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Abstract

We study a token-based central queue with multiple customer types. Customers of each type arrive according
to a Poisson process and have an associated set of compatible tokens. Customers may only receive service when
they have claimed a compatible token. If upon arrival, more than one compatible token is available, an assign-
ment rule determines which token will be claimed. The service rate obtained by a customer is state-dependent,
i.e., it depends on the set of claimed tokens and on the number of customers in the system. Our first main result
shows that, provided the assignment rule and the service rates satisfy certain conditions, the steady-state distri-
bution has a product form. We show that our model subsumes known families of models that have product-form
steady-state distributions including the order-independent queue of [20] and the model of [22]. Our second main
contribution involves the derivation of expressions for relevant performance measures such as the sojourn time
and the number of customers present in the system. We apply our framework to relevant models, including an
M/M/K queue with heterogeneous service rates, the MSCCC queue, multi-server models with redundancy and
matching models. For some of these models, we present expressions for performance measures that have not
been derived before.

Keywords: product form, token-based, order-independent queue, redundancy system, matching model

1 Introduction
The discovery of queueing systems with a steady-state product-form distribution is probably one of the most
fundamental contributions in queueing theory. In a pioneering work, [17] showed that in a queueing network
formed by M/M/1 nodes, the joint steady-state distribution is given by the product of the marginal distributions of
the individual nodes. Roughly speaking, this implies that the stationary distribution of the network can be obtained
by multiplying the stationary distributions of the individual nodes assuming that each node is in isolation. Due to
this property, the analysis of a queueing network reduces to that of single-node queues, simplifying the analysis
tremendously. Product-form distributions provide insight into the impact of parameters on the performance and
allow efficient calculation of performance measures. As a consequence, since Jackson’s discovery, considerable
effort has been put in understanding the conditions such that a stochastic model has a product-form steady-state
distribution. An important step forward was made by [8] and [19], who introduced BCMP networks and Kelly
networks, respectively, which have product-form steady-state distributions. These networks demonstrate that
models with multiple types of customers and general service time distributions could also have a product-form
distribution. Since then, further studies have shown that networks with negative arrivals, instantaneous signals and
blocking might have a product-form distribution, see [10] for an overview.
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Recent years have witnessed a surge of interest in parallel server models with different types of customers.
The main application is in the study of data centers, which consists of a pool of resources that are interconnected
by a communication network. Indeed, data centers provide the main infrastructure to support many internet
applications, enterprise operations and scientific computations. In two relevant studies, [22] and [20], sufficient
conditions have been obtained for a multi-server system to have a product form. We note that these product-
form distributions are not expressed as the product of per-type or per-server terms. In fact, they are expressed
as a product of terms that correspond to a unique customer in the system. In that respect, they do not allow an
interpretation in terms of a product of marginal distributions, as is the case with classical product-form distributions
for Jackson, BCMP and Kelly networks. A notable difference between the two papers is in the state descriptor
considered therein. In the multi-type customer and server model of [22], the authors consider an aggregated
descriptor that keeps track of the servers being active but not of the type of customers being served or waiting. On
the other hand, in the order-independent queue of [20], the state descriptor keeps track of the type of customers
in the system, but not of the servers being active. These two modelling approaches have led to two separate
streams of papers, where each of the approaches covers applications that are not covered by the other. Some of the
applications studied are systems with blocking, redundancy and computer clusters, see Section 7 for more details.
A natural question that arises is whether the original models of [22] and [20] can be generalised while preserving
the product-form distribution in steady state.

We answer this question in the affirmative in this paper. We analyse a token-based central queue with multiple
types of customers and multiple tokens. As will be proved in the paper, this model is a generalisation of both
the model of [22] and the order-independent queue of [20]. Customer of each type arrive according to a Poisson
process and have an associated set of compatible tokens. To receive service, a customer must claim a compati-
ble token. Therefore, an arriving customer will immediately claim a compatible token if there is one available,
otherwise it will wait until it can claim one. As will become clear later on in the paper, the meaning of a token
is application-dependent. It might represent a physical server or it might represent the total service rate allocated
to a given customer type. If upon a customer arrival more than one compatible token is available, an assignment
rule determines which token will be claimed by the customer. A customer without a token receives no service and
a customer holding a token receives service at a rate given by a state-dependent service rate function that satis-
fies certain conditions. As we will show later, these conditions are reminiscent of those in the order-independent
queue.

Our first main result shows that, provided the assignment rule and the service rate function satisfy the required
conditions, the steady-state distribution has a product form. As in the case of [22] and [20], this product-form
distribution cannot be expressed as the product of per-type or per-token terms. We further show that the order-
independent queue and the multi-type customer and server model of [22] are particular instances of our model
and that our model includes examples that were not covered by either. In other words, our model and main results
provide a unifying framework for parallel-server models with a product-form distribution. Our second main
contribution is that we use the steady-state distribution of the general model to characterise transforms of relevant
performance measures, including the sojourn time and the number of customers in the system. We illustrate
the applicability of the framework by computing the steady-state distribution and analysing the performance of
many relevant models, including an M/M/K queue with heterogeneous service rates, the MSCCC queue, multi-
server models with redundancy and matching models. For some of these models, we present expressions for
performance measures that have not been derived before. It is important to note that, even though our model is
based on a central-queue architecture, some of the applications, in particular the redundancy models, correspond
to topologies without a central queue, where instead every server has its own queue. We explain this in more detail
in Section 7.

The rest of the paper is organised as follows. In the next section, we discuss studies related to this paper.
Section 3 then describes the token-based central queue that we study in more detail and introduces the required
notation. Section 4 shows that the token-based central queue has a product-form stationary distribution, which
allows for the calculation of other performance measures in Section 5. We show in Section 6 that the models
of [20] and [22] are captured by our model, after which we discuss applications of our model in Section 7.

2 Related work
As mentioned in the introduction, there has been a surge of interest in multi-server queueing models in recent
years. The main two references related to our work are [22] and [20], which identify classes of models that have
a product-form stationary measure.
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Subsequently, several studies have used the results of these two models to analyse a variety of other models.
An important application area that has received a lot of attention is formed by redundancy models. While there
are several variants of a redundancy-based system, the general notion of redundancy is to create multiple copies
of the same customer that will be sent to a subset of servers. Depending on when replicas are deleted, there
are two classes of redundancy systems: cancel-on-start (COS) and cancel-on-completion (COC). In redundancy
systems with COC, once a copy has completed service, the other copies are deleted and the customer is said to
have received service. On the other hand, in redundancy systems with COS, copies are removed as soon as one
copy starts being served. In [9], the authors observe that the COC model is a special case of the order-independent
queue [20], which enables the authors to derive the steady-state distribution directly. We also refer to [14] for a
thorough analysis of the COC system. On the other hand, [7] shows that while the COS based redundancy system
is not an order-independent queue, it fits within the multi-type customer and server model of [22]. They also show
that, while the COC model does not the framework of [22], it does fit an extension of it, where the state descriptor
used in [22] is endowed with a more general service rate function. We will use the resulting state descriptor also
in this paper (see Section 3 for more details).

An important application area, which fits the framework of [22], is that of matching models, which have been
studied in several recent papers, see for instance [1]. We also refer to [4] and [3], where the authors explore the
relation between redundancy and matching models. In Section 7, we apply our token-based approach to derive the
steady-state distribution of a large family of matching models.

Another important related work is [6]. The model considered therein is similar to the one of [22] with the
exception that the assignment policy ‘assign longest idle server’ (ALIS) is used. Under the ALIS-policy, a new
arrival that could be served by more than one inactive server, is assigned to the longest-idle server. To implement
this policy, the state descriptor is enriched with information on the idleness of every inactive server. The authors
prove that the steady-state distribution of this model has a product form. In our paper, we do not consider the
ALIS variant, however, from the analysis of [6], we expect that all our results would carry over to this case. We
discuss this in more detail in Section 4.

3 Model description
In this section, we describe the token-based central queue model in more detail.

Customers and tokens. The model that we study represents a central-queue system where the customers may
be of mutually different types (or classes). The set of all customer types is denoted by C and customers of type
c ∈ C arrive according to a Poisson process with rate λc. As a result, the total arrival rate of customers to the
system is λ :=

∑
c∈C λc. A distinguishing feature of this model is the fact that in order for customers to receive

service, they must hold a token. To this end, a set of K tokens denoted by T = {t1, . . . , tK} is also associated
with the model. In particular, a customer type c ∈ C is characterised by a token set Tc which consists of the
compatible tokens that can be held by customers of type c. Similarly, associated with a token t ∈ T is a set of
customer types that can choose the token, denoted henceforth by Ct. Clearly, Tc ⊆ T and Ct ⊆ C.

Assignment of customers to tokens. At any point in time, the set of available tokens is denoted by T (a),
T (a) ⊆ T , while the set of unavailable tokens is given by T \T (a). To receive service, customers are required to
claim a compatible token. Hence, when a customer of type c ∈ C arrives, it will claim a single token from the set
Tc∩T (a) (if it is non-empty), and then join the central queue. In case no compatible token is available upon arrival
(i.e. |Tc ∩ T (a)| = 0), the customer will join the queue and wait until a token in the set Tc becomes available. If
multiple compatible tokens are available, i.e., |Tc∩T (a)| > 1, then an assignment rule decides which of the tokens
will be claimed by the arriving customer. More particularly, this assignment rule constitutes a randomised policy
which, given T (a) and the class of the arriving customer, dictates the probability with which the customer should
claim a particular token. We assume this assignment rule to satisfy a so-called assignment condition, which we
elaborate on later in this section. Once a token t is selected by a customer, it is no longer available for selection
(i.e. T (a) := T (a)\{t}) until the customer has completed service. Upon release, the token will immediately be
reclaimed by the longest waiting tokenless customer of a type from the set Ct. If there are no such customers,
the token is added back to the set T (a) such that T (a) := T (a) ∪ {t}. We shall refer to customers with tokens as
active customers and identify such customers with the token associated with them. Customers in the central queue
without tokens will be referred to as inactive customers.

Departure rates of customers. We assume service requirements of customers to be exponentially distributed.
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In light of the model’s token mechanism, this means that the departure rate of active customers from the system
is non-negative, while that of inactive customers is zero. Throughout the paper, we assume that the departure
rates associated with active customers satisfy a certain condition, which is specified below. Since this condition is
reminiscent of the order-independent queue as introduced in [20], we call this the order-independent condition.

Markovian state descriptor. Due to the memoryless properties of the arrival and departure processes, the
token-based central queue can be interpreted as a Markov process. We now introduce the state descriptor that
we use to analyse this model. We will show in Section 4.1 that this state descriptor leads to a Markov sys-
tem by stating its balance equations. The state descriptor that we use for the token-based central queue is of
the form (T1, n1, . . . , Ti, ni). This descriptor retains the order of arriving customers in the central queue from
left to right. When the model is in state (T1, n1, . . . , Ti−1, ni−1, Ti, ni), it has i active customers which have
claimed tokens T1, . . . , Ti. Furthermore, there are nj inactive customers in the central queue that have arrived
between the two customers that have claimed tokens Tj and Tj+1, respectively, for 1 ≤ j ≤ i − 1. Inactive
customers at the end of the queue are denoted by ni. Since tokens are always claimed by the longest waiting
eligible customer, we have that e.g. n1 represents inactive customers which have token T1 as their only com-
patible token. The set of such customer types is denoted by U({T1}) := {c ∈ C : Tc = {T1}}. In general,
for 1 ≤ j ≤ i, we denote the set of customer types that can claim tokens only from the set {T1, . . . , Tj} by
U({T1, T2, . . . , Tj}) := {c ∈ C : Tc ⊆ {T1, . . . Tj}}. Thus, the customer types of the nj customers between
those with tokens Tj and Tj+1 must belong to the set U({T1, T2, . . . , Tj}). As the state descriptor retains the
order of arrival, the oldest customer in a state is represented by token T1. The newest customer is one of the ni
customers, or in case ni = 0, it is the active customer with token Ti. Furthermore, when 1 ≤ j < k ≤ i, all
the nj customers between Tj and Tj+1 have arrived before the nk customers between Tk and Tk+1. We hence-
forth denote the state space of the resulting Markov process by X , where any generic state x ∈ X is of the type
x = (T1, n1, . . . , Ti, ni). The only exception is the empty state with no customers present, which we denote by
(0).

