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Motivated by the dynamic assortment offerings and item pricings occurring in e-commerce, we study a

general problem of allocating finite inventories to heterogeneous customers arriving sequentially. We analyze

this problem under the framework of competitive analysis, where the sequence of customers is unknown and

does not necessarily follow any pattern. Previous work in this area, studying online matching, advertising,

and assortment problems, has focused on the case where each item can only be sold at a single price, resulting

in algorithms which achieve the best-possible competitive ratio of 1-1/e.

In this paper, we extend all of these results to allow for items having multiple feasible prices. Our algo-

rithms achieve the best-possible weight-dependent competitive ratios, which depend on the sets of feasible

prices given in advance. Our algorithms are also simple and intuitive; they are based on constructing a class

of universal “value functions” which integrate the selection of items and prices offered.

Finally, we test our algorithms on the publicly-available hotel data set of Bodea et al. (2009), where there

are multiple items (hotel rooms) each with multiple prices (fares at which the room could be sold). We find

that applying our algorithms, as a “hybrid” with algorithms which attempt to forecast and learn the future

transactions, results in the best performance.

1. Introduction

In this paper we study a general online resource allocation problem, motivated by dynamic assort-

ment and pricing in revenue management. Consider an airline website selling parallel flights, i.e.
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different flights which depart from the same origin to the same destination around the same time.

Each flight corresponds to an item which could be sold, and its seat capacity corresponds to the

unreplenishable starting inventory of that item. Each flight has multiple fare classes (e.g. Economy,

Basic Economy) which correspond to prices at which that item could be sold. We will refer to this

collection of initial information (items, inventories, prices) as the setup.

Over the booking horizon, heterogeneous customers sequentially arrive to the airline’s website.

We assume that the airline can reliably estimate each customer’s choice probabilities from historical

data. That is, upon a customer’s arrival, for any combination of items and prices that could be

shown, the stochastic distribution of how the customer would choose among those items/prices

is given. The customer is assumed to choose at most one item and one price, as the flights are

parallel. The customer could also choose to make no purchase. Given the choice probabilities, the

airline selects an assortment of items and corresponding prices to show the customer, where items

with zero remaining inventory cannot be shown. The customer’s decision is realized immediately

afterward, and if she makes a purchase, then the airline earns the corresponding price as revenue,

and depletes one unit of inventory of the corresponding item. The airline wants to maximize its

cumulative revenue earned before the booking horizon is over (or all the flights are full).

We study this problem under the framework of competitive analysis, where the sequence of

customers to arrive over the booking horizon is unknown and does not necessarily follow any

pattern. Instead, the airline seeks to have a good relative performance on all possible sequences.

It offers assortments and pricings using a (possibly randomized) online algorithm, which can make

decisions based on only the setup and the arrival sequence/purchase realizations seen so far. For

c≤ 1, the online algorithm is said to be c-competitive, or achieve a competitive ratio of c, if

inf
arrival sequences A

E[ALG(A)]

OPT(A)
≥ c, (1)

where E[ALG(A)] denotes the algorithm’s expected revenue on arrival sequence A, and OPT(A)

denotes the value of an optimum which knows the entirety of A in advance. In this paper, we will

allow the competitive ratio guarantee to be setup-dependent ; that is, the value of c in (1) can be a
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function of the items, their starting inventories, and prices. We are interested in online algorithms

which achieve the best-possible competitive ratios for various families of setups.

1.1. Overview of Result, and Relation to Previous Results

For setups where each item has a single fare class, the competitive ratio of the above problem has

been analyzed extensively under many streams of literature, which we review below.

1. Online Assortment: If each item has a single price, then the above problem formulation is

exactly the online assortment problem of Golrezaei et al. (2014). The authors use an algo-

rithm which judiciously “balances” between offering different items, based on their remaining

inventory levels. They show, among other results, that their algorithm is (1−1/e)-competitive

in the asymptotic regime. That is, their value of c in (1) depends on the smallest starting

inventory amount in the setup, and approaches 1− 1/e as all starting inventories approach

∞. Without large starting inventories, this problem has also been studied in the special case

where all offered assortments must have size 1, in which case it becomes the online matching

with stochastic rewards problem (Mehta and Panigrahi 2012, Mehta et al. 2014).

2. Online Vertex-weighted Matching: Consider the special case of the problem where the

outcome of any assortment offering is deterministic, and given upon the customer’s arrival. In

this case, we know the maximum (possibly 0) a customer is willing to pay for each item, and

our decision can be reduced to selecting an item to offer to the customer at her maximum-

willingness-to-pay (we can also offer no item). We will refer to this problem as the deterministic

case; it can be viewed as an online weighted matching problem.

If each item is restricted to have a single price, then we get the online vertex-weighted

matching problem of Aggarwal et al. (2011). The authors develop an algorithm which ran-

domly “ranks” the items and matches higher-ranked items first, and show that it is (1−1/e)-

competitive. Their result generalizes the classical result of Karp et al. (1990) for the unweighted

online bipartite matching problem (where all items have the same price).
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3. Adwords: The Adwords problem of Mehta et al. (2007) is central to online advertising and fea-

tures budget-constrained bidders instead of inventory-constrained items. It also uses the idea

of “balancing”, between the bidders’ budgets in this case, to achieve (1−1/e)-competitiveness

in an asymptotic small bids regime. Although its budget constraints are not directly captured

by our model, we show that in this asymptotic regime, the Adwords problem corresponds to a

version of our problem where each item has a single price (despite each bidder having multiple

bid values—we explain the reduction in Section 6).

Our main contribution, motivated by the parallel flights problem, is extending all of the preceding

results to setups where items could have multiple prices, that are known in advance. Note that such

a setup also arises naturally from models where the customers have been classified into “types”,

and there is a “match quality” score between each item and each type—in that case, the price set

of an item consists of the item’s possible match scores.

However, allowing for multiple prices per item runs into a known impossibility result: even in the

deterministic case, which corresponds to the aforementioned online weighted matching problem, it

is not possible to provide a non-zero competitive ratio guarantee c which holds for every multi-price

setup (the way c= 1− 1/e was a constant guarantee for every single-price setup). This is because

the moment we commit to a match, unboundedly larger edge weights can arrive afterward—see

Mehta (2013, Ch. 7). Therefore, previous work in online weighted matching has assumed that

matches can be freely disposed if larger weights arrive later (Feldman et al. 2009), or that arrivals

appear in a random order (Kesselheim et al. 2013).

In our paper, we instead assume that the price sets (i.e., the possible edge weights) are known

in advance, and derive weight-dependent competitive ratio guarantees, where our value of c in (1)

will depend on the setup; specifically, the price sets P1, . . . ,Pn of the n items. Our algorithms also

make use of the knowledge of the price sets. Our competitive ratio results are based on establishing

a universal mapping F from price sets P to ratios in [0,1− 1/e], such that:

1. Our Multi-price Balance algorithm, which extends the existing “inventory balancing”

algorithms, is miniF (Pi)-competitive in the asymptotic regime;
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2. Our Multi-price Ranking algorithm, which extends the existing “randomized ranking”

algorithm, is miniF (Pi)-competitive in the deterministic case;

3. Any (deterministic or randomized) algorithm can be at most miniF (Pi)-competitive for the

family of setups with price sets chosen from P1, . . . ,Pn, even if we restrict the setups to have

asymptotic starting inventories and/or deterministic arrival sequences.

For any singleton price set P, F (P) = 1− 1/e, and hence if |P1|= . . .= |Pn|= 1, then our results

recover existing results: the (1 − 1/e)-competitiveness of inventory balancing in the asymptotic

regime, the (1−1/e)-competitiveness of randomized ranking in the deterministic case, and a single

counterexample which shows that both of these algorithms are tight. F (P) approaches 0 if P

contains both a large number of prices and large ratios between its prices, so our statement 3 also

recovers the known impossibility result.

1.2. A Bid Price Algorithm when Items have Multiple Prices

We illustrate the necessity for our new algorithms by comparing Multi-price Balance to the

existing inventory balancing algorithm of Golrezaei et al. (2014); similar arguments can be made

in comparisons to the existing online vertex-weighted matching and Adwords algorithms.

Suppose there are parallel flights, whose seats have the same two fare classes: a lower price of

r(L) = 150, and a higher price of r(H) = 450. At any point in time, for each flight i, let wi denote the

fraction its starting inventory which has been sold. The algorithm of Golrezaei et al. (2014) would

associate each fare class j ∈ {L,H} of each flight i with a “pseudorevenue” equal to

r(j) ·Ψ(wi), (2)

where Ψ is a decreasing function that penalizes the revenues associated with flights i which are

almost full. The algorithm then offers, to each customer, the assortment which maximizes the

expected pseudorevenue of the (flight, fare)-combination that the customer would choose.

In (2), although Ψ(wi) will disincentivize the offering of a flight i whose wi is large, the algorithm

has no way of setting a “booking limit”—preventing sales at the lower price r(L) while still allowing
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Figure 1 The Φ function for an item with feasible price set {150,450}.

0 1

Fraction Sold, wi

Φ(wi)

$450

α

$150

sales at price r(H). Given a stream of customers who are only interested in the lower price, the

algorithm would sell all the seats at price r(L), without realizing the opportunity cost of r(H) it gave

up. Since this could happen to every flight i, the algorithm’s competitiveness is at most r(L)

r(H)
.

To improve upon this, our algorithm must implement some notion of “booking limits”. As a

result, we define the pseudorevenue associated with fare class j of flight i to be

r(j)−Φ(wi), (3)

where Φ is an increasing function that sets a cost to selling flights i which are almost full. Multi-

price Balance uses the same idea of maximizing expected pseudorevenue, with the modification

that it rejects the customer outright if the maximum expected pseudorevenue is non-positive.

The exact form of function Φ for this example is shown in Figure 1. Note that for a flight i, if the

fraction sold wi is between α and 1, then the pseudorevenue (3) will be negative for the lower price

of 150 and positive for the higher price 450, producing a desirable “booking limit” at wi = α. Other

than that, Φ still produces a continuously-increasing cost as wi increases from 0 to 1, allowing us

to trade off between offering the different flights i based on their values of wi.

In (3), Φ(wi) can be interpreted as a bid price, or the value placed on one unit of item i’s

inventory. Optimizing based on bid prices is a classical idea in revenue management (see Talluri

and Van Ryzin (2006), Liu and Van Ryzin (2008)), where typically the bid prices are computed

using a large LP which encompasses both the inventories and the forecasted distribution of future

customers. However, since we make no assumptions about future customers, our bid prices are

based on only the remaining inventories, like the balance algorithms from competitive analysis.



7

1.3. Our Competitive Ratio Guarantees

In general, for any price set P we define a construction ΦP which we call a value function. In

a setup, if P1, . . . ,Pn denotes the price sets of the items, then Multi-price Balance defines

the pseudorevenues of each item i using value function ΦPi in expression (3). Our Multi-price

Ranking algorithm uses the same value functions, but applies them to a “random seed” instead.

Note that for each item i, the construction of ΦPi from Pi is universal in that it does not depend

on other parameters in the setup, e.g. the price sets of the other items. Our mapping F from

price sets to ratios was also universal. The fact that separately determining the value function ΦPi

for each item i leads to the best-possible competitive ratio of miniF (Pi) is, in our opinion, very

surprising—see also the discussions in Devanur and Jain (2012), Devanur et al. (2013). For any

P, our exact derivation of ΦP and F (P) comes from the solution of a differential equation, which

arises from a primal-dual analysis based on Buchbinder et al. (2007).

When |P| = 1, with P = {r}, value function ΦP(w) = r(1 − Ψ(w)), and hence our notion of

pseudorevenue in (3) coincides with the existing notion in (2). If each item has a single price, then

our algorithms will coincide with the existing ones.

We now give a flavor of our new results with |P|= 2. Let P = {r, ξr}, where ξ > 1 is the ratio

from high price to low price. The value function ΦP depends on ξ (see Figure 1 for an example

with ξ = 450
150

= 3). For any ξ, F (P) equals

1−
√

1 + 4ξ(ξ− 1)/e− 1

2(ξ− 1)
=: F (ξ), (4)

and the booking limit implied by ΦP (i.e. the corresponding value of α in Figure 1) equals ln( 1
1−F (ξ)

).

We note that this is different from the booking limit of ξ
2ξ−1

derived by Ball and Queyranne (2009),

which is optimal for selling a single item whose price set is {r, ξr}. For any value of ξ, the booking

limit implied by our function Φ{r,ξr} is greater than ξ
2ξ−1

, which means that our algorithm is willing

to sell a greater fraction of units at the lower price. The intuitive explanation of this is that with

multiple items, there is less upside to reserving inventory for higher prices, because the reserved

units still have to compete with other items to be sold.
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Figure 2 Competitive ratios guarantees when each item has two prices. The guarantees increase

from bottom to top (as the maximum ratio of an item’s high to low price, ξmax, ranges from ∞ to

1), and from left to right (as the minimum starting inventory, kmin, ranges from 1 to ∞).

∞

ξmax

1

1
kmin ∞

Multi-price Balance in General Assortment Setting

tight bounds

non-tight bounds

1

4
[CMSLX16][

ξmax
2(2ξmax−1)

[Thm. 1(ii)]

1

2
[GNR14]

F (ξmax)

(1+kmin)(e1/kmin−1)
[Thm. 1(i)]

1−1/e

(1+kmin)(1−e−1/kmin )
[Thm. 1(iii)]

1− 1√
e
≈ .393

F (ξmax)
[Cor. 1,Thm. 3]

1− 1

e
≈ .632

[GNR14]

1− 1√
e

(any kmin)

Multi-price Ranking in Deterministic Case

F (ξmax)
[Thm. 2,Thm. 3]

1− 1

e

[AGKM11]

[ The smallest guarantee of 1
4

in this diagram is also implied by the results of Chen et al. (2016).

If every item has two prices and ξmax denotes the maximum ratio of an item’s high price to

low price, then miniF (Pi) equals F (ξmax) because F is decreasing. Also letting kmin denote the

minimum starting inventory among the items, we plot, in Figure 2, our competitive ratio guarantees

for Multi-price Balance and Multi-price Ranking as both ξmax and kmin range over [1,∞].

This guarantee equals F (ξmax) in the asymptotic regime or deterministic case, which is tight.

