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Joint Learning and Optimization of Multi-Product
Pricing with Finite Resource Capacity and Unknown

Demand Parameters

Qi (George) Chen
London Business School, Regent’s Park, London, NW1 4SA, gchen@london.edu

Stefanus Jasin, Izak Duenyas
Stephen M. Ross School of Business, University of Michigan, Ann Arbor, MI 75080, sjasin, duenyas@umich.edu

We consider joint learning and pricing in network revenue management (NRM) with multiple products,

multiple resources with finite capacity, parametric demand model, and a continuum set of feasible price

vectors. We study the setting with a general parametric demand model and the setting with a well-separated

demand model. For the general parametric demand model, we propose a heuristic that is rate-optimal (i.e.,

its regret bound exactly matches the known theoretical lower bound under any feasible pricing control for

our setting). This heuristic is the first rate-optimal heuristic for a NRM with a general parametric demand

model and a continuum of feasible price vectors. For the well-separated demand model, we propose a heuristic

that is close to rate-optimal (up to a multiplicative logarithmic term). Our second heuristic is the first in

the literature that deals with the setting of a NRM with a well-separated parametric demand model and a

continuum set of feasible price vectors.

Key words : network revenue management, exploration and exploitation, parametric demand models,

well-separated demand models, heuristics, asymptotic approach

1. Introduction

We consider a canonical dynamic pricing problem in the network revenue management (NRM)

setting: A seller sells n types of products during a finite selling season subject to constraints imposed

by m limited resources which cannot be replenished during the selling season, and he needs to

decide the price for each product at the beginning of every decision period throughout the selling

horizon. To effectively manage price adjustment, the seller needs to have a good knowledge of the

underlying demand function (i.e., the average demand as a function of price); but in practice, such

information is not always readily available a priori, so the seller needs to learn it on the fly from

noisy demand observations. How should a seller jointly learn the demand function and price his

products in a way that maximizes his expected total revenue?

This problem is prevalent in many industries (Talluri and van Ryzin 2005) and has drawn

extensive interest from the academic literature (see den Boer (2015) for an overview). What makes
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this problem challenging is that the seller not only needs to balance the well-known exploration (i.e.,

focusing on learning demand function by experimenting with suboptimal prices) and exploitation

(i.e., focusing on earning by using the optimal price under the estimated demand function) trade-

off, but also needs to manage the resource allocation over time under demand arrival uncertainties.

Moreover, when the seller is managing prices for many products whose availability is subject to

many resource capacity constraints, the price optimization can be computationally time-consuming:

For example, it could take several hours for a hotel company to complete its price optimization

once (Koushik et al. 2012, Pekgun et al. 2013). Due to the difficulty of computing the optimal

pricing policy, most of the recent studies have focused on developing computationally efficient

heuristic pricing controls with analytically provable strong performance. To analytically compare

performance among different heuristics, a widely used performance measure is the so-called regret

which corresponds to the difference between a revenue upper bound, defined as the maximal revenue

a clairvoyant (who knows the demand function) would have got if there were no randomness in

the demand realizations, and the expected revenue under a heuristic pricing control. Since most

applications of NRM (e.g., airlines, hotels) involve a lot of potential sales transaction opportunities,

the literature has focused on investigating the large-scale setting, which is operationalized by

proportionally scaling the potential number of customers and the initial capacity levels by the same

multiplicative scaling factor k, and characterizing the asymptotic order of regret as a function of

k. An important finding in the literature is that even for the simplest special case of the NRM

setting where there is one product with linear demand model and unknown intercept and slope,

and one unlimited resource, the best (i.e., smallest) regret a seller can hope for is Ω(
√
k) (Broder

and Rusmevichientong 2012).This implies that, for the general NRM setting, the optimal regret

bound of any pricing control can be no better than
√
k. Thus, prior work in the literature has

developed heuristics with near-optimal regret bound in various special cases of the NRM setting

which we review below. (A summary is provided in Table 1).

One stream of the literature investigates the case with the restriction that the seller is only

allowed to choose from a pre-determined finite set of prices (e.g., Ferreira et al. (2018), Badanidiyuru

et al. (2018)), which is closely related to the celebrated multi-armed bandit problem studied in

the computer science literature. This restriction simplifies the problem in two ways: First, instead

of estimating the whole demand function, the seller only needs to estimate the expected demand

under a finite number of prices; second, the maximal revenue a clairvoyant can get with no demand

uncertainty becomes lower which makes it easier to attain a smaller regret. Strong regret upper

bounds have been established in this literature: For example, Ferreira et al. (2018) showed that a

Thompson sampling based algorithm achieves a performance bound of O(
√
kM logM) where M

is the number of feasible price vectors.1
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While strong analytical results have been established in the pre-determined finite feasible price

case, in practice, the seller could potentially earn more revenue by using other prices. Therefore,

there is also another stream of literature that investigates the case where the seller can choose from

a continuum of prices. Most of the work in this stream has focused on the so-called nonparametric

approach: The seller has no idea about the functional form of the demand function (Besbes and

Zeevi 2009, Wang et al. 2014, Besbes and Zeevi 2012, Lei et al. 2014, Chen and Gallego 2019).

Unfortunately, strong analytical results under the nonparametric approach are limited to special

cases. When there is a single product and a single resource, Wang et al. (2014) developed an

algorithm that attains O(
√
k log

9
2 (k)); Chen and Gallego (2019) improved/generalized the result to

the case of multiple products with no demand substitution (in the sense that the demand of product

i is independent of the prices of other products) and a single resource, and developed a primal-

dual learning method that attains a regret of O(
√
k log2(k)). The problem becomes very difficult

with substitutable demand and multiple resource constraints because the seller needs to estimate a

multi-variate vector-valued demand function in order to optimally allocate multiple resources over

time. Besbes and Zeevi (2012) proposed a heuristic with sub-linear regret of O(k
n+2
n+3 log

1
2 (k)), but

the regret bound deteriorates when the number of product types n is large. To address this, they

imposed smoothness conditions on the underlying demand function, and proposed a heuristic with

regret O(k
2
3+ε log

1
2 (k)), where ε > 0 depends on n and how “smooth” the demand function is: If the

demand function is sufficiently smooth (i.e., all of its higher order partial derivatives are uniformly

bounded), ε can be arbitrarily small; otherwise, ε can be large. This result is improved by Chen

et al. (2019) to O(k
1
2+ε log(k)) using a different heuristic under the same smoothness condition;

hence, when the demand function is sufficiently smooth, there exists a nonparametric approach

whose regret is arbitrarily close to the theoretical regret lower bound Ω(
√
k).

An alternative to the nonparametric approach is the so-called parametric approach: The seller

knows the parametric form of the demand function, but not its parameters. This is a popular

approach in practice where practitioners may be able to figure out the type of demand functions

that fits the reality well based on their institutional knowledge and past experience. Although

the nonparametric approaches can be readily applied in this setting, the benefit of a parametric

approach is that the seller only needs to estimate a finite number of parameters which fully deter-

mine the underlying demand function. One would imagine that the parametric approach should

achieve lower regret than the nonparametric approaches; quite surprisingly, to the best of our

knowledge, the only such result is in the setting of linear demand function families with multiple

products and multiple resource constraints: Ferreira et al. (2018) proposed a TS-linear algorithm

that attains a regret of O(
√
k log(k)). It is not clear whether their approach can be modified for

other commonly used parametric demand models (e.g., multinomial logit demand) and also achieve
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Table 1 Best regret upper bounds for different cases of NRM in the literature prior to our paper

Setting Best existing
Number of Network Demand Allow product regret upper

feasible prices complexity model substitution? bound

Finite n≥ 1,m≥ 1 n/a n/a O(
√
k)?

Continuum

n≥ 1,m= 1 Nonparametric No O(
√
k log2(k))

n≥ 1,m≥ 1 Nonparametric Yes O(k
n+2
n+3 log

1
2 (k))

n≥ 1,m≥ 1 Nonparametric Yes O(k
1
2
+ε log(k))??

n≥ 1,m≥ 1 Linear Yes O(
√
k log(k))

? The revenue upper bound in this setting requires the clairvoyant to only use finite number of feasible price vectors,

so the resulting regret bound is not directly comparable to the other regret bounds in this table. ?? The ε depends

on n and the level of smoothness of the demand function (see Remark 2).

lower regret bounds than the nonparametric approaches. This gap in the literature calls for a

parametric approach that not only works for commonly used parametric demand models but also

achieves better regret bounds.

Our contributions. The contributions of this paper can be summarized as follows:

1. We revisit the NRM setting with a general parametric demand model and a continuum set

of feasible price vectors. We propose a heuristic called Parametric Self-adjusting Control (PSC)

whose regret is O(
√
k). To the best of our knowledge, this is the first pricing control whose regret

matches the theoretical lower bound Ω(
√
k) for the NRM setting when there are multiple products

and multiple resource constraints. Thus, PSC not only improves and generalizes the results of

Ferreira et al. (2018) but also resolves an open research problem on existence of a rate-optimal

heuristic for NRM with a parametric demand model and a continuum set of feasible price vectors.

2. In addition to the setting with a general parametric demand model, we also consider the

setting where the demand model also satisfies the well-separated condition. This type of demand

model is popularized by Broder and Rusmevichientong (2012) and covers many realistic practi-

cal scenarios, including the setting where either the market size or the parameters of customer’s

willingness-to-pay function is unknown. We propose a modification of PSC called Accelerated Para-

metric Self-adjusting Control (APSC) whose regret is O(log2 k) for the setting with well-separated

demand models. Several novelties are involved in the design and analysis of this heuristic: First,

we generalize the notion of well-separated demand model with a single parameter (Broder and

Rusmevichientong 2012) to multiple product and multiple parameter setting, and our proof on

the speed of learning in the multiple products setting is new. Second, in APSC, the underlying

demand parameters are re-estimated as more data become available; the dynamic pricing decisions

rules are re-calibrated accordingly based on an idea derived from Newton’s method (Boyd and

Vandenberghe 2004).
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2. Problem Formulation

Notation. The following notation will be used throughout the paper. (Other notation will be

introduced when necessary.) Denote by R (resp. Z), R+ (resp. Z+), and R++ (resp. Z++) the set

of real (resp. integer), nonnegative real (resp. integer), and positive real (resp. integer) numbers.

For column vectors a = (a1; . . . ;an) ∈ Rn, b = (b1; . . . ; bn) ∈ Rn, denote by a � b if ai ≥ bi for all i,

and by a � b if ai > bi for all i. Denote by ⊗ the tensor product of sets, by ′ the transpose of a

vector or a matrix, and by I (resp. e) an identity matrix (resp. a vector of ones) with a proper

dimension. For any vector v = [vj] ∈Rn, ||v||p := (
∑n

j=1 |vj|p)1/p is its p-norm (1≤ p≤∞) and, for

any real matrix M = [Mij]∈Rn×n, ||M ||p := sup||v||p=1 ||Mv||p is its induced p-norm. For example,

||M ||2 = the largest eigenvalue of M ′M , and ||M ||∞ = max1≤i≤n
∑n

j=1 |Mij|. For any function f :

X → Y , denote by ||f(.)||∞ := supx∈X ||f(x)||∞ the infinity-norm of f . We use ∇ to denote the

usual derivative operator and use a subscript to indicate the variables which this operation is

applied to. (No subscript ∇ means that the derivative is applied to all variables.) If f : Rn→ R,

then ∇xf = ( ∂f
∂x1

; . . . ; ∂f
∂xn

); if, on the other hand, f = (f1; . . . ;fn) :Rn→Rn, then

∇xf =


∂f1
∂x1
· · · ∂fn

∂x1
...

. . .
...

∂f1
∂xn
· · · ∂fn

∂xn

 .
The model. We consider the classical price-based NRM setting in which a monopolist maximizes

his expected revenue from selling his products to incoming customers during a finite selling season.

There are n types of products, each of which is made up from a subset of m types of resources.

Denote by A= [Aij] ∈ Rm×n+ the resource consumption matrix, which indicates that a single unit

of product j requires Aij units of resource i. Denote by C ∈Rm+ the vector of initial capacity levels

of all resources at the beginning of the selling season which cannot be replenished and have zero

salvage value at the end of the selling season.

We consider a discrete-time model with T decision periods, indexed by t = 1,2, ..., T . At the

beginning of period t, the seller first decides the price pt = (pt,1; . . . ;pt,n) for his products, where pt

is chosen from a convex and compact set P =⊗nl=1[p
l
, p̄l]⊆Rn of feasible price vectors. The posted

price pt induces a demand, or sale, for one of the products with a certain probability. Here, we

implicitly assume that at most one sale for one product occurs in each period. (We have made this

assumption and chosen to focus on discrete time model to simplify the presentation of the analysis.

Our analysis can be extended to either a discrete-time model with bounded demand arrivals in each

period or continuous-time model with a compound Poisson process.) We assume that the demand

distribution under any price is unknown to the seller, but this relationship can be estimated using

statistical methods. Specifically, let λ(.; .) : P ×Θ→∆n−1 denote the family of demand functions
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where ∆n−1 := {(x1; . . . ;xn)∈Rn|
∑n

i=1 xi ≤ 1, and xi ≥ 0 for all i} is the standard (n−1)-simplex,

Θ is a compact subset of Rq and q ∈ Z++ is the dimension of the unknown parameter vector. We

denote by θ∗ the true parameter vector for the underlying demand function. Under the parametric

demand case, the seller knows the functional form of λ(.;θ) for any θ ∈Θ, but he does not know

θ∗. Let Λθ := {λ(p;θ) : p∈P} denote the set of feasible demand rates under some parameter vector

θ ∈Θ. We assume that Λθ is convex. (For most commonly used parametric function families such

as linear, multi-nomial logit, and exponential demand, Λθ is convex for all θ ∈Θ.)

Let Dt(pt) = (Dt,1(pt); . . . ;Dt,n(pt)) denote the vector of demand realization in period t under

price pt. It should be noted that, although demands for different products in the same period are not

necessarily independent, demands over different periods are assumed to be independent conditional

on the price vectors used. By definition, we have Dt(pt) ∈ D := {D ∈ {0,1}n :
∑n

j=1Dj ≤ 1} and

Eθ∗ [Dt(pt)] = λ(pt;θ
∗). This allows us to write Dt(pt) = λ(pt;θ

∗) + ∆t(pt), where ∆t(pt) is a zero-

mean random vector. For notational simplicity, whenever it is clear from the context which price

pt is being used, we will simply write Dt(pt) and ∆t(pt) as Dt and ∆t respectively. The one-period

expected revenue function under θ is given by the revenue function defined as r(p;θ) := p′λ(p;θ).

We assume that for all θ ∈Θ, λ(p;θ) is invertible (see parametric family assumptions below); so

we can write r(p;θ) = p′λ(p;θ) = λ′p(λ;θ) = r(λ;θ) by abuse of notation. We make the following

regularity assumptions about the family of parametric demand functions which are standard in

the literature and satisfied by many commonly used demand functions.

Parametric Family Assumptions. There exist positive constants r̄, v, v̄, ω, v, v̄ such that for all

p∈P and for all θ ∈Θ:

A1. λ(.;θ) :P →Λθ is in C2(P) and it has an inverse function p(.;θ) : Λθ→P that is in C2(Λθ).

λ(p; .) : Θ→∆n−1 is in C1(Θ). For all λ,λ′ ∈Λθ, ||p(λ;θ)− p(λ′;θ)||2 ≤ ω||λ−λ′||2.

A2. For all 1≤ i, j ≤ n, ||λ(p;θ)−λ(p;θ∗)||2 ≤ ω||θ− θ∗||2, |∂λj
∂pi

(p;θ)− ∂λj
∂pi

(p;θ∗)| ≤ ω||θ− θ∗||2.

A3. ||r(.;θ)||∞ ≤ r̄ and r(.;θ) is strongly concave in λ, i.e., −v̄I � ∇2
λλr(λ;θ) � −vI for all

λ∈Λθ.

A4. There exists a set of turn-off prices p∞j ∈ R ∪ {∞} for j = 1, . . . , n such that for any p =

(p1; . . . ;pn), pj = p∞j implies that λj(p;θ) = 0 for all θ ∈Θ.

A1 and A2 are natural regularity assumptions satisfied by many demand functions, e.g., linear

demand, multi-nomial logit demand, and exponential demand. In A3, the boundedness of r(.;θ)

follows since Θ and Λθ are compact and r(.;θ) is continuous; the strong concavity of r(.;θ) as a

function of λ is a standard assumption in the literature and is satisfied by many commonly used

demand functions such as linear, exponential, and multi-nomial logit functions. It should be noted

that although some of these functions, such as multi-nomial logit, do not naturally correspond to
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a concave revenue function when viewed as a function of p, they are nevertheless concave when

viewed as a function of λ. This highlights the benefit of treating revenue as a function of demand

rate instead of as a function of price. A4 is common in the literature (Besbes and Zeevi 2009) for

modeling convenience. In particular, the turn-off prices p∞j are needed to model the seller’s action

to remove the offering of any product (i.e., shut down its demand) whenever needed (e.g., in the

case of stock-out).