Assignment rule and assignment condition. Recall that in case multiple compatible tokens are available upon
the arrival of a customer, the assignment rule of the system determines the probability with which any of these
tokens is assigned to the customer. Furthermore, in state x = (T1, n1, . . . , Ti, ni), the arrival rate of customers
that will initially be inactive is given by λU({T1,...,Ti}) :=

∑
c∈U({T1,...,Ti}) λc, while the arrival rate of customers

that become active immediately is given by λ−λU({T1,...,Ti}). Given the nature of the assignment rule, we denote
by λt({T1, . . . , Tj}) the rate at which arriving customers claim token t, provided that {T1, . . . , Tj} is the set of all
unavailable tokens. While λt({T1, . . . , Tj}) depends on the assignment rule, it holds for any assignment rule that

λ− λU({T1,...,Ti}) =
∑

t∈T \{T1,...,Ti}

λt({T1, . . . , Ti}). (1)

As in [22], for the system to have a product-form stationary distribution, we require that any assignment rule
satisfies the following assignment condition.

Condition 1. An assignment rule is said to satisfy the assignment condition if for any possible combination of i
unavailable tokens T1, . . . , Ti, i = 1, . . . ,K, it holds that

i∏
j=1

λTj
({T1, . . . Tj−1}) =

i∏
j=1

λT̄j
({T̄1, . . . T̄j−1}) (2)

for every permutation T̄1, . . . T̄i of T1, . . . Ti.

It is shown in [2] that there always exists at least one assignment rule for which the assignment condition is
satisfied. As we will also see in Section 7, the assignment condition generally allows for a rather large set of
assignment rules.

Order-independent condition. To state the order-independent condition, we require additional notation. For
any state x = (T1, n1, . . . , Ti, ni), let µTj

(x ) denote the departure rate of the active customer holding token Tj .
Furthermore, let µ(x ) :=

∑i
j=1 µTj

(x ) denote the total departure rate in state x . Additionally, we denote by
φ(x ) = i +

∑i
j=1 nj the total number of customers in state x . The order-independent condition now reads as

follows.
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Condition 2. The departure rates of the model are said to satisfy the order-independent condition if in a given
state x = (T1, n1, . . . , Ti, ni), each of the rates µTj

(x ), j = 1, . . . , i, can be written as

µTj
(x ) = η(φ(x ))sj(T1, . . . , Ti), (3)

where

1. sj(·) is a non-negative real-valued function for which sj(T1, . . . , Ti) = sj(T1, . . . , Tj), 1 ≤ j ≤ i,

2. k(T1, . . . , Ti) :=
∑i
j=1 sj(T1, . . . , Tj) is independent of any permutation of (T1, . . . , Ti) and

3. η(·) is a non-negative real-valued function for which η(j) > 0 for j = 1, 2, . . ..

These restrictions on the functions sj(·), k(·) and η(·) have the following implications. First, by the restriction
sj(·), the departure rate of an active customer may depend on the types of the active customers ahead of it, but
not on those behind. Note that sj(·) may equal zero, so that it is possible for active customers to still receive no
service. Second, k(·) is defined such that the total departure rate of customers from the system is the same for any
permutation of the active customers. Finally, the function η(·) allows the departure rate of customers to depend
on the total number of customers present in the system, but at the same time the departure rate is indifferent to the
types of the inactive customers. Next, based on the definition of µ(x ), we conclude that

µ(x ) = η(φ(x ))k(T1, . . . , Ti). (4)

As mentioned earlier, this order-independent condition is reminiscent of the order-independent queue as intro-
duced in [20]. The difference, however, stems from the fact that we consider a different state descriptor, which
captures a broader set of systems (cf. Section 6.2). It is also important to note that this condition allows our model
to be more general than that of [22], as will become clear in Section 6.1.

Further notation. We conclude this section with notation needed to describe several important performance
measures. At an arbitrary point in time, let N denote the number of inactive customers in the system. More
particularly,Nj denotes the number of inactive customers in the central queue between the two customers that have
claimed tokens Tj and Tj+1. Thus, when the system is in state x = (T1, n1, . . . , Ti, ni), it holds that Nj = nj

and N =
∑i
j=1 nj . Moreover, the number of type-c customers among these Nj customers is denoted by N (c)

j .

As a consequence, the total number of inactive type-c customers, denoted by N (c), satisfies N (c) =
∑K
j=1N

(c)
j .

Using the same style of notation, M denotes the total number of customers present in the system. Furthermore,
for 1 ≤ j ≤ i, Mj = Nj + 1 represents the number of customers in the ‘j-th’ part of the system, where the
added single customer is the one that holds token Tj . Of these Mj customers, M (c)

j are of type c, so that M (c),

the number of type-c customers present in the system, satisfies M (c) =
∑
c∈CM

(c)
j . Next, we define the time-till-

token of a customer to be the duration of the period between its arrival and the moment the customer claims of a
token. Then, the time-till-token and the sojourn time of a type-c customer is denoted by Wc and Sc, respectively.
Likewise, the quantitiesW and S refer to the time-till-token and the sojourn time of an arbitrary customer. Finally,
the indicator function 1{A} on the event A returns one if event A is true, and zero otherwise.

4 Product-form stationary distribution
In this section, we derive the stationary distribution of the token-based central queue and find that it has a product
form. In doing so, we use techniques from [22]. We describe the transition rates and the global balance equations
pertaining to this process in Section 4.1. Then, we proceed to derive the product-form stationary distribution in
Section 4.2. Section 4.3 subsequently points out how this stationary distribution can be computed efficiently for
models with indistinguishable tokens by aggregation of states. We conclude with a note on the stability conditions
of the token-based central queue in Section 4.4.

4.1 Transition rates and balance equations
The transitions associated with the model are organised into the following three categories. The first category
contains transitions that are caused by the arrival of a customer. The second and third categories pertain to tran-
sitions due to a departure of a customer (i.e. a completion of service). In particular, the second category contains
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departure transitions where a token becomes available. The third category contains the remaining departure tran-
sitions, where the released token is immediately reclaimed by an inactive customer. We now proceed to describe
the transition rates within each of these categories.

4.1.1 Arrival transitions

Recall from Section 3 that an arriving customer either joins the central queue as an inactive customer (when it finds
no compatible tokens in the set T (a)) or joins it as an active customer. In a given state x = (T1, n1, . . . , Ti, ni),
the arrival rate of inactive customers is λU({T1,...,Ti}). Hence, this is also the transition rate from state x to state
(T1, n1, . . . , Ti, ni + 1). Customers that immediately claim a token t upon arrival, t /∈ {T1, . . . , Ti}, arrive
at rate λt({T1, . . . , Ti}). Therefore, the transition rate from state x to state (T1, n1, . . . , Ti, ni, t) is given by
λt({T1, . . . , Ti}). Recall that these rates satisfy Condition 1. By virtue of (1), we conclude that the total arrival
rate into the system in any given state equals λ, as expected.

4.1.2 Departure transitions where tokens become available

To describe the departure rates, additional notation is required. Transitions to a state x = (T1, n1, . . . , Ti, ni) due
to a departure of a customer where a token T is released to the set T (a) are possible from states of the form

releasek,n(x , T ) = (T1, n1, . . . , Tk, nk − n, T, n, Tk+1, nk+1, . . . , Ti, ni),

where k ∈ {0, . . . , i}, n ∈ {0, . . . , nk} and T ∈ T \{T1, . . . , Ti}. For future reference, it is worth noting that
φ(releasek,n(x , T )) = φ(x ) + 1, as the population size of the two states only differ by the single active customer
that releases token T . Furthermore, we have that

µT (releasek,n(x , T )) = η(φ(x ) + 1)sT (T1, . . . , Tk, T, Tk+1, . . . , Ti)

= η(φ(x ) + 1) (k(T1, . . . , Tk, T )− k(T1, . . . , Tk)) . (5)

Note, however, that µT (releasek,n(x , T )) is merely the rate in state releasek,n(x , T ) at which the customer holding
T leaves the system. To obtain the transition rate from state releasek,n(x , T ) to x , this quantity must be multiplied
with the probability that after this departure, the token T is indeed released from activity. This probability is given
by rk,n(x , T ) = βk(T )nβk+1(T )nk+1 · · ·βi(T )ni , where

βk(T ) =
λU({T1,...,Tk})

λU({T1,...,Tk,T})
(6)

is the probability that a customer waiting in the k-th portion of the central queue can not be served by token
T . As a special case, we define β0(T ) = 0 for any token T ∈ T . It now follows that the transition rate from
releasek,n(x , T ) to x is given by µT (releasek,n(x , T ))rk,n(x , T ).

4.1.3 Departure transitions where tokens are reassigned

We proceed to consider the departure transitions, where a token is immediately reclaimed by another customer
waiting further down the central queue. Transitions of this type to state x = (T1, n1, . . . , Ti, ni) are possible from
states of the form

shiftk,n(x , Tj) = (T1, n1, . . . , Tk, nk − n, Tj , n, Tk+1, nk+1, . . . , Tj−1, nj−1 + 1 + nj , Tj+1, nj+1, . . . , Ti, ni),

where 1 ≤ k ≤ i, k + 1 < j ≤ i and n ∈ {0, . . . , nk}. These transitions describe the event that the customer
which holds Tj departs the system, and token Tj is subsequently reclaimed by an inactive customer between the
customers holding Tj−1 and Tj+1. Again, φ(shiftk,n(x , T )) = φ(x ) + 1 and

µT (shiftk,n(x , Tj)) = η(φ(x ) + 1)sTj (T1, . . . , Tk, Tj , Tk+1, . . . , Ti)

= η(φ(x ) + 1) (k(T1, . . . , Tk, Tj)− k(T1, . . . , Tk)) . (7)

Similar to the previous case, the transition rate from a state shiftk,n(x , Tj) to state x can be argued to be equal to
µT (shiftk,n(x , Tj))sk,n(x , Tj), where the latter factor is given by

sk,n(x , Tj) = βk(Tj)
nβk+1(Tj)

nk+1 · · ·βj−1(Tj)
nj−1(1− βj−1(Tj)),

with βk(Tj) as defined in (6).
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4.1.4 Global balance equations

Now that all transitions rates have been described, the global balance equations can be obtained. Using results from
Sections 4.1.1-4.1.3, denoting the stationary distribution by {π(x ) : x ∈ X} and recalling that the total departure
rate from a state x is simply µ(x ), the global balance equations are, for x = (T1, n1, . . . , Ti, ni) ∈ X\{(0)},
given by

(λ+ µ(x ))π(x ) = 1{ni>0}λU({T1,...,Ti})π(T1, n1, . . . , Ti, ni − 1)

+ 1{ni=0}λTi({T1, . . . , Ti−1})π(T1, n1, . . . , Ti−1, ni−1)

+
∑

T∈T \{T1,...,Ti}

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T ))

+

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj
(shiftk,n(x , Tj))sk,n(x , Tj)π(shiftk,n(x , Tj)). (8)

For x = (0), however, several of these terms can be omitted, so that

λπ((0)) =
∑
T∈T

µT ((0, T ))π((0, T )). (9)

4.2 Product-form stationary distribution
We now present one of the main contributions of this paper. When both the assignment condition and the order-
independent condition (cf. Conditions 1 and 2) are satisfied, the token-based central queue together with its state
descriptor allows for a product-form stationary distribution. This distribution is given in the following theorem.

