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Abstract

Existing Lanchester combat models focus on two force parameters: numbers (force

size) and per-capita effectiveness (attrition rate). While these two parameters are cen-

tral in projecting a battle’s outcome, there are other important factors that affect the

battlefield: (1) targeting capability, the capacity to identify live enemy units and not

dissipate fire on non-targets; (2) tactical restrictions preventing full deployment of

forces; and (3) morale and tolerance of losses, the capacity to endure casualties. In

the spirit of Lanchester theory, we derive, for the first time, force-parity equations for

various combinations of these effects, and obtain general implications and trade-offs.

We show that more units and better weapons (higher attrition rate) are preferred over

improved targeting capability and relaxed deployment restrictions unless these are

poor. However, when facing aimed fire and unable to deploy more than half one’s

force it is better to be able to deploy more existing units than to have either additional

reserve units or the same increase in attrition effectiveness. Likewise more relaxed de-

ployment constraints are preferred over enhanced loss-tolerance when initial reserves

are greater than the force level at which withdrawal occurs.
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1 Introduction

Military forces engaged in a battle of attrition have classically been described by Lanch-

ester equations (Lanchester, 1916; Taylor, 1983; Bracken, 1995; Breton et al., 2006), and in

particular by the Square Law (Taylor, 1983; Kress and Talmor, 1999). A Lanchester model

– a pair of linear differential equations – determines, for each side in the battle, the balance

between the effects of initial force size and attrition effectiveness. Lanchester’s aimed fire

model, in which forces cause attrition in proportion to their numbers, results in Lanch-

ester’s Square Law: that the effect of the initial force size is quadratic, while the effect of

the attrition rates is linear.

Lanchester’s model, while insightful and widely used in combat modeling, is overly

simple. In particular, it implicitly assumes that no attrition effort is wasted on targets al-

ready destroyed, that each side can deploy all of its available forces at the outset, and that

the loser is totally annihilated. In reality, these three assumptions do not hold. First, the

identification of targets and then of their state – killed or alive – is a perennial military

conundrum, which leads to wasted attrition efforts (Diehl and Sloan, 2005). Lanchester’s

unaimed fire model, one of his two models which result in Lanchester’s Linear Law, ad-

dresses the case of total absence of such targeting capability. Second, due to tactical, oper-

ational or other constraints (e.g., of terrain), a force may only be able to deploy a fraction

of its units, which, upon attrition, will be replenished from the remaining units held in

reserve. Third, battles seldom continue until one force is annihilated. More typically, one

force will opt to surrender or disengage if its attrition reaches its loss-tolerance threshold

– an attrition level at which the competitor loses the will to fight.

A military example of some of these issues is the battle of Ein-A-Tinna during the 1982

Lebanon war (Gabriel, 1984). Southern Lebanon is a mountainous region, crisscrossed by

narrow, steep and winding roads where mechanized units were forced to move in a single

column. An Israeli tank battalion was approaching the village of Ein-A-Tinna assuming

that there were no Syrian troops in that village. As the first tank in the column was turning
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around a horseshoe bend in the road, it encountered heavy fire from the village. It was

hit and the second tank in the column passed it and took over the position in the front,

resuming the fire duel. The second tank was also hit and a third tank in line, taking over

and resuming the fight, was immediately hit too. At this point the battalion commander

decided to retreat and regroup. A small Syrian force (about 6 tanks) successfully engaged

a battalion (30 tanks) because it was able to exercise all of its firepower while that of the

Israeli forces was reduced, due to the topography, to only a single tank.

In this paper we address the three aforementioned aspects: imperfect targeting, tactical

restrictions on deployment, and limited tolerance of losses. The goal, in the spirit of classic

advocacy of simple mathematical models (Richardson, 1960; Epstein, 2008), is to connect

simple real constraints on Lanchester’s aimed-fire square-law model with equally simple

conclusions.

Section 2 presents a short review of Lanchester’s Square Law. In section 3 we assume

that all three disadvantages – imperfect targeting capability (TC), constrained deployment

and limited loss-tolerance – apply to one side only. This enables a simpler initial exposi-

tion, and also allows us to clearly observe how the three effects combine. The first effect, of

imperfect TC, would classically be thought of as leading to the Linear Law of Lanchester’s

unaimed fire model, but, in fact, its effect is more subtle: it leads to a Square Law with a

penalty factor. The other two effects simply exacerbate this into a Square Law with an

even greater penalty on the effective per-unit kill rate. In section 4 we apply the effects to

both sides. Regarding loss-tolerance, our results extend the work of Taylor (1983), p.126.

Regarding deployment constraints we extend the model in Kress and Talmor (1999). Sec-

tion 5 presents the implications of our results as a series of operational and force-planning

propositions.
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2 Lanchester’s Square Law

LetB(t) andR(t) denote the force sizes at time t of two adversaries, called henceforth Blue

and Red respectively. For notational simplicity we suppress the explicit time dependence

and write B(t) = B and R(t) = R. Let b and r denote their respective kill rates. The initial

conditions are given, B(0) = B0 and R(0) = R0. The Lanchester equations are

dB

dt
= −rR,

dR

dt
= −bB.