Admissible controls and the induced probability measures. Let D1:t := (D1,D2, . . . ,Dt)

and p1:t := (p1, p2, . . . , pt) denote respectively the observed vectors of demand and price realizations

up to and including period t. Let Ht denote the σ-field generated by D1:t and p1:t. We define a

control π as a sequence of functions π = (π1, π2, . . . , πT ), where πt is a Ht−1-measurable mapping

that maps the history D1:t−1 and p1:t−1 to a distribution of price vectors on P ∪ {p∞} (here H0

should be interpreted as the collection of seller’s information before the selling horizon starts: it

includes A,C,T,Θ and the class of demand functions {λ(.;θ)}θ∈Θ). This class of controls is often

referred to as non-anticipating controls because the decision in each period depends only on the

information the seller observes up to the beginning of the period. Under policy π, the seller sets

the price in period t equal to pπt = πt(D1:t−1, p1:t−1). Let Πθ denote the set of all admissible controls

if the true demand parameters were some θ ∈Θ. That is,

Πθ :=

{
π :

T∑
t=1

ADt(p
π
t ;θ)�C almost surely, and pπt = πt(Ht−1)

}
.

(Although the true underlying parameter is θ∗, we define above the set of admissible controls for any

θ ∈Θ.) Note that we require the capacity constraint to hold almost surely for all π ∈Πθ, which can

be satisfied by using turn-off prices p∞ in case of stock-out. Let Pπ,θt denote the induced probability

measure of D1:t under an admissible control π ∈Πθ. For any realization D1:t = d1:t := (d1, d2, . . . , dt),

where ds = (ds,j)∈D, s= 1, . . . , t, we have:

Pπ,θt (d1:t) =
t∏

s=1

(1−
n∑
j=1

λj(p
π
s ;θ)

)(1−
∑n
j=1 ds,j) n∏

j=1

λj(p
π
s ;θ)ds,j

 ,
where pπs = πs(d1:s−1, p

π
1:s−1) where pπ1:s−1 ∈Ps−1 is the collection of prices used in previous periods.

(By definition of λ(p;θ), the term 1−
∑n

j=1 λj(p
π
s ;θ) can be interpreted as the probability of no-

purchase in period s under price pπs .) For notational simplicity, we will write Pπθ := Pπ,θT and denote

by Eπ
θ the expectation with respect to the probability measure Pπθ . The seller’s total expected

revenue under π ∈Πθ is given by:

Rπ
θ = Eπ

θ

[
T∑
t=1

(pπt )′Dt(p
π
t ;θ)

]
.
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Whenever it is clear that the prices p1:t ∈Pt are generated by an admissible control π, it is also

convenient to write Pp1:t,θt (d1:t) =
∏t

s=1[(1−
∑n

j=1 λj(ps;θ))
(1−

∑n
j=1 ds,j)

∏n

j=1 λj(ps;θ)
ds,j ].

Maximum likelihood estimator and exploration prices. As noted earlier, the seller can

estimate the unknown θ∗ using statistical methods. In this paper, we will focus primarily on

Maximum Likelihood (ML) estimation which not only has certain desirable theoretical properties

but is also widely used in practice. As shown in the statistics literature, to guarantee the regular

behavior of ML estimator, certain statistical conditions need to be satisfied. To formalize these

conditions in our context, it is convenient to first consider the distribution of a sequence of demand

realizations when a sequence of q̃ ∈ Z++ fixed price vectors p̃= (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ P q̃ have been

applied. For all d1:q̃ ∈Dq̃, we define

Pp̃,θ(d1:q̃) :=

q̃∏
s=1

(1−
n∑
j=1

λj(p̃
(s);θ)

)(1−
∑n
j=1 ds,j) n∏

j=1

λj(p̃
(s);θ)ds,j

 ,
and denote by Ep̃

θ the expectation with respect to Pp̃,θ. We make the following assumption.

A5. (Statistical Conditions) There exist constants 0<λmin <λmax < 1, cf > 0 and a set of

prices p̃= (p̃(1), . . . , p̃(q̃))∈P q̃ such that:

i. Pp̃,θ(.) 6= Pp̃,θ′(.) whenever θ 6= θ′;

ii. For all θ ∈Θ, 1≤ k≤ q̃ and 1≤ j ≤ n, λj(p̃
(k);θ)≥ λmin and

∑n

j=1 λj(p̃
(k);θ)≤ λmax.

iii. For all θ ∈Θ, I(p̃, θ)� cfI where I(p̃, θ) := [Ii,j(p̃, θ)]∈Rq×q is a q by q matrix defined as

Ii,j(p̃, θ) = Ep̃
θ

[
− ∂2

∂θi∂θj
logPp̃,θ(D1:q̃)

]
.

We call p̃ exploration prices. A5 ensures that there exists a set of price vectors (e.g., p̃) which,

when used repeatedly, would allow the seller to use ML estimator to statistically identify the

true demand parameter. Specifically, A5-i and A5-ii are crucial to guarantee that the estimation

problem is well-defined, i.e., the seller is able to identify the true parameter vector by observing

sufficient demand realizations under the exploration prices p̃. (If this is not the case, then the

estimation problem is ill-defined and there is no hope for learning the true parameter vector.)

The symmetric matrix I(p̃, θ) defined in A5-iii is known as the Fisher information matrix in

the literature, and it captures the amount of information that the seller obtains about the true

parameter vector using the exploration prices p̃. A5-iii requires the Fisher matrix to be strongly

positive definite; this is needed to guarantee that the seller’s information about the underlying

parameter vector strictly increases as he observes more demand realizations under p̃.
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Remark 1. We want to point out that it is easy to find exploration prices for the commonly used

demand function families. For example, for linear and exponential demand function families, any

q̃ = n+ 1 price vectors p̃(1), . . . , p̃(n+1) constitute a set of exploration prices if (a) they are all in

the interior of P and (b) the vectors (1; p̃(1)), . . . , (1; p̃(n+1)) ∈Rn+1 are linearly independent. For

the multi-nomial logit demand function family, any q̃= 2 price vectors p̃(1), p̃(2) constitute a set of

exploration prices if (a) they are both in the interior of P and (b) p̃
(1)
i 6= p̃

(2)
i for all i = 1, . . . , n.

While different choices of exploration prices would result in the same asymptotic convergence rate

of the ML estimator, empirically, they do exhibit different convergence speed. To improve the

empirical convergence speed of ML estimator, it is possible to choose the set of exploration prices

that “maximizes” information accumulation in each observation, but it is beyond the scope of

this paper. Interested readers are referred to the literature of optimum experimental design (e.g.,

Pronzato and Pázman (2013)).

The deterministic formulation and performance metric. It is common in the literature to

consider the deterministic analog of the stochastic problem. Specifically, for any θ ∈Θ, define:

(P(θ)) JDθ := max
p∈P

{
T∑
t=1

r(pt;θ) :
T∑
t=1

Aλ(pt;θ)�C

}
,

or equivalently, (Pλ(θ)) JDθ := max
λt∈Λθ

{
T∑
t=1

r(λt;θ) :
T∑
t=1

Aλt �C

}
.

By A3, Pλ(θ) is a convex program and is computationally easier to solve than P(θ). When P(θ∗)

is feasible, it can be shown that JDθ∗ is in fact an upper bound for the expected revenue of any

admissible control for the original stochastic problem: Rπ
θ∗ ≤ JDθ∗ for all π ∈Πθ∗ . (See Besbes and

Zeevi (2012) for proof.) This allows us to use JDθ∗ as a benchmark to quantify the performance of

any admissible pricing control. In this paper, we follow the convention and define the regret of an

admissible control π ∈Πθ∗ as ρπ := JDθ∗ −Rπ
θ∗ . Denote by pD(θ) (resp. λD(θ)) the optimal solution

of P(θ) (resp. Pλ(θ)). In addition, denote by µD(θ) the optimal dual solution corresponding to the

capacity constraints of P(θ). (Note that µD(θ) is also the optimal dual solution corresponding to

the capacity constraints of Pλ(θ).) Let Ball(x, r) denote a closed Euclidean ball centered at x with

radius r. We state our last parametric assumption below:

A6. P(θ) is feasible for all θ ∈Θ and there exists φ> 0 such that Ball(pD(θ∗), φ)⊆P.

Note that A6 is sufficiently mild and is satisfied by most problem instances. Intuitively, it states

that the deterministic optimal price should neither be too low that it attracts too much demand

nor too high that it induces no demand.
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Asymptotic setting. Since most revenue management applications (e.g., airlines, hotels) can be

categorized as either moderate or large size, following the convention in the literature (Besbes

and Zeevi 2009), we will consider a sequence of increasing problems where the the initial capacity

levels and the number of decision periods in the selling season and are both scaled by a factor of

k = 1,2, . . . , i.e., in the kth problem, the selling horizon is divided into kT decision periods, and

the initial capacity levels are given by kC. (Note that since the demand function in each period

remains the same, as k increases, we effectively proportionally increase the initial capacity levels

and the potential demand. In practical terms, one can interpret k as a proxy for the size of the

problem. For example, kC = 500 could correspond to a flight with a capacity of 500 seats.) Note

that the optimal deterministic solution of the deterministic analog of the kth problem is still λD(θ∗)

and the optimal dual solution is still µD(θ∗). Let ρπ(k) denote the regret under admissible control

π ∈ Πθ∗ in the kth problem. We are primarily interested in the order of ρπ(k) as a function of k

for large k. For the remainder of the paper, our goal is to develop heuristic pricing controls whose

regrets grow slowly with respect to k.

3. General Demand Function Family

In this section, we introduce a heuristic called PSC whose regret exactly matches best achievable

regret (up to constant multiplicative constants) for the NRM setting with multiple products, multi-

ple resource constraints, a general parametric demand model that satisfies A5, and a continuum of

feasible prices. Next, we introduce PSC, and then discuss the theoretical and practical implications.

3.1. Parametric Self-adjusting Control (PSC)

In PSC, the selling season is divided into an exploration stage followed by an exploitation stage.

The exploration stage lasts for L periods (L is a tuning parameter to be selected by the seller)

where the seller alternates among exploration prices (see A5 and Remark 1 for their definitions and

how to select them) to learn the demand function. At the end of the exploration stage, the seller

computes his ML estimate of θ∗, denoted by θ̂L (in case the maximum of the likelihood function is

not unique, take any maximum as the ML estimate), based on all his observations so far, and solves

Pλ(θ̂L) for its solution λD(θ̂L) as an estimate of the deterministically optimal demand rate λD(θ∗).

Then, for the remaining (T −L)-period exploitation stage, the seller uses price vectors according

to a simple adaptive rule which we explain in more detail below. Define ∆̂t(pt; θ̂L) :=Dt−λ(pt; θ̂L)

(we will suppress the dependency of ∆̂ on pt and θ̂L when there is no confusion) and let Ct denote

the remaining capacity at the end of period t. The complete PSC procedure is given below.
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Parametric Self-adjusting Control (PSC)

Tuning Parameter: L

Stage 1 (Exploration)

a. Determine the exploration prices {p̃(1), p̃(2), ..., p̃(q̃)}.
b. For t= 1 to L, do:

- If Ct−1 �Aj for all j, apply price pt = p̃(b(t−1)q̃/Lc+1) in period t.

- Otherwise, apply price pt′,j = p∞j for all j and t′ ≥ t; then terminate PSC.

c. At the end of period L:

- Compute the ML estimate θ̂L based on p1:L and D1:L.

- Solve Pλ(θ̂L) for λD(θ̂L).

Stage 2 (Exploitation)

For t=L+ 1 to T , compute:

p̂t = p

(
λD(θ̂L)−

t−1∑
s=L+1

∆̂s(ps; θ̂L)

T − s
; θ̂L

)
. (1)

- If Ct−1 �Aj, and p̂t ∈P, apply price pt = p̂t in period t

- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺Aj, apply price pt,j = p∞j .

- Otherwise, apply price pt,j = pt−1,j.

What is the intuition behind the self-adjusting pricing rule in (1)? The idea seems fairly intuitive

if the estimate of the parameter vector is accurate, a setting studied in Jasin (2014). In that setting,

∆̂t equals the stochastic variability in demand arrivals ∆t, and the pricing rule in (1) reduces to

adjusting the prices in each period t to achieve a target demand rate, i.e., λD(θ∗)−
∑t−1

s=L+1
∆s
T−s .

The first part of this expression, λD(θ∗), is the optimal demand rate if there were no stochastic

variability, and we use it as a base rate; the second part of the expression, on the other hand, works

as a fine adjustment to the base rate in order to mitigate the observed stochastic variability. To see

how such adjustment works, consider the case with a single product: If there is more demand than

what the seller expects in period s, i.e., ∆s > 0, then the pricing rule automatically accounts for it

by reducing the target demand rate for all remaining (T − s)-period; moreover, the target demand

rate adjustment is made uniformly across all (T − s)-period so as to minimize unnecessary price

variations. Jasin (2014) has shown that the ability to accurately mitigate the stochastic variability

allows this self-adjusting pricing rule be effective when the parameter vector is known. However,

as one can imagine, such precise adjustment is not possible when the parameter vector is subject

to estimation error. Indeed, when θ̂L 6= θ∗, the seller can only adjust target demand rate based on

an estimate of ∆s, i.e., ∆̂s; moreover, the seller can no longer correctly find out the price vector
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that accurately induces (on average) the target demand rate since the inverse demand function

is also subject to estimation error. Can this pricing rule work well when the underlying demand

parameter is subject to estimation error? The answer is yes, and the key observation is that these

two sources of systematic biases push the price decisions on opposing directions and their impact

is thus reduced. To see that, consider a single product case where the seller over-estimates demand

for all prices, i.e., λ(p; θ̂L)>λ(p;θ∗) for all p: On the one hand, since the seller would underestimate

the stochastic variation that he needs to adjust (i.e., ∆̂s =Ds − λ(ps; θ̂L)<Ds − λ(ps;θ
∗) = ∆s),

this would push up the target demand rate (which would push down the price) than if there

were no estimation error; on the other hand, since p(λ; θ̂L)> p(λ;θ∗), for a given target demand

rate, the presence of estimation error would push the price up. Quite interestingly, these opposing

mechanisms are sufficient for PSC to achieve the optimal rate of regret.

Theorem 1. (Rate-Optimality of PSC) Suppose that A1-A6 hold. Set L = d
√
kT e. Then,

there exists a constant M1 > 0 independent of k≥ 1 such that ρPSC(k)≤M1

√
k for all k≥ 1.

To the best of our knowledge, PSC is the first heuristic that achieves O(
√
k) in a setting with

multiple products, multiple resource constraints, and a continuum of feasible prices. And it leverages

the fact that the demand model is fully determined by a finite dimensional vector θ∗, which can

be efficiently estimated by ML estimation:

Lemma 1. (Bounds for ML Estimator with I.I.D Observations) Suppose that A5 holds.

There exist positive constants η1, η2, η3 independent of L> 0 and θ ∈Θ, such that for all δ > 0, we

have Pπθ (||θ− θ̂L||2 > δ)≤ η1 exp(−η2Lδ
2) and Eπ

θ [||θ− θ̂L||22]1/2 ≤ η3/
√
L.

The only heuristic we are aware of that achieves comparable regret is the TS-linear proposed in

Section 4.1 in Ferreira et al. (2018) which achieves a slightly worse regret bound of O(
√
k logk).

Compared to PSC, TS-linear has two limitations. First, TS-linear is designed for a special case of

linear demand model, while PSC can be applied to a much broader range of parametric demand

models. Second, one of TS-linear’s critical step in each decision period is to sample a random

parameter vector θ̃ from the posterior distribution of the parameters and then re-optimize P(θ̃):

When the posterior does not permit closed-form, in each period, the seller needs to use Markov

chain Monte Carlo methods to sample θ̃ and then optimize P(θ̃) which can be computationally

very time-consuming. This may limit the practicability of TS-linear in many large-scale revenue

management applications where there are a lot of transaction opportunities (i.e., large k) and the

seller needs to make frequent price adjustments. In contrast, PSC is much more applicable for

those large-scale applications as it only requires a single convex optimization and one maximum

likelihood estimation throughout the entire selling season, and all other steps of PSC can be easily
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Table 2 Performance comparison between PSC and TS-Linear

Market “size” k= 102 k= 103 k= 104

Policy TS-Linear PSC TS-Linear PSC TS-Linear PSC

Rπθ∗/J
D
θ∗ time Rπθ∗/J

D
θ∗ time Rπθ∗/J

D
θ∗ time Rπθ∗/J

D
θ∗ time Rπθ∗/J

D
θ∗ time Rπθ∗/J

D
θ∗ time

(%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

C = (3,5,7) 67.0 1.7 79.7 4.0e-2 89.7 34.6 94.4 4.5e-2 89.8 2.6e3 98.5 2.0e-1
C = (15,12,30) 79.9 2.2 82.8 3.2e-2 82.5 37.4 94.3 4.1e-2 82.5 2.7e3 99.0 1.5e-1

In these examples, n= 2, m= 3, A= [1,1; 3,1; 0,5], the demand function family is λ(p1, p2;a1, a2, b11, b12, b21, b22) =

(a1 + b11p1 + b12p2, a2 + b21p1 + b22p2)′ and the true parameter vector is (8,9,−1.5,0,0,−3). For each setting, we

conduct 500 independent sample runs for each policy, take the sample average of the revenues for Rπθ∗ and the

sample average of the policy running time for “time”. For TS-Linear, we use uniform distribution as the prior of

the parameter vector; since the posterior of the parameter vector does not have a closed-form, we use the standard

Metropolis-Hastings algorithm to draw demand parameter vector from the posterior.

computed. To further highlight the practical benefit of PSC, we compare PSC and TS-linear using

the numerical examples in Ferreira et al. (2018) and summarize the percent of optimal revenue

achieved (i.e., Rπ
θ∗/J

D
θ∗) and computational time in Table 2. In all these examples, PSC not only

performs significantly better than TS-linear but also achieves a computational time that is orders

of magnitudes smaller. This suggests that PSC not only has a very strong analytical regret bound,

but is also a scalable heuristic control that has strong empirical performance.