Theorem 1. If the token-based central queue is stable and Conditions 1 and 2 are satisfied, then, for each x =
(T1, n1, . . . , Ti, ni) ∈ X , the stationary distribution is given by

π(x ) = π((0))
Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i∏
j=1

αj
nj

φ(x)∏
j=1

1

η(j)
, (10)

where

Πλ({T1, . . . , Ti}) =

i∏
j=1

λTj
({T1, . . . , Tj−1}),Πk(T1, . . . , Ti) =

i∏
j=1

k(T1, . . . , Tj) and αj =
λU({T1,...,Tj})

k(T1, . . . Tj)
.

The normalising constant π((0)) is given by

π((0)) =

1 +

K∑
i=1

∑
(T1,...,Ti)∈T i

Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

∑
(n1,...,ni)∈Ni

i∏
j=1

αj
nj

i+
∑i

k=1 nk∏
j=1

1

η(j)

−1

, (11)

where T i denotes the set of all possible combinations of i tokens from the set T .

Proof. This proof verifies that (10) satisfies the global balance equations (8) and (9), which guarantees that (10)
represents the unique stationary distribution. It is straightforward to show that (10) satisfies (9). To see that
(10) satisfies (8), we show in Appendix A that (10) satisfies the following three equations for every x ∈ X and
T ∈ T \{T1, . . . , Ti}:

µ(x )π(x ) = 1{ni>0}λU({T1,...,Ti})π((T1, n1, . . . , Ti, ni − 1))

+ 1{ni=0}λTi({T1, . . . , Ti−1)π(T1, n1, . . . , Ti−1, ni−1), (12)

λT ({T1, . . . , Ti})π(x ) =

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T )) (13)
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and

λU({T1,...,Ti})π(x ) =

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj
(shiftk,n(x , Tj))sk,n(x , Tj)π(shiftk,n(x , Tj)). (14)

Summing (13) over all available tokens T ∈ T \{T1, . . . , Ti} and adding (12) and (14), we conclude using (1) that
(10) satisfies (8). The theorem now follows.

Remark 1. Note that the expression for the stationary distribution in (10) is not in closed form. This is due to
the fact that the normalising constant π((0)) contains infinite sums. For some specific cases of the function η(·),
though, given that the token set is finite, π((0)) allows for a closed-form expression. For example, when η(·) = 1,
(11) reduces to

π((0)) =

1 +

K∑
i=1

∑
(T1,...,Ti)∈T i

Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i∏
j=1

1

1− αj

−1

, (15)

which is in closed form. We will see in Section 7 that η(·) is a constant function in many applications.

Remark 2. While we assume our model to satisfy Condition 1, a different assignment mechanism has been stud-
ied in [6] called ALIS: ‘Assign Longest Idle Server’. Stated in the context of the token-based central queue,
the key feature of an ALIS queue is that an arriving customer who finds multiple eligible tokens upon arrival,
will activate the token that has been available the longest. Since this mechanism cannot be captured by an
assignment rule as described in Section 3, we must extend the state descriptor to keep track of which token
has been available the longest, in order to regard this mechanism. The new state descriptor is of the form
(T1, n1, . . . , Ti, ni, Ti+1, . . . , TK), where Ti+1, . . . , TK are the available tokens in ascending order of the time
they have been idle. In other words, if an arriving customer is eligible to claim token TK , it will do so. Otherwise,
it will claim TK−1 if it is able to do so, and so on. By using the same proof techniques as in [6], we expect it can
be shown that the stationary distribution for the token-based central queue with an ALIS mechanism also has a
product form.

4.3 Aggregation of states for indistinguishable tokens
When the model contains tokens which are indistinguishable from one another, computation of the stationary
distribution in Theorem 1, and especially its normalising constant in (11) can be made more efficient. To de-
fine the notion of indistinguishability, we write the token set T as a union of disjoint token sets T̃1, . . . , T̃l,
where it holds for any two tokens s, t ∈ T̃i, i ∈ {1, . . . , l} that Cs = Ct, λs(T1, . . . , Tj) = λt(T1, . . . , Tj),
λTj ({T1, . . . , Tj−1, s}) = λTj ({T1, . . . , Tj−1, t}) and k(T1, . . . , Tj , s) = k(T1, . . . , Tj , t) for T1, . . . , Tj ∈
T \{s, t}. We then call tokens which belong to the same token set T̃i indistinguishable from one another.

If the number of disjoint token sets l is much smaller than |T |, the computational burden of Theorem 1 can
be relieved by state aggregation. To this end, let us say that a token t has a token label lk whenever t ∈ T̃k,
k ∈ {1, . . . , k}. Then, since any two tokens s and t from the set T̃k are indistinguishable, we may as well address
both of them by their token label lk. This leads to the state descriptor of the form x (L) = (L1, n1, . . . , Li, ni),
where Li now represents the label of the token which is held by the i-th active customer in the system, but not
the identity of the actual token. We denote the state space under this state descriptor with X (L). Let l(t) denote
the label of token t ∈ T , i.e. l(t) = lj if t ∈ T̃j . Then, by aggregation of states, one can derive the following
stationary distribution for the aggregated state descriptor from (10):

π((L1, n1, . . . , Li, ni)) =
∑

(T1,...,Ti)∈T i:l(Tj)=Lj∀j∈{1,...,i}

π((T1, n1, . . . , Ti, ni))

= π((0))

i∏
j=1

λLj
({L1, . . . , Lj})
k(L1, . . . , Lj)

i∏
j=1

(
λU({L1,...,Lj})

k(L1, . . . , Lj)

)nj φ(x)∏
j=1

1

η(j)
, (16)

where λLj
({L1, . . . , Lj−1}) =

∑
t∈T :l(t)=Lj

λt(T1, . . . , Tj−1) (with l(T1) = L1, l(T2) = L2, . . .) represents
the arrival rate of customers that immediately claim a token with label Lj , when there are j − 1 active customers
that have claimed tokens from labels L1, . . . , Lj−1. Likewise, when considering tokens T1, . . . , Ti such that
Lj = l(Tj) for j ∈ {1, . . . , i}, we define k(L1, . . . , Lj) = k(T1, . . . , Tj) and U({L1, . . . , Lj}) represents
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the same set of customer types as U({T1, . . . , Tj}). The normalising constant π((0)) as given in (11) remains
unchanged, but can now alternatively be written as

π((0)) =

1 +

K∑
i=1

∑
(L1,...,Li)∈Li

i∏
j=1

λLj
({L1, . . . , Lj})
k(L1, . . . , Lj)

i∏
j=1

(
λU({L1,...,Lj})

k(L1, . . . , Lj)

)nj φ(x)∏
j=1

1

η(j)

−1

,

where Li represents any possible combination of i token labels. In the sequel, when working with the aggre-
gated state descriptor, we will use µLj

(x (L)) and sj(L1, . . . , Lj) as notation for the equivalents of µTj
(x ) and

sj(T1, . . . , Tj).

4.4 Stability
From the stationary distribution (10), conditions for stability can be derived. In particular, in case the function
η(·) has a limit η := limj→∞ η(j), the system will be stable if

λU({T1,...,Ti})
k(T1,...,Ti)

< η for each i ∈ {1, . . . ,K} and
{T1, . . . , Ti} ⊂ T . Under this condition, Equation (10) constitutes a non-null and convergent solution of the
equilibrium equations of the irreducible Markov process underlying the model. As such, it is implied by [12,
Theorem 1] that the Markov is ergodic, leading to stability. When

λU({T1,...,Ti})
k(T1,...,Ti)

> η for some i ∈ {1, . . . ,K}
and {T1, . . . , Ti} ⊂ T , we have by (11) that π((0)) = 0, implying that the expected return time to state (0) is
infinite. As such, the Markov process is not ergodic and the token-based central queue is unstable. Finally, in
case max

λU({T1,...,Ti})
k(T1,...,Ti)

= η, the questions whether or not there is ergodicity depends on the way (and possibly the
speed at which) the function η(·) converges to its limit η.

5 Performance analysis
Now that we have derived the (product-form) stationary distribution in Section 4, we study several performance
measures of the token-based central queue. In particular, we study the (per-type) number of inactive customers in
Section 5.1. Likewise, we study the (per-type) number of customers present in the system in Section 5.2. Then,
making use of the distributional form of Little’s law (cf. [18]), we obtain results for the time-till-token Wc of
type-c customers (i.e., the time it takes for customers to claim a token) in Section 5.3. As we will see in Section
7, Wc coincides with the waiting time of type-c customers in many applications of our model. Finally, we also
consider the sojourn time of customers in Section 5.4.

5.1 Number of inactive customers
This section considers the number of inactive customers in the system. For applications where the time-till-token
represents the waiting time, this number coincides with the number of customers in the system waiting for service.
The main theorem of this section concerns the probability generating function (PGF) ofN (c), the number of type-c
customers that are inactive.

Theorem 2. Let θc,j :=
λc1{c∈U(T1,...,Tj)}

λU(T1,...,Tj
) for j ∈ {1, . . . ,K} and c ∈ C. Then, the joint PGF of {N (c) : c ∈ C}

is, for zc ∈ {c̄ ∈ C : |c̄| < 1}, given by

E

[∏
c∈C

zN
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc)
nj , (17)

Proof. The proof extensively uses Theorem 1 and can be found in Appendix B.

An expression for N , the total number of inactive customers in the system, now follows from the fact that
E
[
zN
]

= E
[
z
∑

c∈C N
(c)
]

= E
[∏

c∈C z
N(c)

]
and

∑
c∈C θc,j =

∑
c∈C

λc1{c∈U(T1,...,Tj)}

λU(T1,...,Tj
) = 1.
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Corollary 3. The total number of inactive customers N in the system satisfies, for z ∈ {c̄ ∈ C : |c̄| < 1},

E
[
zN
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αjz)
nj . (18)

5.2 Number of customers in the system

We now study the number of customers present in the system, both per-type (M (c)) and in general (M ), by noting
that these customers are comprised of inactive customers on one hand and active customers whose service is yet
to be completed on the other hand.

Theorem 4. Let gj be the type of the customer that holds token Tj and define Gc1,...,ci(T1, n1, . . . , Ti, ni) :=

P
(⋂

j∈{1,...,i}{gj = cj} | x = (T1, n1, . . . , Ti, ni)
)

. Then, the joint PGF of {M (c) : c ∈ C}, representing the

per-class number of customers present in the system, is, for zc ∈ {c̄ ∈ C : |c̄| < 1 given by

E

[∏
c∈C

zM
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

 ∑
{c1,...,ci}∈Ci

Gc1,...ci(T1, n1 . . . , Ti, ni)

i∏
j=1

zcj

×
×

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc)
nj . (19)

Proof. The proof is given in Appendix C.

By realising that
∑
{c1,...,ci}∈Ci Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1, we again note that a PGF for the total

number of customers present in the system immediately follows.

