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Abstract

We consider a revenue-maximizing seller with m heterogeneous items and a single buyer
whose valuation v for the items may exhibit both substitutes (i.e., for some S, T , v(S ∪ T ) <
v(S) + v(T )) and complements (i.e., for some S, T , v(S ∪ T ) > v(S) + v(T )). We show that the
mechanism first proposed by Babaioff et al. [2014] - the better of selling the items separately
and bundling them together - guarantees a Θ(d) fraction of the optimal revenue, where d is a
measure on the degree of complementarity. Note that this is the first approximately optimal
mechanism for a buyer whose valuation exhibits any kind of complementarity, and extends the
work of Rubinstein and Weinberg [2015], which proved that the same simple mechanisms achieve
a constant factor approximation when buyer valuations are subadditive, the most general class
of complement-free valuations.

Our proof is enabled by the recent duality framework developed in Cai et al. [2016], which we
use to obtain a bound on the optimal revenue in this setting. Our main technical contributions
are specialized to handle the intricacies of settings with complements, and include an algorithm
for partitioning edges in a hypergraph. Even nailing down the right model and notion of “degree
of complementarity” to obtain meaningful results is of interest, as the natural extensions of
previous definitions provably fail.
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1 Introduction

Consider a revenue-maximizing seller with m items to sell to a single buyer. When there is just
a single item, and the buyer’s value is drawn from some distribution with CDF F , seminal works
of Myerson [36], and Riley and Zeckhauser [39] prove that the optimal mechanism is to simply set
whatever price maximizes p · (1 − F (p)). It soon became well-understood that beyond the single-
item setting, the optimal mechanism suffers many undesireable properties that make it unusable
in practice, including randomization, non-monotonicity, and others [40, 28, 29, 5, 12, 13, 43, 38].
Following seminal work of Chawla, Hartline, and Kleinberg [8], there is now a sizeable body of
research proving that the simple mechanisms we see in practice are in fact approximately optimal
in quite general settings, helping to explain their widespread use [9, 10, 32, 27, 2, 3, 41, 34, 44, 7, 11].

Still, prior work has largely been limited to additive1 or unit-demand2 buyers. Only recently
have researchers begun tackling more complex valuation functions, and even these works have
remained restricted to subclasses of subadditive valuations, also called complement-free [41, 11, 7].3

While subadditive valuations are quite general, they can only capture interaction between items
as substitutes. For example, if the items are pieces of furniture, a buyer’s marginal valuation for a
chair might decrease as her home gets more and more filled due to lack of space. To date, no results
in this line of work model iteraction between items as complements. For example, a buyer’s value
for a kitchen table might actually increase if she already has a chair to sit. The goal of this paper is
to study simple and approximately optimal mechanisms in domains (like the example above) where
buyer valuations exhibit both substitutes and complements.

Buyers with Complements. Even for the traditionally simpler domain of welfare maximization,
the state-of-the-art only recently has begun designing mechanisms for buyers with complements [1,
20, 24, 22]. The main difficulty is that horrible lower bounds are known for general valuations [37],
so in order to get interesting positive results, some assumptions are necessary on the degree to which
buyer valuations exhibit substitutes or complements. Interestingly, good positive results are possible
in the complete absence of complements and no restriction on the degree of substitutability [17, 16,
19, 23, 15], but not vice versa: many strong lower bounds still exist in the absence of substitutes
but with arbitrary complementarity [33, 1, 35, 22].

So the goal of these recent works is to parameterize the “degree of complementarity” that a
valuation function admits, and prove an approximation guarantee of f(d) whenever buyer valuations
have “complementarity of degree at most d” [1, 21, 20, 24, 22]. For example, if you were selling a
table, chair, bicycle, banana, and socks, you would reasonably expect buyers to view the table and
chair as complements, but likely not the bicycle and banana. Similarly, you wouldn’t expect any
set of three items to be viewed as complements (outside of what’s already captured by the table
and chair as a pair). So it seems overly pessimistic not to try and exploit this. Ideally, a good
formal definition for “complements of degree d” should make sense in its own right (i.e. without
appealing to results) and capture a smooth transition as d grows (i.e. we don’t have f(0) = 1 and
f(d) = m for all d > 0). Interestingly, the right formal definition of “complements of degree d”
seems to differ between environments. Some examples of previous successful definitions include the
“supermodular degree” and “positive-hypergraphs degree” [21, 20].

Nailing down the right model of complementarity degree is even trickier for the revenue objec-
tive, as we must also fold some notion of independence into the value distribution in order to avoid

1A buyer valuation is additive if v(S) =
∑

i∈S
v({i}).

2A buyer valuation is unit-demand if v(S) = maxi∈S{v({i})}.
3A valuation is subadditive if v(S ∪ T ) ≤ v(S) + v(T ) for all S, T .

1



extremely strong lower bounds that hold against even additive valuations over two items [5, 28].4

We postpone a formal definition of our model and corresponding notion of complementarity degree
to Section 2, and give an illustrative example here. Imagine you are selling furniture and related
goods. Some items naturally exhibit complementarities: with a table, chair, and silverware, a buyer
can eat meals at home. With a table, four chairs, and a game of Settlers, they could host a board
games night. With two sofas and a TV, they could instead host a movie night. So think of the
buyer as having a non-negative valuation for being able to eat meals in their home, host events,
etc., and their preliminary value for a set S of items is additive over the activities that S allows
them to partake in.5 But there’s a catch: no buyer has room in their apartment to comfortably fit
a table, TV, two sofas, and four chairs. So the items are also substitutes - even if the buyer were
to wind up with the entire warehouse of furniture, they won’t get use out of anything besides what
fits in their apartment. So we let C represent a set system determining which items can fit in the
apartment, and let w(T ) denote the buyer’s value for whatever special activity the items in exactly
T allow her to partake in (that she couldn’t partake in with any proper subset). The buyer’s value
for a set of items S is the maximum over all S′ that fit in her apartment of the sum of her values for
all the activities she can partake in using S′. Independence enters the model by assuming buyers
have independent values for different activities, and the degree of complementarity is captured via
the maximum number of activities that require any given item.

Main Result. Our main result (Theorem 3.2) is that the mechanism proposed by Babaioff et
al. [2] - the better of selling separately (post a price on each item, let the buyer purchase whatever
subset she likes) or bundling together (post a single price on the grand bundle, let the buyer purchase
or not) - achieves a tight Θ(d) approximation whenever buyer valuations exhibit complementarity
at most d.

We also complete the picture by showing that our notion of complementarity is in some sense the
right one: if instead we measure complementarity via the “supermodular degree,” then there exist
populations in our model with supermodular degree d for which the better of selling separately
and bundling together achieves only a Ω(2d/d)-approximation. Similarly, if we instead measure
complementarity via the “positive-hypergraph degree,” then there exist populations in our model
with positive-hypergraph degree d for which the better of selling separately and bundling together
achieves only a Ω(

∑

ℓ≤d

(

m
ℓ

)

/m)-approximation. Both notions of degree are defined formally in
Section 6 where the lower bounds are proved. The point is not that Θ(d) is a “better” bound than
Ω(2d/d), as this is in some sense not a fair comparison, but rather that “supermodular degree” and
“positive-hypergraph degree” are incapable of capturing the smooth transition from low degrees to
high degrees of complementarities as they can only take onm different values but provide guarantees
that range from 1 to Ω(2m). In comparison, our notion of degree of complementarity takes on 2m−1

different values, and provides guarantees that range from 1 to Ω(2m), allowing for an exponentially
finer-grained tradeoff.

