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Abstract

Since the seminal work of Scarf (1958) [A min-max solution of an inventory problem, Studies in

the Mathematical Theory of Inventory and Production, pages 201-209] on the newsvendor problem

with ambiguity in the demand distribution, there has been a growing interest in the study of the

distributionally robust newsvendor problem. The model is criticized at times for being overly conser-

vative since the worst-case distribution is discrete with a few support points. However, it is the order

quantity prescribed from the model that is of practical relevance. A simple calculation shows that

the optimal order quantity in Scarf’s model with known first and second moment is also optimal for a

censored student-t distribution with parameter 2. In this paper, we generalize this “heavy-tail opti-

mality” property of the distributionally robust newsvendor to an ambiguity set where information on

the first and the αth moment is known, for any real number α > 1. We show that the optimal order

quantity for the distributionally robust newsvendor problem is also optimal for a regularly varying

distribution with roughly a power law tail with tail index α. We illustrate the usefulness of the

model in the high service level regime with numerical experiments, by showing that when a standard

distribution such as the exponential or lognormal distribution is contaminated with a heavy-tailed

(regularly varying) distribution, the distributionally robust optimal order quantity outperforms the

optimal order quantity of the original distribution, even with a small amount of contamination.

1 Introduction

Since the pioneering work of Scarf [42], there has been a growing interest in the study of the distri-

butionally robust newsvendor problem where the probability distribution of the demand is ambiguous.
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Formally, the problem is stated as follows. A newsvendor needs to decide on the number of units of

an item to order before the actual demand is observed. The unit purchase cost is c where c > 0 and

the unit revenue is p where p > c. Any unsold item at the end of the selling period has zero salvage

value. The demand d̃ for the item is random and unknown before the order is placed. Furthermore, the

probability distribution of the demand, denoted by F (w) := P(d̃ ≤ w) is ambiguous and only assumed

to lie in a set of possible distributions F . The ambiguity in the demand distribution might arise due

to one of several reasons. It might arise as a subjective input when a new product is introduced into

the market for which past demand data is unavailable and one is unsure about an exact distribution

or it might arise when a set of plausible demand distributions is constructed from past data using mo-

ments, structural information or probability distance metrics. All relevant information on the demand

distribution that the newsvendor possesses is assumed to be captured in the set F . The distributionally

robust newsvendor then orders the quantity that maximizes the minimum (worst-case) expected profit.

Mathematically, this problem is formulated as choosing an order quantity q that solves:

max
q∈<+

inf
F∈F

(
pEF [min(q, d̃)]− cq

)
. (1.1)

Using the relation min(d, q) = d− [d− q]+, where [d− q]+ = max(0, d− q), the optimal order quantity

in (1.1) is equivalently obtained by solving the problem:

min
q∈<+

(
(1− η)q + sup

F∈F
EF [d̃− q]+

)
, (1.2)

under the assumption that the mean value of demand is specified in the set F , where η = 1−c/p ∈ [0, 1)

denotes the critical ratio. The formulation in (1.2) can be interpreted as a worst-case expected cost

minimization version of the newsvendor problem.

1.1 Scarf’s Model

The earliest version of the model is attributed to Scarf [42] who assumed that the mean and the variance

of the demand are specified in the set F , but the exact form of the distribution is unknown. The set of

demand distributions is defined as:

F1,2 =

{
F ∈M(<+) :

∫ ∞
0

dF (w) = 1,

∫ ∞
0

w dF (w) = m1,

∫ ∞
0

w2 dF (w) = m2

}
,

where M(<+) is the set of finite positive Borel measures supported on the non-negative real line and

m1 and m2 are the first and second moment which are assumed to satisfy m2 > m2
1 > 0. Note that

when m2 = m2
1, the demand is deterministic with support at m1 and the optimal order quantity is

trivially m1. In the standard newsvendor model, when the set of distributions is a singleton, the

optimal order quantity reduces to the well-known critical fractile formula q∗ = F−1(η), where F−1(·)
is the generalized inverse of the cumulative distribution function. However, in the robust model, the

worst-case demand distribution might change with the order quantity. Scarf [42] explicitly characterized

the unique two point distribution that attains the worst-case in (1.2) for the set F1,2. Given an order
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quantity q ≥ m2/2m1, the worst-case demand distribution for supF∈F1,2
EF [d̃ − q]+ is given by the

distribution with two support points:

d̃∗q =


q −

√
q2 − 2m1q +m2, w.p.