The lower bound on the competitive ratio guarantee when each item has at most two prices

occurs as ξmax→∞, in which case F (ξmax) = 1− 1√
e
≈ 0.393. This is greater than the naive bound

of 1
2
(1− 1

e
), which would arise from randomly choosing between 2 prices and then using a (1− 1

e
)-

competitive algorithm on the chosen prices. Thus, using a function like Φ to integrate the selection

of prices with the allocation across items is necessary for achieving the optimal competitive ratio.

Our guarantees may not be tight in the non-asymptotic, non-deterministic setting, which is an

important open problem even in the single-price case (Devanur et al. 2013). Nonetheless, as kmin

increases, our bounds sharply approach the tight guarantee from the asymptotic regime. In the
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single-price case, our bound is a factor of (1+kmin)(1−e−1/kmin) from the tight guarantee of 1−1/e,

improving the previous-best-known dependence on kmin from Golrezaei et al. (2014).

1.4. Simulations on Hotel Data Set of Bodea et al. (2009)

We first summarize the general benefits of applying the algorithms from competitive analysis. In

contrast to traditional algorithms, which optimize based on a forecast of future demand, or attempt

to learn the demand, competitive algorithms guarantee some performance ratio under the worst

case, and operate without any demand information. Most immediately, they are useful for products

with highly unpredictable demand (Ball and Queyranne 2009, Lan et al. 2008), or for initializing

new products with no historical sales data (Van Ryzin and McGill 2000). Second, by eschewing

stochastic processes for generating demand, competitive algorithms are usually simple and flexible,

leading to clean insights about the problem (Borodin and El-Yaniv 2005). Third, past research has

reported on cases where competitive algorithms perform well in practice (Feldman et al. 2010), or

on average in numerical experiments (Golrezaei et al. 2014, Chen et al. 2016).

In Section 7, we run simulations on the publicly-accessible hotel data set of Bodea et al. (2009).

We use the product availability information to estimate customer choice models, and use the

sequence of transactions as the sequence of arrivals. This leads to an online assortment problem

like in Golrezaei et al. (2014), but with multiple prices (advance-purchase rate, rack rate, etc.) for

each item (King room, Two-double room, etc.). We compare the performance of our Multi-price

Balance algorithm to various benchmarks and forecasting algorithms.

The main conclusion from our simulations is that the best performance is achieved by hybrid

algorithms (see Golrezaei et al. (2014)). These are forecasting-based algorithms which continuously

reference our forecast-independent value functions Φ1, . . . ,Φn, and adjust their decisions accord-

ingly. Although this only changes a small fraction (≈ 5%) of decisions, these tend to be the decisions

where the forecast is being most overconfident. Therefore, not only does this boost average perfor-

mance, it drastically reduces the variance in performance caused when the forecast is wrong.
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1.5. Other Related Work

We briefly mention some papers which study online resource allocation problems under other arrival

models or performance metrics.

When a stochastic process generating the arrivals is given as input, the resulting optimization

problem is generally still computationally intractable. Nonetheless, many effective heuristics have

been proposed under various models of online resource allocation (Zhang and Cooper 2005, Jasin

and Kumar 2012, Ciocan and Farias 2012, Chen and Farias 2013). These heuristics can earn 1
2

of

the LP optimum in general settings (Chan and Farias 2009, Wang et al. 2015). Manshadi et al.

(2012) derive an improved performance ratio when the stochastic process is IID.

Competitive/approximation ratios both analyze the fraction of optimum achieved by an algo-

rithm, but online resource allocation problems are also often analyzed under the regret metric,

which measures the difference from optimum. This work often focuses on learning some unknown

underlying stochastic model (Badanidiyuru et al. 2013, Ferreira et al. 2016). On the other hand,

queueing-theoretic analyses have also been performed given a known stochastic model (Reiman

and Wang 2008). Unlike in competitive analysis, all of these papers tend to focus on asymptotic

performance as the number of customers grows to infinity. Finally, a recent metric which has been

introduced is regret ratio (Zhang et al. 2016). For a comprehensive review of different metrics under

different models of demand (for a single item), we refer to Araman and Caldentey (2011).

1.6. Organization of Paper

Throughout Sections 2–5 of this paper, we analyze a simplified model where each customer is

offered a single item at a single price (but her purchase decision is still stochastic). This avoids the

complexities of assortment optimization while still capturing our main techniques. In Section 6, we

discuss the generalizations to the assortment and Adwords settings. In Section 7, we display the

results of our simulations on the hotel data set.
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2. Problem Definition, Algorithm Sketch, and Theorem Statements

A firm is selling n ∈ N different items. Each item i ∈ [n]1 starts with a fixed inventory of ki ∈ N

units, and could be offered at any price in its price set Pi. Throughout most of this paper, we

assume that each Pi consists of mi ∈N discrete prices satisfying 0< r
(1)
i < . . . < r

(mi)
i . We will refer

to r
(j)
i as “price j of item i”, and define r

(0)
i := 0. We extend to the case where Pi is a continuum

of prices in Appendix E.1.

There are T ∈N customers arriving sequentially. Upon the arrival of customer t∈ [T ], the firm is

given p
(j)
t,i , the probability2 that customer t would buy item i at price j, for all i∈ [n] and j ∈ [mi].

3

The firm chooses up to one of the items i with remaining inventory and offers it to customer t,

at any price j ∈ [mi]. The customer accepts the offer with probability p
(j)
t,i , in which case the firm

earns revenue r
(j)
i , and the inventory of item i is decremented by 1.

We divide the elements defined above into:

1. The Setup S, consisting of parameters known at the start:
(
n, (ki,mi, r

(1)
i , . . . , r

(mi)
i )i∈[n]

)
; and

2. The Arrival sequence A, consisting of parameters revealed over time:
(
T, (p

(j)
t,i )t∈[T ],i∈[n],j∈[mi]

)
.

An online algorithm must decide, on any setup S, what to offer to each customer t. This deci-

sion can be based on only the setup S, the past arrivals/purchase realizations, and the purchase

probabilities p
(j)
t,i of the present customer t; the online algorithm does not know the purchase proba-

bilities associated with future customers. For an online algorithm, let ALG(S,A) denote the revenue

earned on a run on setup S with arrival sequence A, which is a random variable with respect to

the customers’ purchase decisions as well, as any randomness in the algorithm’s decisions.

Meanwhile, we can write the following LP for setup S with arrival sequence A:

max
T∑
t=1

n∑
i=1

mi∑
j=1

p
(j)
t,i r

(j)
i x

(j)
t,i (5a)

1 For a general positive integer b, let [b] denote the set {1, . . . , b}.
2 If Pi is a continuum of prices, then we need to assume that the purchase probabilities can be input compactly.

There are many parametric models for doing so, e.g. linear demand, where the purchase probability is a− bP for

prices P lying in an interval [rmin, rmax].

3 These probabilities can be 0 for items the customer is not interested in, or prices that are too high.
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T∑
t=1

mi∑
j=1

p
(j)
t,i x

(j)
t,i ≤ ki i∈ [n] (5b)

n∑
i=1

mi∑
j=1

x
(j)
t,i ≤ 1 t∈ [T ] (5c)

x
(j)
t,i ≥ 0 t∈ [T ], i∈ [n], j ∈ [mi] (5d)

LP (5) encapsulates the execution of any algorithm, which could make full use of the arrival

sequence A at the start, on setup S—x
(j)
t,i represents the unconditional probability of the algorithm

offering item i at price j to customer t; (5b) enforces that starting inventories are respected; (5c)

enforces that at most one combination of item and price is offered to each customer; and objective

function (5a) represents the expected revenue earned by the algorithm. Let OPT(S,A) denote its

optimal objective value. Note that although OPT(S,A) knows the arrival sequence in advance, it

does not know the outcomes of the customers’ potential purchase decisions.

For a fixed online algorithm and any setup S, the online algorithm is said to achieve a competitive

ratio of c on S, if

E[ALG(S,A)]

OPT(S,A)
≥ c for all arrival sequences A. (6)

In this paper, we will allow the competitive ratio guarantee c to depend on parameters in the setup

S, and derive results that hold for any S.

Definition (6) provides a guarantee on E[ALG(S,A)] relative to any algorithm which could have

been possible, due to the following standard result.

Lemma 1. OPT(S,A) is an upper bound on the expected revenue of any algorithm, which could

make full use of the arrival information at the start, on setup S with arrival sequence A.

The proof of Lemma 1 is deferred to Appendix A. The definition of OPT(S,A) based on the

LP is standard in problems with both stochastic purchase realizations and arbitrary customer

arrivals—we refer to Mehta and Panigrahi (2012), Golrezaei et al. (2014) for its justification.

In the deterministic case of our problem, every p
(j)
t,i is 0 or 1. The problem can be simplified by

letting jt,i = max{j ∈ [mi] : p
(j)
t,i = 1}, with jt,i = 0 if the set is empty, for all t ∈ [T ] and i ∈ [n]. We
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say that item i is assigned to customer t to indicate that i is offered to customer t at price jt,i,

which results in a sale; there is no reason to offer any other price. Customer t can also be rejected,

e.g. if jt,i is low for every i. In the deterministic case, the LP (5) is integral, so OPT(S,A) is equal

to the revenue of the best algorithm knowing the arrival sequence at the start.

2.1. Construction of Value Function for a Price Set

In this section, we specify a value function ΦP and a number F (P), for any price set P consisting

of m discrete prices with 0< r(1) < . . . < r(m). The derivation of ΦP and F (P), as well as the case

where P is a continuum of prices, are deferred to Appendix E.

Consider an item with price set P. Following the description from Section 1.2, we will interpret

ΦP to be a function of w ∈ [0,1], which is the fraction of the item’s starting inventory which has

been sold. ΦP(w) specifies the value that should be placed on one unit of the item’s inventory,

when its fraction sold is w.

First we define “booking limits” α(1), . . . , α(m), which are the fractions of starting inventory

“reserved” for the respective fares r(1), . . . , r(m), via the following proposition.

Proposition 1. Let r(1), . . . , r(m) be any numbers satisfying 0< r(1) < . . . < r(m). Then there is a

unique set of positive values α(1), . . . , α(m) which sum to 1 and satisfy

1− e−α
(1)

=
1

1− r(1)/r(2)
· (1− e−α

(2)

) = . . .=
1

1− r(m−1)/r(m)
· (1− e−α

(m)

). (7)

There is also a different, unique set of positive values σ(1), . . . , σ(m) which sum to 1 and satisfy

σ(1) =
1

1− r(1)/r(2)
·σ(2) = . . .=

1

1− r(m−1)/r(m)
·σ(m). (8)

The proof of Proposition 1 is elementary and deferred to Appendix A. While finding the exact

solution to (7) requires finding the roots of a degree-m polynomial, a numerical solution can easily

be found via bisection search.

Proposition 1 contrasts α(1), . . . , α(m) in (7) with the booking limits σ(1), . . . , σ(m) in (8) originally

derived by Ball and Queyranne (2009), which are optimal for selling a single item with price set

{r(1), . . . , r(m)}. With α(1), . . . , α(m), we can now complete the definition of ΦP .
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Definition 1. Define the following, based on the values of α(1), . . . , α(m) from Proposition 1:

• L(j): the sum
∑j

j′=1α
(j′), defined for all j = 0, . . . ,m (note that L(0) = 0 and L(m) = 1);

• `(·): a function on [0,1], where `(w) is the unique j ∈ [m] for which w ∈ [L(j−1),L(j)) (note

that `(L(j)) = j+ 1 for j = 0, . . . ,m− 1; we define `(L(m)) to be m).

The value function ΦP for price set P is then defined over w ∈ [0,1] by:

ΦP(w) = r(`(w)−1) + (r(`(w))− r(`(w)−1))
exp(w−L(`(w)−1))− 1

exp(α(`(w)))− 1
. (9)

An example of ΦP for P = {150,450} was plotted in the Introduction, in Figure 1. In general, ΦP

is continuously increasing and piecewise-convex over m segments of lengths α(1), . . . , α(m), separated

by segment borders L(0), . . . ,L(m). For each j, Φ reaches the value of r(j) at L(j).

Definition 2. For price set P = {r(1), . . . , r(m)}, let F (P) = 1−e−α(1)
and G(P) = σ(1), where α(1)

and σ(1) are the values from Proposition 1.

Our competitive ratio guarantees will be based on the functions F and G. It can be checked that

F maps a price set P to [1− e−1/m,1− e−1] and G maps the price set to [1/m,1], where m is the

number of prices in P. When m= 1, our value function is ΦP(w) = r(1) · ew−1
e−1

, which can be related

back to the existing multiplicative “penalty functions” from the single-price case.

2.2. Sketch of our MULTI-PRICE BALANCE and MULTI-PRICE RANKING Algorithms

Having defined the value function ΦP for an arbitrary price set P, we now sketch our algorithms.

We start with Multi-price Ranking, which is simpler. It assumes that ki = 1 for all i, which

does not lose generality since an item that starts with multiple units of inventory can be transformed

into multiple disparate items. At the start, the algorithm fixes for each item i a random seed Wi,

drawn independently and uniformly from [0,1]. It then treats ΦPi(Wi) as the bid price for the

single unit of item i: it offers to each customer t the available item i and price j maximizing the

expected pseudorevenue, p
(j)
t,i

(
r

(j)
i −ΦPi(Wi)

)
.

Multi-price Ranking hedges against the ambiguity in customer arrivals using randomness,

which is standard in competitive analysis. The random seed Wi determines the random minimum
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price at which the algorithm is willing to sell item i, as well as a random priority for selling i when

the algorithm is choosing between multiple items.

We now sketch Multi-price Balance, which updates the bid price of each item i based on the

fraction wi of its ki units which has been sold. However, the algorithm does not directly use ΦPi(wi)

as the bid price of item i, because wi would always be a multiple of 1
ki

, while the booking limits

and segment borders which ΦPi is based on may not be multiples of 1
ki

. Instead, the algorithm first

uses a randomized procedure for rounding the booking limits in ΦPi to multiples of 1
ki

.