Corollary 5. For any z ∈ {c̄ ∈ C : |c̄| < 1}, the PGF of the total number of customers present in the system is
given by

E
[
zM
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

zi
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αjz)
nj .

(20)

Proof. The proof follows by similar arguments as those which led to Corollary 3, together with the fact that∑
{c1,...,ci}∈Ci Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1.

Remark 3. A general expression for Gc1,...,ci(T1, n1, . . . , Ti, ni), the probability that, provided the system is in
state x = (T1, n1, . . . , Ti, ni), tokens T1, . . . , Ti are claimed by customers with types c1, . . . , ci, respectively,
seems hard to derive. For many applications, the derivation of an expression for Gc1,...,ci(T1, n1, . . . , Ti, ni) is,
however, straightforward. For example, if the token sets Tc, c ∈ C, are disjoint, Gc1,...,ci(T1, n1, . . . , Ti, ni) =
1{∩i

j=1{Tj∈Tcj }}
.

5.3 The time-till-token of customers
We proceed to derive expressions for the time-till-token Wc of a type-c customer. For any c ∈ C, the order in
which type-c customers arrive is the same as the order in which type-c customers acquire a token, since tokens are
always claimed by the longest waiting eligible customer. Therefore, the distributions of N (c) and W (c) satisfy the
assumptions for the distributional form of Little’s law to hold (cf. [18]). This law dictates that, for any s ∈ {c̄ ∈
C : <(c̄) > 0},

E
[
e−sWc

]
= E

[(
λc − s
λc

)N(c)]
. (21)

Therefore, the following expression for Wc, the time-till-token of type-c customers, can be obtained.
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Theorem 6. The time-till-token of a type-c customer, Wc, satisfies, for any s ∈ {c̄ ∈ C : <(c̄) > 0},

E
[
e−sWc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{c∈U({T1,...,Tj})}

λU({T1,...,Tj})

))nj

. (22)

Proof. The theorem follows by substitution of zd = 1 for all d 6= c in (17) and combining the result with (21).

Remark 4. From Theorem 6, one can easily obtain the Laplace-Stieltjes transform (LST) ofW by conditioning on
the type of customer, which can trivially be seen to be of type c with probability λc

λ . In other words, E
[
e−sW

]
=∑

c∈C
λc

λ E
[
e−sW

]
.

5.4 The sojourn time of customers
In general, it is hard to derive general expressions for the sojourn time Sc of a type-c customer from expressions
for M (c), as type-c customers do not necessarily depart the system in the order of their arrival. Therefore, we only
consider the sojourn time for instances of the model where type-c customers do depart the system in the order of
arrival. This has as an advantage that the distributional form of Little’s law for the quantities M (c) and S(c) holds
true (cf. [18]):

E
[
e−sSc

]
= E

[(
λc − s
λc

)M(c)]
(23)

for any s ∈ {c̄ ∈ C : <(c̄) > 0}. Despite the additional assumption, the following theorem allows us to
characterise the sojourn time distribution in a variety of applications in Section 7.

Theorem 7. If type-c customers depart the system in the order of arrival, the LST of their sojourn time Sc is, for
s ∈ {c̄ ∈ C : <(c̄) > 0}, given by

E
[
e−sSc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

 ∑
{c1,...,ci}∈Ci

Gc1,...ci(T1, n1 . . . , Ti, ni)

(
λc − s
λc

)∑i
j=1 1{ci=c}

×
×

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{c∈U({T1,...,Tj})}

λc

))nj

. (24)

Proof. The proof is the same as that of Theorem 6, but instead of (17) and (21), (19) and (23) are used.

Remark 5. It is worth emphasising that, for any class c ∈ C, should |Tc| = 1, the assumption that type-c customers
depart the system in the order of arrival is always valid. If Tc = {t}, and it holds moreover that token t can only
be claimed by type-c customers (i.e. Ct = {c}), the PGF of the sojourn time distribution simplifies:

E
[
e−sSc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

λc − s1{t∈{T1,...,Ti}}

λc
×

×
i∏

j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(
αj

(
1−

s1{t∈{T1,...,Tj}}

λc

))nj

. (25)

We will use these simplification amply in Section 7.
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Figure 1: A classification of token-based central queues

Remark 6. In Remark 1, we saw that the stationary distribution allows for a closed-form expression when η(·) = 1.
In Appendix D, simplified expressions for several performance measures studied in this section are given, which
follow by substitution of η(·) = 1. These expressions show that this parameter setting also leads to closed-form
expressions for the performance measures. In fact, it follows from inversion of these expressions that for all c ∈ C,
the quantities Nc and N can be interpreted as a weighted convolution of geometric random variables. Likewise,
the time-till-token of a customer (either of a particular type or of an arbitrary type by Remark 4), can be interpreted
as a weighted convolution of exponential random variables.

6 Generalisation of two existing classes of models
In this section, we show that both the multi-type customer and server model (cf. [22]) as well as the order-
independent queue (cf. [20]) can be seen as special cases of the token-based central queue as analysed in this paper.
The results are summarised in the Venn diagram presented in Figure 1. This figure also categorises applications
of token-based central queues, which we will consider in Section 7.

6.1 Multi-type customer and server model
In the multi-type customer and server model of [22], customers of type c arrive at the system according to a
Poisson process with rates λc and have an exponentially distributed service requirement with rate 1. There are K
machines and machine i works at rate µi. Each customer type has a set of compatible machines it can be served
at. Whenever a machine becomes idle, it takes the earliest arrived customer in the queue that it can process. An
arriving customer that finds more than one compatible server idle is assigned to one of the servers according to a
random assignment rule that satisfies a certain assignment condition.

The model of [22] is a special case of our token-based central queue. There are K tokens, where each token
represents a machine. Taking η(·) = 1 and sj(T1, . . . , Ti) = µj in our token-based central queue, we directly
retrieve the multi-type customer and server model. The assignment condition of [22] coincides with Condition 1
and it is immediately seen that the order-independent condition (Condition 2) is also satisfied. We hence retrieve
that the stationary distribution is of product-form type, as was shown in [22].

6.2 The OI queue
The order-independent (OI) queue was first described in [20]. This model consists of a single central queue where
arriving multiclass customers wait in a FIFO order. Customers of type i arrive according to a Poisson process
with rate λi and have an exponentially distributed service requirement with rate 1. The generic state descriptor as
considered in [20] is x (OI) = (c1, . . . , cn), where n is the number of customers in the system and cj denotes the
type of the jth customer in the central queue. Let X (OI) denote the corresponding state space. For a given state
x (OI) ∈ X (OI), let µ(OI)

j (x (OI)) denote the departure rate associated with the j-th customer. In an OI queue it is
assumed that the following condition holds.
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Condition 3. In a given state x (OI) = (c1, . . . , cn), each of the rates µ(OI)
j (x (OI)), j = 1, . . . , n, can be written

as
µ

(OI)
j (x (OI)) = η(OI)(n)s

(OI)
j (c1, . . . , cn), (26)

where

1. s(OI)
j (c1, . . . , cn) = s

(OI)
j (c1, . . . , cj) for any 1 ≤ j ≤ i

2. k(OI)(c1, . . . , cn) :=
∑n
j=1 s

(OI)
j (c1, . . . , cj) is independent of any permutation of (c1, . . . , cn) and

3. η(OI)(n) > 0 for n > 0.

We see a close similarity with the order-independent condition as stated in Condition 2. In the follow-
ing results, we will clarify the connection between the two modelling frameworks. We will use the notion
of indistinguishable tokens as introduced in Section 4.3, as well as the state descriptor of the form x (L) =
(L1, n1, . . . , Li, ni) and the corresponding steady-state distribution (cf. (16)). We start out with a preparatory
lemma.

Lemma 8. For any token-based central queue where each token set Tc, c ∈ C, consists of indistinguishable tokens,
there exists a function τ : X (OI) → X (L), where τ(x (OI)) ∈ X (L) denotes the unique state (L1, n1, . . . , Li, ni)
corresponding to the state x (OI) ∈ X (OI).

Proof. Since each class has one token label it can select from, this guarantees that there is no ambiguity about
how the tokens are distributed among the customers. By keeping track of the order of arrival and the token
labels allotted to the customers, one can construct the unique state x (L) = (L1, n1, . . . , Li, ni) corresponding
to x (OI) = (c1, . . . , cn), that is, the function τ(·) as stated in the lemma exists. The quantity ni represents
customers without a claimed token.

This lemma allows us to prove the following theorem, which exposes the connection between OI queues and
token-based central queues.

Theorem 9. For a given model, the following are equivalent:

(1) the model fits in the OI queue framework;

(2) the model can be seen as a token-based central queue where the token sets associated with each of the
classes each consist of indistinguishable tokens.

Proof. (1)→ (2): Given a model that fits in the OI queue framework, we define the token set of customer type c,
Tc, as a set containing an infinite number of indistinguishable tokens with label c. Since each customer type is
then represented by its own token label, the state x (L) = (L1, . . . , Li) coincides with that of x (OI) = (c1, . . . , ci).
Since the model satisfies Condition 3, it is direct that the token sets Tc define a token-based central queue.

(2) → (1): For a token-based central queue where the tokens in each Tc are indistinguishable, Lemma 8
implies the existence of a function τ that transforms a state x (OI) into the corresponding state x (L). Since the
departure rates of the customers in the token-based central queue are a function of x , or equivalently of x (L), one
can equivalently define departure rate functions µ(OI)

j (·) for the j-th active customer in the system as a function of
τ(x (OI)). These departure rate functions satisfy Condition 3, so that (1) of Theorem 9 follows. See Appendix E
for a detailed proof.

The above theorem states that, given some model, one can interpret it as an OI queue if and only if the
model can be interpreted as a token-based central queue where the token set of each customer type contains
indistinguishable tokens. It is important to note the difference in the two state representations x (OI) and x (L):
the types of all the customers are known in the OI queue, while only the customer types associated with the active
customers can be known in our token-based representation. However, this sacrifice of detail leads to a richer
class of models, as the above results show that the class of token-based central queues can handle a larger set of
applications than the class of OI queues.

For both representations, a product-form solution for the steady-state distribution exists; see (16) for our
representation and the corollary below for the OI representation.
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Corollary 10. If the model fits in the OI queue framework, the steady-state distribution in terms of the OI state
descriptor, denoted by π(OI)(x (OI)), is given by

π(OI)(x (OI)) = π(OI)((0))

n∏
i=1

λci
η(OI)(i)k(OI)(c1, . . . , ci)

, (27)

as was derived in [20].

Proof. From Theorem 9 together with (16), we can recover the steady-state distribution in terms of the OI state
descriptor. See Appendix F for the full proof.

7 Applications
In this section, we treat a few applications that can be analysed by interpreting them as token-based central queues.
For illustrative purposes, we show in Section 7.1 and Section 7.2 how to analyse an M/M/K queue with hetero-
geneous service rates and an MSCCC queue using our model. The first of these models fits in the framework
of [22], while the second is an OI queue. Then, we apply the results on the COS and the COC redundancy mod-
els in Section 7.3, and in the process obtain new expressions of several performance measures for these models.
While the COS model can be interpreted as an instance of the model of [22], the COC redundancy model can
be interpreted as an OI queue. Finally, in Section 7.4, we discuss matching models, which are neither OI queues
nor fit the framework of [22]. These applications have been categorised in Figure 1. It is worth emphasising that,
especially for the latter models, this section includes results on performance measures that have not been derived
in the literature before.