Remark 2. In a closely related work, Chen et al. (2019) developed a nonparametric approach

named NSC. In fact, one can view PSC as a tailored version of NSC specifically designed for the

parametric setting to leverage the knowledge of the parametric form of the demand model. While

the analysis of PSC is analogous to NSC, the improvement of PSC’s regret bound is quite signif-

icant. The regret bound of NSC, with properly chosen tuning parameters, is O(k
1
2+ε(n,s̄)) where

ε(n, s̄) = 1
2

n+2
2s̄+n−2

, n is the number of products, and s̄ is the highest degree below which the partial

derivatives of the demand function are uniformly bounded by a constant. Note that for a given

n, if s̄ is sufficiently large (i.e., the demand function is sufficiently smooth), then ε(n, s̄) can be

very close to zero, so NSC’s regret can be very close to O(
√
k); but, when NSC is blindly applied

in our parametric setting, A1 implies that s̄= 3, so the regret bound is O(k1− 1
n+4 ), which is far

worse than PSC’s regret bound O(
√
k). This means that while theoretically, NSC may attain a

regret bound close to
√
k when the underlying demand function is sufficiently smooth, it may not

necessarily perform well in practice. This observation also raises an open question: Can O(
√
k)

regret be attained in the nonparametric setting with multiple products, multiple resources, and a

continuum of prices? The most general case in the literature where regret bounds that are only up

to logarithmic multiplicative terms larger than O(
√
k) is achievable is the case of single resource

and multiple independent products (Chen and Gallego 2019). Two features of this setting greatly

simplify the analysis: First, it has the nice structure that the optimal solution is either binding
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or non-binding at the resource constraint; second, due to separable demand, the nonparametric

estimation problem is effectively single-dimensional. This neat structure breaks down when there

are multiple resource constraints and when demands are substitutable: To identify binding con-

straints, the seller may need to learn the whole multi-variate demand function which is equivalent

to estimating the average demand on an uncountably many number of price vectors. Thus, we

suspect that some new ideas in identifying the binding constraints without necessarily estimating

the whole nonparametric demand model is necessary to develop nonparametric approaches with

O(
√
k) regret for NRM problem with a continuum of prices.

4. Well-Separated Demand Function Family

The joint learning and pricing problem studied in Section 3 is very general: It allows both a general

parametric demand model and an arbitrary finite number of unknown parameters. This generality

makes the learning problem difficult because not all prices are equally informative. For example,

as illustrated in Figure 1 in Broder and Rusmevichientong (2012), when the true demand function

belongs to the class of demand functions λ(p;θ) = 1/2+θ−θp, the price p= 1 is an “uninformative

price” since using it cannot help the seller statistically identify the true demand function: when

p= 1, any θ would result in 50% chance of observing a demand. Therefore, in order to learn the

true demand function, the seller needs to avoid uninformative prices by actively experimenting

with informative prices; the need to conduct such costly price experiment is the reason why the

regret lower bound is Ω(
√
k) in general. In practice, however, there may be additional institutional

knowledge that the seller can use to impose more structure into the class of parametric demand

models in order to simplify learning. For example, suppose a seller has a good understanding of

the distribution of customers’ reservation prices but is uncertain about the potential market size;

he may choose a parametric demand function as λ(p;θ) = θF (p) where F is a known function

that captures the percentage of customers whose reservation price is above p. (Similar settings

have been studied in Aviv and Pazgal (2005), Araman and Caldentey (2009), Farias and van Roy

(2010) and Chen and Farias (2013).) Then, all prices such that F (p)> 0 are informative because

under the same p, different θ would result in different probability of observing a demand. This

observation motivates us to consider a special class of well-separated demand functions (to be

formally defined below) which enables the seller to gather information without necessarily engaging

in costly price experimentations. Can the seller achieve lower regret than Ω(
√
k)? If so, can such

regret be achieved without computationally extensive re-optimizations? To address these questions,

we first introduce the formal definition of well-separated demand, and then propose a modification

of PSC that attains logarithmic-squared regret.
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4.1. Well-separated demand

Define a collection of prices W(λ̃min, λ̃max) := {p ∈ P :
∑n

j=1 λj(p;θ) ≤ λ̃max, λj(p;θ) ≥ λ̃min, j =

1, . . . , n, for all θ ∈Θ}, where

λ̃min := min

λmin, min
p∈Ball(pD(θ∗), 7φ8 )

θ∈Θ

min
1≤j≤n

λj(p;θ)

 , λ̃max := max

λmax, max
p∈Ball(pD(θ∗), 7φ8 )

θ∈Θ

n∑
j=1

λj(p;θ)

 .

Note that φ is defined in A6 (in fact, for the results in this section to go through, one can replace

Ball
(
pD(θ∗), 7φ

8

)
in the definition of λ̃min and λ̃max by Ball (pD(θ∗), l) with any l ∈ (0, φ)); so by

A5-ii and A6, one can easily verify that 0< λ̃min < λ̃max < 1, and pD(θ∗) ∈W(λ̃min, λ̃max). All the

results in this section require the following well-separated assumption to hold.

A7. (Well-Separated Assumption) There exists cf > 0 such that:

i. For all p∈W(λ̃min, λ̃max), Pp,θ(.) 6= Pp,θ′(.) whenever θ 6= θ′;

ii. For all θ ∈Θ, p∈W(λ̃min, λ̃max), I(p, θ)� cfI for I(p, θ) := [Ii,j(p, θ)]∈Rq×q defined as

[I(p, θ)]i,j = Ep
θ

[
− ∂2

∂θi∂θj
log Pp,θ(D)

]
= Ep

θ

[
− ∂

∂θi
log Pp,θ(D)

∂

∂θj
log Pp,θ(D)

]
.

iii. For any p1:t = (p1, . . . , pt)∈W(λ̃min, λ̃max)t, log Pp1:t,θt (D1:t) is concave in θ on Θ.

The idea of well-separated demand functions has been proposed by Broder and Rusmevichientong

(2012) for the single product single parameter case. A7 generalizes the idea of well-separated

demand to the multiple product multiple parameters case, and ensures that any single price vector

p that is not too far away from pD(θ∗) (i.e., p ∈W(λ̃min, λ̃max)) are “informative”: the seller can

learn the true parameter vector by observing the demand realizations under that price vector. A

necessary condition for A7-i to hold is that n < q; otherwise, under any price p ∈ P, even with

a perfect observation of λ(p;θ∗), the seller cannot uniquely identify a q-dimensional parameter

vector θ∗. Note that A7-ii is analogous to A5-iii and it ensures that the seller’s information

about the parameter vector strictly increases as he observes more demand realizations under any

p ∈ W(λ̃min, λ̃max). The last condition W3 requires the log-likelihood function to behave nicely.

This is easily satisfied by many commonly used demand functions such as linear, multi-nomial

logit, and exponential demand functions. Similar to Remark 4.1 in Broder and Rusmevichientong

(2012), A7 implies that there exists some constant cd > 0 such that for any θ, θ′ ∈ Θ and p ∈

W(λ̃min, λ̃max), ||λ(p;θ) − λ(p;θ′)||2 ≥ cd||θ − θ′||2 (see Section EC.5 of the Online Appendix for

proof); this inequality and the fact that the demand function is continuous in p imply that, for

all p ∈W(λ̃min, λ̃max), the corresponding demand curves do not intersect each other, and are thus

“well-separated”. Note that this well-separated condition is not overly restrictive as it permits, for
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example general demand functions with unknown additive market size (i.e., for each product j, its

demand is λj(p) = aj + gj(p) where the market size aj is unknown and gj : P → [0,1] is a known

function) and general demand functions with unknown multiplicative market size (i.e., for each

product j, its demand is λj(p) = ajgj(p) where the market size aj is unknown and gj : P → [0,1]

is a known function). (For more examples of well-separated demand in the single product single

parameter setting, see Broder and Rusmevichientong (2012).) A nice implication of A7 is that a

tight estimation error bound similar to Lemma 1 would hold for non-i.i.d. observations, which is

formalized in Lemma 2 below.

Lemma 2. (Estimation Error of ML Estimator with Non-I.I.D Observations) Suppose

that A5 and A7 hold. For any q ∈Z+ and any admissible control π which satisfies ps = πs(D1:s−1)∈

W(λ̃min, λ̃max) for all 1≤ s≤ t, there exist constants η4, η5, η6 > 0 independent of t and θ ∈Θ, such

that ∀δ > 0,Pπθ (||θ− θ̂t||2 > δ)≤ η4t
q−1 exp(−η5tδ

2) and Eπ
θ [||θ− θ̂t||22]1/2 ≤ η6

√
[(q− 1) log t+ 1]/t.

Remark 3. The special case of Lemma 2 where q = 1 has been established in Theorem 4.7 in

Broder and Rusmevichientong (2012). Generalizing their result to q > 1 is non-trivial. When q= 1,

Θ lies on the real line, so the event that the estimation error is larger than δ implies that either

θ̂t > θ+δ or θ̂t < θ−δ. Hence, by A7-iii, Pπθ (||θ− θ̂t||2 > δ) is bounded from above by the probability

that the likelihood of θ is smaller than two parameters: θ− δ and θ+ δ. In contrast, when q > 1,

Pπθ (||θ− θ̂t||2 > δ) is bounded from above by the probability that the likelihood of θ is smaller than

the maximum of the likelihood of an uncountably many number of parameter vectors (i.e., the

boundary of Ball(θ, δ)⊆Rq). In our proof, we approximate the largest likelihood on the boundary

of Ball(θ, δ) by a carefully chosen finite set of parameter vectors to reduce the challenge of deriving

an upper bound of the sum of uncountably many probabilities to a finite number of probabilities.

In contrast to the setting in Section 3, Lemma 2 shows that in the well-separated demand setting,

conducting price experimentation with suboptimal exploration prices is not the only way to learn

θ∗; in fact, as long as the prices used are in W(λ̃min, λ̃max), the seller is also guaranteed to learn

more information about θ∗. This implies that PSC, which solely relies on price experimentation

during exploration stage to learn θ∗ and neglects any learning opportunity during exploitation

stage, may not be ideal for the well-separated setting. In fact, during exploitation stage, PSC may

be enhanced by occasionally re-estimating θ∗ based on all of the past observations and adjusting

the pricing rule accordingly. We explain how this can be done below.
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4.2. Accelerated Parametric Self-adjusting Control (APSC)

In this section, we develop APSC which incorporates re-estimation and re-calibration features

into the exploitation stage of PSC to leverage the benefit of passive learning for well-separated

demand. In a nutshell, APSC re-estimates the parameter vector at certain decision periods during

exploitation, and uses the latest estimate to re-calibrate the estimate of the base rate λD(θ∗) and

the price adjustment rule. We first provide the full description of the APSC below and then explain

the details and the intuitions of the two main design features of this pricing control.

Accelerated Parametric Self-adjusting Control (APSC)

Tuning Parameters: L,η

Stage 1 (Exploration)

a - c in Stage 1 of PSC.

d. (Re-estimation Initialization) Compute T := {tz,1≤ z ≤Z + 1} where

t1 =L, t2 =L+ 1, tZ+1 = T, tz = d tz+1−L
2

e+L,∀2≤ z ≤Z. (2)

e. (Re-calibration Initialization) Set B= ∅,N = {1, . . . ,m}, and do:

- For all i, compute the slack si =Ci/T − (AλD(θ̂t1))i of the ith constraint.

- While N 6= ∅, do: Let i= mini∈N si; remove i from N ; add i to B if

{(AλD(θ̂t1))j}j∈B∪{i} are linearly independent, and si ≤ η. (3)

- Set auxiliary matrices CB :=C(B), B :=A(B, :), and variables

xNT1 := λD(θ̂t1), νNT1 := (BB′)−1B∇λr(xNT1 ; θ̂t1). (4)

- Compute the estimate of the base rate: λNT1 := xNT1 .

Stage 2 (Exploitation)

For t=L+ 1 to T :

a. Let z be such that tz < t≤ tz+1, and compute

p̂t = p
(
λNTz −

∑t−1

s=L+1
∆̂s
T−s ; θ̂tz

)
, (5)

where for all s∈ (L, t)∩ (tz′ , tz′+1], ∆̂s :=Ds−λ(ps; θ̂tz′ ).

- If Ct−1 �Aj, and p̂t ∈W(λ̃min, λ̃max), apply price pt = p̂t in period t

- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺Aj, apply price pt,j = p∞j .

- Otherwise, apply price pt,j = pt−1,j.

If t= tz+1, then do the following two additional steps:
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b. (Re-estimation step) Compute ML estimate θ̂tz+1
based on p1:tz+1

and D1:tz+1
.

c. (Re-calibration step) Compute the new estimate of base rate, λNTz+1, as follows:

- Compute xNTz+1 and νNTz+1 as follows[
xNTz+1

νNTz+1

]
:=

[
xNTz
νNTz

]
+

[
−∇2

λλr(x
NT
z ; θ̂tz+1

) B′

B O

]−1 [
∇λr(xNTz ; θ̂tz+1

)−B′νNTz
CB −BxNTz

]
(6)

- Let λNTz+1 := xNTz+1.

4.2.1. Re-estimation. Similar to PSC, APSC divides the selling season into the L-period

exploration and (T − L)-period exploitation stages; the new feature in APSC is that θ∗ is re-

estimated (Stage 2 Step b) at re-estimation points in T defined in Stage 1 Step d. (Note that

given T and L, both Z and T are well-defined.) The re-estimation points are designed in such a

way that the estimate of θ∗ is updated more frequently earlier in the selling season when it is still

highly inaccurate; as the accuracy improves APSC reduces the frequency of re-estimation. These

re-estimation points naturally divide the exploitation stage into Z segments where the zth segment

contains all the periods in (tz, tz+1] := {tz + 1, tz + 2, ..., tz+1}. At the end of each segment z, based

on all the observations, APSC uses ML estimation to get a re-estimate θ̂tz+1
which is used for the

pricing decisions in the next segment. In contrast to the setting in the previous section, A7 ensures

that as long as the prices used in segment z are inW(λ̃min, λ̃max), the new data observed in segment

z can always provide useful information about θ∗, so θ̂tz+1
would be a more accurate estimator of

θ∗ to improve pricing decisions in the next segment. Next we discuss how APSC incorporates the

latest estimate into the pricing.

4.2.2. Re-calibration. Consider a period t where tz < t ≤ tz+1. To use the latest estimate

θ̂tz , one could replace θ̂L in (1) with θ̂tz , resulting in the following pricing rule:

p̂t = p
(
λD(θ̂tz)−

∑t−1

s=L+1
∆̂s
T−s ; θ̂tz

)
.

The practical challenge of applying the pricing rule above is that λD(θ̂tz) requires solving a con-

strained optimization problem Pλ(θ̂tz) at every re-estimation point. As reported in (Koushik et al.

2012) and Pekgun et al. (2013), re-optimizations can be quite computationally expensive for prob-

lems with many products and many resource constraints. The re-calibration scheme in APSC which

we explain in more detail below is designed to address this challenge. The high-level idea is the

following. Note that the main reason of using λD(θ̂tz) is because it serves as an approximation of

the base rate λD(θ∗); since some approximation error is incurred by using λD(θ̂tz) anyway, it is

not necessary for the seller to exactly solve Pλ(θ̂tz) for the optimal solution λD(θ̂tz), as long as he

can find a reasonably good approximation of λD(θ∗), i.e., this is the ultimate goal the re-calibration
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scheme tries to achieve. Motivated by this observation, instead of re-optimizing Pλ(θ̂tz), APSC

uses the sequence of re-estimates {θ̂tz}z to obtain, according to a re-calibration scheme based on

the Newton’s method (i.e., Stage 1 Step e and Stage 2 Step c), a sequence of increasingly more

accurate approximations of λD(θ∗), i.e., {λNTz }z, which are used in (5).