1

2

(
1 +

q −m1√
q2 − 2m1q +m2

)
,

q +
√
q2 − 2m1q +m2, w.p.

1

2

(
1− q −m1√

q2 − 2m1q +m2

)
,

where the support points and the probabilities are dependent on q (this can be viewed as the “power”

of the adversary). In the case, when the order quantity q lies in the range [0,m2/2m1], the worst-case

demand distribution is two-point, but independent of q and given by d̃∗m2/2m1
, where:

d̃∗m2/2m1
=


0, w.p. 1− m2

1

m2
,

m2

m1
, w.p.

m2
1

m2
.

Combining these results, the worst-case bound is given as:

sup
F∈F1,2

EF [d̃− q]+ =


1

2

(√
q2 − 2m1q +m2 − (q −m1)

)
, if q ≥ m2

2m1
,

m1 −
qm2

1

m2
, if 0 ≤ q < m2

2m1
.

(1.3)

Plugging in the expression (1.3) into (1.2) and a direct application of calculus provides a closed form

solution for the optimal order quantity as follows:

q∗ =


m1 +

√
m2 −m2

1

2

2η − 1√
η(1− η)

, if
m2 −m2

1

m2
< η < 1,

0, if 0 ≤ η < m2 −m2
1

m2
,

where in the case that η = (m2 −m2
1)/m2, the optimal order quantity is the given by the set of all

values in the interval [0,m2/(2m1)].

While the optimal order quantity is a simple closed form expression, this model is criticized at times

for being conservative1. However it is also known that for certain distributions, the model provides a

good approximation. Scarf [42] is his original treatise had observed that for a large range of critical

ratios (specifically η in the range [0.05, 0.95]), the optimal order quantity for the two moment model

is very close to optimal order quantity for a normal approximation of a Poisson distribution, while for

higher critical ratios, the model prescribed higher order quantities. Gallego and Moon [26] in a follow-up

set of experiments compared the order quantity from Scarf’s model with the optimal order quantity for

1We cite from page 243 in Wang, Glynn and Ye [49]: “In the distributionally robust optimization approach, the worst-
case distribution for a decision is often unrealistic. Scarf (1958) shows that the worst-case distribution in the newsvendor
context is a two-point distribution. This raises the concern that the decision chosen by this approach is guarding under
some overly conservative scenarios, while performing poorly in more likely scenarios. Unfortunately, these drawbacks seem
to be inherent in the model choice and cannot be remedied easily.”
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normally distributed demands and concluded that for a large range of critical ratios, the loss in profit

is not significant. On the other hand, Wang, Glynn and Ye [49] found numerically that the difference

in the order quantity from Scarf’s model and the true optimal order quantity under the exponential

distribution is more significant, for certain choices of the critical ratio (specifically they consider critical

ratios around 0.5 in Figure 1(c)). In Figure 1, we provide a comparison of the optimal order quantities

for demand distributions (normal and exponential) and Scarf’s model where only the first two moments

are assumed to be known. While the figure suggests, the optimal order quantities from Scarf’s model

is comparatively close to the optimal order quantities for the normal and exponential distributions for

moderate critical ratios, it prescribes substantially higher order quantities for high critical ratios. In

this paper, we provide an analytical characterization of this numerical insight and generalize it to a

larger class of models.
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(b) High critical ratios (Mean = 50, Variance = 50)
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(c) Moderate critical ratios (Mean = 50, Variance = 2500)
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(d) High critical ratios (Mean = 50, Variance = 2500)
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Figure 1: The plots at the top compare the optimal order quantities for a normal approximation to a Poisson demand distribution
and Scarf’s model as in the original paper of Scarf [42] with mean demand 50 and variance 50. The plots at the bottom compare the
optimal order quantities for an exponential demand distribution and Scarf’s model with mean demand 50 and variance 2500.