7.1 M/M/K queue with heterogeneous service rates
We first regard the M/M/K queue with heterogeneous service rates. This is a single-class queue served by K
servers labeled t1, . . . , tK , to which customers arrive according to a Poisson process with rate λ. Upon arrival, the
customer is assigned any available server uniformly at random. In case there are no available servers, the customer
waits in the queue which is processed by the servers in order of arrival. A customer who is served by server ti
has an exponentially distributed service time with parameter µ(ti). We denote the sum of the service rates by
µ =

∑K
i=1 µ(ti). This system was studied in detail by [15], and by applying the token-based framework, much of

the performance analysis from that paper can be recovered.

7.1.1 Choice of model parameters

By introducing a token for every server, one can interpret the M/M/K queue with heterogeneous service rates
as a token-based central queue. As the servers are identified by the tokens, we label the tokens as t1, . . . , tK
as well. To receive service, a customer must hold any of the K tokens. The assignment rule of this system
requires that upon arrival of a customer, when tokens T1, . . . , Tj−1 ∈ T are unavailable, the customer claims
any of the other tokens t ∈ T \{T1, . . . , Tj−1} with uniform probability. In other words, for j = 1, . . . ,K
and t ∈ T \{T1, . . . , Tj−1}, we have λt(T1, . . . , Tj−1) = λ

K−j+1 . Since there is only one customer class,
λU(T ) = λ and λU(R) = 0 for any strict subset R of T . Condition 1 is now satisfied. To match the departure
rates of the M/M/K queue, we adopt the parameters η(j) = 1 for all j ∈ N, sj(T1, . . . , Ti) = µ(Tj) and
k(T1, . . . , Ti) =

∑i
j=1 µ(Tj), which satisfy Condition 2. Finally, since the system has a single customer class

(C = {c}), we have that Gc,...,c(T1, n1, . . . , Ti, ni) = 1.

7.1.2 Performance analysis

Equation (10) leads to the following distribution. For any x = (T1, T2, T3, . . . , Tk, nk) ∈ X , we have that

π(x ) = π((0))

∏i
j=1

λ
K−j+1∏i

j=1

∑j
l=1 µ(Tl)

(
λ

µ

)1{i=K}nK

= π((0))
λi(K − i)!

K!
∏i
j=1

∑j
l=1 µ(Tl)

(
λ

µ

)1{i=K}nK

, (28)

while π(x ) = 0 for all other states. The term π((0)) is a normalising constant. It is possible, however, to drop
the ordering of the tokens from the state descriptor, while the system remains Markovian. Instead, states of the
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form (n,R) can be introduced, where n is the number of waiting customers and R represents the (orderless) set
of servers/tokens in service. By aggregation of states, we obtain

π(n,R) =
π((0))λ|R|(K − |R|)!

K!

(
λ

µ

)n ∑
(T1,...,T|R|)∈R

1∏|R|
j=1

∑j
l=1 µ(Tl)

,

where R is the set of all possible permutations of the tokens in R. It can be deduced from Corollary 3 that

the stationary number of inactive customers are geometrically (1 − λ
µ ) with probability

(
λ
µ

)K
, and equals zero

otherwise. Likewise, Theorem 6 leads to the fact that the stationary waiting time is exponentially (µ−λ) distributed

with probability
(
λ
µ

)K
and equals zero otherwise.

The (PGF of the) number of customers in the system is by virtue of Corollary 5 given by

E
[
zM
]

= π((0))

K∑
i=0

∑
(T1,...,Ti)∈T i

λi(K − i)!zi

K!
∏i
j=1

∑j
l=1 µ(Tl)

(
λ

µ

)1{i=K}nK

,

for any z ∈ {c̄ ∈ C : |c̄| < 1}. From this, it follows directly that also M has a geometric law with probability(
λ
µ

)K
. Finally, to obtain expressions for the sojourn time, the results of Section 5.4 do not apply, since customers

of equal types do not necessarily leave the system in the order of their arrival. Instead, through a PASTA-argument
and by conditioning on the server that an arriving customer will be served by, the following LST for the sojourn
time S can be derived for any s ∈ {c̄ ∈ C : <(c̄) > 0}:

E
[
e−sS

]
=

 ∑
R⊂T :T \R6=∅

π(0,R)
λ

K − |R|
∑

T∈T \R

µ(T )

µ(T ) + s

+

+

∞∑
n=0

π(n, T )E
[
e−sW |W > 0

] ∑
T∈T

µ(T )

µ

µ(T )

µ(T ) + s

=

 ∑
R⊂T :T \R6=∅

π(0,R)
λ

K − |R|
∑

T∈T \R

µ(T )

µ(T ) + s

+

(
λ

µ

)K
µ− λ

µ− λ+ s

∑
T∈T

µ(T )

µ

µ(T )

µ(T ) + s
,

where terms between brackets represent the case where an arriving customer is immediately served.

Remark 7. The M/M/K queue with heterogeneous service rates is not an OI queue. This follows since the service
rate is driven by the server/token and not by the class of the customer which it is serving. When the service
rates of the servers are equal, however, we obtain a conventional Erlang C model, which does fit in the OI queue
framework.

Remark 8. For this system, it would make sense to introduce an assignment rule so that an arriving customer
chooses the server with the highest service rate. However, such an assignment rule would violate Condition 1.

7.2 The MSCCC queue
We now illustrate an application where results on the sojourn time in Section 5.4 can be applied. We study the
Multi-server Station with Concurrent Classes of Customers (MSCCC) queue. Studied in [21] and [11], this queue
contains multiple servers and multiple classes of customers, where at most one customer of any type can be
in service. More particularly, the MSCCC queue consists of k identical servers serving customers at unit rate.
Customers of type cl, l ∈ N, arrive according to a Poisson process with rate λcl and have exponential(µ) service
requirements. Upon arrival, when a server is available and no other customer of his/her type is in service, the
customer will go into service at an arbitrary free server. When no server is available or another customer of its
type is already in service, the customer waits in line. When a server becomes available, it scans the queue from
the front for the first customer eligible for service (i.e. the longest waiting customer of a type that is not in service
at the moment). Through the token-based framework, we derive expressions for relevant performance measures
of the MSCCC queue, which to the best of the authors’ knowledge has not been done before.
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7.2.1 Choice of model parameters

To model the MSCCC queue using the token-based representation, we introduce for every customer type cl a token
tl, which is dedicated to type-cl customers. Thus, token tl will always be held by the oldest type-cl customer in
the system if there is any, otherwise it is available. Given the one-to-one correspondence between customer types
and tokens, we will henceforth refer to the type of a customer by its corresponding token. For example, we refer to
the arrival rate of a type-cl customer with λtl . Then, it holds that λtl(T1, . . . , Ti) = λtl in case tl /∈ {T1, . . . , Ti}.
It follows trivially that λU(T1,...,Ti) =

∑i
j=1 λTj

. The departure rates can be characterised by choosing η(j) = 1,
sj(T1, . . . , Ti) = µ1{j≤k} and k(T1, . . . , Ti) = min{i, k}µ for any combination of active tokens (T1, . . . , Ti)
and j = 1, . . . , i. Note that these parameter settings satisfy Conditions 1 and 2. Also, it is trivial to note that
Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1{

⋂i
j=1 CTj

)={cj}}.

7.2.2 Performance analysis

Treating the MSCCC queue as a token-based central queue with the model parameters outlined above, the station-
ary distribution now follows from (10). In particular, for any state x = (T1, n1, . . . , Ti, ni) ∈ X ,

π(x ) = π((0))

∏i
j=1 λTj(∏i

j=k+1 kµ
)(∏min(i,k)

j=1 jµ
) i∏
j=1

( ∑j
l=1 λTl

min(j, k)µ

)nj

= π((0))

∏i
j=1 λTj

(∑j
l=1 λTl

min(j,k)µ

)nj

µi min(i, k)!kmax(i−k,0)
,

where π((0)) =

(∑
x∈X

∏i
j=1 λTj

µi min(i,k)!kmax(i−k,0)

)−1

is a normalising constant. It is worth emphasising that in

this system, N (cl) cannot be interpreted as the number of waiting type-cl customers, since a customer can hold
a token while not receiving service. It makes more sense to compute the joint number of per-type customers in
the system. After substitution of the model parameters in (19) and simplification of the result, we obtain, for
zc ∈ {c̄ ∈ C : |c̄| < 1},

E

[∏
c∈C

zM
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTjzTj

k(T1, . . . , Tj)−
∑j
l=1 λTl

zTl

.

Similarly, the time-till-token of a type-cl customer does not reflect its waiting time. The waiting-time distribution
of a type-cl customer can instead be recovered through its sojourn time distribution, as the sojourn time distribution
in this case is a convolution of the waiting-time distribution and the exponential(µ) service-time distribution. The
MSCCC queue satisfies the condition that same-type customers depart the system in the order they arrive, and
hence, the sojourn time can be computed using Theorem 7. For the MSCCC queue, the LST of the sojourn time
distribution of a type-cl customer in (25) simplifies to

E
[
e−sScl

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTj − s1{Tj=tl}

min(j, k)µ−
∑j
l=1 λTl

+ s1{tl∈{T1,...,Tj}}
,

where s ∈ {c̄ ∈ C : <(c̄) > 0}. Finally, the LST of the waiting-time distribution of a type-cl customer is given
by (µ+ s)E

[
e−sScl

]
/µ.

Remark 9. For ease of notation, we assumed that each of the customer classes share the same service requirement
distribution. However, the case where customer type have mutually different exponential service requirement
distributions can also be modelled as a token-based central queue. Furthermore, extensions of this queue have
been studied in the literature, where for every subset of customer types, there is a maximum defined of how
many customers with those types can be in service at any particular point in time. Also this extension falls in the
token-based framework when choosing the model parameters carefully. However, its (per-type) stationary sojourn
time distribution cannot be derived by the methods derived in this paper, as the assumptions required to use the
distributional form of Little’s law are violated.

7.3 Redundancy models
A timely application of the token-based central queue is given by redundancy systems. The study of redun-
dancy systems has gained momentum recently, as mentioned in Section 2. One example of such a system is the
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redundancy-d cancel-on-start (COS) model studied in [7]. This model constitutes a system with K single-server
FCFS queues and homogeneous servers providing service at equal speed. Customers arrive according to a Poisson
process at rate λ. Upon arrival, the customers choose at random d out of K queues, and to each of those queues, a
copy of the customer is sent, each copy having its own independent, exponentially(µ) distributed service require-
ment. Under COS, once service on any of these copies has started, all the other copies of the same customer are
removed from the system, and only the sole remaining copy will be serviced. In case service on multiple copies
could start at the same time since a customer find multiple of its d eligible servers idle upon arrival, it will apply
a uniform assignment rule. That is, it will uniformly at random select an idle server where service on a copy will
be continued, and copies sent to other idle servers are instantly terminated. It is worth emphasising that it was
shown by [7] that this model fits the framework of [22], and hence can be interpreted as a token-based central
queue. In Section 7.3.1, we recall how the redundancy-d COS model can be interpreted as a token-based central
queue, after which we complement the results of [7] by deriving novel expressions for performance measures such
as the customers’ waiting-time distribution. Then, in Section 7.3.2, we study a variant of this model, namely the
redundancy-d cancel-on-completion (COC) model. This model shares the same characteristics as the COS-model,
with the exception that redundant customer copies will now only be removed once any of the copies has completed
service. Therefore, it is now possible that multiple copies of the same customer are in service at the same time.
In [13], it is shown that the steady-state distribution for that model allows for a product-form solution when using a
different state descriptor than ours. Furthermore, they analyse the sojourn time distribution in limiting regimes and
derive the mean sojourn time for the general case. It was shown in [7] that the COC-variant of the redundancy-d
model can be interpreted as a special version of a token-based central queue, and as such the stationary distribution
of the model using our state descriptor also leads to a product-form stationary distribution. In this section, using
results from Section 5, we supplement the analysis of [13] by giving a characterisation of the complete distribution
of the sojourn time. We also give expressions for other performance measures. It should be noted that, although
we will view the COS model and the COC model as token-based central queues, the COS and COC model both
actually consists of K parallel queues.