To explain how the re-calibration scheme in APSC achieves the goal of finding good approxi-

mations of λD(θ∗) (without re-optimization) and its connection to Newton’s method, the following

observation is critical: Note if the seller knew which resource constraints are binding at the optimal

solution in Pλ(θ∗), then, due to strong concavity of the objective function, λD(θ∗) coincides with

the optimal solution of another optimization problem with only equality constraints:

max
x∈Rn
{r(x;θ∗) :B(θ∗)x=CB(θ∗)/T}, (7)

where B(θ∗) and CB(θ∗) correspond to the sub-matrices of A and C with only rows that correspond

to the binding constraints of Pλ(θ∗), and we denote by xD(θ∗) (resp. νD(θ∗)) the optimal primal

(resp. dual) solution to (7). This observation connects our problem to the celebrated Newton’s

method because it is a very effective iterative method to find the optimal solution of a concave

optimization with only equality constraints: Take a pair of primal and dual feasible solutions (x, ν)

to (7) that are in the neighborhood of (xD(θ∗), νD(θ∗)), one can get a new pair of primal and

dual solutions (x̃, ν̃) such that x̃ is a much better approximation of xD(θ∗) than x by applying one

Newton’s iteration,[
x̃
ν̃

]
:=

[
x
ν

]
+

[
−∇2

λλr(x;θ∗) B(θ∗)′

B(θ∗) O

]−1 [∇λr(x;θ∗)−B(θ∗)′ν
CB(θ∗)−B(θ∗)x

]
. (8)

While (8) can be used to identify a sequence of solutions that converges to λD(θ∗) (since xD(θ∗) =

λD(θ∗)), the seller cannot use it since he does not know ∇λr(.;θ∗),∇λλr(.;θ∗),B(θ∗),CB(θ∗). But,

as the re-estimates of θ∗ gets more and more accurate, (8) can be approximated reasonably close

so as to generate useful approximations of λD(θ∗). Specifically, at the end of the exploration stage,

APSC ensures that B(θ∗) and CB(θ∗) can be correctly identified with high probability (Stage 1

Step e); during exploitation stage, after each re-estimation, APSC replaces θ∗ in the Hessian and

Jacobian matrix of the revenue function in (8) by its latest estimate, and applies the Newton’s

iteration to get a new approximation of λD(θ∗). Below, we explain these two steps in more detail.

Re-calibration initialization (Stage 1 Step e). The goal of this initialization procedure is two-fold:

(i) Identify the binding constraints for Pλ(θ∗), and (ii) obtain a pair of primal and dual solutions of

(7) as initial points for a sequence of Newton’s iterations which mimic (8). Since Pλ(θ∗) is unknown

and cannot be solved, to achieve (i), APSC solves Pλ(θ̂L) as an approximation to determine which

resource constraints should be added to the set of estimated binding constraints B. In identifying B,
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all constraints are considered sequentially based on their slacks at the optimal solution of Pλ(θ̂L):

Intuitively, if θ̂L is a good estimate of θ∗, one would imagine that constraints with smaller slack at

the optimal solution of Pλ(θ̂L) are more likely to be binding in Pλ(θ∗). The criterion for whether

or not to add a constraint i is based on (3): the first part ensures constraint i is not added if it is

“redundant”, and the second part requires the slack of constraint i to be smaller than a threshold

η which is chosen by the seller. This threshold can be thought of as a form of “protection” against

excluding true binding constraints from B due to the fact that we use Pλ(θ̂L) as an approximation

of Pλ(θ∗). When η is chosen appropriately, it can be shown that the constraints in B coincide

with the binding constraints in Pλ(θ∗) (and hence B =B(θ∗) and CB =CB(θ∗)) with a very high

probability as k→∞. (We address how to chose η in Theorem 2 below.) Using B as the estimate of

the binding constraints of Pλ(θ∗), we can focus on the Equality Constrained Problem (ECP) below

per our previous discussion on Newton’s method:

ECP(θ) max
x∈Rn

{r(x;θ) : Bx=CB/T} ,

whose optimal primal and dual solutions are denoted by xD(θ) and νD(θ) respectively. Not sur-

prisingly, to achieve (ii), we use λD(θ̂t1) as our initial primal solution xNT1 , and use the formula

proposed in Boyd and Vandenberghe (2004) to compute an initial dual solution νNT1 . (Naturally,

since ∇λr(xD(θ̂L); θ̂L) =B′νD(θ̂L) must hold at the optimal primal and dual solution of ECP(θ̂L),

this suggests that we use νNT1 = (BB′)−1B∇λr(xNT1 ; θ̂L).)

Re-calibration step (Stage 2 Step c). At the end of each segment z ≥ 1, based on the new estimate

θ̂tz+1
, the re-calibration step is conducted to compute an approximation of λD(θ∗), i.e., λNTz+1: It

takes the primal and dual solution in the current segment xNTz and µNTz as input and apply (6) to

get a new pair of primal and dual solution for the next segment xNTz+1 and µNTz+1 (ideally, the seller

would like to use (8); but since it is not observable, APSC uses (6) as an approximation), and

then uses λNTz+1 := xNTz+1 as the new approximation of λD(θ∗). Note that this step does not require

any optimization. Despite its simplicity, our next theorem shows that APSC achieves logarithmic-

squared regret when demand is well-separated.

Theorem 2. (Logarithmic-squared Regret of APSC) Suppose that A1-A7 hold. Fix any

ε > 0 and set L= d log1+ε(kT ) e and η = log−ε/4 k. There exists a constant M2 > 0 independent of

k≥ 3 such that ρAPSC(k)≤M2 [log1+ε k+ (q− 1) log2 k].

The result shows that in the NRM setting, when the conditions for effective demand learning

becomes less restrictive due to the well-separated structure, the seller can leverage this via APSC

and obtain significantly smaller regret. As shown in Figure 1, APSC does perform much better
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Figure 1 Regret comparison between PSC and APSC
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Note: The setting of the example that generates the plots above is the same as in the example in Table 2 with initial

inventory of (3,5,7)× k, except that the only unknown parameters are the intercepts (i.e., a well-separated demand

setting). The exploration prices for PSC and APSC are the same as in examples in Table 2. For APSC, we use ε= 0.5

and determine tuning parameters L,η according to Theorem 2. The line of best fit in the log-log plot (left) of regret

versus k of PSC has slope 0.45, indicating that the regret of PSC is approximately in the order of
√
k. The regret of

APSC versus log(k) is approximately linear, indicating that the regret of APSC is approximately logarithmic.

than PSC when the underlying demand function is well-separated; moreover, the near-linear trend

of the regret of APSC (resp. PSC) in the Regret− log(k) (resp. log(Regret)− log(k)) plot is also

consistent with the analytical regret bounds we derive for APSC (resp. PSC).

Remark 4. Broder and Rusmevichientong (2012) have established that, under the well-separated

case with one unknown parameter, the best achievable lower bound on the performance of any

admissible pricing control in the uncapacitated single product case is Ω(logk) and this bound is

achievable by a heuristic called MLE-GREEDY. An open research question is whether this bound

is also achievable in the NRM case with multiple resource constraints and well-separated demand.

Our result gives a partial answer. We show that the regret of APSC is worse than O(logk) by

a factor of log k. However, when q = 1 (i.e., single unknown parameter), the regret of APSC is

O(log1+ε k). Since ε can be chosen to be arbitrarily small, APSC almost attains the best achievable

performance bound for the special case when q= 1.

5. Closing Remarks

We develop two pricing heuristics to solve the problem of joint learning and pricing for NRM

with multiple products and multiple resources. By establishing a O(
√
k) regret bound for our first

heuristic PSC, we show, for the first time in the literature, that it is possible to construct a rate-

optimal heuristic for the NRM setting with a general parametric demand model and a continuum

set of feasible price vectors. Our second heuristic APSC is the first heuristic in the literature
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that deals with the NRM setting with a parametric demand model which also satisfies an extra

well-separated condition; APSC achieves a much sharper O(log2 k) regret bound, which is close to

rate-optimal (up to a multiplicative logarithmic term). These strong analytical bounds indicate that

the design features in our proposed heuristics can be powerful ideas for developing effective pricing

policies in practice, and also highlights the potential benefit of leveraging structural properties of

underlying demand models to achieve better performance. It would be interesting to see whether

our algorithms can also be extended to a more general setting with non-stationary or dynamically

changing parameters. We leave this for future research.

Endnotes

1. Note that all the performance bounds established in Ferreira et al. (2018) are in terms of

Bayesian regret which is the average regret for all θ ∈Θ weighted by the seller’s prior on Θ. This

means that the Bayesian regret is always no larger than the worst-case regret over all θ ∈Θ.
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EC.1. Proof of Lemma 1

Proof: This proof is a multi-product extension of Lemma 3.7 in Broder and Rusmevichientong

(2012). We first state an existing result in the literature below.

Theorem EC.1. (Tail Inequality for MLE Based on IID Samples, Theorem 36.3 in

Borovkov (1999)) Let Θ ∈ Rq be compact and convex, and let {Pθ : θ ⊆ Θ} be a family of dis-

tributions on a discrete sample space Y. Suppose Y is a random variable taking value in Y with

distribution Pθ, and the following conditions hold:

(i) Pθ 6= Pθ′ whenever θ 6= θ′;

(ii) For some r > q, supθ∈Θ Eθ[||∇θ logPθ(Y )||r2] = γ <∞;

(iii) The function θ→
√

Pθ(Y ) is differentiable on Θ for any Y ∈Y;

(iv) The Fisher information matrix, whose (i, j)th entry is given by Eθ

[
− ∂2

∂θi∂θj
logPθ(Y )

]
, is

positive definite.

If Y1, Y2, ... is a sequence of i.i.d. random variables taking value in Y with distribution Pθ, and

θ̂(t) = arg maxθ∈Θ

∏t

l=1 Pθ(Yl) is the maximum likelihood estimate based on t i.i.d. samples, then,

there exist constants η1 > 0 and η2 > 0 depending only on r, q, Pθ and Θ such that for all t≥ 1 and

all δ≥ 0,Pθ(||θ̂(t)− θ||2 > δ)≤ η1 exp(−tη2δ
2).

To apply Theorem EC.1 to our setting, we simply need to verify conditions (i)-(iv). First, note

that Θ is a compact subset of Rq and Dq̃ is a discrete-valued sample space. Conditions (i) and (iv)

are immediately satisfied because of A5-i and A5-iii. As for conditions (ii) and (iii), recall that

∣∣∣∣∇θ logPp̃,θ(D1:q̃)
∣∣∣∣

2
=

∣∣∣∣∣
∣∣∣∣∣
q̃∑
s=1

[(
1−

n∑
j=1

Ds,j

)
∇θ log

(
1−

n∑
j=1

λj(p̃
(s);θ)

)
+

n∑
j=1

Ds,j∇θ logλj(p̃
(s);θ)

]∣∣∣∣∣
∣∣∣∣∣
2

≤
q̃∑
s=1

∣∣∣∣∣
∣∣∣∣∣∇θ log

(
1−

n∑
j=1

λj(p̃
(s);θ)

)∣∣∣∣∣
∣∣∣∣∣
2

+
n∑
j=1

∣∣∣∣∇θ logλj(p̃
(s);θ)

∣∣∣∣
2

 .

ec1
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By A1 and A5-ii, for all 1 ≤ s ≤ q̃ and 1 ≤ j ≤ n, λj(p̃
(s); .) ∈ C1(Θ) and is bounded

away from zero, and
∑n

j=1 λj(p̃
(s); .) ∈ C1(Θ) is also bounded away from one. These imply that

||∇θ log
(

1−
∑n

j=1 λj(p̃
(s); .)

)
||2 and ||∇θ logλj(p̃

(s); .)||2, j = 1, . . . , n, are both continuous functions

of θ for s= 1, . . . , q̃ and are, due to compactness of Θ, bounded. So, (ii) follows. As for (iii), note

that Pp̃,θ(D1:q̃) is continuous in θ and it is also bounded away from zero. (In fact, Pp̃,θ(D1:q̃) ≥

[λnmin(1− λmax)]q̃ by A5-ii.) So, θ→
√
Pp̃,θ(D1:q̃) is differentiable on Θ for all D1:q̃ ∈ Dq̃. We have

thus verified all the conditions of Theorem EC.1. Then, a direct application of Theorem EC.1 leads

to Pπθ (||θ − θ̂L||2 > δ) ≤ η1 exp(−η2Lδ
2). Also, since Eπ

θ

[
||θ− θ̂L||22

]
=
∫∞

0
Pπθ (||θ − θ̂L||22 ≥ x)dx =∫∞

0
Pπθ (||θ− θ̂L||2 ≥

√
x)dx≤

∫∞
0
η1e
−η2Lxdx= η1

η2L
, the result follows by taking η3 =

√
η1/η2. �

EC.2. Proof of Theorem 1

Proof: We first establish a stability result on the optimization P (θ) stated below which we prove

at the end of this Section.

Lemma EC.1. There exist constants κ > 0 and δ̄ > 0 independent of k > 0, such that for all θ ∈

Ball(θ∗, δ̄),

a. pD(θ)∈Ball(pD(θ∗), φ/2), Ball(pD(θ), φ/2)⊆P and ||λD(θ∗)−λD(θ)||2 ≤ κ||θ∗− θ||2,

b. there exists an optimal dual solution µD(θ∗) of Pλ(θ∗), such that Aiλ
D(θ) =Ci for all i∈ {j :

µDj (θ∗)> 0}.

Fix π = PSC. Theorem 1 can be established by a similar argument as in the proof of Theorem 1

in Chen et al. (2019) by replacing Proposition 1, Lemma 2 and Lemma 3 in Chen et al. (2019)

by Lemma EC.1 in this paper, and replacing Lemma 1 in Chen et al. (2019) by Lemma 1 in this

paper. All the proof arguments in Chen et al. (2019) can essentially be either simplified or directly

followed with minor changes. Let ε(L) := Eπ
θ∗ [||θ∗ − θ̂L||22]1/2. Then, the last inequality in Section

5.1 in Chen et al. (2019) reduces to the following:

ρπ(k) ≤ M8

(
ε(L)2k+ ε(L)−1 logk+ ε(L)−2 + r̄L

)
≤M8

(
η2

3k

L
+

√
L

η3

logk+
L

η2
3

+ r̄L

)
.

Setting L= d
√
kT e leads to ρπ(k)≤M1

√
k for some M1 independent of k. �

Proof of Lemma EC.1. Let δ̄= min{δ1, δ2} where δ1 and δ2 are strictly positive constants to be

defined shortly. We will prove each part of the lemma in turn.

Proof of part (a). This is an immediate corollary of Proposition 1 in Chen et al. (2019). Note

that, by A2, we have ||λ(p;θ∗)− λ(p;θ)||∞ ≤ ||λ(p;θ∗)− λ(p;θ)||2 ≤ ω||θ∗− θ||2 and ||(∇λ(p;θ∗)−

∇λ(p;θ))′||∞ = max1≤i≤n
∑n

j=1 |
∂λi
∂pj

(p;θ) − ∂λi
∂pj

(p;θ∗)| ≤ nω||θ∗ − θ||2 for all θ ∈ Θ, p ∈ P. Hence,
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||λ(.;θ∗)− λ(.;θ)||∞ = supp∈P ||λ(p;θ∗)− λ(p;θ)||∞ ≤ ω||θ∗ − θ||2 and ||(∇λ(.;θ∗)−∇λ(.;θ))′||∞ =

supp∈P ||(∇λ(.;θ∗)−∇λ(.;θ))′||∞ ≤ nω||θ∗−θ||2. Therefore, by Proposition 1 in Chen et al. (2019),

there exists some K1 > 0 independent of k > 0 such that ||pD(θ∗) − pD(θ)||∞ ≤ K1ω||θ∗ − θ||2.

Let δ1 = φ(2n1/2K1)−1. For all θ satisfying ||θ − θ∗||2 ≤ δ̄ ≤ δ1, we have ||pD(θ∗) − pD(θ)||2 ≤

n1/2||pD(θ∗)−pD(θ)||∞ ≤ n1/2K1δ1 ≤ φ/2. Hence, pD(θ)∈Ball(pD(θ∗), φ/2). Since Ball(pD(θ∗), φ)⊆

P by A6, we conclude that Ball(pD(θ), φ/2)⊆P. Since λ(.;θ∗) is continuously differentiable with

respect to p∈P as implied by A1, and P is compact, there exists a constant K2 > 0 independent

of k > 0 such that

||λD(θ∗)−λD(θ)||2 = ||λ(pD(θ∗);θ∗)−λ(pD(θ);θ)||2

≤ ||λ(pD(θ∗);θ∗)−λ(pD(θ);θ∗)||2 + ||λ(pD(θ);θ∗)−λ(pD(θ);θ)||2

≤ K2||pD(θ∗)− pD(θ)||2 +ω||θ∗− θ||2 ≤ (ω+n1/2K1K2)||θ∗− θ||2,

where the second inequality also follows by A2. Part (a) follows by letting κ= ω+n1/2K1K2.

