix, there is essentially a

“risk premium” that is incurred on the cost of the flexible resource. This implies that the period

index k1 may be larger than k0. For example, with all other parameters held equal, it may be

optimal to rely on the flexible resource in Case 1 but not in Case 2.

Theorem 6 shows that the key in determining the optimal staffing policy lies in the order of

magnitude of the variability in the flexible resource. As λi− m̃λ = Θ(λ) for i > k0, the presence of

fixed servers in blended periods does not, in loose terms, impact the scale of supply-side variability.

4.4. Supporting Numerical Study

In this section, we describe results of numerical experiments which illustrate the benefit and cost

of staffing a blended workforce. We focus on two alternative perspectives: The firm’s in section

4.4.1, and the customer’s in section 4.4.2.

We consider three different scenarios: i) fixed servers only, ii) flexible servers only, iii) both fixed

and flexible servers are allowed in the agent pool. The main objective is to compare the optimal

staffing policies, the costs incurred by the service provider, and the quality of service experienced

by customers, in those three scenarios. Notice that even though we partially incorporate the quality

of service through the waiting cost and the abandonment cost in the objective function, we would

like to study performance measures beyond these two. In particular, we consider the probability of

delay in steady state. It is customary to consider the probability of delay as a measure of the quality

of service, e.g., see Halfin and Whitt (1981) and Garnett et al. (2002). Indeed, in the asymptotic

regimes that arise at optimum for our staffing problem, the queue length is generally small (of a

smaller order of magnitude than the average number of servers), and the waiting time is negligible

when the system is large, so that considering the probability of delay is of interest.

We consider a nontrivial 2-period case where it is optimal to use a blended workforce in the high

demand period when blending is allowed. This essentially requires that Th
Tl+Th

cflex < cfix < cflex

where Tl is the length of the low-demand period and Th is the length of the high demand period.

We set the low demand rate λl = 25 and the high demand rate λh = 50. We let the lengths of the

respective periods be Tl = 2 and Th = 1. The staffing-cost parameters are cfix = 2/9 and cflex = 1/3,

and we set the customer-cost parameters h= r = 1. The service rate µ= 1 and the abandonment

rate θ= 0.5. We vary the value of q, where σn = nq in (6): We consider values of q between 0.2 and

0.99, with increments of 0.01, which correspond to various magnitudes of supply-side variability.

For the optimal staffing levels, we numerically solve the original staffing problem in (7). Our

example illustrates a case where the index k0 in Lemma 2 is different from k1 in Theorem 6.

Indeed, for q < 1, the optimal solution in the stochastic-fluid problem is to blend the resources

in the high-demand period i.e, we have that k0 = 1. On the other hand, for q = 1, we have that
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k1 = 2, so that it is optimal not to use a blended workforce because of the “risk premium” induced

when q = 1. In Figure 12, we plot the optimal staffing levels under each alternative in the high

and low-demand periods. We include two distinct curves for the case of a blended workforce: The

level of the fixed resource, and the level of the flexible resource. In contrast, when the manager is

restricted to staffing strictly one of the two resources, we include a single curve in the plot instead.

We note that while there is a phase transition when solving the stochastic-fluid problem, i.e., q < 1

versus q= 1, solving (7) directly illustrates a more gradual transition as q increases.

4.4.1. Firm Perspective: Cost Reduction. In Figure 13, we plot the optimal cost curves

for the firm, as a function of q, under the three workforce models. While it is intuitively clear that

allowing for blending in the workforce would reduce costs, it is interesting to understand what is

the cost reduction entailed compared to the two single-resource benchmarks.

The relative improvement of a blended workforce over using a fixed resource only decreases as

q increases, for large values of q. This is because when supply-side variability is very large, the

number of flexible servers staffed decreases as q increases in this example; see the lowermost curve

in the lower subplot of Figure 12, which corresponds to the high-demand period. Eventually, for

q= 1, the manager relies strictly on fixed servers, even when allowed to rely on flexible servers too.

Thus, the objective cost under the blended workforce model becomes increasingly close to that

of the model with fixed servers only, as is illustrated by the two lowermost curves in Figure 13.

In contrast, the improvement in cost between the blended workforce model and the model with a

flexible resource only increases as a function of q. This is because when only flexible servers are

allowed, the manager must staff increasingly more flexible servers to hedge against supply-side

uncertainty as q increases in this example (see Figure 12). Thus, the objective cost increases steeply

in this case; see the top curve in Figure 13. On the other hand, when fixed servers are allowed, the

manager may rely on this alternative resource instead, which reduces her cost.

4.4.2. Customer Perspective: Quality of Service. We now illustrate the impact of blend-

ing the workforce on the quality of service offered in the system. For our choice of system param-

eters, the solution in scenario (i) is most cost-effective from the point of view of the manager;

however, it is unclear whether customers will experience a higher quality of service under that

scenario. Figure 14 illustrates that the impact of blending on customers depends on the period.

In the low-demand period, the smallest delay probability corresponds to staffing solely from the

fixed resource. This is because the manager staffs a high-enough level to match demand in the high

period (lower subplot in Figure 12), which leaves the system overstaffed in the low-demand period.

Indeed, the delay probability is almost 0 in this case (lowermost curve in the upper subplot of

Figure 14). However, customers in the high-demand period are worse off when the manager staffs
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strictly from the fixed resource. This is because when flexible servers are allowed in the pool, the

manager hedges against uncertainty by staffing a larger pool, which benefits customers who, as a

result, experience a smaller probability of delay. We see this by comparing the uppermost curve,

which corresponds to the fixed workforce, to the middle curve, which corresponds to the blended

workforce, in the lower subplot of Figure 14.

Figure 14 also shows that blending may either help or hurt customers, compared with staffing

from the flexible resource only. In the low-demand period, the uncertainty hedge is not large enough,

so that customers are benefitted from blending. We see this by comparing the uppermost probability

of delay curve, which corresponds to having only flexible servers, to the middle probability of delay

curve, which corresponds to the blended workforce model (in the low demand period, only fixed

servers are used). In the high-demand period, the uncertainty hedge is large, and customers benefit

from this. This can be seen by comparing the lowermost curve in the lower subplot of Figure 14,

which corresponds to the case with flexible servers only, to the middle curve which corresponds to

a blended workforce.