(1)

Essentially, the conditions for these to hold are that all units on both sides are in action,

aim their fire, know when they have incapacitated their targets, and can quickly acquire

new ones. For this reason (1) is often known as the aimed-fire model.

Dividing the first equation by the second one we obtain dB
dR

= rR
bB

and thus

bB dB = rR dR. (2)

Integrating, we obtain the state equation of the Lanchester Square Law:

b(B2
0 −B2) = r(R2

0 −R2). (3)

Now suppose that Blue and Red fight to annihilation, with the battle ending at time t∗,

where t∗ is the earliest time such that min (B(t∗), R(t∗)) = 0. We define parity as mutual

annihilation: B(t∗) = R(t∗) = 0. From (3), mutual annihilation occurs if and only if

rR2
0

bB2
0

= 1, (4)

which is called the parity equation.

Hence the Square Law: the effect of the initial force size is squared compared to the
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attrition rates, R2
0 against r and B2

0 against b. The solution curves (3) are hyperbolae,

which show an increasing deviation from parity as the battle progresses, due to increasing

‘ganging up’ by the winning side on the depleted losing force. That is, assuming (4) does

not hold and one side wins the battle, then the ratio rR2

bB2 moves further away from 1 as the

battle progresses.

Lanchester contrasted this with two models in which the more intuitive Linear Law

holds. The simplest such model is the ancient model, in which both sides engage the same

number of units in a series of one-on-one duels. More interesting is the unaimed-fire model,

in which
dB

dt
= −rRB

dR

dt
= −bBR.

(5)

Here losses are proportional not only to attacking but also to defending numbers. This

could be due to density-dependence in the effect of indirect artillery fire, or because of the

effects on direct fire of poor TC, causing fire to be wasted on decoy or inactive targets. Lin-

earity follows because, when we divide one equation by the other, dB
dR

no longer depends

on force sizes; the state equation is then

b(B0 −B) = r(R0 −R), (6)

and the parity equation thereby becomes

rR0

bB0

= 1. (7)

However, note that b and r now mean something different: they are attacking units’ kill

rates per unit time and per enemy unit. We shall address this subtlety, and its connection

with the Square Law, in the next section.
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3 An asymmetric Lanchester engagement

Consider a generalized engagement in the spirit of Ein-A-Tinna, described in Section 1. B

Blue tanks are forced to attack along a road or other defile, so that only a fixed number

Bmax can deploy. That is, B − Bmax Blue tanks initially start in reserve and are neither

effective nor vulnerable to Red’s fire. Red’sR defenders, in contrast, are all able to engage.

We give Blue two further disadvantages: limited loss-tolerance, and poor targeting due to

absent or limited battle damage assessment (BDA) regarding the status of Red’s targets.

We first incorporate absent BDA into the model and then introduce the other two factors.

3.1 Targeting

When Blue’s targeting capability (TC) is poor, its probability to accurately target a live Red

unit is reduced, and therefore the total aimed fire rate bB is subject to some multiplier less

than one. The simplest case is absent BDA, so that Blue targets live units randomly among

the live and dead. This absent BDA case produces a multiplier R
R0

and the asymmetric

model
dB

dt
= −rR,

dR

dt
= −bB R

R0

.

(8)

This asymmetric model, with aimed fire from Red and unaimed fire from Blue, is the

guerrilla model of Deitchman (1962).

The effect of lack of BDA is seen by observing the state equation

1

2
b(B2

0 −B2) = r(R2
0 −RR0), (9)

which is obtained by steps similar to those leading to Eq. (3).
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The parity condition is now

rR2
0

bB2
0

=
1

2
. (10)

Thus the Square Law, in initial numbers, still applies! Blue’s penalty for its lack of BDA is

seen rather in the additional factor 1
2

on the right-hand side: Blue would need to double

its kill rate, or increase its numbers by
√
2, to remedy this.

Note that poor BDA is just one cause of poor TC. We could easily make the engagement

still less favorable for Blue by giving Red further decoying or cover, with even the location

of its units unclear to Blue. In this case, Blue’s incapacity to identify targets goes beyond

mere lack of BDA and becomes a more wide-ranging lack of targeting capability – Blue

is reduced to ‘firing into the brown’. This would require the replacement of R0 in the

denominator in (8) by some fixed parameter R+ greater than R0. Then, setting σ = R0/R+

(so that σ < 1), the parity equation becomes

rR2
0

bB2
0

=
σ

2
. (11)

Thus any further decoying and cover beyond mere absence of BDA, any ‘firing into the

brown’, is equivalent to a proportionate reduction in kill-rate.