Proof of part (b). Take any θ ∈ Θ. Recall that strong duality holds since Pλ(θ) is a strongly

concave optimization problem, and λD(θ) is its unique optimal solution. By the Karush-Kuhn-

Tucker (KKT) condition, there exists a (not necessarily unique) dual solution µ∈Rm+ such that

KKT(θ) : ∇r(λD(θ);θ) =A′µ (EC.1)

µi(Aiλ
D(θ)−Ci) = 0,∀i= 1, . . . ,m. (EC.2)

Define B∗ := {j : Ajλ
D(θ∗) = Cj}, N ∗ := {j : Ajλ

D(θ∗) < Cj} = {1, . . . , n} − B∗, and Ω :=

{I ∈ Ω̄ : ∃µ ∈ Rm+ , s.t.,∇r(λD(θ∗);θ∗) = A′µ, and µi = 0,∀i /∈ I} where Ω̄ := {I ⊆ B∗ :

{Ai}i∈I are linearly independent}. It can be easily verified that for any I ∈Ω, there exists a dual

solution µ of KKT(θ∗) such that µi > 0 only if i ∈ I. Thus, to prove Part (b), we only need to

show that there exists some δ2 > 0 such that for all θ ∈ Ball(θ∗, δ2), there exists I ∈ Ω such that

Aiλ
D(θ) =Ci for all i∈ I, which we prove below. To that end, we first state a claim.

Claim EC.1. There exists some constant δ3 such that for all θ ∈ Ball(θ∗, δ3), there exist a dual

solution µ?(θ) to KKT(θ) such that: (i) {i : µ?i (θ) > 0} ⊆ B∗ and (ii) {Ai}i:µ?i (θ)>0 are linearly

independent.

Note that (i) holds since by Part (a), there exists some constant δ3 ∈ (0, δ1] such that for all

θ ∈Ball(θ∗, δ3), Aiλ
D(θ)<Ci for all i∈N ∗, and hence, by (EC.2), any dual solution µ to KKT(θ)

must satisfy that µi = 0 for i ∈N ∗; (ii) follows since, if not, one can reduce one of µ?(θ)’s strictly

positive component to zero while keeping the conditions (EC.1)-(EC.2) satisfied. This claim implies

that for all θ ∈ Ball(θ∗, δ3), there exists solution µ?(θ) to KKT(θ) such that the only strictly
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Figure EC.1 Geometric illustration of Lemma 2

Note: This illustrates the case when there are two parameters to estimate (q= 2). V denotes the disk (ball) centered

at θ∗ with radius ε. Note that the event of ||θ∗− θ̂t||2 > ε corresponds to the event when θ̂t lies in the exterior of V .

In this example, the surface of the rectangle(hypercube) S consists of four edges.

positive components of µ?(θ) correspond to a subset of linearly independent rows in B∗. Now, by

Farkas’ Lemma, for any I ∈ Ω̄− Ω, there exists a vector v ∈ Rn such that v′∇r(λD(θ∗);θ∗) < 0

and Aiv ≥ 0 for all i ∈ I; since ∇r(λD(θ);θ) is continuous in θ, we conclude that there exists a

constant δ2 ∈ (0, δ3) such that for all θ ∈ Ball(θ∗, δ2), v′∇r(λD(θ);θ)< 0. Then, by Farkas’ Lemma

and (ii) of the claim, for any θ ∈ Ball(θ∗, δ2), there exists a dual solution µ of KKT(θ) such that

{i;µi > 0} ∈Ω. The result follows by (EC.2). �

EC.3. Proof of Lemma 2

Proof. We first illustrate the main idea behind the proof using Figure EC.1. Note that ||θ− θ̂t||2 > ε

is equivalent to the event that ML estimate θ̂t is outside of the ball V := Ball(θ, ε). In addition,

under the concavity assumption of the log-likelihood, θ̂t 6=Ball(θ, ε) implies that at least one point

on the surface of a hypercube S, which is centered at θ and is a subset of V , has a larger log-

likelihood than the log-likelihood at θ. The probability of this event is a valid upper bound of

Pπθ (||θ− θ̂t||2 > ε). However, the challenge is that there are a continuum of such potential points.

The idea of the proof is to consider a grid of points on the surface of that hypercube S, and the

granularity of the grid is set to be fine enough so that any point on the surface of that hypercube

can be closely approximated by one point on the grid. We will show that the existence of a point on

the surface of S with a higher log-likelihood than the true parameter vector θ is extremely unlikely.

We now rigorously prove this lemma.
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Step 1

Fix some 0 < λ̃min < λ̃max < 1. First, we will show that for all D ∈ D, for all p ∈ W(λ̃min, λ̃max)

and for all θ ∈ Θ, ∇θ logPp,θ1 (D) is jointly continuous in θ and p. Recall that ∇θ logPp,θ1 (D) =

((∂/∂θ1) logPp,θ1 (D); . . . ; (∂/∂θn) logPp,θ1 (D)) where for all 1≤ k≤ n,

∂ logPp,θ1 (D)

∂θk
= −

(1−
∑n

j=1Dj) log
(

1−
∑n

j=1 λj(p;θ)
)

1−
∑n

j=1 λj(p;θ)

(
n∑
j=1

∂λj(p;θ)

∂θk

)

+
n∑
j=1

Dj log (λj(p;θ))

λj(p;θ)

∂λj(p;θ)

∂θk
.

Since λj(p; .) ∈ C1(Θ) and λ(.;θ) ∈ C2(P) by A1 and the denominators are strictly greater than

zero, ∇θ logPp,θ1 (D) is jointly continuous in θ and p.

Step 2

Since Θ and W(λ̃min, λ̃max) are compact, D is finite and ∇θ logPp,θ1 (D) is jointly continuous in

θ and p for all D ∈ D, there exists a constant cg > 0 independent of θ, p,D such that for all

θ ∈Θ, p∈W(λ̃min, λ̃max), and v ∈Rq satisfying ||v||2 = 1, (∇θ logPp,θ1 (D))′v < cg. Therefore, for any

v, ||v||2 = 1, if pπs ∈W(λ̃min, λ̃max) for 1≤ s≤ t, then we have:

(∇θ logPπ,θt (D1:t))
′v=

t∑
s=1

(∇θ logPp
π
s ,θ

1 (Ds))
′v < cgt. (EC.3)

Now, fix ε > 0 and consider a hypercube S := {x ∈ Rq : −ε ≤ xi
√
q ≤ ε,∀i} centered at the

origin with edge 2ε/
√
q; we denote its surface by ∂S := ∪qj=1{x ∈ Rq :−ε≤ xi

√
q ≤ ε,∀i 6= j, |xj|=

ε/
√
q}. Consider a subset of ∂S defined as ∪qj=1{x ∈ Rq : |xj| = ε/

√
q, and xi = 2kiη,∀i 6= j,∀ki ∈

Z ∩ [− ε
2
√
qη
, ε

2
√
qη

]}: Note that this is a finite set, so we denote by N its cardinality and by vj,

j = 1, . . . ,N all of its elements. Note that N ≤ 2q(ε/(
√
qη))q−1. Then, it is easy to verify that for any

x∈ ∂S, minj=1,...,N ||x− vj||2 ≤
√
qη. By W3, we have that for any θ′ ∈ S+ θ and any j = 1, . . . ,N ,

logPπ,θ
′

t (D1:t)− logPπ,θ+vjt (D1:t)≤ (∇θ logPπ,θ+vjt (D1:t))
′(θ′− θ− vj)

Let j∗(θ) = arg minj=1,...,N ||θ− θ− vj||2. We then have

logPπ,θ
′

t (D1:t)− logP
π,θ+vj∗(θ′)
t (D1:t)≤ cgt||θ′− θ− vj∗(θ′)||2 ≤ cg

√
qηt. (EC.4)

where the first inequality follows by (EC.3). The following is the key argument for this proof:{
||θ̂t− θ||2 > ε

}
⊆
{
||θ̂t− θ||∞ >

ε
√
q

}
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⊆
{

logPπ,θ+vt (D1:t)≥ logPπ,θt (D1:t), for some v with ||v||∞ = ε√
q

}
⊆
{

logP
π,θ+vj∗(θ+v)
t (D1:t) + cg

√
qηt≥ logPπ,θt (D1:t), for some v with ||v||∞ = ε√

q

}
⊆ ∪Nj=1

{
logPπ,θ+vjt (D1:t) + cg

√
qηt≥ logPπ,θt (D1:t)

}
= ∪Nj=1 {Zπt (vj,D1:t)≥ exp(−cg

√
qηt)} , (EC.5)

where Zπ,θt (u,D1:t) := Pπ,θ+ut (D1:t)/Pπ,θt (D1:t) is the likelihood ratio for any u ∈ Θ− θ. The first

inclusion follows by norm inequality, the second inclusion follows by the concavity of the log-

likelihood function and the definition of ML estimator, the third inclusion follows by (EC.4), the

fourth inequality follows because by definition j∗(θ+ v)∈ {1, . . . ,N} for all v.

Step 3

To use (EC.5) to prove Lemma 2, we state a lemma below which we prove at the end of this section:

Lemma EC.2. Fix some 0< λ̃min < λ̃max < 1. Suppose that an admissible control π satisfies ps =

πs(D1:s−1) ∈W(λ̃min, λ̃max) for all 1≤ s≤ t. Then there exists a constant ch > 0 independent of t

and θ ∈Θ such that for all π and for all u∈Θ− θ, Eπ
θ [
√
Zπ,θt (u,D1:t)]≤ exp(−ch||u||22t/2).

By (EC.5) and Lemma EC.2, the following holds

Pπθ
(
||θ̂t− θ||2 > ε

)
≤

N∑
j=1

Pπθ
(
Zπ,θt (vj,D1:t)≥ exp(−cg

√
qηt)

)
≤

N∑
j=1

exp

(
cg
√
qηt

2

)
Eπ
θ

[√
Zπ,θt (vj,D1:t)

]

≤
N∑
j=1

exp

(
cg
√
qηt

2
− ch||vj||

2
2t

2

)

≤ 2q

(
ε
√
qη

)q−1

exp

(
−chε

2t

2q
+
cg
√
qηt

2

)
,

where the second inequality follows by the Markov’s inequality, the third inequality follows by

Lemma EC.2, and the last inequality follows because N ≤ 2q(ε/(
√
qη))q−1 and minj=1,...,N ||vj||2 ≥

minj=1,...,N ||vj||∞ ≥ ε/
√
q. Now, let η= ε/t, then we have

Pπθ
(
||θ̂t− θ||2 > ε

)
≤min

{
1,2q

3−q
2 tq−1 exp

(
−chε

2t

2q
+
cg
√
qε

2

)}
.

Note that when ε ≤ 1, exp((−chε2q−1t + cg
√
qε)/2) ≤ exp(cg

√
q/2) exp(−chε2q−1t/4). Note also

that when ε > 1, there exists M > 0 independent of ε such that exp((−chε2q−1t + cg
√
qε)/2) ≤

exp(−chε2q−1t/4),∀t >M . With these two observations, we consider two cases below.

Case 1: t >M . In this case, we have Pπθ
(
||θ̂t− θ||2 > ε

)
≤ η̃4t

q−1 exp(−η5tε
2), where η̃4 =

2q(3−q)/2 max{1, exp(cg
√
q/2)}, and η5 = chq

−1/4.



e-companion to Chen, Jasin, Duenyas: Parametric Demand Learning with Dynamic Pricing ec7

Case 2: t≤M . Let θ̄ be the largest distance between any two points in Θ. (θ̄ <∞ because Θ is

bounded.) Then, we claim that for this case, Pπθ
(
||θ̂t− θ||2 > ε

)
≤ η̄4t

q−1 exp(−η5tε
2) where η5 is

defined as in Case 1 and η̄4 = exp(η5Mθ̄2). The claim is true because: if ε > θ̄, Pπθ
(
||θ̂t− θ||2 > ε

)
= 0,

so the bound holds; if ε≤ θ̄, Pπθ
(
||θ̂t− θ||2 > ε

)
≤ 1 = η̄4 exp(−η5Mθ̄2)≤ η̄4t

q−1 exp(−η5tε
2).

Combining the two cases above yields Pπθ
(
||θ̂t− θ||2 > ε

)
≤min{1, η4t

q−1 exp(−η5tε
2)} where η4 =

max{η̃4, η̄4}. Hence,

Eπ
θ

[
||θ̂t− θ||22

]
=

∫ ∞
0

Pπθ
(
||θ̂t− θ||22 ≥ x

)
dx

=

∫ ∞
0

min
{

1, η4t
q−1 exp (−η5tx)

}
dx

≤
∫ 2(q−1) log t

η5t

0

dx+

∫ ∞
2(q−1) log t

η5t

[
η4t

q−1 exp

(
−η5tx

2

)]
exp

(
−η5tx

2

)
dx

≤ 2(q− 1) log t

η5t
+ η4

∫ ∞
2(q−1) log t

η5t

exp

(
−η5tx

2

)
dx

≤ 2(q− 1) log t

η5t
+

2η4

η5t

≤ 2max{1, η4}
η5

(q− 1) log t+ 1

t

where the first inequality holds because for all x≥ 2(q−1) log t

η5t
, tq−1 exp

(
−η5tx

2

)
≤ 1. We complete the

proof by letting η6 =
√

2max{1, η4}/η5. �

Proof of Lemma EC.2. Recall that D= {D ∈ {0,1}n :
∑n

j=1Dj ≤ 1}. We define the conditional

Hellinger distance as follows:

Hπ
t (θ1, θ2,Dt|D1:t−1) :=

∑
Dt∈D

(√
Pπ,θ1t (Dt|D1:t−1)−

√
Pπ,θ2t (Dt|D1:t−1)

)2

.

We state a lemma and postpone its proof to the end of the proof of Lemma EC.2.

Lemma EC.3. Fix some 0< λ̃min < λ̃max < 1. Suppose that an admissible control π satisfies ps =

πs(D1:s−1) ∈W(λ̃min, λ̃max) for all 1≤ s≤ t. Then there exists a positive constant ch independent

of t such that Hπ
t (θ1, θ2,Dt|D1:t−1)≥ ch||θ1− θ2||22 for all θ1, θ2 ∈Θ.

For u ∈Θ− θ∗, define Zπ,θt (u,Dt|D1:t−1) := Pπ,θ+ut (Dt|D1:t−1)/Pπ,θt (Dt|D1:t−1). By Lemma EC.3,

we can derive a bound for its moment as follows:

Eπ
θ

[√
Zπ,θt (u,Dt|D1:t−1)

]
=
∑
Dt∈D

√
Pπ,θ+ut (Dt|D1:t−1)

Pπ,θt (Dt|D1:t−1)
Pπ,θt (Dt|D1:t−1)

=
∑
Dt∈D

√
Pπ,θ+ut (Dt|D1:t−1)Pπ,θt (Dt|D1:t−1)
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= 1− H
π
t (θ, θ+u,Dt|D1:t−1)

2

≤ exp

(
−H

π
t (θ, θ+u,Dt|D1:t−1)

2

)
≤ exp

(
−ch||u||

2
2

2

)
.

The result of Lemma EC.2 can now be proven by repeated conditioning: by definition,

Eπ
θ

[√
Zπ,θt (u,D1:t)

]
= Eπ

θ

[
Eπ
θ

[√
Zπ,θt (u,D1:t)

∣∣∣∣D1:t−1

]]
= Eπ

θ

[√
Zπ,θt−1(u,D1:t−1) Eπ

θ

[√
Zπ,θt (u,Dt|D1:t−1)

]]
≤ Eπ

θ

[√
Zπ,θt−1(u,D1:t−1)

]
exp

(
−ch||u||

2
2

2

)
≤ exp

(
−ch||u||

2
2t

2

)
. �

Proof of Lemma EC.3. Note that, for any θ1, θ2 ∈Θ, θ1 6= θ2, by Fatou’s lemma, we have

lim inf
θ′→θ1,θ′′→θ2

Hπ
t (θ′, θ′′,Dt|D1:t−1)

||θ′− θ′′||22
= lim inf

θ′→θ1,θ′′→θ2

∑
Dt∈D

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′− θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ1,θ′′→θ2

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′− θ′′||22

=
Hπ
t (θ1, θ2,Dt|D1:t−1)

||θ1− θ2||22
> 0, (EC.6)

where the last inequality follows by A7-i. Let σ(.) denote the smallest eigenvalues of a real sym-

metric matrix. If we now set θ1 = θ2 = θ, since
√
Pπ,θt (Dt|D1:t−1) is continuously differentiable in θ,

there exists θ̃ on the line segment connecting θ′ and θ′′ such that

lim inf
θ′→θ,θ′′→θ

Hπ
t (θ′, θ′′,Dt|D1:t−1)

||θ′− θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

[(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′− θ′′

||θ′− θ′′||2

]2

=
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

(θ′− θ′′)′

||θ′− θ′′||2

(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′− θ′′

||θ′− θ′′||2

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

σ

((
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′)
=
∑
Dt∈D

σ

((
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)′)

=
∑
Dt∈D

σ
(
( ∂
∂θ
Pπ,θt (Dt|D1:t−1))( ∂

∂θ
Pπ,θt (Dt|D1:t−1))′

)
4Pπ,θt (Dt|D1:t−1)
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=
1

4

∑
Dt∈D

σ

((
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)(
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)′)
Pπ,θt (Dt|D1:t−1)

≥ cf
4
> 0 (EC.7)

where the first inequality follows by Fatou’s Lemma as in (EC.6) and the Mean Value Theorem,

and the third equality follows because

∂

∂θ

√
Pπ,θt (Dt|D1:t−1) =

∂
∂θ
Pπ,θt (Dt|D1:t−1)

2
√
Pπ,θt (Dt|D1:t−1)

(by chain rule) and the last two inequalities follow by the definition of Fisher information and A7-ii.