5. General Abandonment

Our results so far are all under the assumption of exponentially-distributed patience times. Since

there is statistical evidence indicating that patience times may not be exponentially-distributed

(Brown et al. 2005), it is important to go beyond that assumption. We do so in this section

by describing results from a numerical study quantifying the optimality gaps for fluid-based and

stochastic-fluid based approximation with non-exponential abandonment. We shall focus on flexible

servers only in the agent pool.
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Abandonment distributions and hazard rates. Using hazard rates to describe customer patience

is known since the work of Palm (1953). Data collected in service systems suggest that customer

patience times may have a decreasing hazard rate. For example, Zeltyn and Mandelbaum (2005)

find that “customers who have already waited for a significant time, tend to remain increasingly

patient” (p.14). Additionally, Bolandifar et al. (2019) also conclude that patience times have a

decreasing hazard rate. In what follows, we go beyond exponential patience times by considering

patience-time distributions with both increasing and decreasing hazard rates.

Staffing problem and relaxations. We begin by formulating the firm’s optimization problem when

times to abandon have a general distribution. As in (7), the firm’s original problem is given by:

min
mλ,nλ

Πλ(mλ,nλ)≡
k∑
i=1

Ti
(
cfixmλ + cflexn

i
λ +h ·E[Qi(mλ, n

i
λ)] + r · ξ(mλ, n

i
λ)
)
.

Because of the difficulty in solving this staffing problem, we now describe both the stochastic-fluid

and fluid relaxations of the problem. To do so, we let G denote the cdf of the abandonment-time

distribution, Ḡ its tail cdf, and g its pdf. We assume that g is strictly positive so that Ḡ is invertible.

The fluid formulation of the problem is given by:

min
mλ,nλ

Π̄λ(mλ,nλ)

≡
k∑
i=1

Ti

(
cfixmλ + cflexn

i
λ + r(λi−mλµ−niλµ)+ +h

(∫ wi(mλ,n
i
λ)

0

λiḠ(u)du

))
,

where wi(mλ, n
i
λ) = Ḡ−1((mλµ+ niλµ)/λi) denotes the fluid approximation of the waiting time in

the ith period. Accordingly, the stochastic-fluid formulation of the problem is given by:

min
mλ,nλ

Π̃λ(mλ,nλ)

≡
k∑
i=1

Ti

(
cfixmλ + cflexn

i
λ + rE[(λi−N(mλ, n

i
λ)µ)+] +hE

[∫ W i(mλ,n
i
λ)

0

λiḠ(u)du

])
,

where W i(mλ, n
i
λ) = Ḡ−1(N(mλ, n

i
λ)µ/λi) denotes the stochastic-fluid approximation of the waiting

time in the ith period.

Numerical results. In Figures 15-18, we consider a problem with a single period and flexible

servers only. Our objective here is to quantify the accuracies of the alternative staffing-problem

relaxations. For the patience-time distribution, we consider Pareto (mean 1, shape 2) and Weibull

(mean 1, shape 2). We choose these two distributions because they exhibit, for those selected

parameter values, different properties for their hazard-rate functions: While the Pareto distribution

has a decreasing hazard rate, the Weibull distribution has an increasing harzard rate. We consider

the following cost parameters: cflex = 1, h = 1, r = 0.45, and µ = 1. For each distribution, we
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Figure 15 Unscaled errors for optimal fluid

staffing levels, |n̄λ−n∗λ|, as a function of λ, with

Pareto abandonment.
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Figure 16 Scaled errors for optimal fluid

staffing levels, |n̄λ−n∗λ|/
√
λ, as a function of λ,

with Weibull abandonment.

compare the fluid, n̄λ, stochastic-fluid, ñλ, and original, n∗λ, optimal solutions, by plotting their

respective differences for varying arrival rates.

We first discuss our numerical results with Pareto abandonment. In this case, the overloaded

regime is asymptotically optimal at fluid scale, i.e., the optimal prescription is not to match mean

demand and mean supply. Thus, we expect that fluid prescriptions should be extremely accurate,

i.e., with absolute errors on the order of magnitude of O(1) as in Bassamboo and Randhawa

(2010). In other words, we expect that stochastic-fluid prescriptions would not lead to a substantial

improvement over their fluid counterparts; this is confirmed by Figures 15 and 17, where we plot

unscaled absolute differences |n̄λ−n∗λ| and |ñλ−n∗λ|.

With Weibull abandonment, the fluid solution prescribes a critically-loaded regime, i.e., to match

the mean demand and the mean supply. Because this is the same asymptotic regime prescribed with

exponential abandonment, we expect the optimality gaps of our respective solutions to be close to

those with exponential abandonment. Figures 16 and 18 confirm that this is indeed the case. In

particular, the stochastic-fluid formulation is remarkably accurate, yielding an order of magnitude

improvement over the fluid prescription (in most cases, ñλ and n∗λ are indistinguishable).

6. Concluding Remarks

In this paper, we studied the problem of staffing a service system where the manager must decide

on cost-minimizing levels of fixed and/ or flexible agents. Our analysis suggests that it may be cost-

effective to staff either strictly one of the two resources, or to use a blended workforce, depending on

the interaction between three competing factors: (i) operational costs; (ii) the supply-side flexibility

to meet the time-variation in customers’ demand; and (iii) the supply-side uncertainty which is

associated with staffing flexible agents. In broad terms, we showed that the optimal staffing levels
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Figure 17 Unscaled errors for optimal

stochastic-fluid staffing levels, |ñλ−n∗λ|, as a

function of λ, with Pareto abandonment.
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Figure 18 Scaled errors for optimal

stochastic-fluid staffing levels, |ñλ−n∗λ|/
√
λ, as a

function of λ, with Weibull abandonment.

involve both a base capacity, which is used to match mean demand, and an additional safety

capacity which hedges against supply-side variability.

In this work, we focused solely on the long-run staffing decision in the system. Our focus on that

long-run strategic planning decision was motivated by: (1) the longer time scale which is associated

with the staffing decision in practice, e.g., to allow for the training of agents, and (2) the fact that

even though real-time pricing is used by some on-demand service platforms, such as ride-sharing

services, most such platforms have to commit to the prices that they offer to their agents well in

advance (Taylor 2018). Nevertheless, it would be an interesting future research to investigate the

dynamic compensation decision in the setting with a blended workforce.

In addition, in this work, we consider deterministic arrival rates. The goal is to highlight the

impact of supply-side uncertainty. We can also consider demand-side uncertainty, i.e., random

arrival rate, in addition to the supply-side uncertainty. In particular, following the setting in this

paper, assume the staffing decisions are made before the random arrival rates and the random

numbers of servers are realized. Then applying similar lines of analysis, we can show that the

stochastic-fluid problem still leads to a remarkably accurate staffing prescription and the uncer-

tainty hedge in the optimal stochastic-fluid solution will be on the order of the maximum between

the two magnitudes of uncertainty (in supply and in demand). We also note that in an alternative

setting, the uncertainty in the arrival rate may be realized before the staffing decision is finalized.