Our Techniques. Our starting point is a duality-based upper bound on the optimal achievable
revenue coming from recent work of [6]. Their upper bound decomposes into three parts, which they
call SINGLE, CORE, and TAIL. So the goal is to show that selling separately well-approximates
SINGLE, and that bundling together well-approximates CORE and TAIL. Fortunately, the anal-
ysis of [6] is fairly robust, and we are able to prove that bundling together achieves a constant

4Specifically, there exists a distribution D over R
2 such that when a single additive buyer’s valuation is drawn

from D, the optimal revenue for the seller is infinite, but the revenue of the best deterministic mechanism is 1.
5Such valuations functions are called “positive-hypergraph” (PH) valuations.
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factor of both CORE and TAIL via a similar approach. Our main technical contribution appears
in Section 4, where we prove that selling separately gets an O(d)-approximation to SINGLE. In-
cidentally, bounding SINGLE happened to be the easiest part of the analysis in [6] for additive
valuations.

Without getting into details about what exactly this SINGLE term is, we can still highlight
the key challenge. Essentially, we would like to post a different price on each activity. In fact, we
can show that the optimal “activity-pricing scheme” even obtains a constant-factor approximation
to SINGLE. The catch is that we sell items, not activities. We may wish to set drastically different
prices on many different activities requiring the same item, and it’s unclear that we can achieve
the desired activity prices by cleverly setting prices on the items separately (in fact, it could be
impossible). So our main technical contribution is an algorithm to find a subset of activities S for
which it is possible to achieve any desired activity-pricing on S by only posting prices on items, and
the optimal revenue from activities in S is a d-approximation to the optimal activity-pricing scheme.
It turns out that the right sets of activities to search for are ones where each activity requires an
item not required by any of the others, that the number of collections with this property necessary
to partition all activities tightly characterizes the approximation guarantee of selling separately,
and that d collections suffice whenever each item is required by at most d activities.

1.1 Related Work

Multi-Dimensional Auction Design. A rapidly growing body of recent literature has shown
that simple mechanisms are approximately optimal in quite general settings [8, 9, 10, 32, 27, 34,
2, 44, 41, 3, 11]. Of these, the result most related to ours is [41], which proves that the better of
selling separately and bundling together achieves a constant-factor approximation for a single buyer
whose valuation is drawn from a population that is “subadditive with independent items”. Their
model is similar to our model with d = 1 (but neither subsumes the other), so our results can best
be interpreted as an extension of theirs to buyers whose valuations also exhibit complementarity.

In terms of techniques, our work makes use of a recent duality framework developed in [6]. The
same duality framework has been used in concurrent work by the present authors to prove multi-
dimensional “Bulow-Klemperer” results [18], and independent work by others to design simple,
approximately optimal auctions for multiple subadditive bidders [7]. Still, the duality theory is
only used to provide an upper bound on the revenue in all these cases, and the remaining technical
contributions are disjoint. In particular, for the present paper, Section 3 has a high technical
overlap with these works, and Section 5 bears some similarity. But our main technical contribution
lies in Section 4, which is unique to the problem at hand.

Agents with Complements. In recent years there has also been a rapid growth in the design
of algorithms and mechanisms in the presence of complements [1, 21, 25, 26, 20, 24, 22]. These
works consider many different aspects: for example, assuming strategic behavior of agents (or
not), assuming the existence of strict substitutes (or not), or focusing on simple mechanisms and
quantifying the efficiency of equilibria. In all these works, some notion of degree of complementarity
was cast on a class of valuation functions, and the approximation ratio guaranteed grew as a function
of complementarity degree. It is noteworthy that quite often different settings motivate different
degrees of complementarity to best capture the degradation in possible guarantees. For instance,
[1] uses the positive hypergraph (PH) degree, [21] uses the supermodular degree, [20, 24] use the
maximum over PH degree, and [22] uses the positive supermodular degree.

In comparison to this literature, ours is the first to consider revenue maximization for buyers
with complements.
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1.2 Discussion and Future Work

We present the first simple and approximately optimal mechanism for a buyer whose valuation ex-
hibits both substitutes and complements. We show that for a natural notion of “degree of comple-
mentarity,” the better of selling separately and selling together achieves a tight Θ(d)-approximation
to the optimal revenue. We provide rigorous evidence that this is “the right” notion to consider
via large lower bounds for classes of valuations that previous definitions would deem simple.

Our main technical contribution is an algorithm to partition a collection of sets into subcollec-
tions such that each set (in the subcollection) contains an item not contained in the others (in that
same subcollection). Due to the robustness of previously-developed tools like the “core-tail” de-
composition [34, 2, 41, 44, 11], and duality-based benchmarks [6], we are able to focus our technical
contributions to the specific problem at hand.

The obvious direction for future work would be to see whether simple mechanisms remain
approximately optimal for multiple buyers with complementarity degree d. Doing so would likely
require at least one substantial innovation beyond the ideas in this paper, as even the d = 1 case
remains open (even considering the recent breakthrough result of [7]). Our work also contributes
to the growing body of evidence that our community now has the tools to “catch up” the state-of-
the-art for multi-dimensional mechanism design to the wealth of knowledge that currently exists
for single-dimensional settings. Considering buyers with complements is one important path in this
direction, but there are numerous others as well.

2 Preliminaries

Buyer Valuations. We consider a setting in which a seller wishes to sell a set M of m items to a
single buyer. The buyer has a valuation function v that assigns a non-negative real number v(S) to
every bundle of items S ⊆M . The valuation is normalized (v(∅) = 0) and monotone (v(S) ≤ v(T )
whenever S ⊆ T ). We also abuse notation and let v(X) = ES←X [v(S)] when X is a random set.

Complementarities. An increasingly popular model to represent complementarities is via a
positive hypergraph representation. That is, w : 2M → R

+ is a non-negative function, and w(T )
denotes the bonus valuation that the consumer enjoys from exactly the set of items T (in addition
to the value the consumer already enjoys for proper subsets of T ), i.e., v(S) =

∑

T⊆S w(T ). In the
language of Section 1, w(T ) denotes the bidder’s value for the activity requiring exactly items in T .
We will sometimes refer to T as a hyperedge, thinking of w(·) as weight function on the hypergraph
with nodes M . As an example, if v is additive, then defining w({i}) = v({i}) and w(T ) = 0
whenever |T | > 1 yields v(S) =

∑

T⊆S w(T ). We say that v (or w) exhibits complementarities of
degree d if for all i, |{S ∋ i : w(S) > 0}| ≤ d.

Substitutes. An equally popular model to represent substitutes is via combinatorial constraints.
Let C ⊆ 2M denote a downwards-closed set system on M . S /∈ C denotes that at least some items in
S are substitutes, and the buyer does not derive value from all of S. Many valuations that exhibit
only substitutabilities are “additive subject to constraints C”: v(S) = maxT⊆S,T∈C{

∑

i∈T v({i})}.
For example, unit-demand valuations can be represented with C = {T : |T | ≤ 1}.

Complements and Substitutes. We choose to model substitutes and complementarities to-
gether by combining the above two models. That is, there is a positive hypergraph representation
w that represents complementarities, and combinatorial constraints C that represent substitutabil-
ities, and v(S) = maxT⊆S,T∈C{

∑

U⊆T w(U)}. Recall the furniture example: w represents that two
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sofas and a TV allow you to host a movie night, whereas any proper subset doesn’t. C represents
that you can only fit so much furniture in your apartment. We assume w.l.o.g. that w(T ) = 0 for
all T /∈ C, as the bidder will never be able to partake in activity T no matter what (because the
required items don’t fit in the apartment).

Value Distributions. We model our buyer valuation v(·) as being drawn from the population D
in the following way. There are some constraints C, that are fixed (not randomly drawn). Each w(T )
is then drawn independently from some distributionD′T for all T , and v(S) = maxT⊆S,T∈C{

∑

U⊆T w(U)}.
We say that D has complementarity d if all v in the support of D have complementarity d. Note
that this implies D has complementarity d if and only if for all i, |{T ∋ i : Pr[w(T ) = 0] < 1}| ≤ d.
We use V to denote the support of D, f(v) to denote Prv̂←D[v̂ = v], and fT (y) = Prx←D′

T
[y = x].