Specifically, at the start, the algorithm fixes for each item i random segment borders

L̃
(0)
i , . . . , L̃

(mi)
i , which are multiples of 1

ki
satisfying 0 = L̃

(0)
i ≤ . . .≤ L̃

(mi)
i = 1. We note that having

L̃(i) = L̃(i−1) is possible (and guaranteed to happen if mi >ki), in which case the i’th segment has

length zero. In either case, the realizations of L̃
(0)
i , . . . , L̃

(mi)
i imply a random value function Φ̃i for

item i, which is a perturbation of ΦPi . Function Φ̃i is defined on {0, 1
ki
, . . . ,1}, since the fraction

sold wi is always a multiple of 1
ki

, and also satisfies 0 = Φ̃i(0)≤ Φ̃i(
1
ki

)≤ . . .≤ Φ̃i(1). At any point

in time, Multi-price Balance treats Φ̃i(wi) as the bid price for item i: it offers to each customer

t the item i and price j maximizing

p
(j)
t,i

(
Φ̃i(L̃

(j)
i )− Φ̃i(wi)

)
. (10)

In (10), the definition of pseudorevenue at price j is Φ̃i(L̃
(j)
i )− Φ̃i(wi) instead of r

(j)
i − Φ̃i(wi). This

is because we want the expected pseudorevenue to be 0 when wi = L̃
(j)
i . In general, the realized Φ̃i

will be close to ΦPi , so that Φ̃i(L̃
(j)
i )≈ΦPi(L

(j)
i ) = r

(j)
i . In the asymptotic regime with ki→∞, Φ̃i

is deterministically initialized to ΦPi . However, for small ki, optimizing a randomized procedure for

initializing Φ̃i (based on r
(1)
i , . . . , r

(mi)
i as well as ki) instead of having the deterministic ΦPi (which

is based on only r
(1)
i , . . . , r

(mi)
i ) allows us to achieve a greater competitive ratio.

2.3. Statements of Our Results

Our competitive ratio results are based on the universal functions F and G from Definition 2,

which assign a number to every price set P.
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Theorem 1. For any setup, with price sets denoted by P1, . . . ,Pn and starting inventories denoted

by k1, . . . , kn, Multi-price Balance achieves a competitive ratio of mini F̃i, where for each item

i, F̃i is lower-bounded by all of: (i) F (Pi)
(1+ki)(e

1/ki−1)
; (ii) G(Pi)

2
; and (iii) 1−1/e

(1+ki)(1−e−1/ki )
if |Pi|= 1.

Corollary 1. Multi-price Balance achieves a competitive ratio approaching miniF (Pi) as

each starting inventory ki approaches ∞.

Corollary 2. Suppose that each item has at most m discrete prices and at least k units of starting

inventory. Then the competitive ratio achieved by Multi-price Balance is lower-bounded by

1−e−1/m

(1+k)(e1/k−1)
, which approaches 1− e−1/m as k approaches ∞.

Theorem 1 is our general result, where for each i, F̃i is determined by the randomized procedure

used to initialize the value function Φ̃i for item i.

Lower bound (i) on F̃i is attained by a randomized procedure which perturbs the “ideal” value

function ΦPi to define Φ̃i. This perturbation loses a factor of (1+ki)(e
1/ki−1) in the denominator,

which decreases to 1 as ki→∞, resulting in Corollary 1. Corollary 2 is a further simplification

of the bound presented, using the fact that F (P) ≥ 1 − e−1/|P|. Meanwhile, lower bound (ii) is

attained by solving an optimization problem for the best randomized procedure to define Φ̃i when

ki = 1; this procedure is not based on perturbing ΦPi and the bound is based on G(Pi) instead of

F (Pi). Finally, lower bound (iii) is an improvement of (i) in the single-price case, where we have

gained a factor of e1/ki in the denominator. It simplifies and improves the dependence on ki from

Golrezaei et al. (2014).

Multi-price Balance is formalized and Theorem 1 is proven in Section 3. We explain the

ideas behind our primal-dual analysis, why we need random value functions, and how to overcome

the ensuing analytical challenges.

Theorem 2. For any setup in the deterministic case, Multi-price Ranking achieves a compet-

itive ratio of miniF (Pi).

Multi-price Ranking is formalized and Theorem 2 is proven in Section 4. Our analysis builds

upon the framework of Devanur et al. (2013) and extends it to handle multiple prices.
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Theorem 3. Let k be any positive integer. Let P be any price set consisting of m prices with

0 < r(1) < . . . < r(m). Then there exists a setup S where each item has starting inventory k and

price set P, along with a distribution over arrival sequences A falling in the deterministic case, for

which no online algorithm can have expected revenue greater than F (P) ·EA[OPT(S,A)].

Theorem 3 is proven in Section 5. Since the starting inventory k can be made arbitrarily large

and the arrival sequences fall in the deterministic case, Theorem 3 implies that the competitive

ratio guarantees in Corollary 1 and Theorem 2 are tight, via Yao’s minimax principle (Yao 1977).

Our counterexample is based on those from Karp et al. (1990), Mehta et al. (2007), Golrezaei

et al. (2014), where a large number of customers arrive according to a random permutation chosen

uniformly from all possible permutations. In our case however, the customers are further split into

m “phases”, where the customers in phase j are willing to pay r(j) for any of the items they are

interested in. The phases lengths are optimized by an adversary to minimize the competitive ratio.

Interestingly, on the existing counterexamples, the random permutation implies that all (reason-

able) algorithms are indifferent and have the same performance. By contrast, on our counterexam-

ple with the adversarially-optimized phase lengths, there is a unique optimal algorithm given the

distribution over arrival sequences A. When k→∞, this unique algorithms turns out to be our

Multi-price Balance and Multi-price Ranking algorithms, which coalesce to the same algo-

rithm in the asymptotic regime. This coalescence phenomenon has been noted in the single-price

case as well by Aggarwal et al. (2011).

Proposition 2. For m ≥ 2 prices satisfying 0 < r(1) < . . . < r(m), from which α(1) and σ(1) are

defined according to Proposition 1, the following inequalities hold:

(1− 1

e
) ·σ(1) < 1− e−σ

(1)

< 1− e−α
(1)

; (11)

1

1 + ln r(m)

r(1)

<σ(1); (12)

1− e−α < 1− e−α
(1)

, where α is the unique solution to 1− e−α =
1−α
ln r(m)

r(1)

. (13)
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Finally, Proposition 2, which is proven in Appendix A, puts our tight competitive ratio of 1−

e−α
(1)

into perspective. σ(1) is the existing tight competitive ratio for a single item, while 1− 1
e

is the existing tight competitive ratio for multiple items with one price each. (11) shows that

our competitive ratio for multiple items with multiple prices is not a naive combination of the

existing competitive ratios; our algorithms also cannot be obtained by naively combining existing

algorithms.

With a single item whose price can take any value in the continuum [r(1), r(m)], the tight com-

petitive ratio is 1

1+ln(r(m)/r(1))
(Ball and Queyranne 2009). (12) says that if the prices are restricted

to a discrete subset of [r(1), r(m)], then the competitive ratio of σ(1) can only be larger.

We have a corresponding relationship in the multi-price setting. 1− e−α, with α as defined4 in

(13), is our competitive ratio when there are multiple items whose price sets are [r(1), r(m)]. (13)

says that if the prices are restricted to a discrete subset of [r(1), r(m)], then the competitive ratio

of 1− e−α(1)
can only be larger.

3. MULTI-PRICE BALANCE and the Proof of Theorem 1

Multi-price Balance, as sketched in Subsection 2.2, is formalized in Algorithm 1. For now, we

consider a generic randomized procedure for initializing L̃
(0)
i , . . . , L̃

(mi)
i and Φ̃i in Step 1, where the

realized initializations always satisfy the following monotonicity conditions:

L̃
(0)
i , . . . , L̃

(mi)
i ∈ {0, 1

ki
, . . . ,1}, 0 = L̃

(0)
i ≤ . . .≤ L̃

(mi)
i = 1; (14)

Φ̃i(0), Φ̃i(
1

ki
), . . . , Φ̃i(1)∈R, 0 = Φ̃i(0)≤ Φ̃i(

1

ki
)≤ . . .≤ Φ̃i(1). (15)

Since Φ̃i is non-decreasing, the expression Φ̃i(L̃
(j)
i )− Φ̃i(

Ni
ki

) in (16) is non-positive once the number

sold Ni reaches ki. Therefore, Algorithm 1 never tries to offer an item i which has stocked out.

4 α can be solved to equal 1 − W (ReR−1)/R, where W is the inverse of the function f(x) = xex, and R =

ln(r(m)/r(1))—see Appendix E.1.
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Algorithm 1 Multi-price Balance

1: Initialize L̃
(0)
i , . . . , L̃

(mi)
i , Φ̃i randomly and independently for each i∈ [n]

2: Ni← 0 for all i∈ [n] (Ni tracks the total number of copies of item i sold, at any price)
3: for t= 1,2, . . . do
4: Compute

max
i∈[n],j∈[mi]

p
(j)
t,i (Φ̃i(L̃

(j)
i )− Φ̃i(

Ni

ki
)) (16)

5: if the value of (16) is strictly positive then
6: Offer any item i∗t and price j∗t maximizing (16) to customer t

7: if customer t accepts (occurring with probability p
(j∗t )

t,i∗t
) then

8: Zt← Φ̃i∗t
(L̃

(j∗t )

i∗t
)− Φ̃i∗t

(Ni∗t
/ki∗t ) (this is the pseudorevenue earned)

9: Ni∗t
←Ni∗t

+ 1
10: end if
11: end if
12: end for

Theorem 4. Suppose in Line 1 of Algorithm 1, for each i∈ [n], the segment borders L̃
(1)
i , . . . , L̃

(mi)
i

and value function Φ̃i are randomly initialized in a way such that

ki(Φ̃i(
N + 1

ki
)− Φ̃i(

N

ki
)) + Φ̃i(L̃

(j)
i )− Φ̃i(

N

ki
)≤ r

(j)
i

c
, j ∈ [mi],N ∈ {0, . . . , L̃(j)

i ki− 1}; (17)

E[Φ̃i(L̃
(j)
i )]≥ r(j)

i , j ∈ [mi]. (18)

Then Algorithm 1 achieves a competitive ratio of c.

Theorem 4 identifies conditions which, when satisfied by the randomized procedure for each i,

yields a competitive ratio of c. Note that (17) needs to hold for every potential initialization of

Φ̃i, while (18) only needs to hold in expectation over the initializations. We prove Theorem 4 in

Appendix B, but outline its proof here and provide some intuition.

First, we take the dual of the LP (5):

min
n∑
i=1

kiyi +
T∑
t=1

zt (19a)

p
(j)
t,i yi + zt ≥ p(j)

t,i r
(j)
i t∈ [T ], i∈ [n], j ∈ [mi] (19b)

yi, zt ≥ 0 i∈ [n], t∈ [T ] (19c)

By weak duality, OPT(S,A) is upper-bounded by the objective value of any feasible dual solution.
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During the (random) execution of Algorithm 1, it maintains a dual variable yi = Φ̃i(
Ni
ki

) for each

i. At each time t, only if a sale is realized, does the algorithm set zt to a non-zero value Zt (Line 8)

and increment the yi-variables by incrementing Ni∗t
(Line 9). We prove three claims:

1. During each time t ∈ [T ], the gain in the dual objective is at most some multiple 1
c

of the

revenue earned by the algorithm;

2. During each time t∈ [T ], the conditional expectation of Zt over the random purchase decision

of customer t, combined with the current value of yi, make the LHS of (19b) at least p
(j)
t,i ·

Φ̃i(L̃
(j)
i ), for all i∈ [n] and j ∈ [mi];

3. The expectation of Φ̃i(L̃
(j)
i ), over the random segment borders and value function initially

chosen by the algorithm, is at least r
(j)
i , for all i∈ [n] and j ∈ [mi].

Claim 1 follows from condition (17), while Claim 3 follows from condition (18). Claims 2 and 3 can

be combined to show that the dual variables yi and zt maintained by the algorithm are feasible,

after taking an expectation over all sample paths.

We explain the intuition behind our idea of a random value function, and the resulting analysis.

Even for a single item, with a small starting inventory and a large ratio r from its highest to

lowest price, in order to achieve a constant competitive ratio which does not scale with r, one

must use random booking limits (Ball and Queyranne 2009). With multiple items, our equivalent

is to have the configuration of segment borders L̃
(0)
i , . . . , L̃

(mi)
i be random, and define an arbitrary

value function Φ̃i corresponding to each one. In order to “average” over these configurations in the

analysis, we relax dual feasibility to only hold in expectation. The idea of feasibility in expectation

has been previously seen, but in different contexts: in Devanur et al. (2013), over a random seed,

and in Golrezaei et al. (2014), over a random purchase decision (similar to our Claim 2).

3.1. Optimizing the Randomized Procedures

Theorem 4 reduces the problem of deriving a competitive algorithm to that of finding a randomized

procedure for initializing Φ̃1, . . . , Φ̃n satisfying (17)–(18). We can consider this problem separately

for each i, based on r
(1)
i , . . . , r

(mi)
i and ki, and omit the subscript i.
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A randomized procedure consists of a distribution over the all of the configurations satisfying

(14), and for each configuration, values for Φ̃( 1
k
), Φ̃( 2

k
), . . . , Φ̃(1) satisfying (15). We would like

to find a randomized procedure which satisfies (17)–(18) with a maximal value of c. While this

optimization problem is intractable in general, we can use the intuition behind the definitions of

L(0), . . . ,L(m) and ΦP from Subsection 2.1 to specify a near-optimal randomized procedure.

Definition 3. Define the following randomized procedure for initializing Φ̃:

1. Draw a random seed W uniformly from [0,1];

2. For each j, set L̃(j) = bL(j)kc+1

k
if W <L(j)k−bL(j)kc, and L̃(j) = bL(j)kc

k
otherwise;

3. For q ∈ {0, 1
k
, . . . ,1}, let ˜̀(q) be the unique j ∈ [m] such that L̃(j−1) ≤ q < L̃(j) (note that

˜̀(L̃(j)) = j+ 1 for j = 0, . . . ,m− 1; we define ˜̀(L̃(m)) to be m).

The value function Φ̃ is then defined over q ∈ {0, 1
k
, . . . ,1} by

Φ̃(q) =

˜̀(q)−1∑
j=1

(r(j)− r(j−1))
exp(L̃(j)− L̃(j−1))− 1

exp(α(j))− 1
+ (r(˜̀(q))− r(˜̀(q)−1))

exp(q− L̃(˜̀(q)−1))− 1

exp(α(˜̀(q)))− 1
. (20)

Φ̃ increases over the m (possibly empty) “segments” of its domain {0, 1
k
, . . . ,1}, which are “bor-

dered” by L̃(0), . . . , L̃(m). (20) is similar to definition (9) for ΦP , except the sum in (20) does not

telescope, since L̃(j)− L̃(j−1) equals α(j) only in expectation.