In particular, additional flexible capacity may be called upon in the last minute to hedge against

unforseen changes in the arrival rates, i.e., we can update our original staffing decision for the

flexible servers after seeing the realized arrival rate. Then, flexible servers will bring an extra layer

of benefit to the manager. We believe this setting is also of practical relevance and would be an

interesting future research direction.
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Lastly, in this work, we focus on exponential patience time distribution. We also demonstrate,

through numerical experiments, that if the hazard rate of patience time distribution is increasing,

the fluid prescriptions is extremely accurate, while if the hazard rate of patience time distribution is

decreasing, the refined stochastic-fluid prescriptions yields orders of magnitude improvement over

the fluid prescription. Thus, understanding the application-specific patience time distributions is

also very important for making the right staffing decisions.
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Appendix A: Proofs of the optimality gaps

In this section, we prove the optimality gaps results (Theorem 1, 2, 4 and 5). As we shall explain, Theorem

1 is actually a special case of Theorem 4, and Theorem 2 is a special case of Theorem 5.

We first state and prove some auxiliary lemmas (Lemma 3-5), which will be useful for the proof of our

theorems. These lemmas are stated for the single-period case and allow for general values of mλ ≥ 0 and

nλ ≥ 0. The proofs follow similar lines of the arguments as Bassamboo et al. (2010).

A.1. Additional lemmas for a single period

Lemma 3. When µ= θ,

E[(λ/µ−N(mλ, nλ))+]≤E[(X(mλ, nλ)−N(mλ, nλ))+]≤E[(λ/µ−N(mλ, nλ))+] +O(
√
λ),

where N(mλ, nλ) =mλ +nλ +σnλε. Moreover, if nλ = Θ(λ) and σλ = Θ(λq) for q > 1/2 then:

E[(X(mλ, nλ)−N(mλ, nλ))+]≤E[(λ/µ−N(mλ, nλ))+] +O (λ/σλ) .

Proof. When µ= θ, X(mλ, nλ)∼Poisson(λ/µ). By Lemma 3 of Bassamboo et al. (2010):(
λ

µ
−N(mλ, nλ)

)+

≤E[(X(mλ, nλ)−N(mλ, nλ))+|N(mλ, nλ)]

≤
(
λ

µ
−N(mλ, nλ)

)+

+

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
−N(mλ, nλ)

)2
)

+
1

log 2

Then as exp

(
− µ

4λ

(
λ
µ
−N(mλ, nλ)

)2
)
≤ 1, we obtain:

E

[(
λ

µ
−N(mλ, nλ)

)+
]
≤ E[X(mλ, nλ)−N(mλ, nλ))+]

≤E

[(
λ

µ
−N(mλ, nλ)

)+
]

+O(
√
λ).

For the second part of the lemma, we let fλN(s) denote the pdf of N(mλ, nλ) and define, for y≥ 0:

Mλ(y)≡ sup
y−
√
λ logλ<s<y+

√
λ logλ

λfλN(s).
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We can then write:

E

[√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
−N(mλ, nλ)

)2
)]

=

∫ λ/µ+
√
λ logλ

λ/µ−
√
λ logλ

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds

+

∫ ∞
λ/µ+

√
λ logλ

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds

+

∫ λ/µ−
√
λ logλ

−∞

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds.

Letting F λ
N denote the cdf of N(mλ, nλ), we see that: F λ

N(s) = P
(
ε≤ s−mλ−nλ

σnλ

)
= Fε

(
s−mλ−nλ

σnλ

)
. Thus,

fλN(s) = 1
σnλ

fε

(
s−mλ−nλ

σnλ

)
. That is, when nλ = Θ(λ), it must be that Mλ(y) =O(λ/σλ). Now,

∫ λ/µ+
√
λ logλ

λ/µ−
√
λ logλ

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds

≤ Mλ(λ/µ)

∫ λ/µ+
√
λ logλ

λ/µ−
√
λ logλ

√
4π

µ

√
λ

λ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
ds

≤ Mλ(λ/µ)

∫ λ/µ+
√
λ logλ

λ/µ−
√
λ logλ

K1√
λ

exp

(
−K2

λ

(
λ

µ
− s
)2
)
ds for some K1,K2 > 0,

= O(λ/σλ).

In addition, ∫ ∞
λ/µ+

√
λ logλ

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds

≤

√
4πλ

µ
exp

(
− µ

4λ
λ(logλ)2

)
= o(1).

Similarly, ∫ λ/µ−
√
λ logλ

−∞

√
4πλ

µ
exp

(
− µ

4λ

(
λ

µ
− s
)2
)
fλN(s)ds= o(1).

Thus, if nλ = Θ(λ) then:

E
[
(X(mλ, nλ)−N(mλ, nλ))

+
]
≤E

[
(λ/µ−N(mλ, nλ))

+
]

+O(λ/σλ).

Lemma 4.

Π̃λ(mλ, nλ)≤Πλ(mλ, nλ)≤ Π̃λ(mλ, nλ) +O(
√
λ)

Moreover, when nλ = Θ(λ) and σλ = Θ(λq) for q > 1/2:

Π̃λ(mλ, nλ)≤Πλ(mλ, nλ)≤ Π̃λ(mλ, nλ) +O (λ/σλ) .
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Proof. We prove the first statement in detail. The second statement, where nλ = Θ(λ) and q > 1/2, follows

along the same line of arguments.

When µ= θ, the result follows directly from Lemma 3.

When µ > θ, we first consider an auxiliary “upper bound” system with abandonment rate µ. On each

sample path, we assume that the two systems have the same (randomly drawn) number of servers.

Let Aλ(N(mλ, nλ)) ≡ θE[(X(mλ, nλ;µ, θ) − N(mλ, nλ))+] and AIλ(N(mλ, nλ)) ≡ µE[(X(mλ, nλ;µ,µ) −
N(mλ, nλ))+] where X(mλ, nλ;x, y) is the steady-state number-in-system with service rate x and abandon-

ment rate y. As Aλ(N(mλ, nλ))≤AIλ(N(mλ, nλ)):

Πλ(mλ, nλ) = cfixmλ + cflexnλ + (h/θ+ r)Aλ(N(mλ, nλ))

≤ cfixmλ + cflexnλ + (h/θ+ r)AIλ(N(mλ, nλ))

≤ cfixmλ + cflexnλ + (h+ rθ)
µ

θ
E[(λ/µ−N(mλ, nλ))+] +O(

√
λ) by Lemma 3

= Π̃λ(mλ, nλ) +O(
√
λ).