Truthful Mechanisms and Revenue Maximization. Formally, a mechanism M has two
mappings X : V → ∆(2M ), and p : V → R. X takes as input a valuation v and awards a
(potentially random) subset of items. p takes as input a valuation v and charges a price. M is
then truthful if for all v, v′ ∈ V , v(X(v)) − p(v) ≥ v(X(v′))− p(v′).6 Alternatively, one can view a
mechanism as a menu that lists options of the form (X, p), where X ∈ ∆(2M ) and p ∈ R. A buyer
with value v(·) then selects the menu option argmax{v(X) − p}. It is easy to see the equivalence
between the two representations: simply setting (X(v), p(v)) = argmax{v(X)− p} takes one from
the menu view to a truthful mechanism. We denote by REV(D) the optimal revenue attainable by
any truthful mechanism when buyer valuations are drawn from the population D.

Simple Mechanisms. The two simple mechanisms we study are selling separately (SREV) and
bundling together (BREV). We denote by BREV(D) the optimal expected revenue attainable by
selling all items together, and will drop the parameter D when it is clear from context. It is well-
known that BREV(D) = max p · Pr [v(M) ≥ p] [36]. SREV is a touch trickier, as it is NP-hard
for buyers in our model to even decide what set of items they wish to purchase at a given set of
prices, so it’s not even clear how we should evaluate the “revenue” of a price vector. We cope
with this using a similar approach to [41]: we define SREV∗ to be the optimal revenue attainable
by any item pricing only counting an item as sold if every set the buyer is willing to purchase
contains that item. More formally, for a given item pricing ~p, and valuation v, let Pi(~p, v) = 1 if
∃S ∋ i, v(S) −

∑

j∈S pj > 0 and ∀S 6∋ i, v(S) −
∑

j∈S pj ≤ 0, and Pi(~p, v) = 0 otherwise. Then
SREV∗(D) = max~p Ev←D [

∑

i Pi(~p, v) · pi].

Discrete vs. Continuous Distributions. Like [6], we only explicitly consider distributions
with finite support. Like their results, all of our results immediately extend to continuous distri-
butions as well via a discretization argument of [14, 41, 31, 30, 4]. We refer the reader to [6] for
the formal statement and proof. Theorem 2.1 assumes that for every single-dimensional random
variable X and number q ∈ [0, 1], there exists a threshold p so that X ≥ p with probability exactly
q, which might a priori seem problematic for discrete distributions. Fortunately, standard “smooth-
ing” techniques allow this assumption to be valid for discrete distributions. A formal discussion of
this appears in Remark 2.4 of [41].

The Copies Environment. In our bounds, we’ll make use of a related “copies environment” [8,
9, 10, 32]. For any product distribution D′ = ×k

i=1D
′
i, we define the corresponding copies setting

6Note that for a single buyer, there is no need to distinguish between Bayesian Incentive Compatible and Dominant
Strategy Incentive Compatible - they’re the same.
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as follows: there is a single item for sale, and k buyers. Buyer i’s value for the item is drawn from
the distribution D′i. For instance, in our model, the hypergraph representation of the valuation is
drawn from D′ = ×SD

′
S , so we would have a bidder for every subset, with bidder S’s value drawn

from the distribution D′S .

We can then define the benchmark OPTcopies(D′) to be the expected revenue obtained by the
optimal mechanism (Myerson’s [36]) on inputD′. Note that this is equal to Ew←D′ [maxT {ϕ̄T (w(T )), 0}],
where ϕ̄T (·) denotes Myerson’s ironed virtual value for the distribution D′T . We will make use of
the following theorem from [9]:

Theorem 2.1 ([9]). For any q ≤ 1, there exist (possibly random) prices {pT }T such that:

1. Revenue is high: OPTcopies(D′) ≤ 1
q

∑

T⊆M EpT

[

pT · Prx←D′
T
[x ≥ pT ]

]

.

2. Probability of sale is low:
∑

T⊆M EpT

[

Prx←D′
T
[x ≥ pT ]

]

≤ q

3. Moreover, each pT takes on at most two values. If D′T is regular, then pT is a point-mass.7

3 Our Duality Benchmark and Main Theorem Statement

We extend the duality framework of [6] to our setting in a natural manner. Full technical details
are deferred to Appendix A. The only technical detail needed for stating our revenue benchmark is
the following: we partition the valuation space V into 2m− 1 different regions, depending on which
hyperedge is the most valuable to a buyer with valuation v. Specifically, we say that v is in region
RA if A = argmaxT⊆M{w(T )}, with ties broken lexicographically.

Corollary 3.1. For valuation distribution D established by drawing a hypergraph representation
w ←

∏

S D′S and returning v(S) = maxT⊆S,T∈C{
∑

U⊆T w(U)}.

REV(D) ≤ E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [v /∈ RT ]}



 (NON-FAVORITE)

+ E
v←D





∑

S⊆M

max{0, ϕ̄S(w(S))} · 1 [v ∈ RS ]



 (SINGLE)

In Section 4, we show that max{SREV∗,BREV} gets a 4(d + 1)-approximation to SINGLE.
This portion of the analysis develops techniques specific to buyers with restricted complements. In
Section 5, we show that BREV gets a 12-approximation to NON-FAVORITE. This portion of the
analysis will look somewhat standard to the reader familiar with [6], with a little extra work to
extend their main ideas to our setting. We conclude this section with our main theorem, whose
proof will be completed by the end of Section 5:

Theorem 3.2. For a distribution D that has complementary d, REV ≤ (4d+16)max{BREV,SREV∗}.
7We will not actually make use of bullet 3 other than to simplify notation, but it might help remind some readers

where these prices come from.
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4 Bounding SINGLE

In this section, we prove that the better of selling separately and selling together gets an O(d)
approximation to SINGLE.

Proposition 4.1. SINGLE ≤ 4dSREV∗ + 4BREV.

We begin by relating SINGLE to OPTcopies:

Observation 4.2. SINGLE ≤ OPTcopies.

Proof. First, observe that there is exactly one S for which 1[v ∈ RS ] = 1. So it is certainly the
case that for all v (with v(S) =

∑

T⊆S w(T )), we have:

∑

S⊆M

max{0, ϕ̄S(w(S))} · 1[v ∈ RS ] ≤ max
S⊆M
{0, ϕ̄S(w(S))}.

⇒ Ev←D





∑

S⊆M

max{0, ϕ̄S(w(S))} · 1[v ∈ RS ]



 ≤ Ev←D

[

max
S⊆M
{0, ϕ̄S(w(S))}

]

.

Above, the LHS is exactly SINGLE, and the RHS is exactly OPTcopies.

Note that if the buyer’s valuation were additive, at this point we’d already be finished. We could
simply set the prices guaranteed by Theorem 2.1 and be done. As we consider more complex buyer
valuations, there are two barriers we must overcome. The first is due to substitutability: if we try
to set prices on each subset separately, just because the buyer is willing to purchase set S doesn’t
mean he will choose to purchase set S, because he may purchase some substitutes instead. Note
that this issue doesn’t arise in absense of substitutes: if the buyer is willing to purchase S by itself,
he is certainly willing to add S to any other set of purchased items. The second barrier is due to
complementarity: even once we decide the “correct” price to charge for set S, we can only set prices
on items and not on bundles. Therefore, the prices we want to set for different bundles necessarily
interfere with each other. This is the novel barrier unique to values with complementarity, and is
also the only part of the analysis where the (necessary) factor of d arises.

The first step to overcoming the complements barrier is to find a subset of bundles for which
we can still set the appropriate prices. As a warm-up, let’s see what the argument would look like
assuming that there were only complements and no substitutes (C = 2M ):

Lemma 4.3. Let C = 2M and T1, . . . , Tk be subsets of M such that Ti 6⊆ ∪j 6=iTj for all i. Then for
all {pT }T⊆M , SREV ≥

∑

i pTi
Prx←D′

Ti

[x ≥ pTi
].