Note that in Step 2 above, the random segment borders L̃(0), . . . , L̃(m) are rounded comonotoni-

cally (in a perfectly positively correlated fashion) using a single seed. This ensures that the borders

are increasing as required in (14), as well as the following properties.

Proposition 3. The random values of L̃(0), . . . , L̃(m) from Definition 3 satisfy:

E[L̃(j)] =L(j), j = 0, . . . ,m; (21)

|(L̃(j)− L̃(j′))− (L(j)−L(j′))| ≤ 1

k
, 1≤ j′ < j ≤m. (22)

(22) is the key property derived from comonotonicity: although the rounding could move each

L̃(j) by up to 1/k in either direction, the distance between two different L̃(j), L̃(j′) never changes

by more than 1/k from L(j)−L(j′). Proposition 3 is then used to prove our main result about the

randomized procedure from Definition 3.
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Algorithm 2 Multi-price Ranking in the Deterministic Case

1: Initialize Wi uniformly at random from [0,1], independently for each i∈ [n]
2: availablei← true for all i∈ [n]
3: for t= 1,2, . . . do
4: Compute

max
i∈[n],j∈[mi]:availablei=true

(r
(jt,i)

i −ΦPi(Wi)) (23)

5: if the value of (23) is strictly positive then
6: Offer any item i∗t maximizing (23) to customer t, at price jt,i∗t
7: availablei∗t ← false
8: end if
9: end for

Theorem 5. The randomized procedure for initializing Φ̃ from Definition 3 satisfies (17)–(18)

with c= 1−e−α
(1)

(1+k)(e1/k−1)
. Furthermore, if m= 1, then the value of c can be improved to 1−e−α

(1)

(1+k)(1−e−1/k)
.

Theorem 5 is proven in Appendix B. It, in conjunction with Theorem 4, establishes bounds (i)

and (iii) from our main result for Multi-price Balance, Theorem 1. In Appendix B, we state

the complete proof of Theorem 1, including bound (ii), which involves explicitly formulating the

optimization problem over randomized procedures and solving it when k= 1.

4. MULTI-PRICE RANKING and the Proof of Theorem 2

In Subsection 2.2, we sketched Multi-price Ranking for our general problem. In Algorithm 2,

we formalize it specifically for the deterministic case, which is the case analyzed in Theorem 2.

Note that we have assumed, without loss of generality, that ki = 1 for each item i.

Our analysis extends the framework of Devanur et al. (2013) to incorporate multiple prices. It

uses the dual LP defined in (19), where every p
(j)
t,i is 0 or 1.

If Algorithm 2 assigns item i to customer t (charging price jt,i), then we set dual variables

Zt = r
(jt,i)

i −ΦPi(Wi) and Yi = Φ′Pi(Wi), where ΦPi is the fixed function defined in Subsection 2.1

(we ignore the measure-zero set where Φ′Pi is undefined). All dual variables not set during a time

period are defined to be zero. The following lemmas are proven in Appendix C:

Lemma 2. If Algorithm 2 assigns item i to customer t, then (1− e−α
(1)
i )(Yi +Zt)≤ r

(jt,i)

i w.p.1.

Lemma 3. Setting yi =E[Yi], zt =E[Zt] for all i, t forms a feasible solution to the dual LP (19).
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The proof of Theorem 2 is then easy given these lemmas:

Proof of Theorem 2. Lemma 3 implies OPT(S,A)≤
∑n

i=1 E[Yi] +
∑T

t=1 E[Zt], via weak duality.

However, by Lemma 2, the revenue earned by Algorithm 2 is at least mini∈[n]{1−e−α
(1)
i }·

(∑n

i=1 Yi+∑T

t=1Zt
)
, with probability 1. Thus, E[ALG(S,A)]≥ (1− exp(−mini∈[n]α

(1)
i )) ·OPT(S,A). �

5. Randomized Counterexample and the Proof of Theorem 3

We first formalize the setup and randomized arrival sequence described in Subsection 2.3.

There are n ∈N items, indexed by i, which all have mi =m, r
(j)
i = r(j) for all j, and ki = k for

some k ∈N. We think of n as going to ∞, while k is arbitrary. Throughout this example, we often

express quantities as portions τ of n. We abuse notation and write τn to refer to an integer, even

if τ is irrational, since the error from rounding τn to the nearest integer is negligible as n→∞.

The arrival sequence is randomized following the classical construction of Karp et al. (1990).

There are T = nk customers, split into n “groups” of k identical customers each. Uniformly draw

a random permutation π = (π1, . . . , πn) of (1, . . . , n) from the n! possibilities. For i ∈ [n], all k

customers in group i would deterministically buy any item in {πi, . . . , πn}. Our construction differs

from existing ones in that the n groups of customers are further split into m “phases”. Let β1, . . . , βm

be positive numbers summing to 1, corresponding to the fraction of groups in each phase, whose

values we specify later. For all j ∈ [m], the customers in groups (β1 + . . .+ βj−1)n+ 1, . . . , (β1 +

. . .+βj)n are willing to pay r(j) for any of the items in their interest set.

Definition 4. Define the following shorthand notation for all j = 1, . . . ,m+ 1:

• Aj :=
∑m

`=j α
(`) (note that A1 = 1 and Am+1 = 0);

• Bj :=
∑m

`=j β` (note that B1 = 1 and Bm+1 = 0).

Proposition 4. Given m∈N, 0< r(1) < . . . < r(m), and α(1), . . . , α(m) as defined in Proposition 1,

there exists a unique solution to the following system of equations in variables B2, . . . ,Bm:

Bmr
(m)e−α

(m)

= . . .=B2r
(2)e−α

(2)

= r(1)e−α
(1)

, (24)

with 0<Bm < . . . <B2 <B1 = 1.
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We define B2, . . . ,Bm according to Proposition 4. This implies definitions for β1, . . . , βm, which

are strictly positive and sum to 1.

Now, regardless of the permutation π, the optimal algorithm allocates the k copies of item πi

to the customers in group i, for each i∈ [n], successfully serving all T = nk customers and earning

revenue
∑m

j=1 r
(j)(βjn)k. This is also the optimal objective value of the LP (5). Therefore, regardless

of the realized arrival sequence A, OPT(S,A) =
∑m

j=1 r
(j)(βjn)k which we can rewrite as

m∑
j=1

(r(j)− r(j−1))Bjnk. (25)

5.1. Upper Bound on Performance of Online Algorithms

Lemma 4. The expected revenue of an online algorithm with this randomized A is upper-bounded

by the maximum value of
m∑
j=1

r(j)Bjn(1− e−λj )k (26)

subject to 0≤ λj ≤ ln
Bj
Bj+1

for j ∈ [m− 1], 0≤ λm, and
∑m

j=1 λj ≤ 1.

Lemma 4 drastically simplifies the analysis of the online algorithm, because it restricts to algo-

rithms which are indifferent to the realized permutation π, allowing for a deterministic analysis.

However, our analysis differs from existing ones (e.g. (Golrezaei et al. 2014, Lem. 6)) in that despite

the item symmetry, the online algorithm has a decision—how many customers in each phase to

serve, as opposed to reserving inventory for customers in future phases.

This is controlled by the λ-variables, where λj denotes the expected fraction of item πn’s inventory

sold to phase-j customers. The expected number of groups served during phase j is then at most

Bjn(1− e−λj ), resulting in the upper bound (26). Constraint λj ≤ ln
Bj
Bj+1

comes from the fact that

Bjn(1− e−λj ) must not exceed the total number of groups in phase j, βjn.

Lemma 5. Let j ∈ [m] and τ ∈ [0,1]. The maximum value of

m∑
`=j

r(`)B`n(1− e−λ`)k (27)

subject to λ` ≥ 0 for all `= j, . . . ,m as well as
∑m

`=j λ` ≤ τ is

nk
m∑
`=j

r(`)B`

(
1− exp

(
−α(`) +

Aj − τ
m− j+ 1

))
. (28)
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Lemma 5 establishes the optimal objective value of the optimization problem from Lemma 4.

The upper bound of ln
Bj
Bj+1

on λj for j ∈ [m− 1] turns out to not be binding. With both lemmas,

the proof of Theorem 3 is easy.

Proof of Theorem 3. The value of (28) with j = 1 and τ = 1 is

nk
m∑
`=1

r(`)B`(1− e−α
(`)

) = (1− e−α
(1)

)
m∑
`=1

(r(`)− r(`−1))B`nk, (29)

where we have used (7) to derive the equality. Combining Lemmas 4–5, we get that the RHS of (29)

is an upper bound on E[ALG(S,A)], for any online algorithm. Meanwhile, OPT(S,A) is equal to

(25) regardless of A, which is exactly the RHS of (29) divided by (1− e−α(1)
). We have established

that E[ALG(S,A)]≤ (1− e−α(1)
)E[OPTA(S,A)], completing the proof of the theorem. �

Remark 1. Suppose that k→∞. It can be seen that our algorithm (either Multi-price Bal-

ance or Multi-price Ranking, which behave identically when k →∞—see Aggarwal et al.

(2011)), with booking limits α(1), . . . , α(m), is the unique optimal algorithm given this distribution

over arrival sequences. Indeed, the proof of Lemma 4 shows that given λ1, . . . , λm, the dominant

strategy for the online algorithm is to deplete the inventories of items evenly (which is possible since

k→∞), in which case upper bound (26) is attained. The proof of Lemma 5 shows that the unique

optimal values for λ1, . . . , λm are α(1), . . . , α(m). It only remains to show that λj = α(j) is feasible,

namely α(j) ≤ ln
Bj
Bj+1

for j <m. Applying (24), this is equivalent to showing e−α
(j) ≥ r(j)e−α

(j)

r(j+1)e−α
(j+1) ,

or e−α
(j+1) ≥ r(j)

r(j+1) , which follows from (7) since 1− e−α(1) ≤ 1.

6. Extending our Techniques

We explain how our techniques can be extended to allow for fractional inventory consumption like

in the Adwords problem (Mehta et al. 2007), or offering multiple items like in the online assortment

problem (Golrezaei et al. 2014).

Consider the following modification of our problem from Section 2: when customer t is offered

item i at price j, she deterministically pays p
(j)
t,i r

(j)
i and consumes a fractional amount p

(j)
t,i ≤ 1 of

item i’s inventory, instead of paying r
(j)
i and consuming 1 unit with probability p

(j)
t,i . We assume
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that mini ki →∞. This generalizes the Adwords problem under the small bids assumption, by

allowing each budget i to be depleted at mi different rates r
(1)
i , . . . , r

(mi)
i .

For this problem, we use Multi-price Balance, except since we are taking mini ki→∞, we

can deterministically set each Φ̃i = ΦPi . The three claims used to establish Theorem 4 are simpler:

Claim 2 now holds deterministically instead of requiring a conditional expectation over Zt, while

Claim 3 also holds deterministically since Φ̃i is always ΦPi . In Theorem 5, condition (17) is now

only satisfied under an additional error term ε, since N is no longer a discrete integer. Nonetheless,

the rounding error ε approaches 0 as ki→∞, so the optimal competitive ratio is still achieved.

For online assortment, we use the term product to refer to an (item, price)-combination (i, j).

Consider the following modification of our problem from Section 2: upon the arrival of customer

t, for any subset (assortment) S of products and (i, j) ∈ S, we are given p
(j)
t,i (S), the probability

that customer t would pick product (i, j) when offered the choice from S. After being given these

probabilities, we must offer an assortment S to customer t. This generalizes the original online

assortment problem of Golrezaei et al. (2014), by allowing each item be offered at different prices.

We note that the assortment offered S can be constrained to lie in an arbitrary downward-closed

family F of subsets of {(i, j) : i∈ [n], j ∈ [mi]}; for example, we could disallow assortments where an

item is simultaneously offered at multiple prices. The execution of an algorithm can be encapsulated

by the following modification of the LP (5):

max
T∑
t=1

∑
S∈F

xt(S)
∑

(i,j)∈S

r
(j)
i p

(j)
t,i (S) (30a)

T∑
t=1

∑
S∈F

xt(S)
∑

j:(i,j)∈S

p
(j)
t,i (S)≤ ki i∈ [n] (30b)

∑
S∈F

xt(S) = 1 t∈ [T ] (30c)

xt(S)≥ 0 t∈ [T ], S ∈F (30d)

Multi-price Balance can be directly applied to this problem, with the change that it offers

the assortment S ∈ F maximizing expected pseudorevenue,
∑

(i,j)∈S p
(j)
t,i (S)

(
Φ̃i(L̃

(j)
i )− Φ̃i(wi)

)
, to
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each customer t. We assume the existence of an oracle for solving this single-shot assortment

optimization problem, which admits an efficient algorithm under many commonly-used choice

models (see Cheung and Simchi-Levi (2016) for a summary). In the analysis, dual constraints (19b)

now require zt ≥
∑

(i,j)∈S p
(j)
t,i (S)(r

(j)
i −yi) for all t and S, which is still implied by the conditions of

Theorem 4 as long as the choice probabilities for customers satisfy a mild substitutability assumption

(see Golrezaei et al. (2014) for details).

7. Simulations on Hotel Data Set of Bodea et al. (2009)

We test our algorithms on the publicly-accessible hotel data set collected by Bodea et al. (2009).

Based on the data, we consider a multi-price online assortment problem, as defined in Section 6.

7.1. Experimental Setup

We consider Hotel 1 from the data set, which has more transactions than the other four hotels. For

each transaction, we use booking to refer to the date the transaction occurred, and occupancy to

refer to the dates the customer will stay in the hotel. We consider occupancies spanning the 5-week

period from Sunday, March 11th, 2007 to Sunday, April 15th, 2007. Although the data contains

occupancies for a couple of weeks outside this range, such transactions are sparse.

We merge the different rooms into 4 categories: King rooms, Queen rooms, Suites, and Two-

double rooms. Rooms under the same category draw from the same inventory. We merge the

different fare classes into two: discounted advance-purchase fares and regular rack rates. We use

product to refer to any of the 8 combinations formed by the 4 room categories and 2 fares.

We estimate a Multinomial Logit (MNL) choice model on these 8 products, for each of 8 cus-

tomer types. The customer types are based on the booking channel, party size, and VIP status

(if any) associated with a transaction. These types capture preference heterogeneity (for example,

party sizes greater than 1 tend to prefer Suites and Two-double rooms). The details of our choice

estimation are deferred to Appendix F.