We then consider an auxiliary “lower bound” system with service rate θ. On each sample path, we

assume that the two systems have the same (randomly drawn) number of servers. Let AIIλ (N(mλ, nλ)) ≡
θE[(X(mλ, nλ;θ, θ)−N(mλ, nλ))+]. As Aλ(N(mλ, nλ))≥AIIλ (N(mλ, nλ)µ/θ) (Bassamboo et al. 2010):

Πλ(mλ, nλ) = cfixmλ + cflexnλ + (h/θ+ r)Aλ (N(mλ, nλ))

≥ cfixmλ + cflexnλ + (h/θ+ r)AIIλ

(µ
θ
N(mλ, nλ)

)
≥ cfixmλ + cflexnλ + (h+ rθ)E

[(
λ

θ
− µ

θ
N(mλ, nλ)

)+
]

by Lemma 3

= cfixmλ + cflexnλ + (h+ rθ)
µ

θ
E
[
(λ/µ−N(mλ, nλ))

+
]

= Π̃λ(mλ, nλ).

When µ < θ, the proof is similar to the case of µ > θ. We first consider an auxiliary “upper bound”

system with service rate θ. Let AIIλ (N(mλ, nλ))≡ θE[(X(mλ, nλ;θ, θ)−N(mλ, nλ))+]. As Aλ(N(mλ, nλ))≤
AIIλ

(
µ

θ
N(mλ, nλ)

)
:

Πλ(mλ, nλ) = cfixmλ + cflexnλ + (h/θ+ r)Aλ(N(mλ, nλ))

≤ cfixmλ + cflexnλ + (h/θ+ r)AIIλ

(µ
θ
N(mλ, nλ)

)
≤ cfixmλ + cflexnλ + (h+ rθ)E

[(
λ

θ
− µ

θ
mλ−

µ

θ
N(mλ, nλ)

)+
]

+O(
√
λ) by Lemma 3

= cfixmλ + cflexnλ + (h+ rθ)
µ

θ
E[(λ/µ−N(mλ, nλ))+]

= Π̃λ(mλ, nλ) +O(
√
λ).

We then consider an auxiliary “lower upper” bound system with abandonment rate µ. Let Aλ(N(mλ, nλ))≡
θE[(X(N(mλ, nλ);µ, θ) − N(mλ, nλ))+] and AIλ(N(mλ, nλ)) ≡ µE[(X(N(mλ, nλ);µ,µ) − N(mλ, nλ))+]. As

Aλ(N(mλ, nλ))≥AIλ(N(mλ, nλ)):

Πλ(mλ, nλ) = cfixmλ + cflexnλ + (h/θ+ r)Aλ(N(mλ, nλ))
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≥ cfixmλ + cflexnλ + (h/θ+ r)AIλ(N(mλ, nλ))

≥ cfixmλ + cflexnλ + (h+ rθ)
µ

θ
E[(λ/µ−N(mλ, nλ))+] by Lemma 3

= Π̃λ(mλ, nλ).

Lemma 5. (
λ

µ
−mλ−nλ

)+

≤E

[(
λ

µ
−N(mλ, nλ)

)+
]
≤
(
λ

µ
−mλ−nλ

)+

+O(σnλ).

Proof. We notice that by Jensen’s inequality,

E

[(
λ

µ
−N(mλ, nλ)

)+
]
≥
(
λ

µ
−mλ−nλ

)+

.

For the upper bound, as −1< ε< 1,

E

[(
λ

µ
−N(mλ, nλ)

)+
]

=E

[(
λ

µ
−mλ−nλ−σnλε

)+
]

=


0 for λ/µ−mλ−nλ

σnλ
<−1,

σnλ
∫ λ/µ−mλ−nλ

σnλ
−1 Fε(x)dx for − 1≤ λ/µ−mλ−nλ

σnλ
≤ 1,

λ/µ−mλ−nλ for λ/µ−mλ−nλ
σnλ

> 1.

Therefore,

E

[(
λ

µ
−N(mλ, nλ)

)+
]

=

(
λ

µ
−mλ−nλ

)
·1
(
λ

µ
−mλ−nλ >σnλ

)
+O(σnλ)

≤
(
λ

µ
−mλ−nλ

)+

+O(σnλ).

A.2. Proofs of Theorems 4 and 5

We denote

Πi
λ(m,ni) := cfixm+ cflexn+βE[Qi

λ(m,ni)].

We also write Π̄i
λ(m,ni) and Π̃i

λ(m,ni) as the corresponding fluid and stochastic-fluid approximations, respec-

tively, for period i. We start with the solution to the stochastic-fluid relaxation, (m̃λ, ñλ). From Lemma 4,

we have:

Πλ(m̃λ, ñλ) =

k∑
i=1

TiΠ
i
λ(m̃λ, ñ

i
λ)

≤
k∑
i=1

Ti

{
Π̃i
λ(m̃λ, ñ

i
λ) +O(

√
λ)
}

≤
k∑
i=1

TiΠ̃
i
λ(m∗λ, n

∗,i
λ ) +O(

√
λ)

≤
k∑
i=1

TiΠ
i
λ(m∗λ, n

∗,i
λ ) +O(

√
λ) = Πλ(m∗λ,n

∗
λ) +O(

√
λ).
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Moreover, if ñ
(m)
λ = Θ(λ) and σλ = Θ(λq) for q > 1/2, from Lemma 4, we have:

Πλ(m̃λ, ñλ) =

k∑
i=1

TiΠ
i
λ(m̃λ, ñ

i
λ)

≤
k∑
i=1

Ti

(
Π̃i
λ(m̃λ, ñ

i
λ) +O(λ/σλ)

)
≤ Π̃λ(m∗λ,n

∗
λ) +O(λ/σλ)

≤ Πλ(m∗λ,n
∗
λ) +O(λ/σλ).

We next analyze the solution to the fluid relaxation, (m̄λ, n̄λ). From Lemmas 4 & 5, we have:

Πλ(m̄λ, n̄λ) =

k∑
i=1

TiΠ
i
λ(m̄λ, n̄

i
λ)

≤
k∑
i=1

Ti

{
Π̃i
λ(m̄λ, n̄

i
λ) +O(

√
λ)
}

≤
k∑
i=1

Ti

{
Π̄i
λ(m̄λ, n̄

i
λ) +O(

√
λ) +O(σn̄i

λ
)
}

≤
k∑
i=1

TiΠ̄
i
λ(m∗λ, n

∗,i
λ ) +O(

√
λ) +O(σ

n̄
(M)
λ

)

≤ Π̃λ(m∗λ,n
∗
λ) +O(

√
λ) +O(σ

n̄
(M)
λ

)

≤ Πλ(m∗λ,n
∗
λ) +O(

√
λ) +O(σ

n̄
(M)
λ

).