To prove Lemma EC.3, it suffices to show that, for any θ1, θ2 ∈Θ,Hπ
t (θ1, θ2,Dt|D1:t−1)/||θ1−θ2||22 ≥

ch for some ch > 0 independent of θ1, θ2. (If θ1 = θ2, the ratio is to be understood as its limit.)

Suppose not, since the ratio is always non-negative, there exist two sequences θn1 → θ1, θ
n
2 → θ2

such that lim infn→∞H
π
t (θn1 , θ

n
2 ,Dt|D1:t−1)/||θn1 − θn2 ||22 = 0. But, this contradicts with (EC.6) when

θ1 6= θ2 and with (EC.7) when θ1 = θ2. �

EC.4. Proof of Theorem 2

Proof. Fix π= APSC and let k≥ 3 throughout the proof. Without loss of generality, we will assume

that T = 1 throughout. For national simplicity, we let E(t) := ||θ∗− θ̂t||2. Set L= d(logk)1+εe and

η= (logk)−ε/4. We first state an analog of Lemma EC.1(a) for ECP(θ) below whose proof is similar

to the proof of Lemma EC.1 and so is omitted.

Lemma EC.4. There exist δ̃ > 0 and κ̃ > 0 independent of k > 0 such that for all θ ∈ Ball(θ∗, δ̃),

||xD(θ∗)−xD(θ)||2 ≤ κ̃||θ∗− θ||2.

We now proceed to prove Theorem 2 in several steps.

Step 1

We first show that the event E := {B ⊆ {i :Aiλ
D(θ∗) =Ci},{Ai}i∈B is a basis of {Ai}{i:AiλD(θ∗)=Ci}}

occurs with a very high probability, where B is identified in Stage 1 Step e of APSC. By construction

of B, it can be easily verified that Ec ⊆ ∪mi=1Ei where Ei := {Ci =Aiλ
D(θ∗), Ci −AiλD(θ̂t1)> η} ∪

{Ci >AiλD(θ∗), Ci−AiλD(θ̂t1)≤ η}. By definition of η,

Pπ
(
Ci =Aiλ

D(θ∗), Ci−AiλD(θ̂t1)> η
)

= Pπ
(
Aiλ

D(θ∗)−AiλD(θ̂t1)> η
)
≤ Pπ (κ||A||2E(t1)> η)

≤ η1 exp

(
−η2t1

η2

κ2||A||22

)
≤ η1 exp

(
− η2

κ2||A||22
(logk)1+ ε

2

)
,
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where the first inequality follows by Lemma EC.1(a), the second inequality follows by Lemma 1, and

the last inequality holds by definition of t1 and η. Define s := min{Ci−AiλD(θ∗) :Ci−AiλD(θ∗)>

0, i= 1, . . . ,m}. Since s does not scale with k, there exists a constant Ω0 > 0 such that η < s/2 for

all k≥Ω0. So, for k≥Ω0, by Lemma EC.1(a) and Lemma 1, we can bound:

Pπ
(
Ci >Aiλ

D(θ∗), Ci−AiλD(θ̂t1)≤ η
)

= Pπ
(
Ci ≥AiλD(θ∗) + s, Ci−AiλD(θ̂t1)≤ η

)
≤ Pπ

(
Aiλ

D(θ̂t1)−AiλD(θ∗)≥ s− η
)

≤ Pπ (κ||A||2E(t1)≥ s− η)

≤ η1 exp

(
−η2t1

(s− η)2

κ2||A||22

)
≤ η1 exp

(
− η2 s

2

4κ2||A||22
log1+ε k

)
.

Putting the above two bounds together, for k≥Ω0, we have

Pπ (Ec) ≤
m∑
i=1

Pπ (Ei)≤
m∑
i=1

[
Pπ
(
Ci = (AλD(θ∗))i, i /∈B

)
+Pπ

(
Ci > (AλD(θ∗))i, i∈B

)]
≤ mη1

[
exp

(
− η2

κ2||A||22
(logk)1+ ε

2

)
+ exp

(
− η2 s

2

4κ2||A||22
(logk)1+ε

)]
. (EC.8)

Step 2

For all t≥ t1, let z(t) be the unique integer z such that t∈ [tz +1, tz+1]. Define St :=
∑t

s=1Dt. Let τ

be the minimum of k and the first time t≥ t1 +1 such that the following condition (C1) is violated:

(C1) ψ >

∣∣∣∣∣
∣∣∣∣∣

t∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣SL−Lλ̃mine

k− t

∣∣∣∣∣
∣∣∣∣∣
2

, where ψ :=
min{φ,2λ̃min}
max{2,4ω}

and ∆̂s =Ds−λ(ps; θ̂tz(s)). Define A := E ∩ {∩z:tz<τAz} where Az := {E(tz)≤min{δ̂, (log tz)
−ε/4}}

and δ̂ = min{δ̄, δ̃, φ/(2ωκ)} and δ̄ and δ̃ are as defined in Lemma EC.1 and Lemma EC.4 respec-

tively. (Event A can be interpreted as the event where a sufficient number of binding constraints

are correctly identified and the size of all subsequent estimation errors are sufficiently small.)

Note that one immediate observation is that for tz < τ , λD(θ∗) ∈ Λθ̂tz
on A. This is because

||p(λD(θ∗); θ̂tz)− p(λD(θ̂tz); θ̂tz)||2 ≤ ω||λD(θ∗)− λD(θ̂tz)||2 ≤ ωκ||θ∗ − θ̂tz ||2 ≤ φ/2, where the first

inequality follows by A1, the second inequality follows by Lemma EC.1 (a) and the fact that δ̂≤ δ̄,

and the last inequality follows since δ̂≤ φ/(2ωκ). We then have λD(θ∗)∈Λθ̂tz
since p(λD(θ∗); θ̂tz)∈

Ball(pD(θ̂tz), φ/2)⊆P, where the last inclusion follows by Lemma EC.1 (a).

Define λ̂t := λNTz(t) −
∑t−1

s=t1+1
∆̂s
k−s and λt := λ(pt;θ

∗). The two important lemmas below, which

we prove at the end, establish the approximation error of the re-calibration procedure and some

important properties of APSC before the stopping time τ .

Lemma EC.5. There exist positive constants γ and ξ independent of θ ∈Θ such that if ||xD(θ)−

xNTz−1||2 ≤ γ, then ||xD(θ)−xNTz ||2 ≤ ξ||xD(θ)−xNTz−1||22.
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Lemma EC.6. There exist constants Ω1 > 0, and Γ1 and Γ2 independent of k ≥Ω1, such that for

all k≥Ω1 and all sample paths on A:

(a) ||xD(θ̂tz)−xNTz ||22 ≤ Γ1(log tz)
−ε/2 for tz < τ .

(b) Ct � 0, pt = p̂t ∈Ball(pD(θ∗),7φ/8)⊆W(λ̃min, λ̃max) and λ̂t ∈Λθ̂tz
for all t∈ (tz, tz+1]∩ [t1, τ).

(c) Eπ[||xD(θ̂tz)−xNTz ||22 1{tz<τ} | A]≤ Γ2/tz

Lemma EC.5 essentially establishes a uniform locally quadratic convergence of the Newton’s

method for solving ECP(θ̂tz) for all z. This result is used for proving Lemma EC.6 (a) and (c) which

establish the approximation errors between xNTz and xD(θ̂tz) under APSC. Note that Lemma EC.6

(b) is also very important as it shows that conditioning on A, before τ , the seller still has positive

capacity on hand, and the pricing decision under APSC is pt = p̂t which is given by an explicit

expression that we can use to analyze APSC later. Note also that A happens with very high

probability. Indeed, there exists a constant Ω2 ≥max{Ω0,Ω1} such that, for all k≥Ω2,

kPπ(Ac) ≤ k
Z∑
z=1

Pπ (Acz) + kPπ (∪mi=1Ei)

≤ k
Z∑
z=1

[
Pπ(E(tz)> δ̂) +Pπ(E(tz)> (log tz)

− ε4 )
]

+ kPπ (∪mi=1Ei)

≤ k
Z∑
z=1

η4t
q−1
z

[
exp

(
−η5tz δ̂

2
)

+ exp

(
− η5tz

(log tz)
ε
2

)]
+ kPπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(logk)1+εδ̂2

2

)
+ exp

(
−η5(logk)1+ε

2(logk)
ε
2

)]
+ kPπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(logk)1+εδ̂2

2

)
+ exp

(
−η5(logk)1+ ε

2

2

)]

+ mη1k

[
exp

(
− η2

κ2||A||22
(logk)1+ ε

2

)
+ exp

(
− η2 s

2

4κ2||A||22
(logk)1+ε

)]
≤ 1

2
,

where the third inequality follows by Lemma 2, the fourth inequality follows by a combination

of η4t
q−1
z exp(−η5tz δ̂

2/2)→ 0 and η4t
q−1
z exp(−η5tz(log tz)

−ε/2/2)→ 0 as k→∞, tz ≥ t1 ≥ (logk)1+ε

for z ≥ 1, and Z ≤ dlog2 ke ≤ 2 log2 k, the fifth inequality follows by (EC.8), and the last inequality

follows because the formula after the fourth inequality goes to zero as k→∞. Note that the above

inequality also implies Pπ(A)> 1
2

when k≥Ω2.

Define Ψε :=
∑k−1

t=t1+1

(∑t−1

s=t1+1
ε̄(s)

k−s

)2

and Φε :=
∑k−1

t=t1+1 ε̄(s)
2, where ε̄(s) :=

η6

√
[(q− 1) log tz + 1]/tz for all s ∈ [tz + 1, tz+1]. By Lemma 2, Eπ[||θ̂tz(t) − θ∗||221{t<τ}|A] ≤

Eπ[||θ̂tz(t) − θ
∗||221{t<τ}|A]/Pπ(A)≤ 2Eπ[||θ̂tz(t) − θ

∗||221{t<τ}|A]≤ 2ε̄(t)2. The next result, which we

prove at the end, is useful to derive our bounds later.
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Lemma EC.7. Under APSC, there exists a constant K3 > 0 independent of k ≥ 1 such that Ψε <

K3(1 + (q− 1) logk) and Φε <K3[1 + logk+ (q− 1)(logk)2].

Step 3

Let K = max{Ω0,Ω1,Ω2,3}, where Ω0 (resp. Ω1, Ω2) is defined in Step 1 (resp. Step 2). If k <K,

the total regret can be bounded by Kr̄ = Θ(1). So, in the remainder of Step 3, we will focus on

the case k≥K. Define rD(θ∗) := r(λD(θ∗);θ∗) and let Rπ
t denote the revenue earned during period

t under policy π. Then ρπ(k)≤Lr̄+
∑k

t=L+1(rD(θ∗)−Eπ [Rπ
t ]). Let ∆̄t :=Rπ

t − r(λt;θ∗). We have:

k∑
t=L+1

(
rD(θ∗)−Eπ [Rπ

t ]
)

= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)−Rπ

t

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]

= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ∗)

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]
−Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ∗)

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
Pπ(A) + r̄kPπ(Ac)−Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt;θ∗)

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]

+ r̄kPπ(Ac) + r̄

≤ Eπ

[
τ−1∑
t=L+1

(∇r(λD(θ∗);θ∗))′(λD(θ∗)−λt)

∣∣∣∣∣A
]

+
v̄

2
Eπ

[
τ−1∑
t=L+1

||λD(θ∗)−λt||22

∣∣∣∣∣A
]

+ r̄Eπ[k− τ + 1|A] + r̄kPπ(Ac) + r̄

= Eπ

[
τ−1∑

t=t1+1

µD(θ∗)′A(λD(θ∗)−λt)

∣∣∣∣∣A
]

+
v̄

2
Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)−λt||22

∣∣∣∣∣A
]

+ r̄Eπ[k− τ |A] + 2 r̄ + r̄ kPπ(Ac). (EC.9)

where µD(θ∗) is the optimal dual solution µD(θ∗) of Pλ(θ∗) such that Aiλ
D(θ̂t1) = Ci for all i ∈

{j : µDj (θ∗)> 0} (its existence is established by Lemma EC.1 Part (b)). The first inequality follows

because r̄ is the upper bound on revenue rate for each period, which is also the maximum possible

regret for a single period on average. As for the second inequality, note that {∆̄t}k−1
t=L+1 is a martin-

gale difference sequence with respect to {Ht}k−1
t=L+1. Thus, by the Optional Stopping Time Theorem

(see, for example, Williams (1991)), we have −Eπ
[∑τ−1

t=L+1 ∆̄t

]
=−Eπ

[∑τ

t=L+1 ∆̄t

]
+ Eπ

[
∆̄τ

]
≤ r̄,

so the second inequality holds. The third inequality follows by Taylor expansion and A3. The last

equality follows by the KKT condition and that L= t1 by definition. Note that conditioning on A,

µD(θ∗)′AλD(θ∗) = µD(θ∗)′AλNTz (EC.10)
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for all z such that tz < τ . Indeed, when z = 1, (EC.10) holds because Aiλ
D(θ∗) =Ci =Aiλ

D(θ̂t1) =

Aiλ
NT
1 for i∈ {j : µDj (θ∗)> 0} where the first equality holds by complementary slackness, the second

equality holds by Lemma EC.1 Part (b). When z > 1, (EC.10) holds since for any i, Aiλ
NT
1 =

Ci implies that Aiλ
NT
z = Ci (indeed, by construction of B and the definition of E , any binding

constraint of Pλ(θ̂t1) that is not included in B is implied by the binding constraints of Pλ(θ̂t1) that

are included in B; moreover, any binding constraints of Pλ(θ̂t1) that are included in B are also

binding at λNTz by the Newton’s iteration in (6)).

We now bound the first term in (EC.9). By Lemma EC.6 (b), conditioning on A, pt = p̂t and

λ̂t = λNTz(t)−
∑t−1

s=t1+1
∆̂s
k−s ∈Λθ̂tz

for all t1 ≤ t < τ . Also, note that ∆̂t =Dt− λ̂t = ∆t +λt− λ̂t. So, we

can write the first term in (EC.9) as follows:

Eπ

[
τ−1∑

t=t1+1

µD(θ∗)
′
A
(
λD(θ∗)− λ̂t + λ̂t−λt

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑

t=t1+1

µD(θ∗)
′

(
AλD(θ∗)−AλNTz(t) +

t−1∑
s=t1+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑

t=t1+1

µD(θ∗)
′ (
AλD(θ∗)−AλNTz(t)

)∣∣∣∣∣A
]

+ Eπ

[
τ−1∑

t=t1+1

µD(θ∗)
′

(
t−1∑

s=t1+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑

t=t1+1

µD(θ∗)
′

(
t−1∑

s=t1+1

A∆̂s

k− s
+A∆t−A∆̂t

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑

t=t1+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]

+ Eπ

[
τ−1∑

t=t1+1

(
τ − t− 1

k− t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣A
]
, (EC.11)

where the second to the last equality follows by (EC.10). Since {∆t}k−1
t=t1+1 is a martingale difference

sequence with respect to {Ht}k−1
t=t1+1, we can bound the first term of (EC.11) by:

Eπ

[
τ−1∑

t=t1+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]

=
µD(θ∗)′A

Pπ(A)

{
Eπ

[
τ−1∑

t=t1+1

∆t

]
−Eπ

[
τ−1∑

t=t1+1

∆t

∣∣∣∣∣Ac
]
Pπ(Ac)

}

≤ µD(θ∗)′Ae
1 + kPπ(Ac)
1−Pπ(Ac)

≤ 3µD(θ∗)′Ae,

where the first inequality follows because Eπ[
∑τ−1

t=t1+1 ∆t] = Eπ[
∑τ

t=t1+1 ∆t] − Eπ[∆τ ] ≺ e (by

Optional Stopping Time Theorem) and the fact that |∆t| ≺ e. As for the second term of (EC.11),

note that, by (C1) in the definition of τ ,

Eπ

[
τ−1∑

t=t1+1

(
τ − t− 1

k− t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣ A
]
≤Eπ

[
(k− τ + 1)

∣∣∣∣∣µD(θ∗)′
τ−1∑

t=t1+1

A∆̂t

k− t

∣∣∣∣∣
∣∣∣∣∣ A
]

≤ Eπ

(k− τ + 1)
∣∣∣∣µD(θ∗)

∣∣∣∣
2
||A||2

∣∣∣∣∣
∣∣∣∣∣
τ−1∑

t=t1+1

∆̂t

k− t

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣ A
≤ψ ∣∣∣∣µD(θ∗)

∣∣∣∣
2
||A||2 (Eπ [k− τ |A] + 1) .
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Hence, we can bound (EC.11) (i.e., the first term in (EC.9)) with K4E
π[k− τ + 1|A] where K4 :=

3µD(θ∗)′Ae +ψ||µD(θ∗)||2||A||2 is independent of k≥K.