The format of the paper and the main contributions are discussed next:

(a) In Section 2, we provide an overview of the distributionally robust newsvendor problem while

analytically characterizing a heavy-tail optimality property that the Scarf’s newsvendor model

possesses. While this observation has been made in prior research (see Müller and Stoyan [37] and

Gallego [25]), the result has not been extended to generalizations of Scarf’s model, to the best of

our knowledge. We also discuss empirical research that suggests that heavy-tailed distributions is
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a possible occurrence in real demand datasets.

(b) In Section 3, we propose a generalization of the ambiguity set from the first and the second moment

to the first and the αth moment for any real α > 1. The ambiguity set is simple while providing

flexibility in allowing for new sets of distributions to be considered. Specifically, for 1 < α < 2,

the ambiguity set contains distributions that are more heavy-tailed in comparison to Scarf’s model

(second moments are not necessarily finite), while for α > 2, it contains distributions that are more

light-tailed than in Scarf’s model. However, unlike Scarf’s model, there is a technical challenge

since the worst-case expected cost does not appear to have a closed form representation in general.

In the special case, when the order quantities are below a certain value, we derive a tight closed

form expression. Based on this, we show that for any α, there exists a threshold for the critical

ratio below which it is optimal to order nothing. On the other hand, in the case, when order

quantities are above a certain value, we derive new upper and lower bounds for the worst-case

expected cost by creating appropriate primal and dual feasible solutions to the moment problem.

We show that these upper and lower bounds are asymptotically tight, namely the ratio of the

bounds converge to 1 as the order quantity approaches infinity. These bounds help us characterize

the tail behavior of the optimal order quantity.

(c) In Section 4, we provide a characterization of the optimal order quantity in the high service

level regime for the distributionally robust newsvendor model by showing that it is optimal for a

regularly varying distribution with tail parameter α, using techniques developed to model heavy-

tailed distributions. This provides an explicit link between the solution of a robust optimization

problem which accounts for worst-case behavior and heavy-tails which are used to model extreme

events. Particularly, it shows that while the worst-case distribution in a distributionally robust

newsvendor problem might be discrete with a few support points, the order quantities remain

optimal for high critical ratios, for a regularly varying continuous distribution with an infinite αth

moment.

(d) In Section 5, we provide numerical examples to illustrate the usefulness of the model for high

critical ratios by showing: (1) the value of incorporating moment information beyond the variance

in better approximating the optimal order quantities for specific distributions, (2) the difference in

the behavior of the ratio of the optimal order quantity and the optimal cost in the robust model

in comparison to distributions that are not in the regularly varying class, and, (3) the robustness

of the optimal order quantity when a standard distribution is contaminated with a heavy-tailed

(regularly varying) distribution, even with a small amount of contamination. We finally conclude

in Section 6 by identifying future research directions.

2 Literature Review

In this section, we review some of the key results for the distributionally robust newsvendor problem

with a focus on ambiguity sets where demand might take any value in [0,∞). Our interest in such

ambiguity sets stems from an attempt to provide a characterization of the tail behavior which is of
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particular interest in solving newsvendor problems with high service levels. There is growing evidence

in the literature that a stockout for retailer has significant short-term and long-term effects that needs

to be minimized (see Anderson, Fitzsimons and Simester [1]). The high service level regime is the

natural domain of interest in this case. We also review prior research that provides empirical evidence

on heavy-tailed demand distributions.