In particular, if n̄
(M)
λ = Θ(λ) then

Πλ(m̄λ, n̄λ)≤Πλ(m∗λ,n
∗
λ) +O(max{

√
λ,σλ}).

This concludes the proofs for Theorems 4 and 5.

Theorem 1 and Theorem 2 are essentially special cases of Theorem 4 and 5, respectively, so we do not

include separate proofs for them. In particular, when we set cfix =∞, we obtain m̄λ = 0, i.e., we shall rely

on the flexible servers only. This is equivalent to the cases considered in Theorem 1 and Theorem 2. Lastly,

note that from the analysis in §3 with flexible servers only, for each period i, we have ñiλ = Θ(λ).

Appendix B: Proofs for the optimal staffing rule with flexible servers only

In this section, we prove the results for the optimal staffing policy with flexible servers only (Lemma 1 and

Theorem 3).

B.1. Proof of Lemma 1

The proof builds on extensive applications of Taylor expansion and the mean value theorem. We first notice

that from Π̃′λ(ñλ) = 0, we have

ñλ =
λ

µ
−F−1

ε

(
cflex
β
−σ′ñλ

∫ λ/µ−ñλ
σñλ

−1

xfε(x)dx

)
σñλ .
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We define γλ ≡ F−1
ε

(
cflex

β
−σ′ñλ

∫ (λ/µ−ñλ)/σñλ
−1

xfε(x)dx
)

. As σ′ñλ
∫ (λ/µ−ñλ)/σñλ
−1

xfε(x)dx≤ 0, and it converges

to zero as λ→∞, we have γλ ≥ γ and γλ→ γ as λ→∞.

n̂λ− ñλ = −γσλ/µ + γλσñλ

= −γ(σλ/µ−σñλ) + (γλ− γ)σñλ . (25)

Based on (25), we notice that, as

σλ/µ−σñλ =O(σ′λ/µσλ/µ) =O(σ2
λ/λ),

and

γλ− γ =
1

fε(γ0)
σ′ñλ

∫ λ/µ−ñλ
σñλ

−1

xfε(x)dx for some γ0 ∈ [γλ, γ],

= O(σ′λ/µ) =O(σλ/λ),

we have

|n̂λ− ñλ|=O(σ2
λ/λ).

We next analyze the gap between Π̃λ(ñλ) and Π̃λ(n̂λ). Denote

M ≡ sup
λ

sup
n−σn<λ<n+σn

σλ/µΠ̃′′λ(n)∈ (0,∞).

We note that

Π̃λ(n̂λ) = Π̃λ(ñλ) + Π̃′λ(ñλ)(n̂λ− ñλ) +
1

2
Π̃′′λ(n0)(n̂λ− ñλ)2 for some n0 ∈ [n̂λ, n̄λ],

≤ Π̃λ(ñλ) +
1

2

M

σλ/µ
(n̂λ− ñλ)2. (26)

As |n̂λ− ñλ|=O(σ2
λ/λ), (26) implies

Π̄λ(n̂λ)− Π̃λ(ñλ) =O(σ3
λ/λ

2).

B.2. Proof of Theorem 3

Recall that we denote by ñλ the optimal solution of Π̃λ(n), and n∗λ denotes the optimal solution of Πλ(n).

Case I. 0≤ q≤ 1/2. Plugging in the fluid optimal solution, nλ = n̄λ = λ/µ, we have

Πλ(nλ) = Πλ(n∗λ) +O(max{
√
λ,σλ}) = Πλ(n∗λ) +O(

√
λ),

where the first equality follows from Theorem 1.

Case II. 1/2< q < 3/4. From Lemma 1 and Theorem 2, we have for large enough systems,

Π̃λ(n̂λ) = Π̃λ(ñλ) +O(σ3
λ/λ

2),

= Πλ(n∗λ) +O(λ/σλ) +O(σ3
λ/λ

2),

= Πλ(n∗λ) +O(λ/σλ).

Case III. 3/4< q < 1. From Theorem 2, we have:

Π̃λ(ñλ) = Πλ(n∗λ) +O(λ/σλ).

We also note from Lemma 1 that if we set nλ = n̂λ in this case, then the error term σ3
λ/λ

2 will dominate the

error term λ/σλ, i.e., we are no longer able to achieve O(λ/σλ) optimality.
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Case IV. q= 1. From the analysis in Section 3 and the definition of Ωλ, we have the optimal

η∗ ∈
(

1

1 + a
,

1

1− a

)
.

Let

g(η) =
Π̃λ(λ

µ
η)

λ/µ
= cflexη+βE[(1− η− aηε)+].

Then,

g′(η) = cflex +βa

∫ (1−η)/(aη)

−1

Fε(u)du− β

η
Fε

(
1− η
aη

)
and g′′(η) =

β

aη3
fε

(
1− η
aη

)
> 0.

Thus, the η∗ that minimizes g(η) is the solution of g′(η) = 0. In this case, ñλ = λ
µ
η∗. From Theorem 2, we

have

Π̄λ(ñλ) = Πλ(n∗λ) +O(λ/σλ) = Πλ(n∗λ) +O(1).

Appendix C: Proof for the optimal staffing rule with a blended workforce

In this section, we prove the results for the optimal staffing policy with a blended workforce. We first prove

the optimal solution for the fluid approximation (Lemma 2). We then prove Theorem 6.

C.1. Proof of Lemma 2.

If cflex < cfix, then niλ = λi/µ for all i, and m= 0.

Now consider cflex > cfix. Recall that cflex, cfix <β, and λi’s are arranged in an increasing order.

Fix mλ and solve for niλ. The problem for period i where we drop Ti is:

min
ni
λ

cflexn
i
λ +β(λi−mi

λ−niλ)+.

The solution is:

• If λi/µ<mλ then niλ = 0;

• If λi/µ≥mλ then niλ = λi/µ−mλ.

Solve for mλ. Plugging in the above solution, the problem becomes:

min
mλ

 ∑
{i:λi/µ<mλ}

Ticfixmλ +
∑

{i:λi/µ≥mλ}

Ti

[
cfixmλ + cflex

(
λi
µ
−mλ

)]
≡ min

mλ

 k∑
i=1

Ticfixmλ−
∑

{i:λi/µ≥mλ}

Ticflexmλ +
∑

{i:λi/µ≥mλ}

Ticflex
λi
µ


≡ min

mλ

mλ ·

 k∑
i=1

Ticfix−
∑

{i:λi/µ≥mλ}

Ticflex

+
∑

{i:λi/µ≥mλ}

Ticflex
λi
µ

 .