7.3.1 The redundancy-d COS model

To analyse the COS model, we first present it as an instance of a token-based central queue by choosing adequate
model parameters.

7.3.1.1 Choice of model parameters
To interpret the COS-model as a token-based central queue, we introduce a token set T = {t1, . . . , tK}, where
token ti has a one-to-one correspondence to the i-th of the K servers. We also introduce customer types that
correspond to the set of servers/tokens an arriving customer replicates to. Thus, equal-type customers send copies
to the same d out of K servers. As a consequence, there are

(
K
d

)
customer types, labeled c1, . . . , c(K

d ), which are
ordered lexicographically. When a token is said to be claimed by a customer, the customer is taken into service by
the server corresponding to the claimed token, so that copies sent to other servers are cancelled. It follows from
this setting that if customers of type c send copies to servers in the set R ⊂ T , customers of type c are only able
to claim the tokens in the setR, i.e. Tc = R.

Since an arriving customer is of any of the
(
K
d

)
types with uniform probability, we have λci = λ

(K
d )

. Deriving

λt(T1, . . . , Tj−1) is more intricate. Suppose that an arriving customer finds a tokens available (or servers idle). It
will then immediately claim any one of them with probability 1

a . The uniform assignment rule also dictates that
when tokens (T1, . . . , Tj−1) are active, this means that there are

(
K−j
a−1

)(
j−1
d−a
)

customer types of which an arriving
customer, upon arrival, would find a tagged token t among the a available tokens that it could immediately claim.
That is, t is one of the eligible available tokens, there are a − 1 others out of the K − j available tokens (

(
K−j
a−1

)
possibilities) and the remaining d − a out of the d eligible tokens are among T1, . . . , Tj−1 (

(
j−1
d−a
)

possibilities).
Combining these observations and adhering to the standard convention that

(
m
n

)
= 0 for 0 ≤ m < n, we have

λt(T1, . . . , Tj−1) =

min{K−j+1,d}∑
a=1

λ(
k
d

) 1

a

(
K − j
a− 1

)(
j − 1

d− a

)
for any (T1, . . . , Tj−1) ∈ T j−1 and any t ∈ T \{T1, . . . , Tj−1}. Due to symmetry, it is immediate that Condition

1 is satisfied. We also reason that λU({T1,...,Ti}) =
λ(i

d)
(K

d )
, since out of the

(
K
d

)
customer types, there are

(
i
d

)
that
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replicate to d queues corresponding to servers/tokens in the set {T1, . . . , Ti}.
The selection of departure rate parameters is significantly easier. When a copy of a customer starts service

(i.e., claims a token), its departure rate from the system equals µ. This is reflected by choosing η(j) = 1 for all
j ∈ N and sj(T1, . . . , Ti) = µ for all possible sets (T1, . . . , Ti) of i tokens, so that k(T1, . . . , Ti) = iµ. Under the
parameter settings just introduced, the token-based central queue has the exact same behaviour as a redundancy-d

model. Furthermore, by probabilistic reasoning, we have that Gc1,...,ci(T1, n1, . . . , Ti, ni) =
λ1{

⋂i
j=1
{Tj∈Tcj }}

(k−1
d−1)

,

since any server/token can be selected by
(
k−1
d−1

)
customer types.

7.3.1.2 Performance analysis
With the model parameters selected as above, we immediately obtain the stationary distribution of the redundancy-
d COS model. For any x = (T1, n1, . . . , Ti, ni) ∈ X , we have that

π(x ) = π((0))

∏i
j=1

∑min{K−j+1,d}
a=1

λ

(k
d)

1
a

(
K−j
a−1

)(
j−1
d−a
)

i!µi

i∏
j=d

(
λ
(
j
d

)
jµ
(
k
d

))nj

,

where π((0)) is a normalising constant. Note that this expression equals the stationary distribution found for the
redundancy-d COS model in [7, Proposition 1], as expected. Next, it can be deduced from Corollaries 3 and 5 that
the number of waiting customers and the total number of customers in the system are, for z ∈ {c̄ ∈ C : |c̄| < 1}
characterised by

E
[
zN
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

∑min{K−j+1,d}
a=1

λ

(k
d)

1
a

(
K−j
a−1

)(
j−1
d−a
)

jµ− λ (j
d)z
(k
d)

and

E
[
zM
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))zi
i∏

j=1

∑min{K−j+1,d}
a=1

λ

(k
d)

1
a

(
K−j
a−1

)(
j−1
d−a
)

jµ− λ (j
d)z
(k
d)

.

Likewise, since the time-till-token of this system coincides with the time until a customer receives service, Theo-
rem 6 gives us the (PGF of the distribution of the) customers’ waiting time. Exploiting symmetry, this leads, for
s ∈ {c̄ ∈ C : <(c̄) > 0}, to

E
[
e−sW

]
= E

[
e−sWc1

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

∑min{K−j+1,d}
a=1

λ

(k
d)

1
a

(
K−j
a−1

)(
j−1
d−a
)

jµ− λ (j
d)

(k
d)

+ s1{j≥d}

.

As for the sojourn time of customers, it is worth noting that Theorem 7 does not apply to the COS model, since
same-type customers do not claim a token in the order of arrival. Hence, the distributional form of Little’s law
does not hold. However, since each customer’s service time is independent of its waiting time, we have that

E
[
e−sS

]
=

µE[e−sW ]
µ+s .

Remark 10. As pointed out in [7] and [16], the redundancy-d COS model is equivalent to a Join-the-Shortest-
Work queue, where an arriving customer opts to join the least-loaded of d random queues. As a consequence,
performance measures for that queue are therefore known as well.
Remark 11. Note that for the redundancy-d COS model, it is not necessary to assume that service requirements
of customers copies are independent of one another. This is due to the fact that only a single copy of a customer
will ever receive service, and the service requirements of the copies do not influence which copy eventually gets
served. In the COC-model that we will study next, this does not hold true, so that the assumption of independent
service requirements is essential.

7.3.2 The redundancy-d COC model

Recall that the COC model differs from the COS model in that redundant copies are now only cancelled once any
of the copies has completed service. Although this difference seems minor, the performance measures are affected
significantly. To allow the COC model to be interpreted as a token-based central queue, the model parameters
need to be interpreted in a different way.
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7.3.2.1 Choice of model parameters
As we did for the COS model, we introduce a customer class for every choice of d out of K servers an arriving
customer replicates to, so that there are

(
K
d

)
customer classes in total. However, we do not associate tokens with

servers, but with customer classes, much like the MSCCC queue treated in Section 7.2. This is possible, since in
a COC model only the oldest of the customers of any type can receive actual service by a server. This is a direct
consequence of the queues of the redundancy-dmodel being served in the order of arrival. Thus, we now introduce
a token set T = {t1, . . . , t(K

d )}, where ti corresponds to the i-th of the
(
K
d

)
customer classes. Since every customer

class has its dedicated token, we have that λti(T1, . . . , Tj−1) = λci = λ

(K
d )

when ti /∈ {T1, . . . , Tj−1}. Similarly,

we have that λU({T1,...,Ti}) = iλ

(K
d )

and Condition 1 is trivially satisfied.

To characterise the departure rates for the COC model, we assume that η(j) = 1 for all j ∈ N. Recall
that sj(T1, . . . , Ti) can be interpreted as the departure rate of the customer that holds token Tj . This customer
is the oldest of its class, and furthermore, among all the oldest customers within their class, the j − 1-st old-
est overall. The token mechanism dictates that customers holding tokens T1, . . . , Tj−1 in principle get prior-
ity over Tj in receiving service. This holds true in the COC-model, since the customer holding Tj will have
a non-zero departure rate only when there exist servers that do not actually serve the customers holding to-
kens T1, . . . , Tj−1. This occurs when the server associated with Tj was not among the d servers selected by
the j − 1 customers which arrived earlier. It is evident that the departure rate of a customer holding a to-
ken equals µ (the service rate obtained from a single server) times the number of servers that are working on
copies of this customer. To summarise, when Fj(T1, . . . , Ti) refers to the number of servers that are able to
serve copies of at least one of the customers holding T1, . . . , Tj , 1 ≤ j ≤ i, we have that sj(T1, . . . , Ti) =
µ(Fj(T1, . . . , Ti) − Fj−1(T1, . . . , Ti)). Note that, by nature of the function Fj(·), it is straightforward that
Fj(T1, . . . , Ti) = Fj(T1, . . . , Tj) and that Fj(T1, . . . , Tj) = Fj(T̄1, . . . , T̄j) for any permutation (T̄1, . . . , T̄j)
of (T1, . . . , Tj). As a consequence, k(T1, . . . , Ti) = µFi(T1, . . . , Ti) and the order-independent condition holds.
Finally, we have that Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1{

⋂i
j=1{Ti=ti}}.

7.3.2.2 Performance analysis
By substituting of the above chosen model parameters, (1) provides the stationary distribution of the COC model.
For any state x = (T1, n1, . . . , Ti, ni) ∈ X ,

π(x ) = π((0))
1

i!

i∏
j=1

(
jλ

µ
(
K
d

)
Fj(T1, . . . , Ti)

)nj+1

,

where π((0)) is a normalising constant. This stationary distribution is also given in [7, Proposition 7]. However,
unlike [7] or [13], we now also give transforms for the stationary number of customers in the system, as well as
their sojourn time. More precisely, Corollary 5 now implies for z ∈ {c̄ ∈ C : |c̄| < 1} that

E
[
zM
]

=

(K
d )∑
i=0

∑
(T1,...,Ti)∈T i

(λz)iπ((0))∏i
j=1 µ

(
K
d

)
Fj(T1, . . . , Ti)− jλz

.

Furthermore, in the COC model it holds that customers of the same type depart the system in the order they
arrive. Therefore, applying Theorem 7 (or more particularly, (25)) and exploiting symmetry, we have for any
s ∈ {c̄ ∈ C : <(c̄) > 0} that

E
[
e−sS

]
= E

[
e−sSc1

]
=

(K
d )∑
i=0

∑
(T1,...,Ti)∈T i

λ− s
(
K
d

)
1{t1∈{T1,...,Ti}}

λ
×

× λiπ((0))∏i
j=1

(
µ
(
K
d

)
Fj(T1, . . . , Ti)− jλ+ s

(
K
d

)
1{t1∈{T1,...,Tj}}

) .
This concludes the performance analysis of the redundancy-d COC model.
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7.4 Matching models
The last application that we discuss is the matching model. As discussed in [3,4], parallel FCFS matching models
consist of independent arrival streams of several types of customers (the set of customer types is given by T )
and independent arrival streams of several types of servers. Each customer type is compatible to several types of
servers, and the objective is to match customers with compatible servers. Customers wait in a queue until they
are matched with a server. When a server arrives, it scans the queue of customers and matches with the longest
waiting customer of a compatible customer type, after which both the customer and the server leave the system.
In case a server finds no such customer, it departs immediately on its own. As mentioned in [3,4], these matching
models have applications in many areas such as manufacturing, call centers and housing.