As for the second term in (EC.9), note that v̄
2
Eπ[
∑τ−1

t=t1+1 ||λD(θ∗)−λt||22|A]≤ v̄Eπ[
∑τ−1

t=t1+1 ||λ̂t−

λt||22|A] + v̄Eπ[
∑τ−1

t=t1+1 ||λD(θ∗) − λ̂t||22|A] where the first term on the right hand side

can be bounded by v̄Eπ
[∑τ−1

t=t1+1 ||λ̂t−λt||22
∣∣∣A] = v̄Eπ

[∑τ−1

t=t1+1 ||λ(p̂t; θ̂tz(t))−λ(p̂t;θ
∗)||22

∣∣∣A] =

v̄
∑k−1

t=t1+1 Eπ
[
ω2||θ̂t− θ∗||22 1{t<τ}

∣∣∣A] ≤ 2v̄ω2
∑k−1

t=t1+1 ε̄(t)
2 ≤ 2v̄ω2Φε (by Lemma EC.6 (b) and

A2), and the second term on the right hand side can be bounded as:

v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λ̂t||22

∣∣∣∣∣A
]

≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)−λNTz(t)||22

∣∣∣∣∣A
]

+ 2v̄Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
 . (EC.12)

We now bound the two terms in (EC.12) starting from the second term.

2v̄Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 4v̄

Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+ Eπ

 k−1∑
t=t1+1

(
t−1∑

s=t1+1

||λ̂s−λs||21{s<τ}
k− s

)2
∣∣∣∣∣∣A


≤ 4v̄

Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+ Eπ

 k−1∑
t=t1+1

(
t−1∑

s=t1+1

ωE(s)1{s<τ}
k− s

)2
∣∣∣∣∣∣A


≤ 4v̄

 2

Pπ(A)
Eπ

 k−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

+
k−1∑

t=t1+1

 t−1∑
s=t1+1

√
Eπ
[
ω2E(s)21{s<τ}

∣∣A]
k− s

2
= 4v̄

 2

Pπ(A)
Eπ

[
k−1∑

t=t1+1

t−1∑
s=t1+1

||∆s||22
(k− s)2

]
+

k−1∑
t=t1+1

 t−1∑
s=t1+1

√
Eπ
[
ω2E(s)21{s<τ}

∣∣A]
k− s

2
≤ 4v̄

 16

Pπ(A)
logk+

k−1∑
t=t1+1

 t−1∑
s=t1+1

√
Eπ
[
ω2E(s)21{s<τ}

∣∣A]
k− s

2
≤ 4v̄(32 logk+ 2ω2Ψε) ≤ K5(Ψε + logk) (EC.13)

for some constant K5 > 0 independent of k ≥ K, where the second inequality follows by

Lemma EC.6 (b) and A2, the third inequality follows by applying the law of total probability

to the first term and applying Cauchy-Swartz inequality to the second term (i.e., first expanding

the square of the sum of the second term and then applying Cauchy-Swartz inequality to the

cross-terms), the equality follows by the orthogonality of martingale differences {∆s}s, and the
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fourth inequality holds by integral approximation (i.e., the first term after the third inequality

can be bounded using ||∆s||2 = ||Ds − λs||2 ≤ ||Ds||2 + ||λs||2 ≤ 2 and
∑k−1

t=t1+1

∑t−1

s=t1+1
1

(k−s)2 ≤∑k−1

t=t1+1
1
k−t ≤ 1 + logk ≤ 2 logk (recall that k ≥ 3)), and the fifth inequality follows by the defini-

tion of Ψε and Pπ(A)≥ 1/2. We now bound the first term of (EC.12). Note that, conditioning on

A, for all t < τ , we have∣∣∣∣λD(θ∗)−λNTz(t)
∣∣∣∣

2
=
∣∣∣∣xD(θ∗)−xNTz(t)

∣∣∣∣
2
≤
∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz(t))

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣xD(θ̂tz(t))−x

NT
z

∣∣∣∣∣∣
2
,(EC.14)

where the first equality follows due to the observation that λD(θ∗) = xD(θ∗) on A. This observation

is true due to the following reasons: (1) since the objective function of Pλ(θ∗) is strongly concave,

removing the constraints that are non-binding at λD(θ∗) does not affect the optimal solution; (2)

by definition of E , the binding constraints at λD(θ∗) but are not included in B are redundant.

By Lemma EC.4,

Eπ

[
τ−1∑

s=t1+1

||xD(θ∗)−xD(θ̂tz(s))||
2
2

∣∣∣∣∣A
]

=
k−1∑

s=t1+1

Eπ
[
κ̃2||θ∗− θ̂tz(s) ||

2
21{s<τ}

∣∣∣A] ≤ 2κ̃2Φε.

Furthermore, by Lemma EC.6 (a) and the fact that tz+1− tz ≤ 2tz for all z, we have

Eπ

[
τ−1∑

s=t1+1

||xD(θ̂tz(s))−x
NT
z(s)||22

∣∣∣∣∣A
]

=
k−1∑

s=t1+1

Eπ
[
||xD(θ̂tz(s))−x

NT
z(s)||221{s<τ}

∣∣∣A]
≤

Z∑
z=1

(tz+1− tz)
Γ2

tz
≤ 2Z Γ2 ≤ 4Γ2 log2 k =

4Γ2

loge 2
logk.

Combining the inequalities above, the second term of (EC.9) can be bounded as follows:

v̄

2
Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)−λt||22

]
≤ 2v̄ω2Φε +K5(Ψε + logk) + 4v̄κ̃2Φε +

8v̄Γ2

loge 2
log2

≤ K6(1 + logk+ (q− 1) log2 k)

for K6 = (2v̄ω2 + 4v̄κ̃2 +K5)K3 +K5 + 8
loge 2

v̄Γ2. To bound the third term in (EC.9), the following

lemma is useful which we prove at the end.

Lemma EC.8. There exists a constant K7 > 0 independent of k ≥ K such that for all k ≥ K,

Eπ[k− τ |A]≤K7(logk+L).

Combining all the above and recalling that L= d(logk)1+εe, for all k≥K, we have:

ρπ(k) ≤ 2r̄(logk)1+ε + (K4 + r̄)(Eπ[k− τ |A] + 1) +K6(1 + logk+ (q− 1) log2 k) +
5

2
r̄

≤
(

2r̄+ 2K4K7 + 2r̄K7 +K6 +
5

2
r̄

)[
1 + (logk)1+ε + (q− 1) log2 k

]
≤ K8[(logk)1+ε + (q− 1) log2 k],
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for some constant K8 independent of k ≥ K. The result of Theorem 2 follows by using M2 =

max{r̄K,K8}. �

Next, we prove the intermediate results Lemma EC.5-EC.8 below.

Proof of Lemma EC.5. Fix θ ∈ Θ. Note that ECP(θ) is a convex optimization with linear

equality constraints. Let mB denote the number of rows of B, and define F to be an n by n−mB

matrix whose columns are unit orthogonal basis vectors and BF = 0. (In case there are multiple

matrices that satisfy this condition, pick any one of them.) Then {x : Bx = CB/T} = {x : x =

Fz+ x̂, z ∈Rn−mB} where x̂ satisfies Bx̂=CB/T . Hence, ECP(θ) is equivalent to an unconstrained

optimization problem maxz∈Rn−mB g(z;θ) := r(Fz + x̂;θ) in the sense that there is a one-to-one

mapping between the optimizer of ECP(θ) xD(θ) and the optimizer of the unconstrained problem

zD(θ): (1) xD(θ) = FzD(θ) + x̂, and (2) zD(θ) = F ′(xD(θ)− x̂). In addition, by Section 10.2.3 in

Boyd and Vandenberghe (2004), if a feasible point of ECP(θ) x(k) and a feasible point of the

unconstrained problem z(k) satisfy x(k) = Fz(k) + x̂, then the Newton steps for ECP(θ) (to obtain

a new feasible point x(k+1)) and the unconstrained problem (to obtain a new feasible point z(k+1))

coincide in the sense that x(k+1) = Fz(k+1) + x̂. This relationship enables us to analyze the behavior

of x(k) by studying z(k) whose convergence behavior is characterized by the well-known result below.

Theorem EC.2. (Quadratic Convergence of Newton’s Method for Convex Uncon-

strained Optimization Problems, Section 9.5.3 in Boyd and Vandenberghe (2004))

Suppose g(z) is a concave function whose unconstrained optimizer is x∗. Let {x(k)}∞k=1 be a sequence

of points obtained by Newton’s method. Assume there exist positive constants m,M,L such that

(i) ||∇2g(z)−∇2g(y)||2 ≤L||z− y||2, and

(ii) −MI �∇2g(z)�−mI.

Then, there exists constant η= min{1,3(1−2α)}m2/L where α∈ (0,0.5) such that if ||∇g(x(k))||2 <

η, then ||∇g(x(k+1))||2 ≤ L
2m2 ||∇g(x(k))||22.

Before applying Theorem EC.2, we first show that the conditions in Theorem EC.2 hold. Note

that since Λθ is compact, the linear transformation of it, Zθ := {z : z = F ′(x− x̂), x ∈ Λθ} is also

compact. Also note that since p(.;θ) ∈ C2(Λθ) by A1, r(.;θ) ∈ C2(Λθ) and g(.;θ) ∈ C2(Zθ). Hence

condition (i) holds: there exists some constant L such that ||∇2
zzg(z;θ)−∇2

zzg(y;θ)||2 ≤L||z−y||2.

Since the columns of F consist of unit orthogonal basis vectors, ∇2
zzg(z;θ) = F ′∇2

λλr(Fz+ x̂;θ)F

and −MI �∇2
λλr(Fz+ x̂;θ)�−mI by A3, we conclude that (ii) holds: −MI �∇2

zzg(z;θ)�−mI.

Then, by Theorem EC.2, there exists a constant η = min{1,3(1− 2α)}m̄2/L for some α ∈ (0,0.5)

independent of θ such that if ||∇zg(z(k);θ)||2 < η, then ||∇zg(z(k+1);θ)||2 < L
2m2 ||∇zg(z(k);θ)||22. Note

that by strong convexity of g(.;θ), M−1||∇zg(z;θ)||2 ≤ ||z−zD(θ)||2 ≤ 2m−1||∇zg(z;θ)||2. Also note
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that for x = Fz + x̂, ||x − xD(θ)||2 ≤ ||F ||2||z − zD(θ)||2 = ||z − zD(θ)||2 ≤ ||F ′||2||x − xD(θ)||2 =

||x−xD(θ)||2, so ||x−xD(θ)||2 = ||z− zD(θ)||2. Therefore,

||x(k+1)−xD(θ)||2 = ||z(k+1)− zD(θ)||2 ≤ 2m−1||∇zg(z(k+1);θ)||2 ≤Lm−3||∇zg(z(k);θ)||22

≤ Lm−3M 2||z(k)− zD(θ)||22 =Lm−3M 2||x(k)−xD(θ)||22

Let γ = η and ξ = Lm−3M 2. Note that they are both independent of θ. The result follows by

letting x(k+1) = xNTz and x(k) = xNTz−1. �

Proof of Lemma EC.6. Let Ω1 = maxi=1,..,4{Vi}, where Vi’s are positive constants to be defined

later. We prove the results one by one.

(a) Let κ̄= max{κ, κ̃} where κ and κ̃ are defined in Lemma EC.1 and Lemma EC.4 respectively.

Let Γ1 = max{1,4κ̄2}. We proceed by induction. If t1 ≥ τ , there is nothing to prove, so we consider

the case when t1 < τ . Recall that xNT1 = λD(θ̂t1) and xD(θ∗) = λD(θ∗) on A. Thus, when t1 < τ

||xD(θ̂t1)−xNT1 ||22 = ||xD(θ̂t1)−λD(θ̂t1)||22

≤
(
||xD(θ̂t1)−xD(θ∗)||2 + ||λD(θ∗)−λD(θ̂t1)||2

)2

≤ 4κ̄2E(t1)2 ≤ Γ1(log t1)−
ε
2

where the last inequality follows by the definition of A. This is our base case. We now do the

inductive step. Suppose that tz−1 < τ and ||xD(θ̂tz−1
)− xNTz−1||22 ≤ Γ1(log tz−1)−ε/2. If tz ≥ τ there is

nothing to prove. If tz < τ , then we need to show that ||xD(θ̂tz)−xNTz ||22 ≤ Γ1(log tz)
−ε/2 also holds.

Let V1 > 0 be the smallest integer satisfying d(logV1)1+εe> e2. Then, for k≥Ω1 ≥ V1, we have∣∣∣∣∣∣xD(θ̂tz)−xNTz−1

∣∣∣∣∣∣2
2
≤ 3

∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)
∣∣∣∣∣∣2

2
+ 3
∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz−1

)
∣∣∣∣∣∣2

2
+ 3
∣∣∣∣∣∣xD(θ̂tz−1

)−xNTz−1

∣∣∣∣∣∣2
2

≤ 3κ̄2

(log tz)
ε
2

+
3κ̄2

(log tz−1)
ε
2

+
3Γ1

(log tz−1)
ε
2

≤ 3κ̄2

(log tz)
ε
2

+
3κ̄2

(log
√
tz)

ε
2

+
3Γ1

(log
√
tz)

ε
2

≤ 3
[
κ̄2 + 2

ε
2 (κ̄2 + Γ1)

] 1

(log tz)
ε
2
,

where the second inequality follows by definition of A and induction hypothesis, the third inequality

follows because tz−1 ≥ tz
2
≥
√
tz ≥
√
t1 =

√
d(logk)1+εe> e when k ≥Ω1 ≥ V1. Let V2 ≥ V1 be such

that for all k ≥ V2 and z = 1, . . . ,Z, the following hold: (1) (log tz)
ε/2 ≥ 3γ−2

[
κ̄2 + 2ε/2(κ̄2 + Γ1)

]
and (2) 9ξ2

[
κ̄2 + 2ε/2(κ̄2 + Γ1)

]2
(log tz)

−ε/2 ≤ 1≤ Γ1. (Recall that γ and ξ are the constants for the

locally quadratic convergence of Newton’s method defined in Lemma EC.5.) Inequality (1) ensures

that ||xD(θ̂tz)−xNTz−1||2 ≤ γ for all k≥Ω1 ≥ V2 and inequality (2) ensures, by the locally quadratic



ec18 e-companion to Chen, Jasin, Duenyas: Parametric Demand Learning with Dynamic Pricing

convergence of the Newton’s method, that ||xD(θ̂tz)−xNTz ||22 ≤ ξ2||xD(θ̂tz)−xNTz−1||42 ≤ Γ1(log tz)
−ε/2.

This completes the induction.

(b) Note that λ̂t ∈ Λθ̂t
is equivalent to p̂t ∈ P which is immediately satisfied if p̂t ∈

Ball(pD(θ∗),7φ/8) ⊆ Ball(pD(θ∗), φ) ⊆ P (the last inclusion follows by A6); also, since

Ball(pD(θ∗),7φ/8)⊆W(λ̃min, λ̃max), when p̂t ∈Ball(pD(θ∗),7φ/8), it also implies that p̂t = pt. Hence,

we only need to show Ct � 0 and p̂t ∈Ball(pD(θ∗),7φ/8) for t1 ≤ t < τ . Let V3 ≥ V2 be such that for

all k ≥ V3 and z = 1, . . . ,Z,
(
2
√

Γ1 + 3κ̄
)

(log tz)
−ε/4 < φ/(8ω). We now prove the result by induc-

tion. If τ ≤ t1 + 1, then there is nothing to prove. Suppose that τ > t1 + 1. Since E(t1)≤ δ̄ on A,

by Lemma EC.1 (a), pD(θ̂t1) ∈ Ball(pD(θ∗), φ/2). For t= t1 + 1, we then have ||p̂t1+1− pD(θ∗)||2 =

||pD(θ̂1)− pD(θ∗)||2 ≤ φ/2, so p̂t1+1 ∈P. In addition, note that

Ct1+1 =Ct1 −ADt1+1 = kC −ASt1 −A
(
λ̂t1+1 + ∆̂t1+1

)
= kC − t1C + t1C −ASt1 −A

(
λNT1 + ∆̂t1+1

)
� (k− t1− 1)C + t1C −ASt1 −A∆̂t1+1

� (k− t1− 1)Aλ̃mine + t1Aλ̃mine−ASt1 −A∆̂t1+1

= (k− t1− 1)A

(
λ̃mine−

St1 − t1λ̃mine

k− t1− 1
− ∆̂t1+1

k− t1− 1

)

� (k− t1− 1)A

(
λ̃mine−

∣∣∣∣∣
∣∣∣∣∣St1 − t1λ̃mine

k− t1− 1

∣∣∣∣∣
∣∣∣∣∣
2

e−

∣∣∣∣∣
∣∣∣∣∣ ∆̂t1+1

k− t1− 1

∣∣∣∣∣
∣∣∣∣∣
2

e

)
� (k− t1− 1)

(
λ̃min−ψ

)
Ae� 0, (EC.15)