We should point out that more sophisticated segmentation and estimation techniques have been

employed on this data set (van Ryzin and Vulcano 2014, Newman et al. 2014). Nonetheless, MNL
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has been reported to perform relatively well (van Ryzin and Vulcano 2014, sec. 5.2). The MNL

choice model is convenient for our purposes because under it, both the assortment optimization

problem, as well as the choice-based LP (30) with exponentially many variables, can be solved

efficiently (Talluri and Van Ryzin 2004, Liu and Van Ryzin 2008, Cheung and Simchi-Levi 2016).

We treat each occupancy date as a separate instance of the problem, for which we define a

sequence of arrivals, with one arrival for each transaction which occupies that date. The choice

probabilities for each arrival are determined by the customer type associated with the correspond-

ing transaction.5 The number of days in advance of occupancy that each arrival occurred is also

recorded, but this information is only relevant for algorithms which attempt to forecast the remain-

ing number of arrivals based on the remaining length of time.

Before we proceed, we discuss the limitations of our analysis and the data set:

1. In the data set, 55% of the transactions occupy multiple, consecutive days. However, we treat

such a transaction as a separate arrival in the instances for each of those occupancy dates.

While this is a simplifying assumption, the focus of our paper is on the basic allocation problem

without complementarity effects across consecutive days, and our goal in using the data set

is to extract an arrival pattern over time.

2. It is not possible to deduce from the data the fixed capacity for each category of room. To

compensate, we consider a wide range of starting capacities in our tests.

3. Estimating the number of customers who do not make a purchase is a standard challenge in

choice modeling, which is exacerbated in this data set by the fact that the arrivals are rather

non-stationary. We test various assumptions on the weight of the no-purchase option in the

MNL model for each customer type. In general, we assume that this weight is large, which

causes the revenue-maximizing assortments to be large, allowing for tension between offering

large assortments which maximize immediate revenue, and offering small assortments which

regulate inventory consumption (details in Appendix F).

5 The choice realized in that transaction was used for choice model estimation, but is not used in defining the arrival.
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Table 1 Details on Room Categories and Fares

Room Category Low Fare High Fare Fraction of Rooms

King $307 $361 52%
Queen $304 $361 15%
Suite $384 $496 13%

Two Double $306 $342 20%

7.2. Instance Definition

A test instance corresponds to a specific occupancy date, which has a finite inventory of each room

category. Each customer interested in that occupancy date arrives in sequence, after which her

characteristics (channel, party size, VIP status) are revealed. The problem is to show a personalized

assortment of (room, fare)-options to each customer. The instances we test are described below.

• Arrival sequence: 35 possibilities, one for each day in the 5-week occupancy period. We multiply

the arrivals by 10 (i.e. instead of a type-1 customer followed by a type-2 customer, we have

10 type-1 customers followed by 10 type-2 customers), being interested in the high-inventory

regime. After multiplication, the average number of arrivals per day is 1340, peaking on

Sundays and Mondays, although the number and breakdown of customers varies by day.

• Number of products: 8 (room, fare)-combinations, identical for all instances.

• Prices of products: displayed in Table 1, identical for all instances. These prices were deter-

mined by taking the average price of that (room, fare)-combination over all transactions.

• Starting inventories: 3 possibilities, where we set the starting inventories to yield a desired

loading factor. The loading factor is defined by the average (over all 35 days) number of

customers per unit of starting inventory, and we use the same loading factors (1.4, 1.6, 1.8)

as Golrezaei et al. (2014). For a fixed loading factor, all 35 instances have the same starting

inventories. The fraction of total starting inventory corresponding to each room type is based

on the relative frequency with which that type is booked over all transactions (see Table 1).

We test additional synthetic instances, where we increase the high fares and consider a greater

range of loading factors, in Subsection 7.5.
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7.3. Algorithms Compared

We compare the performances of 10 algorithms on each instance.

First we describe the forecast-independent algorithms we test.

1. Myopic: offer each customer the assortment maximizing immediate expected revenue, from

the items that have not stocked out.

2. Conservative: only offer items at their maximum prices.6

3. GNR: offer to each customer t the assortment S maximizing

∑
(i,j)∈S

p
(j)
t,i (S) · r(j)

i Ψ(wi),

where wi is the fraction of item i sold and Ψ is the inventory balancing function from Golrezaei

et al. (2014). This would represent the algorithm of Golrezaei et al. (2014) applied to the

multi-price setting (see Section 1.2).

4. Our Algorithm: offer to each customer t the assortment S maximizing

∑
(i,j)∈S

p
(j)
t,i (S) · (r(j)

i −ΦPi(wi)), (31)

where wi is the fraction of item i sold. This is essentially Multi-price Balance, except we

have used the fixed value function ΦPi instead of the random value function Φ̃i to define the

bid price of each item i, which is a simplifying approximation for the high-inventory regime.

The Myopic and Conservative algorithms represent two extremes, where the former extracts the

maximum in expectation from every customer and is optimal as the loading factor approaches 0,

while the latter extracts the maximum from every unit of inventory and is optimal as the loading

factor approaches ∞. In-between these extremes, our algorithm attempts to balance revenue-per-

customer and revenue-per-item as it selects items and prices to put in the assortment.

Next we describe the forecasting-based algorithms we test. These algorithms all estimate the

number of each type of customer yet to arrive, and then incorporate this information into the

6 This algorithm selects between the items (at their high prices) using the algorithm of Golrezaei et al. (2014).
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LP (30) to set bid prices. They differ in how they perform the forecasting, and how frequently

they update the bid prices by re-solving the LP. Further details about these algorithms, as well as

discussion of alternative algorithms, are deferred to Appendix F.1.

5. One-shot LP: solve the LP only once, at the start, using the average number of customers

of each type to appear on a given day.

6. LP Resolving: re-solve the LP every 100 arrivals, using updated forecasts and inventory

counts. During each re-solve, the estimated number of remaining customers is updated, taking

into account the length of time remaining until occupancy, and the number of customers that

have arrived. The estimated type breakdown is fixed, based on the aggregate distribution.

7. LP Learning: same as LP Resolving, except the estimated type breakdown is also updated,

based on the empirical distribution observed thus far.

8. LP Clairvoyant: same as LP Resolving, but given the true number of customers of each type

remaining.

Finally, we describe the hybrid algorithms we test. These algorithms combine a forecasting

algorithm with “Our Algorithm” as described above, based on a parameter γ > 1. For each customer

t, the hybrid algorithm considers the expected pseudorevenue (as defined in (31)) of the assortment

Sfcst suggested by the forecasting algorithm. If this is at least 1
γ

of the maximum value of (31) over

all assortments S, then the hybrid algorithm offers Sfcst. Otherwise, the hybrid algorithm offers the

assortment suggested by our algorithm, which maximizes (31) by definition.

9. Resolve-1.5: hybrid algorithm based on LP Resolving and parameter γ = 1.5.

10. Learn-1.5: hybrid algorithm based on LP Learning and parameter γ = 1.5.

We selected γ = 1.5 above by taking the better of the two values 1.5,2.0 tested in Golrezaei et al.

(2014). We did not search over γ > 1 for the best γ, as the reported performance of such a hybrid

algorithm would be greatly inflated, since γ would be chosen after seeing the performance.

7.4. Results

On every instance, we express the performance of each algorithm as a percentage of the LP upper

bound. That is, we take the expected revenue of the algorithm (approximated over 10 runs), and
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Table 2 The percentages of optimum achieved by different algorithms. The 3 highest percentages in each row are bolded. The 3 lowest

standard deviations in each row are italicized.

Loading Forecast-independent Forecast-dependent Hybrid

Factor Myopic Conservative GNR OurAlg One-shot Resolve Learn Clairvoyant Resolve-1.5 Learn-1.5

1.4
Mean 0.974 0.940 0.973 0.976 0.973 0.962 0.958 0.991 0.977 0.977
Stdev 0.023 0.034 0.020 0.013 0.016 0.039 0.041 0.008 0.018 0.020

1.6
Mean 0.965 0.960 0.964 0.971 0.964 0.961 0.963 0.990 0.977 0.978
Stdev 0.025 0.036 0.020 0.014 0.021 0.031 0.030 0.008 0.008 0.010

1.8
Mean 0.957 0.972 0.960 0.968 0.808 0.962 0.968 0.990 0.977 0.977
Stdev 0.020 0.036 0.017 0.012 0.100 0.029 0.023 0.009 0.008 0.007

divide it by the optimal objective value of the LP (30) with the true arrival sequence. In Table 2,

we report the mean and standard deviation of each algorithm’s percentages over the 35 arrival

sequences, for each loading factor.

In general, our Multi-price Balance algorithm is the most profitable and consistent among

the forecast-independent algorithms, while the forecast-dependent algorithms have much greater

fluctuation in their performance for different occupancy days, depending on how accurate their

forecasts were for that day. LP Learning is slightly better than the others, but is most prone to

overfitting in its forecasts. We note that although the forecast-independent algorithms do not make

use of information about the remaining time horizon (which can be used to estimate the remaining

number of customers), they perform comparably well to the forecasting algorithms. Nonetheless,

by combining the forecasting algorithms with Multi-price Balance, the hybrid algorithms are

able to correct for forecast overconfidence and achieve the best performance overall (aside from

the Clairvoyant algorithm, which has a perfect forecast of the future). We find that although the

hybrid algorithm only changes a small fraction (≈ 5%) of the forecasting algorithm’s decisions, this

drastically improves the profitability and consistency.

7.5. Results under Greater Fare Differentiation

The instances tested in Subsection 7.4 were “easy” in that there was not so much difference between

selling rooms at their low or high fares. In this subsection, we synthetically modify the higher fare

for each room category to be twice its lower fare. We also increase the utility of the no-purchase
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Figure 3 Algorithm performances in the setting with greater fare differentiation. The lines corre-

sponding to the two hybrid algorithms, which perform the best overall, have been bolded.

option in the MNL model for each customer type (see Appendix F), to maintain the tension between

low fares which maximize expected revenue, and high fares which limit inventory consumption.

Furthermore, we test a complete range of loading factors, including both the extreme where

the Myopic algorithm is optimal, and the extreme where the Conservative algorithm is optimal.

In Figure 3, we plot the average percentages of optimum attained by each algorithm over the 35

arrival sequences, for each loading factor.

The conclusion again is that our two hybrid algorithms, which use forecasts but continuously

reference our forecast-independent value functions, are the most profitable and consistent. Note

that our Multi-price Balance algorithm comes third, and performs significantly better than the
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inventory-balancing algorithm of Golrezaei et al. (2014), which is similar to the Myopic algorithm

as it does not take the two different prices of the same item into account.

However, it is important to note that overall, our methodology is only relevant in scenarios where

the loading factor is in-between the extremes where there is a non-trivial tradeoff. If the loading

factor is very low, and the hotel does not even get close to full on any day, then it would be best

to always use the Myopic algorithm; similarly, if the loading factor is very high, and the hotel gets

full every day, then it would be best to always use the Conservative algorithm. Nonetheless, we

argue that most hotels do lie in-between the extremes, where it is sometimes full and sometimes

empty depending on sudden local events. Otherwise, the hotel either over-built or under-built in

an higher-order decision.

8. Conclusion

Competitive analysis is a well-established methodology in sequential decision-making problems,

providing a baseline decision in the absence of a reliable forecast of the future. Previously, online

resource allocation algorithms based on competitive analysis have assumed that each resource

can only be converted to reward at a fixed rate. We extend these results and derive algorithms

which jointly consider the tradeoffs between different resources and different reward rates. This

broadly expands the applicability of competitive analysis in areas such as online matching, online

advertising, personalized e-commerce, and appointment scheduling.
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Appendix A: Deferred Proofs from Section 2

Proof of Lemma 1. Fix any adaptive algorithm (which knows the arrival sequence, but not the

realizations of the customers’ purchase decisions, at the start) and consider its execution on setup S

with arrival sequenceA. Let X
(j)
t,i be the indicator random variable (0 or 1) for the algorithm offering

item i at price j to customer t, and P
(j)
t,i be the indicator random variable for customer t accepting

when item i is offered to her at price j. On a given run, the constraints
∑T

t=1

∑mi
j=1P

(j)
t,i X

(j)
t,i ≤ ki and∑n

i=1

∑mi
j=1X

(j)
t,i ≤ 1 are satisfied. Therefore, they are still satisfied after taking an expectation over

all runs, and furthermore we can use independence to show that E[P
(j)
t,i X

(j)
t,i ] = E[P

(j)
t,i ] ·E[X

(j)
t,i ] =

p
(j)
t,i x

(j)
t,i . Therefore, the algorithm must satisfy constraints (5b) and (5c) of the LP. Since its revenue

on a given run is
∑T

t=1

∑n

i=1

∑mi
j=1P

(j)
t,i r

(j)
i X

(j)
t,i , taking an expectation over it yields (5a), completing

the proof. �

Proof of Proposition 1. The statement for σ(j), . . . , σ(j) is immediate from the fact that the

explicit value of σ(j) is (1− r(j−1)

r(j)
)(1 +

∑m

j′=2(1− r(j
′−1)

r(j
′) ))−1, for all j ∈ [m]. To prove the statement

for α(1), . . . , α(m), we show that the solution to the system of n equations formed by (7) and

α(1) + . . . α(m) = 1 is unique and strictly positive.

Let γ(j) = e−α
(j)

for all j. Then the constraint α(1) + . . . α(m) = 1 can be rewritten as
∏m

j=1 γ
(j) = 1

e
.

Furthermore, we derive from (7) that for all j > 1, γ(j) = (1− r(j−1)

r(j)
)γ(1) + r(j−1)

r(j)
. Therefore,

γ(1) ·
m∏
j=2

((
1− r

(j−1)

r(j)

)
γ(1) +

r(j−1)

r(j)

)
=

1

e
. (32)

Consider the LHS of (32) as a function of γ(1) on [ 1
e
,1]. This is a continuous, strictly increasing

function which is at most 1
e

when γ(1) = 1
e

and 1 when γ(1) = 1. Therefore, there is a unique solution

with γ(1) ∈ [ 1
e
,1), and the resulting value of α(1) is positive. For j > 1, since γ(j) can also be written

as γ(1) + r(j−1)

r(j)
(1− γ(1)), it can be seen that γ(j) ∈ [ 1

e
,1), hence the unique value for α(j) is positive

as well. �

Proof of Proposition 2. For the first inequality in (11), observe that f(x) = x
1−e−x is a strictly

increasing function on [0,1]. Since σ(1) ∈ (0,1), σ(1)

1−e−σ(1)
< 1

1− 1
e
, which is the desired result.