Proof. Set price pTi
on the item contained in Ti but not ∪j 6=iTj (if there are multiple, select one

arbitrarily). Then by hypothesis, the price the bidder would have to pay in order to receive the
entire set Ti is exactly pTi

. Because C = 2M , whenever w(Ti) ≥ pTi
, the buyer will choose to

purchase the set Ti in addition to whatever else they choose to purchase. Therefore, the item
contained in Ti but not ∪j 6=iTj is purchased with probability at least Prx←DTi

[x ≥ pTi
], and the

revenue of this item pricing is at least
∑

i pTi
Prx←D′

Ti

[x ≥ pTi
].

The proof of Lemma 4.3 makes use of the assumption that C = 2M in exactly one place: to argue
that whenever w(Ti) ≥ pTi

, the buyer chooses to purchase the complete set Ti. When C 6= 2M , it
may be the case that even though the buyer is willing to purchase set Ti, she chooses to purchase
substitutes instead. We can remove this assumption on C by restricting attention to certain price
vectors.
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Lemma 4.4. Let C be any downwards closed set system and T1, . . . , Tk be subsets of M such
that Ti 6⊆ ∪j 6=iTj for all i. Then for all {pT }T⊆M such that pT ≥ 4BREV for all T , SREV∗ ≥
1
4

∑

i pTi
Prx←D′

Ti

[x ≥ pTi
].

Proof. Set price pTi
/2 on the item contained in Ti but not ∪j 6=iTj (if there are multiple, again select

one arbitrarily). The price the bidder would have to pay in order to receive the entire set Ti is
exactly pTi

/2. Suppose w(Ti) ≥ pTi
. Then, the buyer is not only willing to purchase Ti, but also

gets utility at least pTi
/2 for doing so. The only reason she would choose not to purchase this set is

if there were some other set S with Ti 6⊆ S and v(S) ≥ pTi
/2 ≥ 2BREV. As v(S) ≤ v(M) − w(Ti)

for all such S, in order for such a set to exist, it must be the case that v(M) − w(Ti) ≥ 2BREV.
Clearly, this occurs with probability at most 1

2 , as otherwise we could set price 2BREV on the
grand bundle, sell with probability strictly larger than 1

2 and make revenue strictly larger than
BREV. Moreover, v(M) − w(Ti) =

∑

U 6=Ti
w(U) is completely independent of w(Ti). Therefore,

even conditioned on w(Ti) ≥ pTi
, the probability that the bidder is interested in some other set S

with Ti 6⊆ S is at most 1
2 , and therefore the buyer indeed chooses to purchase Ti with probability

at least Prx←D′
Ti

[x ≥ pTi
] · 12 .

Finally, we can combine Lemma 4.4 with Theorem 2.1 to reduce our search to the problem of
partitioning the hyperedges into collections Hx = {Tx1, . . . , Txkx} such that Txi 6⊆ ∪j 6=iTxj for all i.

Corollary 4.5. Let C be any downwards closed set system, and let {Hx}x∈[k] be a partition of
the hyperedges {T : fT (0) < 1} such that for all x, and all T ∈ Hx, T 6⊆ ∪T ′∈Hx\{T}T

′. Then
4kSREV∗ + 4BREV ≥ SINGLE.

Proof. Take q = 1 in Theorem 2.1 and let {pT }T⊆M be the guaranteed (randomized) prices. By
Theorem 2.1 condition 3, there exist two deterministic prices pHT ≥ pLT and probabilities qT such
that pT = pHT with probability qT , and pT = pLT with probability 1 − qT . Therefore, Theorem 2.1
condition 1 can be rewritten as:

OPTcopies ≤
∑

T⊆M

qT p
H
T · Pr

x←D′
T

[x ≥ pHT ] + (1− qT )p
L
T · Pr

x←D′
T

[x ≥ pLT ]

We can further rewrite this by breaking up the two sums into prices that exceed 4BREV, and
those that don’t, let B = 4BREV for simplicity:

OPTcopies ≤
∑

T⊆M,pH
T
≤B

qT p
H
T · Pr

x←D′
T

[x ≥ pHT ] +
∑

T⊆M,pL
T
≤B

(1− qT )p
L
T · Pr

x←D′
T

[x ≥ pLT ]

+
∑

T⊆M,pH
T
>B

qT p
H
T · Pr

x←D′
T

[x ≥ pHT ] +
∑

T⊆M,pL
T
>B

(1− qT )p
L
T · Pr

x←D′
T

[x ≥ pLT ]

By condition 2 of Theorem 2.1, we have

∑

T⊆M

qT · Pr
x←D′

T

[x ≥ pHT ] + (1− qT ) · Pr
x←D′

T

[x ≥ pLT ] ≤ 1

Therefore, as all prices in the top sum above are at most B, the entire top two terms sum to at
most B = 4BREV.

For the bottom two terms, there is no term for T if pHT ≤ B. If p
H
T > B ≥ pLT , define pT = pHT .

If pHT > pLT > B, then set pT to whichever of {pHT , pLT } maximizes pT · Prx←D′
T
[x ≥ pT ]. Then
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∑

T⊆M,pH
T
>B pT · Prx←D′

T
[x ≥ pT ] is at least as large as the bottom two terms above. Moreover, as

all pT > B, we can apply Lemma 4.4 to conclude that for all T1, . . . , Tk such that Ti 6⊆ ∪j 6=iTj for
all i, SREV∗ ≥ 1/4

∑

i pTi
Prx←D′

Ti

[x ≥ pTi
].

Finally, as {Hx}x∈[k] partitions the hyperedges so that for all x and T ∈ Hx, T 6⊆ ∪T ′∈Hx\{T}T
′,

we get:

∑

T⊆M,pH
T
>B

pT · Pr
x←D′

T

[x ≥ pT ] =

k
∑

x=1

∑

T∈Hx,pHT >B

pT · Pr
x←D′

T

[x ≥ pT ] ≤ 4k · SREV∗

The last inequality is due to Lemma 4.4, and completes the proof.

So the last remaining task is to find a good partition of hyperedges, such that within each
partition, every hyperedge contains at least one item not contained in the other hyperedges in the
same partition. We isolate this contribution in Section 4.1 below.

4.1 Partitioning Hyperedges with Restricted Complements

Partition-Edges
Input: List of hyperedges, E ⊆ 2M .
Output: A partition of E into {Hx}x such that for all x and all T ∈ Hx, T 6⊆ ∪T ′∈Hx\{T}T

′.

1. Ecurr ← E, i← 0.

2. While Ecurr 6= ∅:

(a) i← i+ 1

(b) Ei ← Ecurr.

(c) For each T ∈ Ei (in arbitrary order): If T ⊆
⋃

S∈Ei\{T}
S Then Ei ← Ei \ {T}.

(d) Ecurr ← Ecurr \ Ei.

3. Return the partition {Ej}j∈[i].

Figure 1: An edge partitioning process.

We provide a high-level description of our algorithm here, and give pseudocode in Figure 1. Recall
that the algorithm takes as input a set of hyperedges, and returns a partition of the hyperedges
{Hx}x, so that in each partition Hx, every hyperedge S ∈ Hx contains an item that is not in any
other hyperedge T ∈ Hx. The algorithm iteratively constructs each Hx, and initially initializes Hx

to contain all remaining hyperedges. Then, it iteratively eliminates all “bad” hyperedges (those
that don’t contain an item absent from the others) until the remaining hyperedges have the desired
property. In the proof of Theorem 4.6 below, it is easy to show that the algorithm outputs a
feasible partition, and the trick is guaranteeing that each iteration makes sufficient progress towards
finalizing the partition.

Theorem 4.6. For any set of hyperedges E ⊆ 2M , Algorithm 1 returns a partition of E = {Hx}x∈[k]
such that:

1. For all x, and all T ∈ Hx, T 6⊆ ∪T ′∈Hx\{T}T
′.

9



2. k ≤ maxi{|{T ∈ E : i ∈ T}|}.