A different variation is to give Blue imperfect but not totally absent BDA, parametrized

by δ, with 0 ≤ δ ≤ 1: a proportion δ of Blue’s fire is directed only at currently-live targets,

while a fraction 1− δ of its fire is uniformly directed at any of the R0 (live or dead) targets

available initially. The equations are then

dB

dt
= −rR,

dR

dt
= −bBδR0 + (1− δ)R

R0

.

(12)

This is the system previously put forward as a model for the effects of partial intelligence
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(Kress and MacKay, 2014). The fraction in the dR
dt

part of equation (12) varies linearly be-

tween 1 and R/R0 ≤ 1, so that δ interpolates between aimed fire (δ = 1) and Deitchman’s

model (8) (δ = 0). The parity equation for (12) is

rR2
0

bB2
0

=
1− δ
2

(
1 +

δ log δ

1− δ

)−1

. (13)

Throughout this paper log refers to the natural logarithm. Equation (13) is a variant of

equation (8) of Kress and MacKay (2014). When δ = 0 (absent BDA) this is (10), while

when δ ' 1 (by Taylor expansion) it is

rR2
0

bB2
0

= 1− (1− δ)/3 + ..., (14)

reducing to (4) at δ = 1 (perfect BDA).

3.2 Deployment

Now we add the effect of the defile. If B0 > Bmax, then for as long as B > Bmax Blue’s

deployment is constrained. We assume that each time Blue loses a combatant, another is

able to take its place, so that bB is replaced by bBmax, whether in the simple aimed-fire

model (1) or in (8) above. Thus, for the latter, we now have a two-stage battle:

dB

dt
= −rR,

dR

dt
= −bBmax

R

R0

.

(15)

while B > Bmax, and (8) thereafter.

For the first stage, the equation which results from separating variables and integrating

is

bBmax(B0 −B) = rR0(R0 −R). (16)
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If it happens that Red is annihilated, R = 0, before Blue is reduced to Bmax then Blue has

won for the loss of rR2
0/bBmax units. There is then no parity equation to consider, for parity

includes R = 0, B = 0 and thus requires Blue attrition to continue beyond B = Bmax.

Otherwise, the first stage ends when B = Bmax, at which R = R1, say. At this point,

bBmax(B0 −Bmax) = rR0(R0 −R1). (17)

For the second stage, which is the Deitchman model (8) but beginning at B = Bmax, R =

R1, the parity equation (10) is replaced by

rR0R1

bB2
max

=
1

2
. (18)

Writing µ = Bmax/B0 (so that 0 < µ < 1) and substituting (17) into (18), we obtain

rR2
0

bB2
0

=
µ(2− µ)

2
. (19)

So we now see a Square Law further modified by the constraint on deployment: beyond

the factor of 1
2

already seen due to lack of BDA, we now have a further factor of µ(2− µ).

Note that since 0 < µ < 1 this factor is less than one: for example, if µ = 1/2 so that Blue

can deploy only half its force initially, then µ(2 − µ) = 3/4. In order to compensate, its

kill rate must improve by a factor of 4/3, or its numbers be increased by the square root of

this. In the extreme case of Ein-A-Tinna, where µ = 1/B0, the factor needed to compensate

is approximately B0/2.

3.3 Loss-tolerance

Finally, suppose Blue has limited loss-tolerance: it will disengage if its numbers are re-

duced from B0 to βB0, where β is Blue’s withdrawal proportion. The lower the withdrawal

proportion of a force, the higher its loss-tolerance. We assume that βB0 ≤ Bmax, or µ > β
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– that is, the battle continues into the second stage, beyond the point where the constraint

on deployment ceases to apply. Adding this effect to those of the previous two subsec-

tions, with δ = 0 (no BDA), and with the battle now finishing at R = 0, B = βB0, the

parity equation becomes

rR2
0

bB2
0

=
2µ− µ2 − β2

2
, (20)

which is positive as a consequence of µ > β.

Equation (20) captures the compounded effect of the three disadvantages suffered

by Blue: no BDA, constrained deployment and limited loss-tolerance. It describes the

balance-of-forces which will lead to the outcome that Red is annihilated precisely when

Blue is about to withdraw: on one side of this threshold, Blue annihilates Red just before

Blue reaches its withdrawal level; on the other, Red forces Blue to withdraw just before

Red is annihilated.

For example, suppose µ = 1/3 (Blue can only deploy a third of its initial force) and

β = 1/4 (Blue is willing to lose up to three quarters of its force before withdrawing). Then

2µ− µ2 − β2

2
=

1

2

(
2

3
− 1

9
− 1

16

)
= 0.247, (21)

so that Blue needs to be roughly four times as effective or twice as numerous as Red to

achieve parity.

These effects – perhaps combined with poor TC beyond poor BDA, realized as the

further multiplier σ < 1 of ‘firing into the brown’ from (11) – provide a natural theoretical

context for the classic empirical ‘3:1’ rule of offense: that attackers need to be three times as

numerous as defenders for parity (Mearsheimer, 1989; Epstein, 1989; Dupuy, 1989; Yigit,

2000).