For the second inequality in (11), we show α(1) >σ(1), by showing that for all j = 2, . . . ,m, α(j) is

a smaller multiple of α(1) than σ(j) is of σ(1). This suffices because both the fractions α(1), . . . , α(m)

and σ(1), . . . , σ(m) must sum to 1. For a given j, we must establish that α(j)

α(1) <
σ(j)

σ(1)
. By definition,

σ(j)

σ(1)
= 1− r(j−1)

r(j)
= 1−e−α

(j)

1−e−α(1)
. Therefore, is suffices to show that α(j)

α(1) <
1−e−α

(j)

1−e−α(1)
, or α(j)

1−e−α(j)
< α(1)

1−e−α(1)
.

This follows from the fact that the function f(x) = x
1−e−x is strictly increasing.

To prove (12), note that σ(1) = (1 +
∑m

j=2(1− r(j−1)

r(j)
))−1, while 1 + ln r(m)

r(1)
= 1 +

∑m

j=2 ln r(j)

r(j−1) .

Therefore, it suffices to show that for any j = 2, . . . ,m, ln r(j)

r(j−1) > 1− r(j−1)

r(j)
. Letting x= ln r(j−1)

r(j)
< 0,

the desired inequality becomes −x> 1− ex, which is immediate.
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For (13), we would like to prove that α<α(1). Note that α(1) is the unique solution to

α(1) +
m∑
j=2

[
− ln

(
1− (1− e−α

(1)

)(1− r
(j−1)

r(j)
)
)]

= 1, (33)

while α is the unique solution to

α+
m∑
j=2

(1− e−α) ln
r(j)

r(j−1)
= 1. (34)

The LHS of (33), as a function of α(1), is increasing over (0,1); the same can be said about the

LHS of (34) as a function of α. Therefore, it suffices to show that if α(1) = α= x, then the LHS of

(33) is strictly less than the LHS of (34), for all x∈ (0,1).

Let F = 1− e−x and consider any j > 1. Let s= r(j−1)

r(j)
∈ (0,1). It suffices to show that − ln(1−

F (1 − s)) < F · ln 1
s
, which can be rearranged as 1−sF

1−s > F . For the final inequality, note that

f(s) = sF is a strictly concave function on (0,1), since F ∈ (0,1). Therefore, 1−sF
1−s >F , because the

LHS is the slope of the secant line through (s, sF ) and (1,1), while the RHS is the slope of the

tangent line through (1,1). �

Appendix B: Supplement to Section 3

The first subsection contains the deferred proofs from Section 3. In the second subsection, we

explain how to optimize the randomized procedure for generating a single value function. In the

third subsection, we put together the proof of Theorem 1.

The following inequality will be useful throughout the paper. For all j = 2, . . . ,m, (7) says that

1−e−α(j) ≤ 1− r(j−1)

r(j)
, where we have used the fact that 1−e−α(1) ≤ 1. Therefore, for all j = 2, . . . ,m,

we can derive that

r(j−1)

r(j)
≤ e−α

(j)

. (35)

B.1. Deferred Proofs

Proof of Theorem 4. Define Nt,i to be the algorithm’s value for Ni at the end of time t (N0,i

is understood to be 0), for all t ∈ [T ] and i ∈ [n]. For all t ∈ [T ], define Rt = r
(j∗t )

i∗t
and Zt =

Φ̃i∗t
(L̃

(j∗t )

i∗t
)− Φ̃i∗t

(Ni∗t
/ki∗t ) if a sale was made during time t; define Rt =Zt = 0 otherwise.

Consider the solution to the dual LP (19) formed by setting yi = E[Φ̃i(
NT,i
ki

)] for all i ∈ [n], and

zt =E[Zt] for all t∈ [T ]. We claim that this solution is feasible. The non-negativity constraint (19c)

can be verified directly from the definitions.

Now, consider constraint (19b) for a fixed t ∈ [T ], i ∈ [n], j ∈ [mi]. Given the initializations of

L̃
(1)
i , . . . , L̃

(mi)
i , Φ̃i and the value of Nt−1,i, the algorithm will always make a decision during time t
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which earns pseudorevenue whose conditional expectation is at least p
(j)
t,i (Φ̃i(L̃

(j)
i )− Φ̃i(

Nt−1,i

ki
)), by

definition (16). Formally,

E[Zt|L̃(1)
i , . . . , L̃

(mi)
i , Φ̃i,Nt−1,i]≥ p(j)

t,i (Φ̃i(L̃
(j)
i )− Φ̃i(

Nt−1,i

ki
)),

for all values of L̃
(1)
i , . . . , L̃

(mi)
i , Φ̃i,Nt−1,i. By the tower property of conditional expectation, zt =

E[Zt] ≥ E[p
(j)
t,i (Φ̃i(L̃

(j)
i ) − Φ̃i(

Nt−1,i

ki
))]. Meanwhile, yi has been set to E[Φ̃i(

NT,i
ki

)]. Since NT,i ≥

Nt−1,i and Φ̃i is increasing, yi ≥ E[Φ̃i(
Nt−1,i

ki
)]. Therefore, the LHS of (19b), p

(j)
t,i yi + zt, is at least

E[p
(j)
t,i (Φ̃i(L̃

(j)
i ))]. By (18), this is at least r

(j)
i , completing the proof of feasibility.

Applying weak duality, we obtain

OPT(S,A)≤
n∑
i=1

kiE[Φ̃i(
NT,i

ki
)] +

T∑
t=1

E[Zt]

=
n∑
i=1

kiE
[ T∑
t=1

(Φ̃i(
Nt,i

ki
)− Φ̃i(

Nt−1,i

ki
))
]

+
T∑
t=1

E[Zt]

=
T∑
t=1

E
[ n∑
i=1

ki(Φ̃i(
Nt,i

ki
)− Φ̃i(

Nt−1,i

ki
)) +Zt

]
. (36)

We now analyze the term inside the expectation,

n∑
i=1

ki(Φ̃i(
Nt,i

ki
)− Φ̃i(

Nt−1,i

ki
)) +Zt, (37)

for every t∈ [T ]. We would like to argue that it is at most Rt
c

, on every sample path.

There are two cases. If an item i= i∗t was sold at price j = j∗t during time t, then (37) equals

ki(Φ̃i(
Nt−1,i + 1

ki
)− Φ̃i(

Nt−1,i

ki
)) + Φ̃i(L̃

(j)
i )− Φ̃i(

Nt−1,i

ki
). (38)

Indeed, Nt,i = Nt−1,i + 1, Nt,i = Nt−1,i for all i 6= i, and Zt = Φ̃i(L̃
(j)
i )− Φ̃i(

Nt−1,i

ki
) by definition.

Furthermore, since Zt is positive, Nt−1,i must by less than L̃
(j)
i k. Therefore, we can invoke (17) to

get that (38) is at most r
(j)
i /c, which is equal to Rt

c
by definition. In the other case, if no item was

sold during time t, then (38) is 0, while Rt = 0 too, so (38) is still at most Rt
c

.

Substituting back into (36), we conclude that OPT(S,A) ≤
∑T

t=1 E[Rt
c

], which is equal to

1
c
E[ALG(S,A)] by definition. This completes the proof of Algorithm 1 having a competitive ratio

at least c. �

Proof of Proposition 3. For (21), note that E[L̃(j)] = bL(j)kc+1

k
(L(j)k − bL(j)kc) + bL(j)kc

k
(1 −

(L(j)k−bL(j)kc)) = 1
k
(L(j)k−bL(j)kc) + bL(j)kc

k
=L(j).

For (22), note that |(L̃(j)− L̃(j′))− (L(j)−L(j′))|= |(L̃(j)−L(j))− (L̃(j′)−L(j′))|. We will prove

that (L̃(j)−L(j))− (L̃(j′)−L(j′))≤ 1
k
; the inequality that (L̃(j)−L(j))− (L̃(j′)−L(j′))≥− 1

k
follows
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by symmetry. The maximum value of kL̃(j) is bkL(j)c+ 1 while the minimum value of kL̃(j′) is

bkL(j′)c, hence the result is immediate unless (bkL(j)c + 1) − kL(j) + kL(j′) − bkL(j′)c > 1, i.e.

kL(j′) − bkL(j′)c> kL(j) − bkL(j)c. However, in this case, if kL̃(j) = bkL(j)c+ 1, then W < kL(j) −
bkL(j)c<kL(j′)−bkL(j′)c and hence L̃(j′) is rounded up as well. Similarly, if L̃(j′) is rounded down,

then L̃(j) must be rounded down as well. If L̃(j) and L̃(j′) are rounded in the same direction, then

(iii) holds. �

Proof of Theorem 5. First we prove (18), the claim that E[Φ̃(L̃(j))]≥ r(j), inductively. Clearly

E[Φ(L̃(0))]≥ r(0) = 0. Now consider j ∈ [m] and suppose we have established (18) for the j−1 case.

We can compare expression (20) with q = L̃(j) and q = L̃(j−1) to obtain Φ̃(L̃(j)) = Φ̃(L̃(j)) + (r(j)−
r(j−1)) exp(L̃(j)−L̃(j−1))−1

exp(α(j))−1
. Therefore,

E[Φ̃(L̃(j))]≥ r(j−1) + (r(j)− r(j−1))
E[exp(L̃(j)− L̃(j−1))]− 1

exp(α(j))− 1

≥ r(j−1) + (r(j)− r(j−1))
exp(E[L̃(j)− L̃(j−1)])− 1

exp(α(j))− 1

= r(j−1) + (r(j)− r(j−1))
exp(α(j))− 1

exp(α(j))− 1

where the first inequality uses the induction hypothesis, and the second inequality uses Jensen’s

inequality (the exponential function exp is convex). The equality follows from (21) and the definition

that α(j) =L(j)−L(j−1), completing the induction.

Now we prove (17) for an arbitrary j ∈ [m] and N ∈ {0, . . . , L̃(j)k − 1}. Let q = N
k

and ` =

˜̀(q). Note that 1≤ `≤ j, and L̃(`−1) ≤ q < L̃(`). Substituting q = N
k

into the LHS of (17), we get

k
(
Φ̃(q+ 1

k
)− Φ̃(q)

)
+ Φ̃(L̃(j))− Φ̃(q). Adding and subtracting Φ̃(L̃(`)) and rearranging, we get

k
(
Φ̃(q+

1

k
)− Φ̃(q)

)
+ Φ̃(L̃(`))− Φ̃(q) + Φ̃(L̃(j))− Φ̃(L̃(`)). (39)

The following upper bound can be derived for expression (39):

k
(
Φ̃(q+

1

k
)− Φ̃(q)

)
+ Φ̃(L̃(`))− Φ̃(q) + Φ̃(L̃(j))− Φ̃(L̃(`))

=(r(`)− r(`−1))
eq+1/k−L̃(`−1)

(k− (k+ 1)e−1/k) + eL̃
(`)−L̃(`−1)

eα(`) − 1
+

j∑
`′=`+1

(r(`
′)− r(`

′−1))
eL̃

(`′)−L̃(`′−1)

− 1

eα(`′) − 1

≤(r(`)− r(`−1))
eL̃

(`)−L̃(`−1)

(k− (k+ 1)e−1/k) + eL̃
(`)−L̃(`−1)

eα(`) − 1
+

j∑
`′=`+1

(r(`
′)− r(`

′−1))
eL̃

(`′)−L̃(`′−1)

− 1

eα(`′) − 1

=(r(`)− r(`−1))
eL̃

(`)−L̃(`−1)−α(`)

(1 + k)(1− e−1/k)

1− e−α(`)
+

j∑
`′=`+1

(r(`
′)− r(`

′−1))
eL̃

(`′)−L̃(`′−1)−α(`′)
− e−α

(`′)

1− e−α(`′) . (40)

The inequality holds because k− (1 + k)e−1/k > 0 for all k ∈N, and q is at most L̃(`)− 1/k.

It suffices to show that expression (40) is bounded from above by

r(j) (1 + k)(e1/k− 1)

1− e−α(1)
. (41)
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To assist in this task, we would like to establish the following for all `′ = ` + 1, . . . , j and `′′ ∈

{`, . . . , `′− 1}:

(r(`
′−1)− r(`

′−2))
eL̃

(`′−1)−L̃(`′′−1)−L(`′−1)+L(`′′−1)

(1 + k)(1− e−1/k)

1− e−α(`′−1)
+ (r(`

′)− r(`
′−1))

eL̃
(`′)−L̃(`′−1)−α(`′)

− e−α
(`′)

1− e−α(`′)

≤(r(`
′)− r(`

′−1))
emax{L̃(`′)−L̃(`′′−1)−L(`′)+L(`′′−1),L̃(`′)−L̃(`′−1)−L(`′)+L(`′−1)}(1 + k)(1− e−1/k)

1− e−α(`′) . (42)

But r(`
′−1)−r(`

′−2)

1−e−α(`
′−1) = r(`

′)−r(`
′−1)

1−e−α(`
′) · r

(`′−1)

r(`
′) due to the definition of α in (7), and r(`

′−1)

r(`
′) ≤ e−α

(`′)
due to

(35). Substituting back into inequality (42), it suffices to prove

eL̃
(`′−1)−L̃(`′′−1)−L(`′)+L(`′′−1)

(1 + k)(1− e−1/k) + eL̃
(`′)−L̃(`′−1)−α(`′)

− e−α
(`′)

≤emax{L̃(`′)−L̃(`′′−1)−L(`′)+L(`′′−1),L̃(`′)−L̃(`′−1)−L(`′)+L(`′−1)}(1 + k)(1− e−1/k)

where we have used Definition 1 to rewrite the first exponent. Now,

eL̃
(`′−1)−L̃(`′′−1)−L(`′)+L(`′′−1)

(k− (1 + k)e−1/k)≤ eL̃
(`′)−L̃(`′′−1)−L(`′)+L(`′′−1)

(k− (1 + k)1− e−1/k),

since k− (1 + k)e−1/k > 0 and L̃(`′−1) ≤ L̃(`′). Thus it remains to prove that

eL̃
(`′−1)−L̃(`′′−1)−L(`′)+L(`′′−1)

+eL̃
(`′)−L̃(`′−1)−α(`′)

−e−α
(`′)
≤ emax{L̃(`′)−L̃(`′′−1)−L(`′)+L(`′′−1),L̃(`′)−L̃(`′−1)−L(`′)+L(`′−1)}.