We apply our framework to a matching model where times between two arrivals of type-ci customers are
independently and exponentially(λci ) distributed, ci ∈ C. Furthermore, arrivals of servers of any particular type
form an inhomogeneous Poisson (A(n)) process. The varying rateA(n) is modulated by the number of customers
waiting in the queue: when there are n customers in the queue, servers arrive at rate A(n). It makes sense to
assume that A(n) is increasing in n, but this assumption is not needed for the analysis that follows. To the best of
our knowledge, the case of a varying server arrival rate has not been considered before. We derive the stationary
distribution and consider the distributions of the number of customers waiting for a match as well as the time that
customers spend waiting.

7.4.1 Choice of model parameters

As it turns out, interpreting the matching model as a token-based central queue is analogous to the interpretation
of a COC model as a token-based central queue. That is, if there are K customer types, then the token set is
given by T = {t1, . . . , tK}, where token ti corresponds to customer type ci. When an arriving customer finds no
customer of its type already waiting upon arrival, it claims the token corresponding to its type. If not, it is forced
to wait until earlier-arrived customers have been matched in order to claim the token. When a token is claimed, it
can be considered for a match by arriving servers. By the one-to-one correspondence of tokens to customer types,
it is easy to see that λci(T1, . . . , Tj−1) = λti when ti /∈ {T1, . . . , Tj−1}. In other words, the activation rate of a
token is not dependent on the tokens already activated, given that ti itself is available. Due to this insensitivity,
Condition 1 holds true. We moreover have that λU({T1,...,Ti}) =

∑i
j=1 λTj .

Interpreting the arrival of a server as a completion of service of a customer holding a token, we select the
following departure rates. This time, we let Fj(T1, . . . , Ti) = Fj(T1, . . . , Tj), 1 ≤ j ≤ i, be the number of
server types that are compatible to any of the customer types corresponding to the tokens T1, . . . , Tj . It is clear
that η(j) = A(j) for j ∈ N, while sj(T1, . . . , Ti) = Fj(T1, . . . , Ti) − Fj−1(T1, . . . , Ti) for 1 ≤ j ≤ i. As a
consequence, k(T1, . . . , Ti) = Fi(T1, . . . , Ti). It is straightforward that Condition 2 holds under these parameter
settings and that Gc1,...,ci(T1, n1, . . . , Ti, ni) = 1{

⋂i
j=1{Ti=ti}}.

7.4.2 Performance analysis

Since Conditions 1 and 2 are satisfied, Theorem 1 confirms the finding of [5] that matching models gener-
ally allow for product-form stationary distributions. In particular, it follows from Theorem 1 that for any x =
(T1, n1, . . . , Ti, ni) ∈ X ,

π(x ) = π((0))

i∏
j=1

λTj

A(j)
∑j
k=1 λTk

( ∑j
k=1 λTk

Fj(T1, . . . , Ti)

)nj+1
∑i

k=1 nk∏
j=1

1

A(i+ j)
,

with π((0)) acting as a normalising constant. The stationary number of customers waiting to be matched (which
due to the different notion now corresponds with M ), is characterised by

E
[
zM
]

=

K∑
i=0

π((0))zi
∑

(T1,...,Ti)∈T i

i∏
j=1

λTj

A(j)Fj(T1, . . . , Ti)
×

×
∑

{n1,...,ni}∈Ni
0

∑i
k=1 nk∏
j=1

1

A(i+ j)

i∏
j=1

( ∑j
k=1 λTjz

Fj(T1, . . . , Ti)

)nj

,
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where z ∈ {c̄ ∈ C : |c̄| < 1}, due to Corollary 5. Likewise, Equation (25) leads, for any s ∈ {c̄ ∈ C : <((̄c)) > 0}
and any l ∈ {1, . . . ,K} to

E
[
e−sScl

]
=

K∑
i=0

π((0))
∑

(T1,...,Ti)∈T i

λtl − s1{tl∈{T1,...,Ti}}

λtl

i∏
j=1

λTj

A(j)Fj(T1, . . . , Ti)
×

×
∑

{n1,...,ni}∈Ni
0

∑i
k=1 nk∏
j=1

1

A(i+ j)

i∏
j=1

(∑j
k=1 λTk

− s1{tl∈{T1,...,Ti}}

Fj(T1, . . . , Ti)

)nj

.

Remark 12. As mentioned, the results in this section are very similar to those for the redundancy-d COC model in
Section 7.3.2. This is not surprising, given the fact that in [3, 4] it is shown that matching models and redundancy
models reveal a big similarity. In particular, for a matching model of the sort mentioned in this section, a redun-
dancy model with similar parameter settings can be formulated so that the number of customers in the system is
sample path equivalent for both systems (cf. [3, Theorem 3.1]). The reason why the results in Section 7.3.2 and
this section do not completely coincide is that the matching model we presented is more general. In Section 7.3.2,
a redundancy-d setting was assumed, while in this section, we took departure rates dependent on the number of
customers in the system through the function A(·). Therefore, the results in Section 7.3.2 can be recovered by
choosing K =

(
K
d

)
, λTj = λ

(k
d)

and A(n) = 1 for all n ∈ N.
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A Completion of proof of Theorem 1
Proof. We complete the proof of Theorem 1. More particularly, we show below that (10) satisfies (12), (13) and
(14).

The stationary distribution (10) satisfies (12). Note that in case (10) holds, for ni > 0, the right-hand side
of (12) can be rewritten as follows. We have that

λU({T1,...,Ti})π((T1, n1, . . . , Ti, ni − 1))

= λU({T1,...,Ti})π((0))
Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

 i∏
j=1

αj
nj

 1

αi

φ(x)∏
j=1

1

η(j)

 η(φ(x ))

= η(φ(x ))k(T1, . . . , Ti)π((0))
Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i∏
j=1

αj
nj

φ(x)∏
j=1

1

η(j)

= µ(x )π(x ),

where the last equality follows by virtue of (4). As this is the left-hand side of (12), we conclude that (10) satisfies
this equation for ni > 0. Similarly, for ni = 0, the right-hand side of (12) can be rewritten as

λTi
({T1, . . . , Ti−1)π((T1, n1, . . . , Ti−1, ni−1))
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= λTi({T1, . . . , Ti−1)π((0))
Πλ({T1, . . . , Ti−1})
Πk(T1, . . . , Ti−1)

i−1∏
j=1

αj
nj

φ(x)∏
j=1

1

η(j)

 η(φ(x ))

= η(φ(x ))k(T1, . . . , Ti)π((0))
Πλ({T1, . . . , Ti})
Πk(T1, . . . , Ti)

i−1∏
j=1

αj
nj

α0
i

φ(x)∏
j=1

1

η(j)

= µ(x )π(x ).

Again, the last equality follows from (4), and we have shown that (10) satisfies (12).

The stationary distribution (10) satisfies (13). We follow the same strategy as before. That is, we substitute
(10) into the right-hand side of (13). We obtain

i∑
k=0

nk∑
n=0

µT (releasek,n(x , T ))rk,n(x , T )π(releasek,n(x , T ))

=

i∑
k=0

nk∑
n=0

η(φ(x ) + 1)(k(T1, . . . , Tk, T )− k(T1, . . . , Tk))βk(T )n

 i∏
j=k+1

βj(T )nj

×
× π((0))

Πλ({T1, . . . , Tk, T, Tk+1, . . . , Ti})
Πk(T1, . . . , Tk, T, Tk+1, . . . , Ti)

k−1∏
j=1

α
nj

j

αnk−n
k

(
λU({T1,...,Tk,T})

k(T1, . . . , Tk, T )

)n
×

×

 i∏
j=k+1

(
λU({T1,...,Tj ,T})

k(T1, . . . , Tk, T, Tk+1, . . . , Tj)

)nj

 φ(x)+1∏
j=1

1

η(j)

= π(0)

φ(x)∏
j=1

1

η(j)

 i∑
k=0

(k(T1, . . . , Tk, T )− k(T1, . . . , Tk))
Πλ({T1, . . . , . . . , Ti, T})

Πk(T1, . . . , Tk, T, Tk+1, . . . , Ti)

k−1∏
j=1

α
nj

j

×
×

 i∏
j=k+1

(
βj(T )λU({T1,...,Tj ,T})

k(T1, . . . , Tk, T, Tk+1, . . . , Tj)

)nj

 nk∑
n=0

αnk−n
(
βk(T )λU({T1,...,Tk,T})

k(T1, . . . , Tk, T )

)n

= λT ({T1, . . . , Ti})π(0)
Πλ({T1, . . . , Ti)}
Πk(T1, . . . , Tk)

 i∏
j=1

α
nj

j

φ(x)∏
j=1

1

η(j)

×
×

i∑
k=0

k(T1, . . . , Tk, T )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

i∏
j=k+1

(
λU ({T1, . . . , Tj})
αjk(T1, . . . , Tj , T )

)nj

×

×
i∏

j=k+1

k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

nk∑
n=0

(
λU({T1,...,Tk})

αkk(T1, . . . , Tk, T )

)n

= λT ({T1, . . . , Ti})π(x )

i∑
k=0

k(T1, . . . , Tk, T )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )
×

×
i∏

j=k+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1 nk∑
n=0

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

)n
.

Here, the second equality follows from Condition 1. The third equality follows from Condition 2 and the fact that
Πk(T1, . . . , Tj , T, Tk+1, . . . , Ti) = k(T1, . . . , Ti, T )Πk(T1, . . . , Ti)

∏i
j=k+1

k(T1,...,Tj ,T )
k(T1,...,Tj) , which is straightfor-

wardly verifiable. It is left to show that the last line of the display equals λT ({T1, . . . , Ti})π(x ). We can indeed
show that the outer sum in the last line of the display indeed equals one. We note that for k = 0, we have that
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n0 = 0, since there can be no customers in the system that can claim T . Then, we have

i∑
k=0

k(T1, . . . , TkT )− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

i∏
j=k+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1 nk∑
n=0

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

)n

=

i∑
k=0

(
1− k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

) i∏
j=k+1

(
k(T1, . . . , Tj)

k(1, . . . , Tj , T )

)nj+1 nk∑
n=0

(
k(T1, . . . , Tk)

k(T1 . . . , Tk, T )

)n

=

i∑
k=0

(
1−

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, T )

)nk+1
)

i∏
j=k+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1

=

i∑
k=0

 i∏
j=k+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1

−
i∏

j=k

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1


=

i∏
j=i+1

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1

−
i∏

j=0

(
k(T1, . . . , Tj)

k(T1, . . . , Tj , T )

)nj+1

= 1. (29)

The last equality follows since the first product equals one by definition, and the second product equals zero by
the fact that k(∅) = 0. Therefore, we have shown that (10) satisfies (13).

The stationary distribution (10) satisfies (14). Again, we follow a similar line of reasoning as before.
Manipulating the right-hand side of (14), we have

i∑
j=1

j−1∑
k=0

nk∑
n=0

µTj
(shiftk,n(x , Tj))sk,n,(s, Tj)π(shiftk,n(x , Tj)))

=

i∑
j=1

j−1∑
k=0

nk∑
n=0

η(φ(x ) + 1) (k(T1, . . . , Tk, j)− k(T1, . . . , Tk))βk(Tj)
n

(
j−1∏
l=k+1

βl(Tj)
nl

)
(1− βj−1(Tj))×

× π((0))
Πλ({T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Ti})
Πk(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Ti)

(
k−1∏
l=1

αnl

l

)
αnk−n
k ×

×
(
λU({T1,...,Tk,Tj})

k(T1, . . . , Tj , Tk)

)n( j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tl)

)nl
)
×

×
(

λU({T1,...,Tj})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1)

)nj+1

×

×

 i∏
l=j+1

(
λU({T1,...,Tl})

k(T1, . . . , Tk, Tj , Tk+1, . . . , Tj−1, Tj+1, . . . , Tl)

)nl

 φ(x)+1∏
l=1

1

η(l)
.