To conclude, we examine the trade-off between deployment and loss-tolerance in Fig-

ure 1. We set R0 = B0 and define α ≡ r
b

as the relative combat effectiveness. The y-axis
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is the withdrawal proportion β, which is the complement of loss-tolerance. For several

values of α we plot the (µ, β) combination that produces parity, which corresponds to (20)

if β ≤ µ. When β > µ the parity condition can be derived by substituting R = 0 and

B = βB0 into equation (16). The y-axis in Figure 1 is flipped; we construct the figure this

way so that maximum loss-tolerance (β = 0) corresponds to the top of the figure. The up-

per right-hand corner of the figure is the “Deitchman point” with α = 1
2

(see (10)). If Red’s

kill rate is within a factor of two of Blue’s, then Blue cannot win. As Blue’s loss-tolerance

and/or deployment decrease, Red’s combat effectiveness must be substantially less than

Blue’s to maintain parity.
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Figure 1: Parity contours for R0 = B0 and various values of α = r
b
.

4 Symmetric engagements

This section generalizes the previous section, applying the three effects to both sides.

4.1 Deployment

Suppose we give both sides perfect TC but constrain deployment, so that Blue can only

deploy Bmax < B0 units and Red Rmax < R0. Again we write µ = Bmax/B0, and also set

ν = Rmax/R0.
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The engagement thus begins as Lanchester’s ancient warfare model,

dB

dt
= −rRmax,

dR

dt
= −bBmax.

(22)

This holds from the initial values R0, B0 until (without loss of generality) B = Bmax and

R = R1 > Rmax. The state equation at this stage of the battle is

bBmax(B0 −Bmax) = rRmax(R0 −R1). (23)

In the next stage we have
dB

dt
= −rRmax,

dR

dt
= −bB

(24)

until R = Rmax and B = B1, with state equation

rRmax(R1 −Rmax) =
1

2
b(B2

max −B2
1). (25)

The final stage, for which B < Bmax and R < Rmax, is simple aimed fire, and obeys the

Square Law. Combining the state equations to eliminate R1 and B1, we find

rR2
0

bB2
0

=
2µ− µ2

2ν − ν2
. (26)

The additional function of µ and ν on the right captures the effect of the deployment

constraint on what remains, in terms of the relationship among R0, B0, r and b, a modified

Square Law.
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4.2 Targeting

In this symmetrical situation, there are various ways in which a force’s deployment con-

straints can interact with its opponent’s poor TC and BDA.

At its simplest, suppose for example that the constraint on deployment is a limited

number of available foxholes. Each side observes the locations of the opponent’s foxholes,

but does not know whether a foxhole contains a live combatant. As long as force levels

are sufficiently large, all foxholes are occupied and the battle is an exchange of aimed fire.

Once the total attrition of Blue (respectively Red) exceedsB0−Bmax (resp. R0−Rmax) some

foxholes become “empty,” and the fire becomes exceedingly unaimed. The battle begins

with (22). The next stage, when B < Bmax but R > Rmax, is (24), but with a multiplier

of B/Bmax in the first equation — which reduces the state equation back to precisely that

of (22). Similarly for the final stage, so that the parity equation is simply the Linear Law

rR0Rmax = bB0Bmax of Lanchester’s ancient model, or

rR2
0

bB2
0

=
µ

ν
. (27)

If there is poor TC beyond mere absence of BDA, the effect is to impose further penalty

factors as in (11).

Alternatively, the most extreme case of absent BDA is to suppose a situation in which

each force can deploy a maximum number of live units alongside its dead, while neither

force knows which of its visible opponents is live or dead. For example, logistics or com-

mand and control capabilities can only support Bmax (resp. Rmax) active combatants at

a time. In such a situation Blue, for example, initially sees Rmax Red units, all live, but

thereafter sees Rmax + R0 − R units (Rmax live plus R0 − R killed). Later, after R passes
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below Rmax, Blue sees R0 units of which R are live. Thus the dynamics are initially

dB

dt
= −rRmax

Bmax

Bmax +B0 −B
,

dR

dt
= −bBmax

Rmax

Rmax +R0 −R
,

(28)

from the initial values R0, B0 until (again, without loss of generality) B = Bmax and R =

R1. The state equation is then

r(Rmax +R0)(R1 −R0) +
1

2
r(R2

0 −R2
1) = b(Bmax +B0)(Bmax −B0) +

1

2
b(B2

0 −B2
max). (29)

This is a quadratic equation, but there is no need to solve for R1. During the next stage,

which ceases when R = Rmax and B = B1 < Bmax,

dB

dt
= −rRmax

B

B0

,

dR

dt
= −bB Rmax

Rmax +R0 −R
,

(30)

and the state equation is

r(Rmax +R0)(Rmax −R1) +
1

2
r(R2

1 −R2
max) = bB0(B1 −Bmax). (31)

The final stage is a simple unaimed-fire linear law, and eliminating B1 and R1 we find

rR2
0

bB2
0

=
1 + 2µ− µ2

1 + 2ν − ν2
. (32)

It is interesting to compare (32) – corresponding to no BDA – with (26) where BDA is

perfect. The lack of BDA is seen in the additional ones in the fraction, whose effect is to

mitigate any asymmetry in proportions of forces able to deploy. For example, suppose

Blue is initially able to only deploy a quarter of its forces (that is, µ = 0.25), while Red is
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able to deploy half (ν = 0.5). Then the final fraction in (26) is 0.58, while that in (32) is

approximately 0.82. In other words, reduced TC decreases the effect of tactical advantage.