(43)

We consider two cases. First suppose L̃(`′)− L̃(`′′−1)−L(`′) +L(`′′−1) ≤ L̃(`′)− L̃(`′−1)−L(`′) +L(`′−1),

i.e. L̃(`′−1) − L̃(`′′−1) ≤ L(`′−1) −L(`′′−1). Then the LHS of (43) equals e−α
(`′)

+ eL̃
(`′)−L̃(`′−1)−α(`′) −

e−α
(`′)

= eL̃
(`′)−L̃(`′−1)−α(`′)

, which equals the RHS of (43) by the assumption that L̃(`′−1)− L̃(`′′−1) ≤

L(`′−1)−L(`′′−1). In the second case, suppose L̃(`′)− L̃(`′′−1)−L(`′) +L(`′′−1) > L̃(`′)− L̃(`′−1)−L(`′) +

L(`′−1), i.e. L̃(`′−1)− L̃(`′′−1) >L(`′−1)−L(`′′−1). Then inequality (43) can be rearranged as

e−α
(`′)

(eL̃
(`′−1)−L̃(`′′−1)−L(`′−1)+L(`′′−1)

− 1)(eL̃
(`′)−L̃(`′−1)

− 1)≥ 0.

The first bracket is positive by the assumption that L̃(`′−1) − L̃(`′′−1) > L(`′−1) − L(`′′−1) and the

second bracket is non-negative since L̃(`′−1) ≤ L̃(`′). This finishes the proof of (43), and hence (42).

Equipped with (42), we return the task of proving that expression (40) is at most expression (41).

If we inductively apply inequality (42) to expression (40) for `′ = `+1, . . . , j (when `′ = `+1, `′′ = `;



43

when `′ = `+ 2, `′′ = ` if we arrived at case two during iteration `+ 1 and `′′ = `+ 1 otherwise,...),

we conclude that expression (40) is bounded from above by

(r(j)− r(j−1))
eL̃

(j)−L̃(`′′−1)−L(j)+L(`′′−1)
(1 + k)(1− e−1/k)

1− e−α(j)

for some `′′ ∈ {`, . . . , j}. The fact that 1− e−α(1)
= r(j)

r(j)−r(j−1) (1− e−α(j)
), due to (7), and the fact

that (L̃(j) − L̃(`′′−1))− (L(j) − L(`′′−1)) ≤ 1/k, due to (22), complete the proof of expression (40)

being at most expression (41), and thus the proof of Theorem 5 for general m.

Finally, when m= 1, α(1) = 1. In the above proof, since j and ` are always 1, (40) can be replaced

by r(1) · (1)(1+k)(1−e−1/k)

1−e−1 , where we have used the fact that L(1) = k always. This is immediately at

most r(j)

c
, for the improved value of c = 1−e−α

(1)

(1+k)(1−e−1/k)
, completing the proof of Theorem 5 in its

entirety. �

B.2. Optimizing the Randomized Procedure

We can explicitly formulate the optimization problem over randomized procedures for a single item

with starting inventory k and m prices r(1), . . . , r(m). Using the “balls in bins” counting argument,

the number of configurations satisfying (14) is D :=
(
k+m−1
m−1

)
.

We refer to these configurations in an arbitrary order using the index d ∈ [D], where we let ρd

denote the probability of choosing configuration d, fd(·) denote the value function for d, and L
(j)
d

denote the value of L̃(j) under configuration d for all j = 0, . . . ,m. The optimization problem of

satisfying (17)–(18) with a maximal value of c can be formulated as follows:

F̃ := sup c (44a)

k(fd(
N + 1

k
)− fd(

N

k
)) + fd(L

(j)
d )− fd(

N

k
)≤ r(j)

c
d∈ [D], j ∈ [m],0≤N ≤ kL(j)

d − 1 (44b)

fd(1)≥ . . .≥ fd(
1

k
)≥ fd(0) = 0 d∈ [D] (44c)

D∑
d=1

ρdfd(L
(j)
d )≥ r(j) j ∈ [m] (44d)

D∑
d=1

ρd = 1 (44e)

fd(0), fd(
1

k
), . . . , fd(1)∈R;ρd ≥ 0 d∈ [D] (44f)
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Constraint (44b) corresponds to (17), constraint (44d) corresponds to (18), while constraint (44c)

enforces the definition of a value function in (15). We let F̃ denote the optimal objective value

of (44). Unfortunately, it is difficult to solve (44) exactly, since the number of configurations D is

exponential in the number of prices m, and constraint (44d) is non-linear.

Nonetheless, (44) is useful at determining the best competitive ratio which could be established

using our analysis. We know that the randomized procedure from Definition 3 (based on Φ) is an

optimal solution to (44) as k→∞, since it achieves the optimal competitive ratio possible.

We can also solve (44) exactly when k = 1, in which case D = m, where we will let d ∈ [D]

denote the configuration with L̃(0) = . . . = L̃(d−1) = 0 and L̃(d) = . . . = L̃(m) = 1. (44b) reduces to

2fd(1) ≤ r(j)

c
, and needs to hold for d ∈ [D], j ≥ d (for j < d, kL

(j)
d − 1 = −1). However, clearly

only the constraint with j = d is binding. As a result, (44b) corresponds to m constraints. (44d)

corresponds to m constraints of the form
∑j

d=1 ρdfd(1)≥ r(j), for j ∈ [m].

Not counting fd(0), which must be set to 0, there are 2m+ 1 variables: {fd(1), ρd : d∈ [D]} and

c. Consider the system of equations obtained in these 2m+1 variables by setting (44b), (44d), and

(44e) to equality. It can be checked that the unique solution is

fd(1) =
r(d)

σ(1)
,∀d∈ [D];ρd = σ(d),∀d∈ [D]; c=

σ(1)

2
(45)

with σ(1), . . . , σ(m) defined from r(1), . . . , r(m) according to (8). Furthermore, this solution is both

feasible, satisfying the non-negativity constraints in (44c) and (44f), and optimal. Therefore, the

value of F̃ is σ(1)

2
.

B.3. Proof of Theorem 1

Now we put together the proof of Theorem 1. For all items i∈ [n], F̃i is defined to be the optimal

objective value of (44), with k= ki, m=mi, and r(1) = r
(1)
i , . . . , r(m) = r

(mi)
i . Consider Algorithm 1,

where for all i, the randomized procedure used to initialize Φ̃i is an optimal solution to (44)

achieving the objective value of F̃i. For all i, (17)–(18) is satisfied as long as c ≤ F̃i. Therefore,

the maximum value of c satisfying the conditions of Theorem 4 is mini F̃i. By Theorem 4, this

algorithm achieves a competitive ratio of mini F̃i.
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To establish bounds (i)–(iii) from Theorem 1, for all i, we need to find a feasible randomized

procedure with an objective value in (44) equal to the bound. For bounds (i) and (iii), this is

established directly by the randomized procedure from Definition 3, via the statement of Theorem 5.

For bound (ii), we need to split the ki units of item i into ki disparate items. For each single-

unit item, its value function in Algorithm 1 is initialized according to the randomized procedure

described by (45). This yields a value of
σ
(1)
i
2

, completing the proof of Theorem 1.

Appendix C: Deferred Proofs from Section 4

Proof of Lemma 2. Since the algorithm was willing to sell item i at price j, it must be the case

that Wi <L
(j)
i . Let ` denote `i(Wi), which is at most j. We ignore measure-zero events and assume

that Wi 6=L(`−1). We can rearrange Zt as

r
(j)
i − r

(`)
i + r

(`)
i −

(
r

(`−1)
i + (r

(`)
i − r

(`−1)
i )

exp(Wi−L(`−1)
i )− 1

exp(α
(`)
i )− 1

)
= r

(j)
i − r

(`)
i + (r

(`)
i − r

(`−1)
i )

exp(α
(`)
i )− exp(Wi−L(`−1)

i )

exp(α
(`)
i )− 1

.

Adding Yi = Φ′Pi(Wi) = (r
(`)
i −r

(`−1)
i )

exp(Wi−L
(`−1)
i )

exp(α
(`)
i )−1

to this expression, we get r
(j)
i −r

(`)
i +

r
(`)
i −r

(`−1)
i

1−exp(−α(`)
i )

,

which can be re-written as r
(j)
i − r

(`)
i +

r
(`)
i

1−exp(−α(1)
i )

due to (7). The result follows immediately. �

Proof of Lemma 3. It suffices to show that constraint (19b) holds for all t∈ [T ] and i∈ [n]. Since

p
(j)
t,i ∈ {0,1} and the constraint clearly holds when p

(j)
t,i = 0, it suffices to show that E[Yi+Zt]≥ r

(jt,i)

i ,

where jt,i 6= 0. We will let j = jt,i for brevity.

Fix the realization of Wi′ for all i′ 6= i, and consider the run of the algorithm on a modified setup

with item i removed. Having fixed the values of Wi′ , such a run is deterministic. Let Zcrit denote the

pseudorevenue earned on this run during time t, possibly 0. ΦPi maps [0,L
(j)
i ] to [0, r

(j)
i ] bijectively,

so we can set W crit to be the value in [0,L
(j)
i ] for which ΦPi(W

crit) = max{r(j)
i −Zcrit,0}.

We now consider the run of the algorithm on the full setup with item i, which is dependent

on the realization of Wi. The following two claims from Devanur et al. (2013) generalize to our

multi-price setting.

1. Dominance: if Wi ∈ [0,W crit), then in the run with item i, item i gets matched.



46

Proof: Since W crit >Wi and Wi ≥ 0, W crit > 0. Therefore, ΦPi(W
crit)> 0. Thus ΦPi(W

crit) = r
(j)
i −

Zcrit (as opposed to ΦPi(W
crit) = 0), and moreover since Wi <W crit and ΦPi is strictly increasing,

ΦPi(Wi)< r
(j)
i −Zcrit. This implies r

(j)
i −ΦPi(Wi)>max{Zcrit,0}, since Zcrit ≥ 0. Thus on the run

with item i, either i is already matched before time t, or it is matched to customer t.

2. Monotonicity: Zt ≥Zcrit (regardless of the realization of Wi).

Proof: fix the realization of Wi. We compare two deterministic runs of the algorithm: one with

item i, and one without. We can inductively establish over t= 0, . . . , T that at the end of time t,

the set of unmatched items in the run with i is a superset of that in the run without i. Therefore,

in the run with i, since the algorithm is maximizing pseudorevenue over a superset of items, its

pseudorevenue Zt can be no less than Zcrit.

Now, conditioned on the realizations of Wi′ for i′ 6= i, which determines the values of Zcrit and

W crit, we have Zt ≥Zcrit (by Monotonicity) and in turn Zcrit ≥ r(j)
i −ΦPi(W

crit) (by the definition of

W crit). Meanwhile, as long as i gets matched, Yi gets set to Φ′Pi(Wi), so by Dominance, E[Yi|{Wi′ :

i′ 6= i}]≥
∫W crit

0
Φ′Pi(w)dw = ΦPi(W

crit)−ΦPi(0) = ΦPi(W
crit). Therefore, E[Yi +Zt|{Wi′ : i′ 6= i}]≥

r
(j)
i . The proof follows from the tower property of conditional expectation. �

Appendix D: Deferred Proofs from Section 5

Proof of Proposition 4. The unique solution to the system (24) is obtained inductively over

j = 2, . . . ,m by setting Bj = r(j−1)e−α
(j−1)

r(j)e−α
(j) Bj−1. By (35), r(j−1)

r(j)
≤ e−α(j)

, hence Bj ≤ e−α
(j−1)

Bj−1.

But α(j−1) > 0 by Proposition 1, completing the proof that Bj < Bj−1 for j = 2, . . . ,m. The fact

that 0<Bm is immediate. �

Proof of Lemma 4. Consider the execution of an online algorithm with this randomized arrival

sequence. For all i ∈ [n] and group of customers t ∈ [n], let Qt,i denote the number of group-

t customers to which item πi is sold, which is a random variable with respect to the random

permutation π as well as any randomness in the algorithm. Let qt,i =E[Qt,i].

Clearly if i < t, then Qt,i = 0, because group-t customers have no interest in item πi. Otherwise,

for any i, i′ ≥ t, we argue that qt,i = qt,i′ . This is because while group t is arriving, the online
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algorithm cannot distinguish between items πi and πi′ , hence any items it allocates are equally

likely to be item πi and item πi′ . Therefore, we let qt denote the value of qt,i for i≥ t.

Now, consider item πn. Since it only has k units of inventory, we know that
∑n

t=1Qt,n ≤ k on

every sample path. Using the linearity of expectation, we get that

n∑
t=1

qt ≤ k. (46)

Furthermore, for a t∈ [n], on every sample path,
∑n

i=tQt,i ≤ k, since there are only k customers

in group t. Therefore, (n+ 1− t)qt ≤ k, or

qt ≤
k

n+ 1− t
. (47)

For this proof, let Mj =
∑j

j′=1 βj′ , for all j = 0, . . . ,m. For all j ∈ [m], let λj = 1
k

∑Mjn

t=Mj−1n+1 qt.

Substituting into (46), we get the constraint that
∑m

j=1 λj ≤ 1. For any j ∈ [m − 1], summing

inequality (47) for t = Mj−1n+ 1, . . . ,Mjn yields λj ≤ ln
Bj
Bj+1

, since n→∞, and Bj = 1−Mj−1,

Bj+1 = 1−Mj by definition. It is also clear from definition that λj ≥ 0 for all j ∈ [m].

Finally, the total expected revenue is

m∑
j=1

r(j)

Mjn∑
t=Mj−1n+1

qt(n+ 1− t), (48)

since for each group t there are n+ 1− t items for each of which qt copies are sold in expectation.