2.1 Distributionally Robust Newsvendor Models

Shapiro and Kleywegt [45] and Shapiro and Ahmed [44] developed a reformulation of the distributionally

robust newsvendor as a classical newsvendor problem through the construction of a new probability

demand distribution. The key insight to their reformulation is the observation (see Section 3.1 on page

532 in Shapiro and Kleywegt [45]) that given a set F with a finite mean, there exists a non-negative

random variable d̃∗ with probability distribution F ∗ such that the following equality holds for all values

of q:

sup
F∈F

EF [d̃− q]+ = EF ∗ [d̃∗ − q]+, ∀q. (2.1)

This is seen by noting that the function Π(q) := supF∈F EF [d̃−q]+ is a non-increasing, convex function

that satisfies the following properties: (i) For all q ≤ 0, Π(q) + q = supF∈F EF [d̃] which is a constant

under the assumption that the ambiguity set contains distributions with a finite mean (equal to m1 when

the mean is specified in the ambiguity set), and (ii) limq→∞Π(q) = 0. This implies that there exists

a non-negative random variable d̃∗ with a distribution given by F ∗(q) = 1 + Π′+(q) where Π′+(·) is the

right derivative of Π(·), such that condition (2.1) is satisfied (see Theorem 1.5.10 in Müller and Stoyan

[37] for a related statement). It is easy to verify that when the ambiguity set F consists of random

variables with a fixed mean m1, the new random variable d̃∗ also has mean m1, since Π(0) = m1. This

corresponds to a random variable that dominates all the random variables d̃ in the set F in an increasing

convex order sense (see Müller and Stoyan [37], Shaked and Shanthikumar [43]). Unlike the extremal

distribution on the left hand side of the equation (2.1) which might vary with q, the random variable d̃∗

on the right hand side has a distribution F ∗ which is independent of q. This equivalence helps convert

the distributionally robust newsvendor problem to the classical newsvendor problem as follows:

min
q∈<+

(
(1− η)q + EF ∗ [d̃∗ − q]+

)
, (2.2)

where F ∗ is independent of the critical ratio η. However, the challenge in applying this technique

to solve the distributionally robust newsvendor problem is that F ∗ in most cases does not have an

explicit characterization in terms of the original set of distributions F and might not even lie in this

set. However, the equivalence provides an important insight as it identifies a new distribution F ∗ for

which the optimal order quantity from the distributionally robust newsvendor model in (1.2) is optimal,

regardless of the parameters of the problem.

In Scarf’s model, it is straightforward to construct the distribution F ∗ as the worst-case bound is
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known in closed form for each value of q. Computing the right-derivative of the worst-case bound in the

two regions in (1.3) and using F ∗(q) = 1 + Π
′
1,2+(q), where Π1,2(q) = supF∈F1,2

EF [d̃− q]+, we obtain

the characterization of the distribution F ∗ as follows:

F ∗(w) = P(d̃∗ ≤ w) =


1

2

(
1 +

w −m1√
w2 − 2m1w +m2

)
, if w ≥ m2

2m1
,

1− m2
1

m2
, if 0 ≤ w <

m2

2m1
.

(2.3)

The distribution in (2.3) defines a censored student-t random variable with a mixture of discrete and

continuous terms as follows:

d̃∗ =

 t̃2
(
m1, (m2 −m2

1)/2
)
, if t̃2

(
m1, (m2 −m2

1)/2
)
≥ m2

2m1
,

0, otherwise,
(2.4)

where t̃ν(µ, σ2) is a three parameter student-t random variable with location parameter µ, scale pa-

rameter σ > 0 and degrees of freedom parameter ν > 0 with a probability density function given

by:

g(w) =
Γ(ν+1

2 )
√
πνσΓ(ν2 )

(
1 +

1

ν

(
w − µ
σ

)2
)−(ν+1)/2

, ∀w ∈ <. (2.5)

The distribution of the censored student-t random variable in (2.4) is defined by a discrete probability

mass function:

P(d̃∗ = 0) =
m2 −m2

1

m2
,

and a continuous probability density function given by:

f∗(w) =
1

2

m2 −m2
1

(w2 − 2m1w +m2)3/2
, ∀w ≥ m2

2m1
.

A straightforward calculation indicates that for this random variable, the second moment is infinite,

that is:

EF ∗ [d̃∗2] = ∞.