In the asymmetric TC case where, say, Red has perfect TC but Blue has none, the parity

equation becomes

rR2
0

bB2
0

=
2µ− µ2

1 + 2ν − ν2
. (33)

If Red has no deployment constraint, ν = 1, this is simply (19). If Blue also has no deploy-

ment constraint so that µ = 1, it is (10). Examining parity conditions (26), (32), (33), we

note that whereas the Blue (resp. Red) deployment parameter appears in the numerator

(resp. denominator), the presence or absence of Blue (resp. Red) TC appears as a 0 or 1 in

the denominator (resp. numerator).

4.3 Loss-tolerance

First we consider high loss-tolerance, which means that withdrawal levels (of βB0 for

Blue, ρR0 for Red) are reached only in the final stage of the engagement, when deployment

constraints no longer apply. In this section when we consider the absence of TC, we use

the extreme lack of BDA model corresponding to equation (32). Then the parity equations

are

rR2
0

bB2
0

=
2µ− µ2 − β2

2ν − ν2 − ρ2
(34)

for the case of perfect TC,

rR2
0

bB2
0

=
1 + 2µ− µ2 − 2β

1 + 2ν − ν2 − 2ρ
(35)
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for the case of absent TC, and

rR2
0

bB2
0

=
2µ− µ2 − β2

1 + 2ν − ν2 − 2ρ
(36)

when Red has TC but Blue has none.

We can combine these as

rR2
0

bB2
0

=
1− δR + 2µ− µ2 − 2β

1− δB + 2ν − ν2 − 2ρ
(37)

where δR denotes the entire presence (δR = 1) or absence (δR = 0) of Red TC, and likewise

for Blue.

When at least one side’s loss-tolerance is low, so that withdrawal levels are reached

before deployment constraints, the engagement does not go through all the stages of the

cases above. Looking only at perfect TC, suppose first that loss-tolerance is high (relative

to deployment) on one side but low on the other — without loss of generality, let βB0 >

Bmax but ρR0 < Rmax. Then (34) is replaced by

rR2
0

bB2
0

=
2µ(1− β)

2ν − ν2 − ρ2
. (38)

When loss-tolerance is low on both sides, βB0 > Bmax and ρR0 > Rmax, we have

rR2
0

bB2
0

=
2µ(1− β)
2ν(1− ρ)

. (39)

It is straightforward to combine low or mixed loss-tolerance with absent or mixed TC; we

do not give details.
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4.4 Casualties

Our focus has been determining the victor, which is dictated by the parity conditions in

(37)–(39). While the parity condition is arguably the most important output of Lancheste-

rian analysis, other metrics are also informative. These include the number of casualties

suffered by the victor and the time until the battle ends. For example a Blue comman-

der might choose to avoid a direct confrontation with Red, even if Blue can theoretically

defeat Red in the battle, because Blue’s projected casualties are too high.

In this section we present results for the number of casualties in the high loss-tolerance

setting (µ > β and ν > ρ). We examine the complete model that captures both deployment

and loss-tolerance and analyze the perfect TC and absent TC cases separately.

We assume Blue wins the battle, so that (37) implies

rR2
0

bB2
0

<
1− δR + 2µ− µ2 − 2β

1− δB + 2ν − ν2 − 2ρ
. (40)

We defineBF andRF as the final force levels at the end of the battle, and henceB0−BF

and R0 −RF are the casualties. By assumption RF = ρR0 and BF > βB0.

For both perfect and absent TC, the results depend upon whether Blue reaches its

deployment constraint before winning (BF vs Bmax). If Blue does hit the deployment con-

straint (BF ≤ Bmax), we can further examine whether Red or Blue reaches the deployment

constraint first; however, the results are the same for these two subscenarios.

Section 4.4.1 presents the casualties for the perfect TC case and Section 4.4.2 contains

the analogous results for the absent TC case. Section 4.4.3 concludes with numerical illus-

trations.
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4.4.1 Perfect TC

Since Blue wins the battle, equation (34) implies the following condition must hold through-

out this section

rR2
0

bB2
0

<
2µ− µ2 − β2

2ν − ν2 − ρ2
(41)

By assumption µ > β and ν > ρ, and hence both the numerator and denominator on the

right-hand side of (41) are positive.

The final Blue force level BF depends upon whether Blue reaches the deployment con-

straint Bmax before Red reaches its withdrawal proportion ρ.