Consider any j ∈ [m]. Since
∑Mjn

t=Mj−1n+1 qt = λjk by definition,
∑Mjn

t=Mj−1n+1 qt(n+ 1− t) is maxi-

mized by setting qt to its upper bound in (47) for t=Mj−1n+ 1,Mj−1n+ 2, . . . until the capacity

of λjk is reached. Since n→∞, we can simply compute the value of t for which

k

n−Mj−1n
+ . . .+

k

n− t
= λjk, (49)

with t ∈ [Mj−1n,Mjn]. Letting t = (Mj−1 + yβj)n with y ∈ [0,1], and using the definition of Bj,

(49) becomes ln
Bj

Bj−yβj
= λj, or yβj =Bj(1− e−λj ). Therefore,

Mjn∑
t=Mj−1n+1

qt(n+ 1− t)≤
(Mj−1+Bj(1−e

−λj ))n∑
t=Mj−1n+1

k

n+ 1− t
· (n+ 1− t)

=Bj(1− e−λj )nk
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Substituting into (48), we get that the expected revenue of the online algorithm is at most (26),

where
∑m

j=1 λj ≤ 1, λj ≤ ln
Bj
Bj+1

for j ∈ [m− 1], and λj ≥ 0 for j ∈ [m], completing the proof. �

Proof of Lemma 5. We use backward induction over j =m, . . . ,1. When j =m, (28) becomes

nkr(m)Bm(1− exp(−τ)), since Am = α(m) by definition. Meanwhile, (27) is maximized by setting

λm = τ , resulting in the same expression and establishing the base case.

Now suppose j < m and that we have already established the lemma in the j + 1 case. If we

set λj = λ, for some λ ∈ [0, τ ], then the maximum value of (27) subject to λj+1, . . . , λm ≥ 0 and

λj+1 + . . .+λm ≤ τ −λ is, by the inductive hypothesis,

r(j)Bj(1− exp(−λ))nk+nk
m∑

`=j+1

r(`)B`

(
1− exp

(
−α(`) +

Aj+1− (τ −λ)

m− (j+ 1) + 1

))
. (50)

Consider this expression as a function of λ. The derivative is

r(j)Bj exp(−λ)nk+nk
m∑

`=j+1

r(`)B` ·
−1

m− j
· exp

(
−α(`) +

Aj+1− (τ −λ)

m− j
)

(51)

and the second derivative is clearly negative, so the function is concave. Therefore, it is maximized

by setting the derivative to 0. By definition (24), r(`)B`e
−α(`)

is identical for all `= j + 1, . . . ,m,

and equal to r(j)Bje
−α(j)

. Thus setting (51) to 0 implies:

exp(α(j)−λ) =
1

m− j

m∑
`=j+1

exp
(Aj+1− (τ −λ)

m− j
)

α(j)−λ=
Aj+1− (τ −λ)

m− j
.

Rearranging and using the definition that Aj+1 =Aj −α(j), we get λ= α(j)− Aj−τ
m−j+1

. Substituting

this value of λ into (50), the expression
Aj+1−(τ−λ)

m−(j+1)+1
is equal to

Aj−τ
m−j+1

, hence (50) is equal to (28),

completing the induction and the proof of the lemma. �

Appendix E: Deriving the Multi-price Value Function ΦP

In this section we explain how we optimized the value function ΦP for a given price set P, leading

to the system of equations in (7), and the functional form in (9). In Appendix E.1, we use the same

method to derive the optimal value function when the price of an item can take any value in the

continuum [rmin, rmax].
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Consider constraints (17)–(18) in Theorem 5 for a single item with k→∞. Let w = N
k

, and we

deterministically set Φ̃ to some Φ. The goal is to solve for the Φ which maximizes the value of F .

Observe that

lim
k→∞

k(Φ(
N + 1

k
)−Φ(

N

k
)) = lim

k→∞

Φ(w+ 1/k)−Φ(w)

1/k
,

which is equal to the derivative of Φ as w, by definition (Φ will end up not being differentiable on

a discrete set of measure 0, which can be ignored). Therefore, (17) is equivalent to

Φ′(w)−Φ(w)≤ r(j)(
1

F
− 1), (52)

and needs to hold for all j ∈ [m],w ∈ [0,L(j)]. For a fixed w ∈ (L(j−1),L(j)), (52) needs to hold for all

j′ = j, . . . ,m, but is clearly binding when j′ = j. Therefore, it suffices to fix a j ∈ [m] and consider

(52) when w ∈ (L(j−1),L(j)).

We should point out that this simplification via the “binding” argument is not possible for a

finite k and random Φ̃, because then (52) becomes Φ̃′(w)− Φ̃(w)≤ r(j)

F
− Φ̃(L(j)), and the RHS in

fact may not be increasing in j. This is why we resort to first solving for Φ when k→∞ and then

defining Φ̃ as a random perturbation of Φ.

If we set (52) to equality for some j ∈ [m] and all w ∈ (L(j−1),L(j)), and solve the differen-

tial equation, we get that Φ(w) must be of the form Cew − r(j)( 1
F
− 1) on (L(j−1),L(j)). Setting

Φ(L(j−1)) = r(j−1) and Φ(L(j)) = r(j), we obtain

C =
r(j)− r(j−1)

eL(j) − eL(j−1)
;

F =
1

1− r(j−1)

r(j)

· (1− e−α
(j)

). (53)

The RHS of (53) is the largest value of F which allows (52) to hold on segment j. It is dependent

on α(j), which is equal to L(j)−L(j−1), the length of segment j. For (52) to hold on all segments

j ∈ [m], F must be set to minj
1

1−r(j−1)/r(j)
· (1− e−α(j)

).

Therefore, we would like to choose segment lengths α(1), . . . , α(m) summing to 1 to maximize the

minimum 1

1−r(j−1)/r(j)
· (1− e−α(j)

), which is accomplished by setting 1

1−r(j−1)/r(j)
· (1− e−α(j)

) equal
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for all j ∈ [m]. This yields the system of equations (7), and Proposition 1. The resulting value of F

is equal to 1− e−α(1)
, since r(0) = 0. The resulting value of C, when substituted into the equation

for Φ(w) on each segment (L(j−1),L(j)), yields (9).

The derivation of Φ we just completed, starting from condition (52), comes from our analysis

of Multi-price Balance. We note that the exact same inequality (52) can also be derived from

our analysis of Multi-price Ranking, which shows that the same value function should be used

for both algorithms.

E.1. Continuum of Feasible Prices

Let the feasible price set for the item be [rmin, rmax], where 0< rmin < rmax. Using the same “binding”

argument, it suffices to maximize the value of F for which the following can hold:

Φ′(w)−Φ(w)≤ rmin(
1

F
− 1), w ∈ (0, α); (54)

Φ′(w)− Φ(w)

F
≤ 0, w ∈ (α,1). (55)

Φ must also satisfy Φ(0) = 0,Φ(α) = rmin,Φ(1) = rmax, while α ∈ (0,1) is an arbitrary “booking

limit” for the lowest price of rmin.

We know from before that under the optimal solution to (54), the value of F can be at most

1− e−α. Solving the differential equation where (55) is set to equality, Φ(w) must take the form

Cew/F on (α,1). Substituting Φ(α) = rmin and Φ(1) = rmax yields

C = (rmin)
1

1−α (rmax)−
α

1−α ;

F =
1−α

ln rmax

rmin

.

Therefore, the value of F is also bounded from above by 1−α
ln(rmax/rmin)

. F is maximized by setting

1−α
ln(rmax/rmin)

equal to the other upper bound of 1− e−α; the value at which equality is achieved is

then the competitive ratio.

Letting R= ln(rmax/rmin), the solution to 1−α
R

= 1− e−α can be written as W (ReR−1)−R+ 1,

where W is the Lambert-W function, the inverse function to f(x) = xex for x∈R≥0. Indeed, when

α=W (ReR−1), the following can be derived:

1−α
R

= 1− e−α
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Re−α = α+R− 1

ReR−1 = (α+R− 1)eα+R−1

W (ReR−1) = α+R− 1

Substituting α=W (ln(rmax/rmin)eln(rmax/rmin)−1)− ln(rmax/rmin) + 1 into the formula for C, and

using the fact that Φ(w) =Cew/F , we get

Φ(w) = (rmin)
1−w
1−α (rmax)

w−α
1−α , w ∈ [α,1].

Meanwhile, the earlier derivation implies that

Φ(w) = rmin · e
w− 1

eα− 1
, w ∈ [0, α].

It can be checked that indeed Φ(0) = 0, Φ(α) = rmin (Φ is continuous at w= α), and Φ(1) = rmax.

Furthermore, unlike the case of discrete prices, it can be checked that Φ is also differentiable at

w= α (on [α,1], use the form that Φ(w) =Cew/F , hence Φ′(α) = Φ(α)

F
).

Appendix F: Supplement to Numerical Experiments

We provide additional details about our choice estimation. We define 8 customer types, one for

each combination of the 3 following binary features.

1. Group: whether the customer indicated a party size greater than 1.

2. CRO: whether the customer booked using the Central Reservation Office, as opposed to the

hotel’s website or a Global Distribution System (for details on these terms, see Bodea et al.

(2009)).

3. VIP: whether the customer had any kind of VIP status.

We did not use features such as: whether the booking date is a weekend, whether the check-in date

is a weekend, the length of stay, or the number of days in advance booked. Such features did not

result in a more predictive model.

We estimate the mean MNL utilities for each of the 8 products separately for each customer

type. The results are displayed in Table 3. The total share of each customer type (out of all the
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Table 3 MNL choice models for the 8 customer types. The suffix “L” on a room type means lower fare, while the suffix “H” on a

room type means higher fare.

Customer Type MNL Mean Utilities
Group? CRO? VIP? Share KingL QueenL SuiteL 2DoubleL KingH QueenH SuiteH 2DoubleH NoBuy

0.16 -0.36 -1.22 -2.56 -1.04 0 -0.23 -2.25 -1.8 0
X 0.03 -0.82 -1.98 -2.16 -2.09 0 -1.02 -1.45 -1.82 0

X 0.28 -1.67 −∞ -3.78 -2.71 0 -1.33 -1.8 -1.58 0
X X 0.09 -2.13 −∞ -3.38 -3.76 0 -2.12 -1 -1.59 0

X 0.19 -0.54 -0.97 -2.26 0 -0.91 -1.47 -2.78 -1.41 0
X X 0.04 -0.09 -0.82 -0.95 -0.14 0 -1.35 -1.07 -0.51 0
X X 0.18 -0.93 −∞ -2.56 -0.76 0 -1.66 -1.41 -0.27 0
X X X 0.03 -1.39 −∞ -2.16 -1.8 0 -2.45 -0.61 -0.28 0

transactions) is also displayed. We should point out that it is possible for a customer to choose the

higher fare for a room, even if the lower fare was also offered. This is because the higher fares are

often packaged with additional offers, such as airline services, city attractions, in-room services,

etc.

We have shifted the mean utilities so that for each customer type, the weights of both the

no-purchase option, and the most-preferred purchase option, is equal to 0. (We synthetically set

the weight of the no-purchase option because it is not possible to estimate from the data.) The

large weights on the no-purchase options ensure that the revenue-maximizing assortments tend to

include both the low and high fares.

In the setting with greater fare differentiation (Subsection 7.5), the high prices of the King,

Queen, Suite, and Two-double rooms are adjusted to $614, $608, $768, $612, respectively (twice

the lower fares). The mean utility of the no-purchase option is increased by 2 for every customer

type, to ensure that the revenue-maximizing assortments still include both the low and high fares.

F.1. Details on the Forecasting Bid-price Algorithms

To forecast the remaining number of customers, we assume that we know the average number

of customers interested in each occupancy date (1340), as well as the overall trend for how far

in advance customers book, which is plotted in Figure 4. As an example of how to use these

numbers, consider the occupancy date March 31st. At the start, we forecast there to be 1340

arrivals. However, suppose by March 6th, 500 customers have arrived. Since we know from Figure 4

that roughly 50% of the total population interested in March 31st will have already booked by

March 6th (25 days in advance), we expect there to only be 500 customers remaining.
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Figure 4 Distribution of arrivals over the days before check-in, formed by aggregating all trans-

actions.

To forecast the breakdown of remaining customers by type, we assume that we know the aggre-

gate distribution of customer type over all occupancy dates. For example, from Appendix F, we

know that 28% of all customers are of Type 3. Then we would estimate 28%×500 = 140 of the 500

remaining customers to be of Type 3. Alternatively, one can try to learn the specific distribution

of customers interested in March 31st. Suppose that only 100, or 20%, of the 500 bookings made

before March 6th came from customers of Type 3. Then we would instead estimate 20%×500 = 100

of the 500 remaining customers to be of Type 3.

To use the forecasted information, algorithms incorporate it into the LP (30), and set the bid

price of each item i equal to the shadow price of constraint i in (30b). These algorithms then offer

each customer t the assortment S (from the available items) maximizing
∑

(i,j)∈S p
(j)
t,i (S)

(
r

(j)
i −λi

)
.

We clarify the exact way in which the forecasted information is incorporated into the LP. Let

there be A customer types, indexed by a = 1, . . . ,A. We use p
(j)
a,i(S) to denote the probability of

a customer of type a choosing product (i, j) from assortment S. Suppose that when we want to

re-solve the LP (30), the forecasted number of remaining customers of type a is Na, for all a∈ [A],

and the remaining inventory of item i is Ki, for all i ∈ [n]. We can formulate the following LP,

which is a modification of (30):

max
A∑
a=1

∑
S

xa(S)
∑

(i,j)∈S

r
(j)
i p

(j)
a,i(S)
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A∑
a=1

∑
S

xa(S)
∑

j:(i,j)∈S

p
(j)
a,i(S)≤ ki i∈ [n]

∑
S

xa(S) =Na a∈ [A]

xa(S)≥ 0 a∈ [A], S ⊆ {(i, j) : i∈ [n], j ∈ [mi]}

We have set T =
∑A

a=1Na and |{t : type of customer t is a}|=Na; note that the ordering of remain-

ing customers is inconsequential for the LP.

Although this LP has an exponential number of variables, we can easily solve it using column

generation (e.g., see Liu and Van Ryzin (2008)). Fix an optimal primal solution (x∗a(S) : a∈ [A], S ⊆

{(i, j) : i ∈ [n], j ∈ [mi]}) and an optimal dual solution (y∗i : i ∈ [n]), (z∗a : a ∈ [A]). The bid-price

algorithm sets the bid price of each item i equal to y∗i .

We should point out that for every bid-price algorithm based on dual variables, there is a

corresponding random assignment algorithm based on primal variables. Such an algorithm would,

for each customer type a, offer each assortment S with probability proportional to x∗a(S). We have

confirmed that these algorithms perform similarly in the simulations. We compare with the bid-

price algorithms instead of the random assignment algorithms because they follow a form more

similar to our Multi-price Balance algorithm.
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