This implies that to recreate the optimal order quantity of the distributionally robust newsvendor

model under the assumption of a known mean and variance, we need to solve a standard newsvendor

problem with a censored student-t distribution with parameter 2. Thus the demand distribution in the

standard newsvendor model has to possess infinite variance which is an heavy-tail property to recreate

the distributionally robust newsvendor solution with a finite variance. To the best of our knowledge,

this observation has been made for real-valued random variables with known first and second moments

in Theorem 1.10.7 on page 57 in Müller and Stoyan [37] with its application to inventory problems

discussed in Gallego [25]. Under the assumption that the set of distributions consists of real-valued

random variables (not necessarily nonnegative) with fixed first moment m1 and second moment m2,
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Müller and Stoyan [37] showed that the distribution F ∗ is given as:

F ∗(w) = P(d̃∗ ≤ w) =
1

2

(
1 +

w −m1√
w2 − 2m1w +m2

)
, ∀w. (2.6)

which simply corresponds to the first term in (2.3). The representation in (2.3) generalizes this to

non-negative demand random variables, which is of interest in the newsvendor setting.

Since the pioneering work of Scarf [42], there have been several generalizations of the distributionally

robust newsvendor model to new ambiguity sets. While for some of these ambiguity sets (see Ben-Tal and

Hochman [7, 8], Natarajan, Uichanco and Sim [38], Bertsimas, Gupta and Kallus [3], Chen et. al. [16]),

the problem is solvable in a closed form-manner, in most cases, numerical optimization techniques are

needed. Bertsimas and Popescu [4, 5] and Lasserre [33] developed semidefinite optimization techniques

to compute the worst-case bound when the set of distributions is defined by a set of fixed moments up

to an integer degree n ∈ Z+:

F1,2,...,n =

{
F ∈M(<+) :

∫ ∞
0

dF (w) = 1,

∫ ∞
0

widF (w) = mi, i = 1, 2, . . . , n

}
.

An application of duality in moment problems implies that the distributionally robust newsvendor

problem is solvable as a semidefinite program. While some attempts has been made to solve this problem

analytically for n = 3 and n = 4, the tight worst-case bounds have complicated expressions involving

roots of cubic and quartic equations (see Jansen, Haezendonck, and Goovaerts [30], Zuluaga, Pena

and Du [50]). Popescu [40] generalized these bounds by incorporating additional structural properties

such as symmetry and unimodality to the ambiguity sets. Semidefinite optimization and second order

conic optimization methods have been developed to find the worst-case bounds for such problems under

structural information (see Popescu [40], Van Parys, Goulart and Kuhn [48], Li, Jiang and Mathieu

[35]). In general, for these problems, there is an absence of closed form solutions and hence finding an

explicit representation of the distribution F ∗ does not appear to be straightforward.

Lam and Mottet [31] have recently proposed an ambiguity set, where information on the tail prob-

ability of the random variable beyond a given threshold, the density function at the threshold and the

left derivative of the density function at the threshold is known with an additional assumption that the

tail density function is convex. Under this ambiguity set, they showed that the worst-case distribution

is either extremely light-tailed or extremely heavy-tailed depending on a characterization of the limit

of the objective function at the tail and proposed the use of low dimensional nonlinear optimization

methods to compute the corresponding bound. In the newsvendor problem, their result implies that

the worst-case density function is in fact a piecewise linear function beyond the threshold, with at

most two linear pieces and is a extremely light-tailed distribution (see Theorem 4 and Section 7 in

Lam and Mottet [31]). In contrast to their approach which models the tail behavior in the ambiguity

set, we focus on ambiguity sets with moment information and characterize the tail behavior implied

by the model. Ben-Tal et al. [6] studied newsvendor problems with φ-divergence based ambiguity sets

around a reference discrete distribution and proposed a convex optimization formulation to solve the
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distributionally robust optimization problem. Blanchet and Murthy [11] build on this model to show

that under the assumption that the reference measure is a distribution such as exponential, Weibull

or Pareto distribution, the use of an ambiguity set with a Kullback-Leibler distance measure contains

distributions where the tail probabilities decay at a very slow rate for which the worst-case expected

costs might be infinite. To overcome this pessimism, they proposed alternative ambiguity sets using the