It is easy to see that there exist 1≤ k0 ≤ k such that:(
k∑
i=1

Ticfix−
k∑

i=k0

Ticflex

)
≤ 0 and

(
k∑
i=1

Ticfix−
k∑

i=k0+1

Ticflex

)
> 0.

Then the optimal solution is given by:
m̄λ = λk0/µ

n̄iλ = 0 for i≤ k0

n̄iλ = λi/µ−λk0/µ for i > k0.

That is, we use only the fixed capacity in low-demand periods, and we blend in the higher-demand periods.

In the special case when cfix ≤ Tk∑k
i=1 Ti

cflex, we set m̄λ = λk/µ and n̄iλ = 0 for all i.
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C.2. Proof of Theorem 6.

The proof is divided into two part. We first prove Theorem 6 for a single period, k= 1. We then show how to

decompose the multi-period problem into k, k≥ 2, single period problems based on the fluid optimal solution

derived in Lemma 2 and properly adjusted arrival rate.

C.2.1. Single period

cfix ≤ cflex. In this case, we must have that ñλ = 0. Aiming at a contradiction, assume that ñλ > 0. Then,

Π̃λ(m̃λ + ñλ,0) = cfix(m̃λ + ñλ) +β(λ/µ− m̃λ− ñλ)+

< cfixm̃λ + cflexñλ +βE[(λ/µ− m̃λ− ñλ−σñλ · ε)
+] = Π̃λ(m̃λ, ñλ).

The inequality follows from the fact that cfix < cflex and Jensen’s inequality. Fixing ñ = 0, we have

Π̃(m,0) = Π̄(m,0). Thus, a unique optimal solution exists, and is the solution to the fluid problem.

cfix > cflex and 0≤ q≤ 1/2. Plugging in the fluid optimal solution, i.e., m̄λ = 0 and n̄λ = λ/µ, we have

Πλ(m̄λ, n̄λ) = Πλ(m∗λ, n
∗
λ) +O(max{

√
λ,σλ}) = Π(m∗λ, n

∗
λ) +O(

√
λ),

where the first equality follows from Theorem 4.

cfix > cflex and 1/2< q < 1. We first fixed n. Denote m(n) as the optimal level of fixed staffing for the

given level of flexible staffing, n. As

∂Πλ(m,n)

∂m
= cfix−βFε

(
λ/µ−m−n

σn

)
and

∂2Πλ(m,n)

∂m2
=

β

σn
fε

(
λ/µ−m−n

σn

)
≥ 0,

if ∂Πλ(0,n)

∂m
> 0, i.e. n> λ/µ−F−1

ε (cfix/β)σn, m(n) = 0; otherwise, m(n) = λ/µ−n−F−1
ε (cfix/β)σn.

We next plug m(n) in Πλ(m,n). Let nb = λ/µ−F−1
ε (cfix/β)σnb . For n< nb, n< λ/µ−F−1

ε (cfix/β)σn. In

this region, we have
∂Πλ(m(n), n)

∂n
= cflex− cfix−σ′ncfixF−1

ε (cfix/β)

As σ′n→ 0 as n→∞ and cflex < cfix, then for λ large enough, ∂Πλ(m(n),n)

∂n
> 0 for all n < nb. This suggests

that n̄λ ≥ nb. We also notice that for n≥ nb, m(n) = 0. Thus, m̃λ = 0 for λ large enough. In this case, solving

for the optimal ñλ reduces to the flexible resource only problem we studied in Case II and III of Theorem 3.

cfix > cflex and q= 1. Let mλ = xλ/µ, nλ = yλ/µ for x, y ∈R+. Then, minmλ,nλ Π̃λ(mλ, nλ) is equivalent

to optimizing:

min
x,y

V (x, y) :=
Π̃λ(mλ, nλ)

λ/µ
= cfixx+ cflexy+βE

[
(1−x− y− ayε)+

]
.

We denote the optimal solution to V (x, y) as x∗, y∗. It suffices to consider x, y such that −ay≤ 1−x−y≤ ay.

In this case, we first notice that for fixed y, we have

∂V (x, y)

∂x
= cfix−βFε

(
1−x− y

ay

)
and

∂2V (x, y)

∂x2
= β

1

ay
fε

(
1−x− y

ay

)
≥ 0

Let x(y) denote the optimal x given y. Then if y < 1

1+aF−1
ε (cfix/β)

, x(y) = 1− y − ayF−1
ε (β1); Otherwise,

x(y) = 0.
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We next plug x(y) in V (x, y). Let yb = 1

1+aF−1
ε (cfix/β)

. For y≤ yb, we have

∂V (x(y), y)

∂y
= cflex− cfix− cfixaF−1

ε (β1) + aβ

∫ F−1
ε (β1)

−1

Fε(u)du.

If cflex ≥ cfix (1 + aF−1
ε (cfix/β)) − βa

∫ F−1
ε (cfix/β)

−1
Fε(x)dx, it is optimal to set y = 0 and x(y) = 1 in

this region. Otherwise, it is optimal to set y = yb and x(y) = 0 in this region. Note also that as

cfix (1 + aF−1
ε (cfix/β))−βa

∫ F−1
ε (cfix/β)

−1
Fε(x)dx< cfix and cflex < cfix, both cases above can happen.

Now let us consider y > yb. In this region, we have

∂2V (x(y), y)

∂y2
=

β

ay3
fε

(
1

ay
− 1

a

)
> 0.

This implies that V (x(y), y) = V (0, y) is convex in y for y≥ yb. We also notice that if

cflex ≥ cfix
(
1 + aF−1

ε (cfix/β)
)
−βa

∫ F−1
ε (cfix/β)

−1

Fε(x)dx,

∂V (x(yb),yb)

∂y
≥ 0. Combining our analysis in the region where y≤ yb, we conclude that y∗ = 0 and x∗ = 1. If

cflex < cfix
(
1 + aF−1

ε (cfix/β)
)
−βa

∫ F−1
ε (cfix/β)

−1

Fε(x)dx,

∂V (x(yb),yb)

∂y
< 0. Combining our analysis in the region where y ≤ yb, we conclude that y∗ > yb and x∗ = 0.

Then in this case, solving for the optimal y∗ reduces to the flexible resource only problem we studied in Case

IV of Theorem 3 .