Proof. First, it is clear that the algorithm indeed properly outputs a partition of E: observe that
due to line 2d, when a hyperedge is permanently assigned to some Ei, it will not be assigned to
any Ei′ , which implies that all the Ei’s are disjoint. Also, every hyperedge is either permanently
assigned to some Ei, or remains in Ecurr, which, by line 2 implies that the algorithm terminates
only when every hyperedge is permanently assigned to some Ei. So every hyperedge is contained
in some partition, and the partitions are disjoint.

That the output partition satisfies Property 1) is easy to verify: For any x, T ∈ Hx only the
check in 2c passes for T and (the present) Hx. Once the check passes, some other edges will be
removed from Hx before the output. Clearly, removing edge from Hx cannot cause T to all of
a sudden be contained in ∪T ′∈Hx\{T}T

′ when it was previously not contained. So Property 1) is
satisfied.

To prove Property 2), first denote by Ei
curr the state of Ecurr at the start of iteration i. We

will show that ∪T∈Ei
T = ∪T∈Ei

curr
T . In other words, every element contained in some hyperedge

in Ei
curr is still contained in some hyperedge in Ei. To see this, observe that when Ei is first set

to Ei
curr, we clearly have ∪T∈Ei

T = ∪T∈Ei
curr

T . The only time hyperedges are removed from Ei is
in step 2c. Note that in order for a hyperedge to be removed from Ei, it must be the case that
T ⊆ ∪T ′∈Ei\{T}T

′. In other words, in order to remove T from Ei, it must be that all the elements
contained in T are also contained in ∪T ′∈Ei\{T}T

′. Therefore, removing T does not change ∪T ′∈Ei
T ′,

and when we terminate, we maintain ∪T∈Ei
T = ∪T∈Ei

curr
T .

To see why this implies Property 2), note that the above implies that if for any i, |{T ∈ E, i ∈
T}| = d, then i will be contained in at least one hyperedge in all of E1, . . . , Ed, and therefore no
hyperedges containing i remain in Ed+1

curr . In particular, for d = maxi{|{T ∈ E, i ∈ T}|}, it’s the case
that for all i, no hyperedges containing i remain in Ed+1

curr , and therefore the algorithm terminates
with at most d partitions.

We can now combine everything to provide a proof of Proposition 4.1:

Proof of Proposition 4.1. Combining Theorem 4.6 with Corollary 4.5, we get that whenever D has
complementarity d, that 4dSREV∗ + 4BREV ≥ SINGLE, completing the proof.

5 Bounding NON-FAVORITE

In this section, we bound NON-FAVORITE using similar ideas to those developed in [6]. Much of
the process will look familiar to experts famliar with [41, 6], but there are a couple of new ideas
sprinkled in. We begin by breaking NON-FAVORITE into CORE + TAIL, as is by now standard
(t will be chosen later). Omitted proofs appear in Appendix C.

Lemma 5.1. NON-FAVORITE is upper bounded by the following:

E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [w(T ) ≤ t]}



+ (CORE)

E
v←D





∑

S:w(S)>t

w(S) · 1 [v /∈ RS ]



 (TAIL)

10



Bounding CORE. Our main approach to bound CORE is to apply the same concentration
bound of Schechtman [42] used in [41]. Essentially, we just have to show that our valuation functions
are “subadditive over independent items,” for the appropriate definition of “items” (which happens
to be hyperedges). It’s perhaps not obvious that our valuation functions are subadditive over
independent “items,” but indeed they are.

Let’s first recall the definition of subadditive over independent items. In the definition below,
we intentionally write N instead of M to denote the set of items, as the “items” in the definition
may be different than the items for sale.

Definition 1. A distribution D over valuation functions v : 2N → R is subadditive over indepen-
dent items if the following conditions hold:

1. No externalities and independence across items: For every item i, let Ωi be a compact subset
of a normed space (i.e., Ωi = [0, 1]). There exists a product distribution D′ over ×i∈NΩi (that
is, D′ =

∏

i∈N D′i), and a collection of deterministic functions VS : ×i∈SΩi → R such that a
sample v from D can be drawn by sampling ~x← D′, and defining v(S) = VS(~xS).

2. Monotonicity: Every v in the support of D is monotone, i.e., v(S) ≤ v(S ′) for every S ⊆ S ′.

3. Subadditivity: Every v in the support of D is subadditive, i.e., v(S ∪ S ′) ≤ v(S ′) + v(S ′), for
all S, S′.

Definition 2. Let D denote a distribution over valuation functions, and D′ denote the product
distribution and {VS(·)} the deterministic functions that witness D as subadditive over independent
items. Then D is c-Lipschitz if for all ~x, ~y, and sets of items S, T , we have:

|VS(~xS)− VT (~yT )| ≤ c · (|X ∪ Y | − |X ∩ Y |+ |{i ∈ X ∩ Y : xi 6= yi}|)

We use the following lemma and corollary (of a concentration inequality due to Schechtman [42])
from [41] (the bound in Corollary 5.3 is slightly improved from [41], so we include a proof in
Appendix C):

Lemma 5.2. ([41]) Let D be a distribution that is subadditive over independent hyperedges, where
for each hyperedge T , v({T}) ∈ [0, c] with probability 1. Then D is c-Lipschitz.

Corollary 5.3. ([41]) Suppose that D is a distribution that is subadditive over independent hyper-
edges and c-Lipschitz, if a is the median of v(N), then E [v(N)] ≤ 3a+ c · (2 + 1/ ln 2)

Finally, we just need to relate CORE to a random variable that is subadditive over independent
items.

Lemma 5.4. CORE is the expectation of a random variable vCORE(N), where vCORE(·) is t-
lipschitz and subadditive over independent items N = 2M . Moreover, vCORE(N) is stochastically
dominated by v(M).

Proof. Let the “items” N = 2M . Let the distributions D̂T = D′T · 1[w(T ) ≤ t] (that is, a random

variable drawn from D̂T can be coupled with the random variable w(T ) · 1[w(T ) ≤ t]). Define

constraints C′ ⊆ 2N (= 22
M
) so that a subset U of 2M is in C′ if and only if there exists a set C ∈ C

with ∪T∈UT ⊆ C. In other words, U ∈ C′ if and only if the union of elements of U is contained in
some set in C. Finally, define VU (~xU ) = maxU ′⊆U,U ′∈C′{

∑

T∈U xT }.
It is easy to see that vCORE(·) has no externalities and independent items. It is also easy to

see that vCORE(·) is monotone. Finally, we’ll prove that vCORE(·) is subadditive by observing
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that C′ is downwards-closed. To see this, simply observe that if U ′ ⊆ U , and ∪T∈UT ⊆ C, then
clearly ∪T∈U ′T ⊆ C. So if C ∈ C witnesses that U ∈ C′ and U ′ ⊆ U , then C also witnesses that
U ′ ∈ C′.

Now that C′ is downwards closed, it’s easy to see (and well-known) that vCORE is subadditive:
For any U,W , let X = argmaxX′⊆U∪W,X∈C′{

∑

T∈X xT }. Then let U ′ = X ∩ U , and W ′ = X ∩W .
Clearly,

∑

T∈X xT ≤
∑

T∈U ′ xT +
∑

T∈W ′ xT . As C′ is downwards closed, U ′ ∈ C′ and W ′ ∈ C′.
Therefore, vCORE(W ) + vCORE(U) ≥

∑

T∈U ′ xT +
∑

T∈W ′ xT ≥
∑

T∈X xT = vCORE(U ∪W ),
and vCORE(·) is subadditive.

So finally, we just have to show that vCORE(N) is stochastically dominated by v(M). Couple

the random variable xT drawn from D̂T so that xT = w(T ) · 1[w(T ) ≤ t]. Now consider U∗ =
argmaxU⊆2M ,U∈C′{

∑

T∈U xT }. Then we have vCORE(N) =
∑

T∈U∗ xT . By definition of C′, there
exists some C ∈ C such that T ⊆ C for all T ∈ U∗. Therefore:

vCORE(N) =
∑

T∈U∗

xT ≤
∑

T⊆C

xT

≤
∑

T⊆C

w(T ) (because xT ≤ w(T ))

≤ max
S⊆M,S∈C

{
∑

T⊆S

w(T )} (because C ∈ C)

= v(M).