Renyi divergence measure for which the worst-case tails are heavier than the reference measure, but not

as heavy as the Kullback-Leibler divergence measure. In contrast, we focus on the moment ambiguity

set in this paper. A related recent stream of literature has focused on solving distributionally robust

optimization problems, including the newsvendor model, using ambiguity sets defined around an empir-

ical distribution with the Wasserstein distance (see Esfahani and Kuhn [22], Gao and Kleywegt [27] and

Blanchet and Murthy [12]) with convex optimization methods. Under a light-tailed assumption on the

underlying distribution from which the empirical distribution is generated, it is possible to obtain finite

sample guarantees with this ambiguity set. However, these results do not extend in a straightforward

manner to heavy-tailed distributions. Furthermore, under the assumption that the demand can take

any value in [0,∞), the distributionally robust order quantity with the Wasserstein distance is the same

as the solution to the empirical distribution (see Remark 6.7 in Esfahani and Kuhn [22]) We next review

empirical research that provides evidence on the existence of heavy-tailed distributions in demand data.

2.2 Empirical Evidence of Heavy Tailed Demand

There has been growing evidence in the recent years that heavy-tailed demand distributions can occur

in practice and has to be better accounted for in operational settings. Clauset, Shalizi and Newman [14]

in their well-cited study on the presence of power law distributions in real world datasets, developed

a set of statistical tests to help validate if the data follows a power law. They studied twenty four

different datasets across a broad range of disciplines in physics, earth sciences, biology and engineering

where prior research in these domains had conjectured that the data followed a power law. Of these in

seventeen of the datasets, the statistical tests provided evidence that the power law hypothesis was a

reasonable one and could not be firmly ruled out while in the remaining seven datasets, the p-values were

too small and with reasonable confidence, the power law could be ruled out. Among these datasets,

two of them which are particularly relevant to demand models are: a) the number of calls received

by customers of AT&T long distance telephone in the United States during a single day and b) the

number of copies of bestselling books sold in the United States during the period 1895 to 1965. In

both these datasets, the authors found strong evidence that the power law tail is a reasonable model in

comparison to the exponential and stretched exponential distributions but at the same time it was not

possible to rule out other heavy-tail distributions such as the lognormal distribution as a possible fit. In

another study, Gaffeo, Scorcu and Vici [24] analyzed the demand of books in Italy and found that for

the three categories - local novels, foreign novels and non-fiction books, a power law distribution where

the exponent is typically lesser than 2 is a good fit to the right tail of the demand distribution. Bimpkis

and Markakis [9] used the ratings of movies on Netflix as an approximation to the demand of a movie
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and estimated a power law distribution with an exponent of around 1.04 for the number of movies per

number of distinct ratings. Using data from a North American retailer over a one year period with

626 products, their statistical tests showed that the exponential and normal distributions were a poor

fit to the data while the power law provided a reasonable approximation to the dataset. Building on

this observation, they showed that for a class of heavy-tailed stable demand distributions, the benefits

from pooling in inventory can be much lower than that predicted for normally distributed demands.

Natarajan, Sim and Uichanco [38] used data from an European automotive manufacturer with 36 spare

part SKUs over a one year period. In fitting demand distributions to the data over 17 different families,

they found that the best-fit was often obtained by heavy-tailed distributions such as Pareto, extreme

value or t-distributions. Chevalier and Goolsbee [17] used publicly available data on sales ranks of books

from the online book retailer Amazon.com to obtain an estimate on the sales quantity of the books. In

their numerical experiments, they identified that the Pareto distribution with a parameter of 1.2 was

a reasonable approximation to the demand data. The Internet has particularly fueled the phenomenon

of the long tail where niche products gives rise to a large share of the total sales for online retailers,

popularly referred to as the long-tail phenomenon (see Anderson [2], Brynjolfsson, Hu and Simester

[13]). Empirical evidence in this literature seems to suggest that when Pareto distributions are used

to model the demand, the exponent is strictly greater than 1 and possesses finite mean but might not

necessarily possess finite variance. The ambiguity set we consider in the next section is inspired from

this empirical evidence.