1. Blue does not reaches its deployment constraint (BF > Bmax) if and only if

rR2
0

bB2
0

<
2µ(1− µ)

2ν − ν2 − ρ2
. (42)

Blue’s final force level is

BF = B0

(
1− 1

2µ

rR2
0

bB2
0

(2ν − ν2 − ρ2)
)
. (43)

2. Blue reaches its deployment constraint (BF ≤ Bmax) if and only if

rR2
0

bB2
0

≥ 2µ(1− µ)
2ν − ν2 − ρ2

, (44)

Blue’s final force level is

BF = B0

√
µ2 −

(
rR2

0

bB2
0

(2ν − ν2 − ρ2)− 2µ(1− µ)
)
. (45)

The steps to derive the final force levels are similar to the logic required to move from

equation (22) to (26). We sketch the steps here for scenario 1, when Blue does not reach its
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deployment constraint. We first solve for Blue’s force level when Red reaches its deploy-

ment constraint Rmax. We denote this level B1 and it satisfies a similar state equation to

(23)

bBmax(B0 −B1) = rRmax(R0 −Rmax). (46)

After solving for B1, the state equation for BF is similar to (25)

bBmax(B1 −BF ) =
1

2
r(R2

max − ρ2R2
0). (47)

Solving for BF via (46)–(47) yields (43). Requiring BF > Bmax generates condition (42).

4.4.2 Absent TC

Blue achieves victory according to condition (35 if and only if

rR2
0

bB2
0

<
1 + 2µ− µ2 − 2β

1 + 2ν − ν2 − 2ρ
. (48)

We assume condition (48) holds. Blue’s final force level appears below.

1. Blue does not reaches its deployment constraint if and only if

rR2
0

bB2
0

<
1− µ2

1 + 2ν − ν2 − 2ρ
. (49)

The final final force level is

BF = B0

(
1 + µ−

√
µ2 +

rR2
0

bB2
0

(1 + 2ν − ν2 − 2ρ)

)
. (50)
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2. Blue reaches its deployment constraint if and only if

rR2
0

bB2
0

≥ 1− µ2

1 + 2ν − ν2 − 2ρ
. (51)

Blue’s final force level is

BF = B0

(
µ− 1

2

(
rR2

0

bB2
0

(1 + 2ν − ν2 − 2ρ)− (1− µ2)

))
. (52)

The details to derive the above final force levels are similar to the steps required to

move from (28) to (32).

4.4.3 Numerical Illustrations

Figure 2 plots the fraction of Blue casualties (B0−BF

B0
) against Blue attrition rate b. We fix

R0 = B0, r = 1, β = 0, ν = 0.3, and vary µ, ρ, and TC across the curves and panels. The top

row corresponds to the full TC case from Section 4.4.1 and the bottom row corresponds to

the absent TC case from Section 4.4.2. The results in Sections 4.4.1–4.4.2 are only for the

high loss-tolerance situation when ρ < ν. Only the left column of Figure 2 satisfies this

high loss-tolerance criteria, however it is straightforward to derive final force levels for

the low loss-tolerance settings similar to Sections 4.4.1–4.4.2.

Figure 2 reveals that all the parameters have a significant impact on the results. In-

creasing the attrition rate b and deployment µ can decrease Blue casualties substantially.

Any action Blue takes to decrease Red’s loss-tolerance (e.g., lower Red morale) also has an

impact on Blue casualties. TC has the most interesting relationship with Blue casualties,

as Blue’s preference for perfect TC vs. absent TC depends upon the situation. Compar-

ing the top row of Figure 2 to the bottom, we see the absent TC curves are more tightly

bunched. This implies that when Blue has the tactical advantage (larger µ and/or b), then

Blue prefers perfect TC so that Blue can exploit its tactical superiority. However, when Red

has the advantage (smaller µ and/or b) Blue prefers absent TC. The absence of TC negates
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some of Red’s advantage and provides more opportunity for Blue to win the battle and

suffer fewer casualties.
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(c) Absent TC, µ = 0.2
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(d) Absent TC, µ = 0.8

Figure 2: The number of Blue casualties relative to initial force level (B0−BF

B0
) as a function

of the relative attrition coefficient b/r. R0 = B0, β = 0, ν = 0.3. Each curve corresponds to
a fixed ratio µ

ν
∈ {1

3
, 1
2
, 1, 2, 3}. Each column corresponds to a different ρ ∈ {0.2, 0.8}. Top

row: perfect TC, Bottom row: absent TC.
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5 Analysis

In the simple aimed-fire Lanchester model, each side has only two parameters, its initial

numbers B0 (resp. R0) and its unit effectiveness (kill rate) b (resp. r). The Square Law can

be framed as a statement about the relative values of small proportional increases in b

and B0, deduced from the parity equation: an increase in B0 by a factor 1 + x/100 (that

is, giving Blue x% additional initial units) is equivalent to an increase in b by a factor of

approximately 1 + 2x/100 (that is, giving Blue 2x% better individual effectiveness). We

can write this as a statement about logarithmic derivatives: in the parity equation,

db :=
d(log rR2

0)

d(log b)
= 1, (53)

dB0 :=
d(log rR2

0)

d(logB0)
= 2. (54)

That is, Blue prefers by a factor of two a small proportional increase in initial force size to

the same proportional increase in kill rate.