So when xT and w(T ) are coupled in this way, we have vCORE(N) ≤ v(M), and therefore
v(M) stochastically dominates vCORE(N).

Now, Lemma 5.4 combined with Corollary 5.3 essentially says that 3 · v(M) exceeds CORE− t ·
(2 + 1/ ln 2) with probability at least 1/2, allowing us to conclude with the following proposition:

Proposition 5.5. CORE ≤ 6BREV + t · (2 + 1/ ln 2).

Proof. Let a be the median of the random variable vCORE(N). Then Pr[vCORE(N) ≥ a] =
1/2. As v(M) stochastically dominates vCORE(N), we have Pr[v(M) ≥ a] ≥ 1/2. Moreover, by
Corollary 5.3, the fact that CORE = E[vCORE(N)], and that vCORE is t-lipschitz and subadditive
over independent items, we have:

CORE ≤ 3a+ t(2 + 1/ ln 2).

Moreover, as Pr[v(M) ≥ a] ≥ 1/2, we have:

BREV ≥ a/2.

Combining the two above equations proves the proposition.

Bounding TAIL. Our approach to bound TAIL is again similar to [6]. We begin by rewriting
TAIL using linearity of expectation and the fact that the hypergraph representation w of valuation
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v is drawn from D′ which is a product distribution:

TAIL = E
v←D





∑

T⊆M,w(T )>t

w(T ) · 1 [v /∈ RT ]



 = E
v←D





∑

T⊆M,w(T )>t

w(T ) · 1
[

∃T ′, w(T ′) > w(T )
]





=
∑

T⊆M

E
v←D

[w(T ) · 1 [w(T ) > t ∧ v /∈ RT ]] (by linearity of expectation)

=
∑

T⊆M

∑

x>t,fT (x)>0

x · fT (x) · Pr
D−T

[

∃T ′, w(T ′) > x
]

(by independence across hyperedges)

From here, we use essentially the same lemma from [6]. We have replaced their SREV with
BREV, but the proof is identical.

Lemma 5.6 ([6]). For all x, T , x · Prw←D′
−T

[∃T ′, w(T ′) > x] ≤ BREV.

Proposition 5.7. TAIL ≤
(

∑

T⊆M Pr[w(T ) > t]
)

· BREV.

Setting the Cutoff. Finally, we just need an appropriate choice of t. We’ll choose to set t such
that

∑

T⊆M Pr[w(T ) > t] = k for the appropriate choice of k. We first show how to relate t to
BREV. Lemma 5.8 below is well-known, but we provide a proof in Appendix C for completeness.

Lemma 5.8. Let E1, . . . , Ek be independent events such that
∑

i Pr[Ei] = k. Then Pr[∪iEi] ≥
1− e−k.

Corollary 5.9. If t is such that
∑

T⊆M Pr[w(T ) > t] = k, then BREV ≥ (1− e−k)t.

Proof. Apply Lemma 5.8 to the events ET = {w(T ) > t}. Then the probability that there exists
some hyperedge T with w(T ) > t is at least (1− e−k). So the grand bundle will sell at price t with
probability at least (1− e−k).

We can now complete our bound for NON-FAVORITE, and the proof of Theorem 3.2

Proposition 5.10. NON-FAVORITE ≤ 12BREV

Proof. Combine Propositions 5.5 and 5.7 taking t such that
∑

T Pr[w(T ) > t] = 1.66.

Proof of Theorem 3.2. Simply combine Propositions 4.1 and 5.10 with Corollary 3.1.

6 Lower bounds

The following proposition shows that the factor d approximation (established in Theorem 3.2) is
tight (up to constant factors), even when there are no substitutes (C = 2M ).

Proposition 6.1. There exists a distribution D with complementarity d, for which
REV ≥ d

4 max{BREV,SREV}.

Furthermore, we argue that this parameter correctly characterizes the degree of complemen-
tarity in our setting. Specifically, in Proposition 6.2, we establish extremely high lower bounds
(as a function of the complementarity degree) on the approximation ratio that can be obtained by
max{BREV,SREV} for previous measures of complementarity from the literature. In what follows
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we give informal definitions of the different measures of complementarities and state their lower
bounds. Formal definitions are deferred to Appendix D.

A valuation is in PH-k [1] if its hypergraph representation w has only positive hyperedges S of
size at most k. The supermodular degree (SM) [21], roughly, measures the distance of a valuation
from being submodular; it ranges between 1 to m. A valuation is in PS-k if in its hypergraph
representation every item shares a positive hyperedge with at most k other items. It can be shown
that PS-k ⊆ SM-k, thus every lower bound on PS-k carries over to SM-k. Also, these lower bounds
trivially hold for “maximum over PH” [20] and “maximum over PS” [22] hierarchies. The following
proposition asserts the lower bounds for the aforementioned hierarchies.

Proposition 6.2. The following hold for distributions in our settings, where hyperedges values
w(T ) are independently drawn, and v(S) =

∑

T⊆S w(T ).

1. There exists a distribution D with only PH-k valuations in the support, for which REV ≥
1
2m

∑

1≤i≤k

(m
i

)

max{BREV,SREV}. E.g., for PH-2, REV ≥ Ω(m) ·max{BREV,SREV}.

2. There exists a distribution D with only PS-k valuations in the support, for which REV ≥
2k+1−1
2(k+1) max{BREV,SREV}.

Consider a set of hyperedges E (to be defined per-case). Index the hyperedges with integers
in {1 + a, 2 + a, . . . , |E| + a} (we abuse notation and use e both for index and hyperedge, i.e.,
set of items). The product distribution D′ has fe(0) = 1 for all e 6∈ E, and for every e ∈ E, set
fe(0) = 1 − 2−e, and fe(2

e) = 2−e. Let D be the distribution that samples w ← D′ and returns
v(S) =

∑

T⊆S w(T ).

Proposition 6.3. For the above distribution D, we have REV(D) ≥ |E|, but SREV(D) ≤ 2m and
BREV(D) ≤ 2.

Proof. First, consider the random variable v(M). We have v(M) ≤
∑|E|+a

e=1+a w(e). For any price p,

in order to have v(M) ≥ p, we must have w(e) > 0 for some e ≥ log p, as
∑log p−1

e=1+a 2e = p−2a+1 < p.8

Note that the there is no reason to price below 21+a. But also, by union bound, the probability
that this occurs is at most

∑

e≥log p 2
−e ≤ 21−log p ≤ 2/p. So for any price p we could set on the

grand bundle, it sells with probability at most 2/p, so BREV ≤ 2.
Similarly, for any price pi, in order for the buyer to possibly be willing to purchase item i, we

must have
∑

e∋iw(e) ≥ pi. Again, in order for this to happen, we must have w(e) > 0 for some
e ≥ log pi, e ∋ i. And again by union bound, the probability that this occurs is at most 2/pi. So for
any price pi we could set on item i, the probability that the buyer is possibly willing to purchase
item i is at most 2/pi, so SREV ≤ 2m.

Consider however the following mechanism, which essentially sells the hyperedges in E sepa-
rately. The mechanism allows the buyer to purchase any set S she chooses, and charges price 2S .
By union bound,9 the probability that v ≡ 0 is at least 1 − 2−a. Therefore, whenever w(e) > 0,
with probability at least 1 − 2−a, the buyer will choose to purchase exactly the set e and pay 2e.

So the revenue is at least
∑|E|+a

e=1+a 2
−e · 2e · (1 − 2−a) = |E| · (1 − 2−a). Taking a → ∞ completes

the proof.

Let us now see how proposition 6.3 implies proposition 6.1 and proposition 6.2.