(recall that St =
∑t

s=1Ds) where the first inequality follows because AλNT1 �C, the second inequal-

ity follows because Aλ̃mine�C by definition of λ̃min, the fourth (strict) inequality follows by (C1)

and Ae � 0, and the last inequality follows by the definition of ψ. This is the base case. Now

suppose Cs � 0, p̂s ∈Ball(pD(θ∗),7φ/8) for all s≤ t−1 for some t−1< τ with t−1∈ [tz, tz+1−1]. If

t≥ τ , there is nothing to prove. So we only need to show that Ct � 0, p̂t ∈Ball(pD(θ∗),7φ/8) when

t < τ . Note that when t < τ , we have tz ≤ t < τ . Hence, by definition of A, we have

||p̂t− pD(θ∗)||2 ≤ ||p̂t− p(λNTz ; θ̂tz)||2 + ||p(λNTz ; θ̂tz)− pD(θ̂tz)||2 + ||pD(θ̂tz)− pD(θ∗)||2

≤ w

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆̂s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+ ||p(λNTz ; θ̂tz)− p(λD(θ̂tz); θ̂tz)||2 +
φ

2

≤ φ

4
+ω||λNTz −λD(θ̂tz)||2 +

φ

2
≤ φ

4
+
φ

8
+
φ

2
=

7φ

8

where the second inequality follows by Lemma EC.1 (a) and the fact that E(tz)< δ̄ on A, the third

inequality follows by A1 and (C1) the last inequality results from the following inequality∣∣∣∣∣∣λNTz −λD(θ̂tz)
∣∣∣∣∣∣

2
≤
∣∣∣∣λNTz −λD(θ∗)

∣∣∣∣
2

+
∣∣∣∣∣∣λD(θ∗)−λD(θ̂tz)

∣∣∣∣∣∣
2
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≤
∣∣∣∣∣∣xNTz −xD(θ̂tz)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣λD(θ∗)−λD(θ̂tz)

∣∣∣∣∣∣
2

≤ 2
√

Γ1(log tz)
− ε4 + 3κ̄E(tz)

≤
(

2
√

Γ1 + 3κ̄
)

(log tz)
− ε4 <

φ

8ω
,

where the second inequality follows by (EC.14) and the fourth inequality follows by the definition

of A. Hence, p̂t ∈ Ball(pD(θ∗),7φ/8). For Ct, by a similar argument to the derivations in (EC.15),

we have Ct = kC− tC+ tC−ASt1−
∑t

s=t1+1A(λNTz(s)−
∑s−1

v=t1+1
∆̂v
k−v +∆̂s)� (k− t)C+ t1C−ASt1−∑t

s=t1+1(A∆̂s−
∑s−1

v=t1+1
A∆̂v
k−v )� (k− t)C + t1Aλ̃mine−ASt1 −

∑t

s=t1+1
A∆̂s(k−t)

k−s = (k− t)A(λ̃mine−
St1−t1λ̃mine

k−t −
∑t

s=t1+1
A∆̂s
k−s )� (k− t)A(λ̃min−ψ)e� 0. This completes the induction.

(c) Let V4 ≥ V3 be such that 27ξ2
(
5κ̄4 [8η4 + 4(q− 1)2(log tz)

2]/(η2
5tz) + 2Γ1Γ2/(log tz−1)

ε
2

)
< 1 for

all k ≥ V4 and z = 1, . . . ,Z, where Γ2 = max{1,4κ̄2η2
3}, η4 and η5 are as in Lemma 2. Again, we

show by induction. For z = 1, we have:

Eπ[||xD(θ̂t1)−xNT1 ||221{t1<τ}|A] = Eπ[||xD(θ̂t1)−λD(θ̂t1)||221{t1<τ}|A]

≤ 2Eπ[||xD(θ̂t1)−xD(θ∗)||221{t1<τ}|A] + 2Eπ[||λD(θ̂t1)−λD(θ∗)||221{t1<τ}|A]

≤ 4κ̄2 η
2
3

t1
≤ Γ2

t1
,

where the second to the last inequality follows by Lemma 1. This is our base case. We now do the

inductive step. Suppose that Eπ[||xD(θ̂ts)− xNTs ||221{ts<τ}|A]≤ Γ2t
−1
s holds for s= z − 1, we need

to show that same thing holds for s= z. Then, for k≥Ω1 ≥ V4, we have:

Eπ

[∣∣∣∣∣∣xD(θ̂tz)−xNTz
∣∣∣∣∣∣2

2
1{tz<τ}

∣∣∣∣A]≤ ξ2Eπ

[∣∣∣∣∣∣xD(θ̂tz)−xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]
≤ 27ξ2

{
Eπ

[∣∣∣∣∣∣xD(θ̂tz)−xD(θ∗)
∣∣∣∣∣∣4

2
1{tz<τ}

∣∣∣∣A]+ Eπ

[∣∣∣∣∣∣xD(θ∗)−xD(θ̂tz−1
)
∣∣∣∣∣∣4

2
1{tz<τ}

∣∣∣∣A]
+Eπ

[∣∣∣∣∣∣xD(θ̂tz−1
)−xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]}
≤ 27ξ2

{
κ̄4Eπ[E(tz)

41{tz<τ}|A] + κ̄4Eπ
θ∗ [E(tz−1)41{tz<τ}|A] +

Γ1

(log tz−1)
ε
2

Γ2

tz−1

}
≤ 27ξ2

{
8η4 + 4(q− 1)2(log tz)

2

η2
5t

2
z

κ̄4 +
8η4 + 4(q− 1)2(log tz−1)2

η2
5t

2
z−1

κ̄4 +
Γ1

(log tz−1)
ε
2

2Γ2

tz

}
≤ 27ξ2

{
5κ̄4 [8η4 + 4(q− 1)2(log tz)

2]

η2
5tz

+
2Γ1Γ2

(log tz−1)
ε
2

}
1

tz

≤ 1

tz
≤ Γ2

tz
,

where the first inequality follows by Lemma EC.6 (a), the third inequality follows by Lemma EC.4,

Lemma EC.6 (a) and the induction hypothesis, and the fourth inequality holds because
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Lemma EC.6 (b) shows that ps ∈ W(λ̃min, λ̃max) for s < τ which means that the condition for

Lemma 2 is satisfied, so

Eπ
[
||θ− θ̂t||421{t<τ}

∣∣∣A]
≤
∫ ∞

0

Pπ
(
||θ̂t− θ∗||421{t<τ} ≥ x|A

)
dx

≤
∫ ∞

0

min
{

1, η4t
q−1 exp

(
−η5t

√
x
)}
dx

≤
∫ (

2(q−1) log t
η5t

)2

0

dx+

∫ ∞
(

2(q−1) log t
η5t

)2

[
η4t

q−1 exp

(
−η5t

√
x

2

)]
exp

(
−η5t

√
x

2

)
dx

≤ 4(q− 1)2(log t)2

η2
5t

2
+ η4

∫ ∞
(

2(q−1) log t
η5t

)2
exp

(
−η5t

√
x

2

)
dx

≤ 4(q− 1)2(log t)2

η2
5t

2
+ η4

∫ ∞
0

exp

(
−η5t

√
x

2

)
dx

≤ 8η4 + 4(q− 1)2(log t)2

η2
5t

2
.

This completes the induction. �

Proof of Lemma EC.7. We first derive a bound for Φε. By definition tz = d(tz+1 − L)/2e+ L

for z > 1, so tz −L≥ (tz+1−L)/2. This implies that tz+1− tz ≤ tz for all z > 1. For z = 1, we also

have t2− t1 = 1≤L= t1. Recall that Z ≤ dlog2 ke ≤ 2 log2 k= 2
loge 2

logk. Thus, we can bound Φε as

follows:

Φε =
k−1∑

s=t1+1

ε̄(s)2 =
Z∑
z=1

(tz+1− tz)ε̄(tz)2 ≤
Z∑
z=1

(tz+1− tz)η2
6

(q− 1) log tz + 1

tz

≤ η2
6Z[(q− 1) logk+ 1]

≤ KΦ[1 + logk+ (q− 1) log2 k]

for some positive constant KΦ independent of k≥ 1.

We now derive a bound for Ψε. To do that, we first show that there exists a constant K > 3

such that for all k ≥K, (1)(logk)1+ε/k < 1/19, (2)Z ≥ 3 and (3)tZ−2 ≤ k/3. Note that as k→∞,

we have (logk)1+ε/k→ 0, Z →∞ and tz+1 − L→∞ for z = Z − 2,Z − 1,Z. This implies that

tz − L = d(tz+1 − L)/2e ≤ 2(tz+1 − L)/3 for z = Z − 2,Z − 1,Z when k is large. Therefore, there

exists a constant K > 3 such that for all k ≥K, we have (logk)1+ε/k < 1/19, Z ≥ 3 and tZ−2 ≤
8
27

(tZ+1−L) +L= 8
27
k+ 19

27
(logk)1+ε < k

3
.

Since ε̄(tz) = η6

√
[(q− 1) log tz + 1]/tz ≤ η6

√
q, we conclude that for k <K, Ψε ≤K(Kη6

√
q)2 =

K3η2
6q. We now focus on the case when k≥K. Note that,

Ψε =
k−1∑

t=t1+1

(
t−1∑

s=t1+1

ε̄(s)

k− s

)2

≤ 2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ε̄(s)

k− s

)2

+ 2
k−1∑

t=tZ−2+1

 t−1∑
s=tZ−2+1

ε̄(s)

k− s

2

.(EC.16)
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Since tZ−2 > k/4 (recall that tz+1 ≤ 2tz and tZ+1 = k), we have ε̄(s)< η6

√
4[(q− 1) logk+ 1]/k

for all s > tZ−2. So, for all k≥K, the second term in (EC.16) can be bounded by

8η2
6[1 + (q− 1) logk]

k

k−1∑
t=tZ−2+1

 t−1∑
s=tZ−2+1

1

k− s

2

≤ 8η2
6[1 + (q− 1) logk]

k
3k≤KΨ,2[1 + (q− 1) logk],

for some positive constant KΨ,2 = 24η2
6 independent of k ≥K, where the first inequality follows

since when k≥K > 3 the following holds:

k−1∑
t=t1+1

(
t−1∑

s=t1+1

1

k− s

)2

≤
k−1∑
t=1

(
t−1∑
s=1

1

k− s

)2

≤
k−1∑
t=1

(∫ t

1

1

k− s
ds

)2

≤
k−1∑
t=1

log2

(
k

k− t

)

≤ log2 k+

∫ k−1

1

log2

(
k

k− t

)
dt ≤ log2 k+ 2k ≤ 3k.

As for the first term in (EC.16), for all k≥K, we have

2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ε̄(s)

k− s

)2

≤ 2k

(
tZ−2∑
s=t1+1

ε̄(s)

k− s

)2

≤ 2k

Z−3∑
z=1

tz+1− tz
k− tz+1

η6

√
1 + (q− 1) log tz

tz

2

≤ 4kη2
6

(
Z−3∑
z=1

tz+1− tz
k− tz+1

√
1 + (q− 1) logk

tz+1

)2

≤ 4kη2
6[1 + (q− 1) logk]

(∫ tZ−2

1

1

k−x

√
1

x
dx

)2

≤ 4kη2
6[1 + (q− 1) logk]

(
2 log(

√
2√

2−1
)

√
k

)2

≤ KΨ,1[1 + (q− 1) logk]

where KΨ,1 = 16η2
6 log2(

√
2√

2−1
). The second inequality follows by Lemma 2. The third inequality

follows because tz+1 ≤ 2tz. Note that the function f(x) = 1
(k−x)

√
x

is decreasing when x < k
3
. Since

tZ−2 <
k
3
, the fourth inequality holds by integral approximation. The fifth inequality follows by∫ tZ−2

1

1

k−x

√
1

x
dx =

1√
k

∫ tZ−2

1

(
1√

k−
√
x

+
1√

k+
√
x

)
d
√
x

≤ 2√
k

log

(
2
√
k√

k−
√
tZ−2

)
≤

2 log( 2
√

3√
3−1

)
√
k

.

Thus, we conclude that there exists some positive constant KΨ independent of k ≥ 1 such that

Ψε ≤ max{(KΨ,1 + KΨ,2)[1 + (q − 1) logk],K3η2
6q} ≤ KΨ[1 + (q − 1) logk]. The result follows by

letting K3 = max{KΦ,KΨ}. �
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Proof of Lemma EC.8. Because τ is non-negative, we can write Eπ[k− τ |A] = k−
∑k−1

t=0 Pπ(τ >

t|A) =
∑k−1

t=1 Pπ(τ ≤ t|A). We now bound Pπ(τ ≤ t|A). To that end, let τ̃ be the minimum of k and

the first time t≥ t1 + 1 such that the following condition (C2) is violated:

(C2) ψ >

∣∣∣∣∣
∣∣∣∣∣

t∑
s=t1+1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+
t∑

s=t1+1

||λs− λ̂s||21{s≤τ}
k− s

+

∣∣∣∣∣
∣∣∣∣∣SL−Lλ̃mine

k− t

∣∣∣∣∣
∣∣∣∣∣
2

.

Note that τ̃ ≥ τ on every sample path, so Pπ(τ ≤ t|A)≤ Pπ(τ̃ ≤ t|A). Then, by the union bound,

Pπ(τ ≤ t|A) ≤ Pπ
(

max
L+1≤s≤t

{∣∣∣∣∣
∣∣∣∣∣SL−Lλ̃mine

k− s

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k− v

∣∣∣∣∣
∣∣∣∣∣
2

+
s∑

v=L+1

||λv − λ̂v||21{v≤τ}
k− v

}
≥ψ

∣∣∣∣∣A
)

≤ Pπ
(
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∣∣∣∣∣SL−Lλ̃mine

k− s
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2

≥ ψ

2

∣∣∣∣∣A
)

+Pπ
(

max
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s∑
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∆v

k− v
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2

≥ ψ

4
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)

+Pπ
(
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s∑
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||λv − λ̂v||21{v≤τ}
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4

∣∣∣∣∣A
)

(EC.17)

We now bound the three terms in (EC.17) starting from the first term. By Markov’s inequality:

Pπ
(

max
L+1≤s≤t
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{
1,
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,

where the last inequality follows because
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2
≤
∣∣∣∣∣∣Le +Lλ̃mine
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2

=
√
n(1 + λ̃min)L. For

the second term in (EC.17), we have
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[
4
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+

4
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]
≤ 128

ψ2Pπ(A)

1

k− t
,

where the first inequality follows by the law of total probability, the second inequality follows

by the Doob’s sub-martingale inequality, the second inequality follows by the orthogonality of
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martingale differences, and the third inequality follows by the same integral approximation bound

as in deriving (EC.13). We now bound the last term in (EC.17):

Pπ
(

max
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4
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)
where the first inequality follows by first applying Markov’s inequality and then applying Cauchy-

Schwartz inequality (as in the derivation of (EC.13)), the fourth inequality follows by Lemma 2

and the fact that for any two points x1, x2 ∈∆n−1 we have ||x1−x2||22 ≤ 2, and the last inequality

follows because by Cauchy-Schwartz inequality,(
t∑

s=L+1

√
Eπ[1{τ=s}|A]

k− s

)2

≤

(
t∑
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)
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+

1
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≤ 2

k− t
.

Finally, we have for all k≥K ≥Ω2 ≥ 3,

Eπ[k− τ |A] =
k−1∑
t=1

Pπ(τ ≤ t|A)≤
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ψ2
logk+

128

ψ2
logk≤K7(logk+L),

where K7 = 384/ψ2 +128K3ω
2q/ψ2 +4n(1+ λ̃min)2/ψ2 +1, the second inequality follows by integral

approximation, and the third inequality follows by Lemma EC.7. �

EC.5. Implication of the Well-separated Demand Assumption A7

In this section, we prove the following claim we made when commenting on assumption A1 in

Section 4:
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Lemma EC.9. There exists some constant cd > 0 such that for any θ, θ′ ∈Θ and p∈W(λ̃min, λ̃max),

||λ(p;θ)−λ(p;θ′)||2 ≥ cd||θ− θ′||2

Proof. There exists a constant ch such that

ch||θ− θ′||22 ≤
∑
D∈D

(
√
Pp,θ(D)−

√
Pp,θ′(D))2

=
∑
D∈D

(
Pp,θ(D)−Pp,θ′(D)√
Pp,θ(D) +

√
Pp,θ′(D)

)2

≤
∑

D∈D(Pp,θ(D)−Pp,θ′(D))2

4(λ̃min)n(1− λ̃max)

=

∑n

i=1[λi(θ;p)−λi(θ′;p)]2 + [(1−
∑n

j=1 λj(θ;p))− (1−
∑n

j=1 λj(θ
′;p))]2

4(λ̃min)n(1− λ̃max)

≤
(n+ 1)

∑n

i=1[λi(θ;p)−λi(θ′;p)]2

4(λ̃min)n(1− λ̃max)
=

(n+ 1)

4(λ̃min)n(1− λ̃max)
||λ(θ;p)−λ(θ′;p)||22

for any θ, θ′ ∈Θ and any p∈W(λ̃min, λ̃max), where the first inequality follows by Lemma EC.3, the

second inequality follows since p∈W(λ̃min, λ̃max), and the last inequality follows since (
∑n

i=1 xi)
2 ≤

n
∑n

i=1 x
2
i . Setting cd = 4ch(λ̃min)n(1− λ̃max)/(n+ 1) completes the proof. �
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