We frame the results of the previous two sections in a similar way. The aim is to un-

derstand the trade-offs among force size, unit kill-rate, TC, tactical deployment capability

and combat loss-tolerance.

We present a series of propositions about these trade-offs which apply for general val-

ues of the parameters. We provide one proposition for the asymmetric case of Section 3

before turning to the symmetric case of Section 4. Unless otherwise stated, there are no

restrictions on the values the model parameters can take, and hence our results are quite

general. All results apply assuming other parameters are held constant.

First we look at the trade-off between per-unit kill-rate b or total force B0 against

continuously-variable TC for the asymmetric case.

Proposition 1. For the asymmetric case of Section 3 with total Blue deployment (µ = 1) and

loss-tolerance (β = 0), Blue prefers proportional improvements in its kill-rate or numbers to im-
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provements in its TC, unless TC is almost entirely absent.

Proof. Here we are comparing absolute increases in δ with proportional increases in b and

B0, so that, for example, an increase from δ = 0.2 to δ = 0.3 is being compared with a 10%

increase in b or B0 (not a 50% increase). We begin by computing, from the parity equation

(13),

Dδ :=
d(log rR2

0)

dδ
=

1

δ

{(
1 +

δ log δ

1− δ

)−1

− 1 + δ

1− δ

}
. (55)

This is not very intuitive, so we plot its numerical values:
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This figure is analogous to Fig. 2(a) of Kress and MacKay (2014), but now with that

paper’s parameter I0/P = 1. The crucial point is thatDδ < 2 for all δ > 0.03 andDδ < 1 for

all δ > 0.15, so that Blue prefers improvements in force size to equivalent improvements in

its TC whenever TC is greater than 0.03, and also prefers improvements in kill rate when

TC is greater than 0.15. �

The remaining proofs pertain to the symmetric case in Section 4 and primarily utilize

equations (34)–(36). We first examine Blue’s trade-off of kill-rate against deployment,

when Blue’s loss-tolerance is total or very high (β small or zero). TC is binary, and may be

either absent or complete for each of Blue and Red, but the comparison in Blue’s trade-off

is dependent only on Red’s TC.
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Proposition 2. For the symmetric case of Section 4 with high Blue loss-tolerance (β ≈ 0) and high

Red loss-tolerance (ρ ≈ 0), Blue prefers small proportional increases in kill-rate to small increases

in deployed proportion of its force provided the deployed proportion of force is µ > 2−
√
3 = 0.27

(when Red TC is absent) or µ > 2−
√
2 = 0.59 (when Red TC is perfect).

Proof. For this we compute the appropriate derivative from (37),

Dµ :=
d(log rR2

0)

dµ
=

2(1− µ)
1− δR + 2µ− µ2

. (56)

Then Dµ < 1 when µ > 2−
√
3− δR. �

Note that a small increase µ 7→ µ + ζ is identical with a small increase in deployable

force to Bmax + ζB0, with B0 fixed. Proposition 2 illustrates that Blue deployment is rela-

tively more important when Red has perfect TC.

To treat the trade-off of Blue’s total force B0 against deployable force Bmax, again

when loss-tolerance is total or very high, we proceed slightly differently, comparing small

absolute increases (measured in units of force) in both.

Proposition 3. Consider the symmetric case of Section 4 with high Blue loss-tolerance (β ≈ 0)

and high Red loss-tolerance (ρ ≈ 0). Absent Red TC, Blue always prefers a small absolute increase

in its total force B0 over a small absolute increase in its deployable force Bmax. With perfect Red

TC, Blue prefers additional total force to additional deployable force provided µ > 0.5.

Proof. Consider

(1− δR + 2µ− µ2)B2
0 = (1− δR)B2

0 + 2B0Bmax −B2
max, (57)

which is the Blue component of the parity conditions in (37), ignoring the constant b.

Now make small changes B0 7→ B0+x,Bmax 7→ Bmax+ y (equivalent to computing partial
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derivatives with respect to B0 and Bmax). The first-order variation in (57 is

(1− δR)(B0 + x)2 + 2(B0 + x)(Bmax + y)− (Bmax + y)2 − ((1− δR)B2
0 + 2B0Bmax −B2

max)

= 2((1− δR)B0 +Bmax)x+ 2(B0 −Bmax)y +O(x, y)2. (58)

For δR = 0 (that is, absent Red TC), B0 + Bmax > B0 − Bmax always, so the coefficient of x

is greater than that of y, and an increase in B0 is more valuable than an increase in Bmax.