C.2.2. Multiple periods

Case 1. σn = anq for 0< q < 1. For nλ = (n1
λ, n

2
λ, ..., n

k
λ), we can write:

Π̃λ(mλ,nλ) =

k∑
i=1

Ti

(
cfixmλ + cflexn

i
λ +βE

[(
λi
µ
−N(mλ, n

i
λ)

)+
])

,

=:

k∑
i=1

TiΠ̃
i
λ(mλ, n

i
λ),

=

k∑
i=1

Ti

cfixmλ + cflexn
i
λ +β1{niλ > 0}σni

λ

∫ λi/µ−mλ−n
i
λ

σ
ni
λ

−1

Fε(u)du

 .

When plugging the fluid solution (m̄λ, n̄λ), we have

Π̃λ(m̄λ, n̄λ) = Π̄λ(m̄λ, n̄λ) +β

k∑
i=k0+1

σn̄i
λ

∫ 0

−1

Fε(u)du, (27)

where k0 is defined in Lemma 2. The expression in (27) suggests that the optimal policy for the stochastic-

fluid problem will have the same number of fixed servers as its counterpart fluid solution, but will add some

flexible resource to its counterpart fluid solution for an additional “hedge” against uncertainty; this hedge

should be on the order of σλ. We will prove that this is indeed the case next, breaking down our proof into

3 steps.

Step 1. For all 1≤ i≤ k:

(a) If m̃λ <λi/µ, then λi/µ−σñi
λ
≤ m̄λ + n̄iλ ≤ λi/µ+σñi

λ
;
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(b) If m̃λ ≥ λi/µ, then ñiλ = 0.

The second part of the statement is straightforward. We prove the first part of the statement by contra-

diction.

i) Aiming at a contradiction, suppose that, for period i, we have m̃λ + ñiλ >λi/µ+σñi
λ
. Choose n′ such that

m̃λ +n′ = λi/µ+σn′ . Then n′ < ñλ and

Π̃i
λ(m̃λ, ñ

i
λ) = cfixm̃+ cflexñ

i
λ > cfixm̃+ cflexn

′ = Π̃i
λ(m̃λ, n

′),

where the first and last equalities hold because ε∈ (−1,1). We thus get a contradiction.

ii) Now suppose that, for period i, m̃λ + ñiλ <λi/µ−σñiλ . Choose n′ such that m̃λ +n′ = λi/µ−σn′ . Notice

that n′ > ñiλ as σn is increasing in n. Then,

Π̃i
λ(m̃λ, ñ

i
λ) = cfixm̃λ + cflexñ

i
λ +β

(
λi
µ
− m̃λ− ñiλ

)
> cfixm̃λ + cflexn

′+β

(
λi
µ
− m̃λ−n′

)
= Π̃i

λ(m̃λ, n
′).

The inequality follows from the fact that cflex < β and n′ > n̄iλ. In this case, by increasing ñiλ to n′, we

reduce the cost in period i without changing the cost of any other period. We thus get a contradiction. This

concludes the proof of Step 1.

Step 2. m̃λ ≥ λk0/µ. Recall k0 is defined such that m̄k0 = λk0/µ. We, again, prove this statement by

contradiction. Aiming at a contradiction, suppose that m̃λ <λk0/µ. For i≤ k0, let ni′λ = 0; and for k0 < i≤ k,

let ni′λ = max{ñiλ− (m̄λ− m̃λ),0}. For i < k0, we have

Π̃i
λ(m̃λ, ñ

i
λ)≥ cfixm̃λ.

For i= k0, let x= λk0/µ− m̃λ− ñiλ = m̄λ− m̃λ− ñiλ. Then we have

Π̃i
λ(m̃λ, ñ

i
λ)− cfixm̃λ

= cflexñ
i
λ +βσñi

λ

∫ λi/µ−m̃λ−ñ
i
λ

σ
ñi
λ

−1

F (u)du

= cflex(m̄λ− m̃λ)− cflexx+βσñi
λ

∫ x
σ
ñi
λ

−1

F (u)du

≥ cflex(m̄λ− m̃λ)− cflexσñi
λ
F−1(cflex/β) +βσñi

λ

∫ F−1(cflex/β)

−1

F (u)du

= cflex(m̄λ− m̃λ)−βσñi
λ

∫ F−1(cflex/β)

−1

uf(u)du

> cflex(m̄λ− m̃λ).

Thus,

Π̃i
λ(m̃λ, ñ

i
λ)≥ cfixm̃λ + cflex(m̄λ− m̃λ).
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For i > k0, from Step 1, we have m̃λ + ñiλ > λi/µ− σñi
λ

and ñiλ < λi/µ+ σñi
λ
. Then for λ large enough, we

have: ñiλ− (m̄λ− m̃λ)>λi/µ−λk0/µ−σñiλ > 0. Thus, ni′λ = ñiλ− (m̃λ− m̄λ) for λ large enough, and

Π̃i
λ(m̃λ, ñ

i
λ) = cfixm̃λ + cflex(m̄λ− m̃λ) + cflexn

i′
λ +β

(
E

[(
λi
µ
− m̃λ− ñiλ−σñiλε

)+
])

> cfixm̃λ + cflex(m̄λ− m̃λ) + cflexn
i′
λ +βE

[(
λi
µ
− m̃λ− ñiλ−σni′λ ε

)+
]

= cfixm̃λ + cflex(m̄λ− m̃λ) + cflexn
i′
λ +βE

[(
λi
µ
− m̄λ−ni′λ −σni′λ ε

)+
]

where the last inequality follows from the fact that for fixed s≥ 0, E
[(

λi
µ
− s−σnε

)+
]

is increasing in n,

and the last equality follows from the fact that m̃λ + ñiλ = m̄λ +ni′λ .

From the proof of Lemma 2, we have
∑k

i=1 Ticfix ≤
∑k

i=k0
Ticflex. Combining the bound for different values

of i, we have

Π̃λ(m̃λ, ñλ)

=

k∑
i=1

Ti

(
cfixm̃λ + cflexñ

i
λ +β ·E

[(
λi
µ
− m̃λ− ñiλ−σñiλε

)+
])

>

k∑
i=1

Ticfixm̄λ−
k∑
i=1

Ticfix(m̄λ− m̃λ) +

k∑
i=k0

Ticflex(m̄λ− m̃λ) +

k∑
i=k0+1

Ticflexn
i′
λ

+β

k∑
i=k0+1

E

[(
λi
µ
− m̃λ−ni′λ −σni′λ ε

)+
]

≥
k∑
i=1

Ticfixm̄λ +

k∑
i=k0+1

Ticflexn
i′
λ +β

k∑
i=k0+1

E

[(
λi
µ
− m̄λ−ni′λ −σni′ε

)+
]

= Π̃λ(m̄λ,n
′
λ).

We therefore get a contradiction.