= π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

φ(x)∏
j=1

1

η(j)

 i∑
j=1

(
1−

λU({T1,...,Tj−1})

λU({T1,...,Tj})

) j−1∑
k=0

(k(T1, . . . , Tk, Tj)− k(T1, . . . , Tk))×

×

( ∏j
l=k+1 k(T1, . . . , Tl)∏j−1
l=k k(T1, . . . , Tl, Tj)

)(
k−1∏
l=1

αnl

l

)(
j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

k(T1, . . . , Tl, Tj)

)nl
)(

λU({T1,...,Tj})

k(T1, . . . , Tj)

)nj+1

×

×

 i∏
l=j+1

(
λU({T1,...,Tl})

k(T1, . . . , Tl)

)nl

 nk∑
n=0

αnk−n
k

(
λU({T1,...,Tk

)

k(T1, . . . , Tk, Tj)

)n

= π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

α
nj

j

φ(x)∏
j=1

1

η(j)

 i∑
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
×
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×
j−1∑
k=0

(
1− k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)( j−1∏
l=k+1

k(T1, . . . , Tl)

k(T1, . . . , Tl, Tj)

)(
j−1∏
l=k+1

(
λU({T1,...,Tl,Tj})

αjk(T1, . . . , Tl, Tj)

)nl
)
×

×
nk∑
n=0

(
λU({T1,...,Tk

)

αkk(T1, . . . , Tk, Tj)

)n

= π(x )

i∑
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
×

×
j−1∑
k=0

(
1− k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)( j−1∏
l=k+1

(
k(T1, . . . , Tl)

k(T1, . . . , Tl, Tj)

)nl+1
)

nk∑
n=0

(
k(T1, . . . , Tk)

k(T1, . . . , Tk, Tj)

)n
= λU({T1,...,Ti})π(x ),

which is the left-hand side of (14). In the second equality, we used Condition 1 and Condition 2. The final
equality follows by invoking (29) with i = j − 1 and the fact that

∑i
j=1

(
λU({T1,...,Tj}) − λU({T1,...,Tj−1})

)
=

λU({T1,...,Ti}). As we have rewritten the right-hand side of (14) into its left-hand side, we conclude that (10)
satisfies (14), which completes the proof.

B Proof of Theorem 2

Proof. To prove the theorem, we first considerN (c)
j , which we recall to be the number of type-c customers among

Nj , which represents the number of customers in the central queue between those that have claimed Tj and Tj+1.
More particularly, we first focus on (the joint PGF of) the stationary distribution of {N (c)

j : j ∈ {1, . . . ,K}, c ∈
C} using Theorem 1 as a starting point. Then, the expression for {N (c) : c ∈ C} as given in Theorem 2 will follow
almost immediately.

We use Theorem 1 as a starting point. From this theorem, we gather that the stationary distribution of the
model at hand satisfies

π(T1, n1, . . . , Ti, ni) = π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

α
nj

j

i∏
j=1

1

η(j)

∑i
k=1 nk∏
j=1

1

η(i+ j)
. (30)

By the dynamics of the arrival process, we next note that N (c)
j is binomially distributed with parameters Nj and

θc,j :=
λc1{c∈U(T1,...,Tj)}

λU(T1,...,Tj
) . The indicator function in this expression reflects the fact that in order for N (c)

j to be

positive, any token in the set T \{T1, . . . , Tj} must reject class-c jobs. More generally, the set {N (c)
j : c ∈ C} is

multinomially distributed with population size parameter Nj and probability parameters {θc,j : c ∈ C}. We also
observe that, given the values of N1, N2, . . ., the sets {N (c)

1 : c ∈ C}, {N (c)
2 : c ∈ C}, . . . are independent, so that

P

 ⋂
j∈{1,...,i},c∈C

{N (c)
j = n

(c)
j } |

i⋂
j=1

{Nj = nj}

 =

i∏
j=1

nj !∏
c∈C n

(c)
j !

∏
c∈C

θnc,j
c . (31)

Using (31) and applying Newton’s binomium, respectively, immediately leads to the following joint PGF. For
zc,j ∈ {c̄ ∈ C : |c̄| ≤ 1},

E

∏
c∈C

i∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)


=

∑
{n(c)

j :c∈C}:
∑

c∈C n
(c)
j =nj

nj !∏
c∈C n

(c)
j !

∏
c∈C

(θc,jzc,j)
nc,j =

i∏
j=1

(∑
c∈C

θc,jzc,j

)nj

. (32)
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Unconditioning using (30) now leads to

E

∏
c∈C

K∏
j=1

z
N

(c)
j

c,j


=

K∑
i=0

∑
(T1,...,Ti)∈T i

∑
(n1,...,ni)∈Ni

0

π((T1, n1, . . . , Ti, ni))E

∏
c∈C

K∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)


=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

η(j)

∑
{n1,...,ni}∈Ni

0

∑i
k=1 nk∏
j=1

1

η(i+ j)

i∏
j=1

(αj
∑
c∈C

θc,jzc,j)
nj .

(33)

Finally, Equation (17) follows by combining this expression with

E

[∏
c∈C

zN
(c)

c

]
= E

[∏
c∈C

z
∑k

j=1N
(c)
j

c

]
= E

∏
c∈C

k∏
j=1

z
N

(c)
j

c

 .

C Proof of Theorem 4

Proof. The proof hinges on the notion that, if there are at least j tokens activated, either M (c)
j = N

(c)
j + 1 if token

Tj is claimed by a type-c customer, or M (c)
j = N

(c)
j otherwise. This leads to

E

∏
c∈C

i∏
j=1

z
M

(c)
j

c,j


=

K∑
i=0

∑
(T1,...,Ti)∈T i

∑
(n1,...,ni)∈Ni

0

π((T1, n1, . . . , Ti, ni))E

∏
c∈C

i∏
j=1

z
N

(c)
j

c,j | x = (T1, n1, . . . , Ti, ni)

×
×

∑
(c1,...,ci)∈Ci

Gc1,...,ci(T1, n1, . . . , Ti, ni)

i∏
j=1

zc,j

The theorem now follows by substitution of (30) and (32) into this expression and realising that E
[∏

c∈C z
M(c)

c

]
=

E
[∏

c∈C
∏k
j=1 z

M
(c)
j

c

]
.

D Expressions for performance measures when η(·) = 1

It follows by substitution and subsequent simplification of (17), (18), (20), (22) and (24) that, when η(j) = 1 for
all j ∈ N,

E

[∏
c∈C

zN
(c)

c

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

1− αj
∑
c∈C θc,jzc

,

E
[
zN
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

i∏
j=1

1

1− αjz
,

E
[
zM
]

=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

∏
λ({T1, . . . , Ti})∏
k(T1, . . . , Ti)

zi
i∏

j=1

1

1− αjz
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and

E
[
e−sWc

]
=

K∑
i=0

∑
(T1,...,Ti)∈T i

π((0))

i∏
j=1

λTj
(T1, . . . , Tj−1)

k(T1, . . . , Tj)− λU({T1,...,Tj}) + s1{c∈U({T1,...,Tj})}
,

with π((0)) as given in (15).

E Proof of Theorem 9

Proof. We first assume that (1) holds, that is, we are given a model that fits in the OI queue framework. In
the remainder of this proof, we will use the notion of indistinguishable tokens and token labels as introduced in
Section 4.3. We define the following token sets Tc. Each token set of customer type c consists of an infinite
number of indistinguishable tokens with label c. Thus, every customer type has its dedicated token label. Then,
the state x (L) = (L1, . . . , Ln) gives exactly the same information as the state x (OI) = (c1, . . . , cn), hence both
state descriptors are equivalent. When setting µLj

(x (L)) = µ
(OI)
j (x (OI)), the token-based central queue describes

exactly the same model as the OI queue.
What is left to show is that the token-based central queue satisfies Condition 1 and Condition 2. Condition 2

follows directly, since µLj
(x (L)) = µ

(OI)
j (x (OI)) and µ(OI)

j satisfies Condition 3. Since each customer type c has
its own dedicated set of indistinguishable tokens with label c, we have that λc({L1, . . . , Li}) = λc. Therefore,∏i
j=1 λLj ({L1, . . . Lj−1}) =

∏i
j=1 λLj . This expression is independent of the permutation of the Lj’s, and

since tokens that bear the same label are indistinguishable, Condition 1 is satisfied. We have hence proved that
(1)→ (2).

We now assume that (2) of Theorem 9 holds, that is, we are given a token-based central queue where each
token set consists of indistinguishable tokens. From Lemma 8, it follows that to a given state x (OI) = (c1, . . . , cn)
(describing the type of each customer), there corresponds a unique state x (L) = (L1, n1, . . . , Li, ni), given by
τ(x (OI)). We also define the function τ̃(x (OI)) that gives the unique activated tokens (L1, . . . , Li) as a function
of x (OI). To prove that (1) of Theorem 9 holds, that is, the model fits the OI queue framework, we will (i) define
functions η(OI)(·) and s(OI)

j (·), (ii) show that these functions give rise to an OI queue and (iii) show that the
departure rates under the token-based central queue and the OI queue are sample-path wise equal.

(i) Since φ(τ(x (OI))) = n, we define

η(OI)(n) := η(φ(τ(x (OI)))).

Let h(j, x (OI)) :=
∑
c∈C min(

∑j
l=1 1(cl=c), |Tc|) denote the number of active customers among the first j cus-

tomers (for ease of exposition, we assume that any two tokens from any two token sets Tca and Tcb , ca, cb ∈ C, are
not indistinguishable). When in state x (OI) = (c1, . . . , cn) and if

∑j
i=1 1(cj=ci) ≤ |Tcj |, then the j-th customer

is the h(j, x (OI))-th customer that has a token. We therefore define

s
(OI)
j (x (OI)) :=

{
sh(j,x (OI))(τ̃(x (OI))) if

∑j
i=1 1(cj=ci) ≤ |Tcj |,

0, otherwise.

(ii) Since Condition 2 is satisfied, it is immediate that µ(x (OI)) satisfies Condition 3 and hence gives rise to
an OI queue.

(iii) Consider the j-th customer. We now show that its departure rate in both systems is the same, which
concludes the proof. If

∑j
i=1 1(cj=ci) ≤ |Tc(j)|, then the j-th customer has a token and is the h(j, x (OI))-th

active customer in the queue. Its departure rate in the OI queue is µ(OI)
j (x (OI)) = η(OI)(n)s

(OI)
j (x (OI)) =

η(φ(τ(x (OI))))sh(j,x (OI))(τ̃(x (OI))) = µL
h(j,x(OI))

(τ(x (OI))), which equals its departure rate in the token-based

central queue. If the j-th customer is not active, then its departure rate in the OI queue is µ(OI)
j (x (OI)) = 0, which

equals its departure rate in the token-based central queue.

F Proof of Corollary 10

Proof. In the proof of Theorem 9 (1)→ (2) it was shown that the OI queue can be seen as a token-based central
queue where a token set Tc of a customer type c consists of infinitely many indistinguishable tokens with label c.
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Noting that φ(x ) = n, nj = 0 and λc({L1, . . . , Lj}) = λc, from (16) we recover the product-form stationary
distribution (27) for the OI state descriptor.
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