For δR = 1 (perfect Red TC), the equivalent condition is Bmax > B0−Bmax, true only when

2Bmax > B0 or µ > 0.5. �

It is natural to consider a more practical choice: what happens if additional units be-

come available to Blue (augmenting B0) when Blue is also in control of its deployed units

Bmax? Should Blue immediately deploy its newly-available units, or hold them in reserve?

For this we have

Corollary 1. Consider the symmetric case of Section 4 with high Blue loss-tolerance (β ≈ 0) and

high Red loss-tolerance (ρ ≈ 0). Suppose Blue has a small number of additional units, and can

choose to deploy or reserve them. Then Blue should always choose to deploy them, whatever Red’s

TC state.

Proof. Suppose x units become available. Holding them in reserve is B0 7→ B0+x, Bmax 7→

Bmax. Deployment is B0 7→ B0 + x, Bmax 7→ Bmax + x. But the latter is always better, since

the coefficient of y in the change (58) is positive, independent of whether δR is one or zero.

�

Corollary 1 is essentially the longstanding military principle of concentration of force

at the decisive point: if Blue has (echoing Ein-A-Tinna) 10 tanks, and one more tank be-

comes available, then Blue should deploy the tank, if it can, rather than hold it in reserve.

Proposition 3 is more subtle. Suppose Blue has 10 tanks but can deploy only 6. Then,

in terms of the battle’s final outcome, and whatever Red’s TC state, Blue would rather

have one additional tank in reserve than be able to deploy one more of its original 10. But
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if the deployable proportion is less than half and Red has full TC, then the reverse is true:

if Blue can deploy (say) only 3 of its 10 tanks, and Red is aiming its fire, then Blue would

rather be able to deploy one more tank than have an additional tank in its reserve force.

That is, Blue would rather have 4 deployed and 6 in reserve than 3 deployed and 8 in

reserve — Blue simply needs more deployed firepower.

Finally we assume perfect TC for both Blue and Red and examine the trade-off of

deployment against loss-tolerance, either in absolute numbers (Bmax against (1 − β)B0)

or proportionally (µ against 1− β).

Proposition 4. For the symmetric case of Section 4 with perfect Blue TC and perfect Red TC,

Blue prefers a small increase in deployment to a small increase in loss-tolerance if and only if

Blue’s initial reserve (B0 −Bmax = (1− µ)B0) is greater than Blue’s withdrawal level (βB0).

Proof. The proof requires two separate derivations, but they have the same conclusion.

When Blue’s loss-tolerance is high — it is willing to continue the engagement until most

of its resources are destroyed — the result follows by generalizing the proof of Proposition

3 to the β 6= 0 case, using (34-36). The condition is 1 − µ > β or B0 − Bmax > βB0. When

Blue’s loss-tolerance is low, we need instead to consider variations in the numerator of

(38) and (39), 2µ(1− β), but the condition which results is 1− β > µ, which is equivalent.

�

Propositions 2–4 highlight the importance of Blue having a reasonable level of deploy-

ment, especially when Red has perfect TC. Otherwise, Red can effectively pick off Blue

forces by aiming its fire at the limited Blue front.

6 Discussion

In this paper we investigated extensions to Lanchester’s aimed-fire model and Square

Law, quantifying its modification by three effects: unaimed fire, principally in the form

of poor targeting capability; the inability to deploy all of a force and thereby bring ad-
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vantageous numbers to bear; and unwillingness to fight a Lanchestrian battle to annihila-

tion. Our conclusions follow from parity equations, which modify the original Lanchester

Square Law (4) by simple functions of the parameters that quantify the three effects. We

then presented the implications of these as a series of propositions which affect force plan-

ning and operational decision-making.

Starting with the classic Lanchester aimed-fire model, we showed the importance of

TC by observing that lack of TC is equivalent to halving the kill-rate (see equation 10).

In most scenarios Blue prefers small proportional increases in kill-rate and numbers to

small absolute improvements in its TC, deployed proportion of force, and proportion of

force it is willing to lose. However, if Blue has low TC or low deployment capability,

then Blue prefers to increase those quantities. In particular, when Red has perfect TC Blue

needs a moderate deployment level to stand a chance. This result is consistent with the

battle of Ein-A-Tinna discussed in the introduction where the Israeli force facing severe

deployment restrictions was easily rebuffed by a smaller Syrian force. The comparison of

deployment with loss-tolerance is seen in Proposition 4: the higher Blue’s willingness to

tolerate losses, the more Blue benefits from the ability to deploy most of its resources.

Most broadly, this paper has been about asymmetry in Lanchester combat models –

not just in parameter values, but in the dynamics and the conditions which create and

constrain them. In real warfare, the gaining of advantage is about both responding to and

creating such dynamical asymmetries to one’s own advantage. To the extent to which

there is truth in the classic 3:1, attacker:defender rule-of-thumb, it is surely in the de-

fender’s work to create such asymmetries and the attacker’s to mitigate them.
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