Step 3. m̃λ = m̄λ. To show this, we denote m̂λ =mλ− m̄λ and n̂λ = (nk0+1
λ , . . . , nkλ). Based on Step 2, we

can write

min
mλ≥0,nλ≥0

Π̄λ(mλ,nλ)

= cfixm̄λ

k∑
i=1

Ti

+ min
m̂λ≥0,n̂λ≥0

k∑
i=k0+1

Ti

((
cfix

∑k

j=1 Tj∑k

i=k0+1 Ti

)
m̂λ + cflexn

i
λ +βE

[
(λi/µ− m̄λ−N(m̂λ, n

i
λ))+

])
As cfix

∑k

j=1 Tj > cflex
∑k

i=k0+1 Ti, we must have at optimum that m̂λ = 0. To see why, we notice that:

min
m̂λ≥0,n̂λ≥0

k∑
i=k0+1

Ti

((
cfix

∑k

j=1 Tj∑k

i=k0+1 Ti

)
m̂λ + cflexn

i
λ +βE

[
(λi/µ− m̄λ−N(m̂λ, n

i
λ))+

])

≥
k∑

i=k0+1

Ti min
mi
λ
≥0,ni

λ
≥0

{
c̃fixm

i
λ + cflexn

i
λ +βE

[
(λi/µ− m̄λ−N(mi

λ, n
i
λ))+

]}
=

k∑
i=k0+1

Ti min
ni
λ
≥0

{
cflexn

i
λ +βE

[
(λi/µ− m̄λ−niλ−σniλε)

+
]}
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where c̃fix = cfix
∑k

j=1 Tj/
∑k

i=k0+1 Ti > cflex.

To sum up, the above analysis suggests that m̃λ = m̄λ and ñiλ = 0 for n≤ k0. Thus, we can fully decompose

the stochastic-fluid optimization problem into k−k0 single period problems with the number of fixed servers

equal to m̄λ. In particular,

min
mλ≥0,nλ≥0

Π̃λ(mλ,nλ) ≡ cfixm̄λ

k∑
i=1

Ti

+

k∑
i=k0+1

Ti min
ni
λ
≥0

{
cflexn

i
λ +βE

[
(λi/µ− m̄λ−niλ−σniλε)

+
]}
.

This includes the special case where k0 = 0 and m̃λ = 0. Note that solving

min
ni
λ
≥0

{
cflexn

i
λ +βE

[
(λi/µ− m̄λ−niλ−σniλε)

+
]}

is essentially solving a single period flexible server only problem with arrival rate adjusted to λi/µ− m̄λ.

Thus we can use results from Case I, II and III in Theorem 3.

Case 2. σn = an for a< 1. Recall that

g(η) =
Π̃λ(λ

µ
η)

λ/µ
= cflexη+βE[(1− η− aηε)+]

and

g′(η) = cflex +βa

∫ (1−η)/(aη)

−1

Fε(u)du− β

η
Fε

(
1− η
aη

)
.

Let η∗ denote the solution of g′(η) = 0. For a fixed value of m, we can solve for the corresponding optimal

n(m) by optimizing each period individually. Particularly, for period i, we choose ni(m) that minimizes

Π̃i
λ(m,ni(m)) = cfixm+ cflexni(m) +βE

[(
λi
µ
−N(m,ni(m))

)+
]
.

Treating λi/µ −m as the new arrival rate, from our analysis for the single period flexible resource only

analysis (Case IV in Theorem 3), we have ni(m) = η∗(λi/µ−m)+. Then if λi/µ>m,

Π̃i
λ(m,ni(m)) = cfixm+ cflexη

∗(λi/µ−m) + aη∗(λi/µ−m)β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

=

(
cfix− cflexη∗− aη∗β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

)
m

+
λi
µ

(
cflexη

∗+ aη∗β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

)
.

Now define κ(m) as the first period we start blending when the fixed pool is set at m. Then, if λk/µ≤m,

we write κ(m)≡ k + 1 (recall that we assumed, without loss of generality, that the periods are ordered in

increasing λi values). Otherwise, set κ(m)≡min{i≥ 1 : λi/µ >m}. Define
∑k

i=k+1 zi ≡ 0. Then our goal is

to solve

min
m

k∑
i=1

TiΠ̃
i
λ(m,ni(m)) :=

 k∑
i=1

Ticfix−
k∑

i=κ(m)

Ti

(
cflexγ

∗+ aγ∗β

∫ (1−γ∗)/(aγ∗)

−1

Fε(u)du

) ·m
+

k∑
i=κ(m)

Ti
λi
µ

(
cflexγ

∗+ aγ∗β

∫ (1−γ∗)/(aγ∗)

−1

Fε(u)du

)
. (28)
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Following the same line of argument as the proof of Lemma 2, one can show that the solution of (28) is

m= λk1/µ, where k1 = 0, if cfix > cflexη
∗+ aη∗β

∫ (1−η∗)/(aη∗)
−1

Fε(u)du; and

k1 = max

{
1≤ h≤ k :

k∑
i=1

Ticfix ≤
k∑
i=h

Ti

(
cflexη

∗+ aη∗β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

)}
,

otherwise.

Note that if k1 = 0, the we use flexible servers only. If k1 = k, then we use fixed servers only. If 1≤ k1 <k,

then k1 + 1 is the first period where we start blending.

We next take a closer look at the condition that determines k1. k1 = h if

k∑
i=1

Ticfix ≤
k∑
i=h

Ti

(
cflexη

∗+ aη∗β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

)

⇐⇒
∑k

i=1 Ti∑k

i=h Ti
cfix ≤ cflexη∗+ aη∗β

∫ (1−η∗)/(aη∗)

−1

Fε(u)du

⇐⇒
∑k

i=1 Ti∑k

i=h Ti
cfix ≤ βFε

(
1− η∗

aη∗

)
as g(γ∗) = 0.

⇐⇒ γ∗ ≤ 1

1 + aF−1
ε

(
chfix/β

) where chfix = cfix
∑k
i=1 Ti∑k
i=h Ti

. (29)

Here⇐⇒ means equivalent to. Now as g′(η) is an increasing function of η and η∗ is the solution of g′(η) = 0,

to check if the inequality (29) holds, we can check whether

g
(
1/
(
1 + aF−1

ε

(
chfix/β

)))
≥ 0. (30)

Furthermore, as

g

(
1

1 + aF−1
ε

(
chfix/β

))= cflex +βa

∫ F−1
ε (chfix/β)

−1

Fε(u)du− chfix
(
1 + aF−1

ε

(
chfix/β

))
,

the inequality (30) is equivalent to

cflex ≥ chfix + chfixaF
−1
ε

(
chfix/β

)
−βa

∫ F−1
ε (chfix/β)

−1

Fε(u)du.
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