8
∑n−1

e=1+a
2e = 2n − 2a+1

9
∑n+a

e=1+a
2−e = 2−a − 2−n−a therefore its complement is at least 1− 2a
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proof of proposition 6.1. Consider a d regular graph (M,E) over m nodes. By definition, every node
is contained in exactly d hyperedges. Therefore, if E is the set of hyperedges used to construct D
prior to proposition 6.3, then D has complementarity d, and |E| = md/2.

proof of proposition 6.2. To show 6.2.1, consider the set of all hyperedges of size at most k, and
apply proposition 6.3. To show proposition 6.2.2, assume for simplicity that m is divisible by k+1.
Partition M to m/(k + 1) sets M1,M2, . . .Mm/(k+1), all of size k + 1, and consider all hyperedges
S ⊆ Mi for all i. Every item i in Mj has neighbors only from Mj , therefore every valuation in
the support is from PS-k. The number of hyperedges is m

k+1 · (2
k+1 − 1). Applying proposition 6.3

completes the proof.

A Background on Duality Framework

We first recall the duality approach of [6]:

Definition 3. [Reworded from [6], Definitions 2 and 3] A mapping λ : V × V → R
+ is flow-

conserving if for all v ∈ V :
∑

v′∈V λ(v, v′) ≤ f(v) +
∑

v′∈V λ(v′, v).10 The virtual transformation
associated with λ, Φλ, is a transformation from valuation functions in V to valuation functions in
V × (the closure of V under linear combinations) and satisfies:11

Φλ(v)(·) = v(·)−
1

f(v)

∑

v′∈V

λ(v′, v)(v′(·)− v(·)).

In the above definition, one should interpret λ(·, ·) as being potential Lagrangian multipliers for
incentive constraints in a certain LP to find the revenue-optimal mechanism, and think of f(v) flow
going into each v from some super source, λ(v, v′) flow going from v to v′, and all excess flow (that
enters v but doesn’t leave) as going from v to a super sink. Note that whether or not a given λ
is flow-conserving depends on the population D. Cai et al. show that Lagrangian multipliers that
satisfy the above flow conservation constraint yield upper bounds of the following form.

Theorem A.1. [Reworded from [6], Theorem 10] LetM be any truthful mechanism where a bidder
with type v receives items X(v) and pays p(v). Then for all flow-conserving λ, the expected revenue
of M is upper bounded by its expected virtual welfare with respect to λ. That is:

E
v←D

[p(v)] ≤ E
v←D

[

Φλ(v)(X(v))
]

.

As an immediate corollary, we can obtain the following upper bound on the revenue of any
truthful mechanism by observing that the bound in Theorem A.1 is maximized when X(v) is
deterministically argmaxS⊆M{Φ

λ(v)(S)}.

Corollary A.2. For all D, and all flow-conserving λ, we have:

REV(D) ≤ E
v←D

[

max
S⊆2M

Φλ(v)(S)

]

.

10This is equivalent to stating that there exists a λ(v,⊥) ≥ 0 such that λ(v,⊥) +
∑

v′∈V
λ(v, v′) = f(v) +∑

v′∈V
λ(v′, v), which might look more similar to the wording of Definition 2 in [6].

11That is, Φλ(v) is a (possibly negative) function from 2M to R, and satisfies Φλ(v)(S) = v(S) −
1

f(v)

∑
v′∈V

λ(v′, v)(v′(S)− v(S)). for all S ⊆ M .
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We begin this section by defining our flow-conserving λ and the resulting Φλ. Readers familiar
with [6] will recognize it as the natural generalization of their flow to our setting, and we will make
the language as similar as possible.

We will break V into 2m−1 different regions, depending on which hyperedge is the most valuable
to a buyer with value v. Specifically, we say that v is in region RA if A = argmaxT⊆M{w(T )},
with ties broken lexicographically. Recall that D is established by drawing w from the product
distribution D′ and the returned valuation v satisfies v(S) = maxT⊆S,T∈C{

∑

U⊆T w(U)}. Then
consider the following flow:

Definition 4 (Flow for our benchmark). If v ∈ RA, define w′(T ) = w(T ), for all T 6= A, and
define w′(A) = minx>w(A){x : fA(x) > 0}. Set λ(v′, v) = Prx←D′

A
[x ≥ w′(A)] ·

∏

T 6=A fT (w
′(T )) =

f(v) ·
Prx←D′

A
[x≥w′(A)]

fA(w(A)) for the v′(·) such that v′(S) = maxT⊆S,T∈C{
∑

U⊆T w′(U)} for all S, and

λ(v′′, v) = 0 for all other v′′.

Proposition A.3. The λ(·, ·) from Definition 4 is flow-conserving. Moreover, if v(·) is such that
v(S) = maxT⊆S,T∈C{

∑

U⊆T w(U)}, and v ∈ RA, then Φλ satisfies the following:

Φλ(v)(S) ≤ max
T⊆S,T∈C

{
∑

U⊆T,U 6=A

w(U)} +max{0, ϕA(w(A))} ≤ max
T∈C
{

∑

U⊆T,U 6=A

w(U)} +max{0, ϕA(w(A))}.

Proof. That λ(·, ·) is flow-conserving is clear: every v ∈ RA has total incoming flow of f(v) ·
Prx←D′

A
[x≥w(A)]

fA(w(A)) (f(v) of this comes from the source, the remaining f(v) ·
Prx←D′

A
[x>w(A)]

fA(w(A)) comes from

other types in RA). Every v ∈ RA also has outgoing flow either equal to 0 (if decreasing the value

of w(A) moves the resulting v′ out of RA), or exactly f(v) ·
Prx←D′

A
[x≥w(A)]

fA(w(A)) (otherwise). In either
case, the flow out is at most the flow in.

Let’s now compute Φλ(v)(S). Plugging into Definition 3, we get:

Φλ(v)(S) = v(S)−
(v′(S)− v(S)) Prx←D′

A
[x ≥ w(A)]

fA(w(A))
.

Recall that v′(S) ≥ v(S) for all S, and therefore Φλ(v)(S) ≤ v(S) for all S. Now there are
two cases to consider: In the first case, maybe maxT⊆S,T∈C{

∑

U⊆T,U 6=Aw(U)} = v(S). In other
words, the set in C “chosen” by a consumer with valuation v doesn’t contain A. In this case, we
immediately get that Φλ(v)(S) ≤ v(S) = maxT⊆S,T∈C{

∑

U⊆T,U 6=Aw(U)}, as desired.
In the second case, maybe maxT⊆S,T∈C{

∑

U⊆T,U 6=Aw(U)} < v(S). In other words, the set in C
“chosen” by a consumer with valuation v contains A. In this case, increasing w(A) by any x > 0
increases v(S) by exactly x. Therefore, we have v′(S) = v(S) + w′(A)− w(A), and therefore:

Φλ(v)(S) = v(S)−
(w′(A)− w(A)) Prx←D′

A
[x ≥ w(A)]

fA(w(A))

= max
T⊆S,T∈C

{
∑

U⊆T

w(U)} −
(w′(A)− w(A)) Prx←D′

A
[x ≥ w(A)]

fA(w(A))

≤ max
T⊆S,T∈C

{
∑

U⊆T,U 6=A

w(U)} + w(A) −
(w′(A)− w(A)) Prx←D′

A
[x ≥ w(A)]

fA(w(A))

= max
T⊆S,T∈C

{
∑

U⊆T,U 6=A

w(U)} + ϕA(w(A)).
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The last line uses the definition ϕA(w(A)) = w(A) −
(w′(A)−w(A)) Prx←D′

A
[x≥w(A)]

fA(w(A)) , which may
seem unfamiliar to readers more familiar with virtual values for continuous distributions. Indeed,
this is the right generalization of Myerson’s ϕ(·) for continuous distributions to the discrete setting,
and we refer the interested reader to Section 4 of [6] for more discussion.

Ironing. The astute reader will notice that when D′S is irregular, the bound we probably want
above would replace ϕA(·) with ϕ̄A(·). [6] shows how to design a flow that accomplishes this essen-
tially by adding cycles to λ between adjacent types to “iron out” any non-monotonicities, but for
their setting of additive buyers. The exact same approach will work here. We omit a proof and
refer the reader to [6] for more detail. This allows us to prove corollary 3.1.

proof of corollary 3.1. Simply combine Corollary A.2 and Proposition A.3, after replacing ϕ(·) in
Proposition A.3 with ϕ̄(·).

B Missing Proofs From Section 2 and 3

Definition 5. A Random variable X is first-order stochastically dominated (FOSD) by random
variable Y if for every x, Pr [X ≥ x] ≤ Pr [Y ≥ x].
Note: If X is FOSD by Y then E [X] ≤ E [Y ].

proof of theorem 2.1. Let 1q be an independent indicator random variable that equals 1 with prob-
ability q. Let {XS}S be non-negative independent random variables that are drawn from the
independent distributions.

Consider a tie breaking rule among the sets, and let the event XS = maxT {XT } be true only
when S also wins in the tie breaking rule. Set qS = Pr [XS = maxT {XT }]. So

∑

S qS = 1. set tS
s.t. Pr [XS ≥ tS ] = q · qS.

Let us see that the random variable 1q · XS · 1 [XS = max{XT }] is FOSD (definition 5) by
XS · 1 [XS ≥ tS ].

For every x ≥ tS, it holds that Pr [1q ·XS · 1 [XS = max{XT }] ≥ x] ≤ qPr [XS ≥ x], while
Pr [XS · 1 [XS ≥ tS ] ≥ x] = Pr [XS ≥ x].

For every x < tS , it holds that Pr [1q ·XS · 1 [XS = max{XT }] ≥ x] ≤ q · qS by definition of qS ,
while Pr [XS · 1 [XS ≥ tS] ≥ x] = Pr [XS ≥ tS ] = q · qS by definition of tS . We get that:

E

[

max
S
{XS}

]

=
∑

S

E [XS · 1 [XS = max{XT }]]

=
1

q

∑

S

E [1q ·XS · 1 [XS = max{XT }]]

≤
1

q

∑

S

E [XS · 1 [XS ≥ tS ]]

Let XS be the random variable that first draws x ← D′S and returns max{0, ϕS(x)}. Assume the
distributions are regular, and refer to [9] for the irregular case. As tS ≥ 0 we get:

E
x←D′

S

[

max
S
{ϕS(x), 0}

]

≤
∑

S

E
x←D′

S

[ϕS(x) · 1 [ϕS(x) ≥ tS]]
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Observe that the above term for each S is the expected virtual value of the mechanism that allocates
to a bidder with value x if x exceeds pS = inf{x : ϕS(x) = tS}. This allocation is achieved by
posting a price pS . By Myerson’s payment identity:

E
x←D′

S

[

ϕS(x) · 1
[

ϕS(x) ≥ t′S
]]

= E
x←D′

S

[pS · Pr [x ≥ pS ]]

This concludes property 1. Property 2 follows by monotonicity of ϕS (regularity of D′S , for the
irregular case refer to [9]):

∑

S

Pr
D′

S

[x ≥ pS] =
∑

S

Pr
D′

S

[ϕS(x) ≥ tS ] =
∑

S

q · qS = q

Proof of Theorem 3.2. Simply combine Propositions 4.1 and 5.10 with Corollary 3.1, to get:

REV(D) ≤ 4dSREV∗(D) + 16BREV(D) ≤ (4d+ 16)max{SREV∗,BREV}

C Missing Proofs From Section 5

proof of lemma 5.1. The proof follows from the following algebra:

(NON-FAVORITE) = E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [v /∈ RT ]}





= E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [w(T ) ≤ t] · 1 [v /∈ RT ] + w(T ) · 1 [w(T ) > t] · 1 [v /∈ RT ]}





≤ E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [w(T ) ≤ t]}





+ E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [w(T ) > t] · 1 [v /∈ RT ]}





≤ E
v←D



max
S∈C
{
∑

T⊆S

w(T ) · 1 [w(T ) ≤ t]}





+ E
v←D





∑

T |w(T )>t

w(T ) · 1 [v /∈ RT ]}





proof of corollary 5.3. By corollary 12 in [42], we know that for all k > 0:

Pr [v(N) ≥ 3 · a+ k · c] ≤ min{1, 4 · 2−k} (1)
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Substituting x = 3 · a+ k · c gets k = (x− 3a)/c. Therefore, equation (1) becomes meaningful only
when 4 · 2−k ≤ 1, i.e., when x ≥ 2c+ 3a. Computing the expected value of v(N) gives:

∫ ∞

0
Pr [v(N) > x] dx ≤

∫ ∞

0
min{1, 4 · 2(3a−x)/c}dx = 2c+ 3a+ 4 · 23a/c ·

∫ ∞

2·c+3a
2−x/c · dx

Computing the integral gives: − c
ln 2

[

2−x/c
]∞

2c+3a
= c

ln 2 · 2
−
2c+3a

c = c
4 ln 2 · 2

−3a/c, which, plugged
back to the equation concludes that

E [v(N)] ≤ 2c+ 3a+
c

ln 2

as desired.

proof of lemma 5.6. For any x, we can set price x on the grand bundle. It will sell with prob-
ability at least Prw←D′

−T
[∃T ′, w(T ′) > x], as whenever there is a single hyperedge with contri-

bution x, certainly the buyer’s value for the grand bundle is at least x. Therefore, BREV ≥
x · Prw←D′

−T
[∃T ′, w(T ′) > x].

proof of proposition 5.7. By Lemma 5.6, We get:

∑

T⊆M

∑

x>t,fT (x)>0

x·fT (x)· Pr
w←D′

−T

[

∃T ′, w(T ′) > x
]

≤
∑

T⊆M

∑

x>t,fT (x)>0

fT (x)·BREV =
∑

T⊆M

Pr[w(T ) > t]·BREV.

proof of lemma 5.8. By independence:

Pr [∪iEi] = 1−
∏

i

(1− Pr [Ei])

So if we define qi = Pr[Ei], we want to maximize
∏

i (1− qi) subject to
∑

i qi = k. Using a
Lagrangian multiplier of λ on the constraint

∑

i qi = k, we get a new objective of:

∏

i

(1− qi) + λ · (
∑

i

qi)− λk

We see that the partial with respect to qi of the above is exactly −
∏

j 6=i(1 − qj) + λ. So setting

qi = k/n for all i, and λ = (1 − k/n)n−1, we see that
∑

i qi = k and the partial of the Lagrangian
with respect to qi is 0 for all i. Therefore, this is the optimal solution. At qi = k/n for all i, we
have

∏

i(1− k/n) = (1− k/n)n ≤ e−k.

D Lower Bounds

Below We formally define the previously mentioned complementarity measures.

Definition 6. [1, 20](MPH) A valuation v is positive hypergraph (PH) of degree at most k if there
exists a hyperedge weight function w ≥ 0, w(T ) = 0 for all |T | > k, so that v(S) =

∑

T⊆S w(T ).
A valuation v is maximum over PH (MPH) of degree at most k if there exists a collection L of

such hyperedge weight functions, so that v(S) = maxℓ∈L{
∑

T⊆S wℓ(T )}.
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Definition 7. [22](MPS) A valuation v is positive supermodular (PS) of degree at most k if there
exists a hyperedge weight function w ≥ 0, so that for every item i, it holds that
|{j ∈M : ∃T,w(T ) > 0, {j, i} ⊆ T}| ≤ k, i.e., item i has at most k neighbors (other items that
share a positive hyperedge with it).

A valuation v is maximum over PS (MPS) of degree at most k if there exists a collection L of
such hyperedge weight functions, so that v(S) = maxℓ∈L{

∑

T⊆S wℓ(T )}.

Definition 8. [21](SM) A valuation v is supermodular (SM) of degree at most k if for each item
i, the number of items i′ so that there exists a set Si′ 6∋ i so that v(Si′ ∪ i)− v(Si′) > v(Si′ \ {i

′} ∪
{i}) − v(Si′ \ {i

′}) is at most k, i.e., i’s marginal contribution to a set may increase by adding
another item, to at most k different items.
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