3 Model with the First and αth Moment

Consider an ambiguity set defined as follows:

F1,α =

{
F ∈M(<+) :

∫ ∞
0

dF (w) = 1,

∫ ∞
0

w dF (w) = m1,

∫ ∞
0

wα dF (w) = mα

}
, (3.1)

where α > 1 is an arbitrary real number and m1 and mα are the first and the αth moment respectively,

satisfying mα > mα
1 > 0. Note that for mα = mα

1 , the only feasible distribution in the ambiguity set is

the demand m1 that occurs with probability 1, which is a trivial case to deal with. We discuss a few

features of this ambiguity set next:

(a) The ambiguity set F1,α can be used with any real value α > 1, not necessarily just an integer.

Clearly, when α = 2, this corresponds to the original model of Scarf [42]. This provides a natural

generalization of the set F1,2, but allows for the possibility of the ambiguity set to specify more light

tailed (α > 2) or more heavy tailed distributional information (α < 2) than Scarf’s model allows.

In conjunction with the empirical evidence discussed in Section 2.2, assuming the knowledge of a

finite mean also seems reasonable in most applications involving real demand data.

(b) The ambiguity set preserves the simplicity of Scarf’s [42] moment ambiguity set as it is parame-

terized by the choice of only three parameters - m1, mα and α. The choice of α can be estimated

from sample data using nonparametric hypothesis tests such as the one proposed in Fedotenkov
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[23] where the null hypothesis is that the αth moment exists while the alternate hypothesis is

that αth moment does not exist. This nonparametric bootstrap test builds on the observation

of Derman and Robbins [18] that when a certain moment is infinite the moments of the sample

from the distribution grows faster than the moments of subsamples of a smaller size, under certain

regularity assumptions. The availability of such statistical tests aids in calibrating α from the

data.

Under this ambiguity set, we are interested in solving:

min
q∈<+

(
(1− η)q + sup

F∈F1,α

EF [d̃− q]+

)
. (3.2)

The flexibility of allowing for any α > 1 however leads to challenges in solving the inner moment problem

in closed form, unlike the α = 2 case. To see why, we consider the primal formulation for the worst-case

expected value supF∈F1,α
EF [d̃− q]+ which is given as:

sup

∫ ∞
0

[w − q]+dF (w)

s.t.

∫ ∞
0

dF (w) = 1,∫ ∞
0

wdF (w) = m1,∫ ∞
0

wαdF (w) = mα,

F ∈M(<+),

(3.3)

and the corresponding dual formulation given as:

inf y0 + y1m1 + yαmα

s.t. y0 + y1w + yαw
α ≥ 0, ∀w ≥ 0,

y0 + y1w + yαw
α ≥ w − q, ∀w ≥ 0,

(3.4)

where y0 is the dual variable for the constraint that the total probability is equal to 1 and y1 and yα

are the dual variables for the first and the αth moment constraints respectively. The standard attempt

to find the closed form solution to such a problem is to try and find the explicit roots of the polynomial

equations in the dual formulation which are of the form awα + bw + c = 0, if possible. This is easy to

do, for example, when α = 2 (see Scarf [42], Bertsimas and Popescu [4]), using the solution to quadratic

equations. Unfortunately, the Abel-Ruffini impossibility theorem states that there is no solution in

terms of radicals (involving only taking roots and the four basic arithmetic operations) for polynomial

equations of degree five or higher with arbitrary coefficients. Hence, the state of art approaches to solve

problems with higher order moments is through semidefinite optimization (see Bertsimas and Popescu

[5], Lasserre [33]). Furthermore, even with structured polynomials in the dual, as in our case, it is

not possible to find closed form solutions in terms of radicals. For example, the Bring-Jerrard quintic

equations of the form aw5 + bw+ c = 0 (where α = 5) does not have a solution in terms of radicals for

11



general values of a, b and c (an example of such a quintic equation is w5 −w+ 1 = 0 which is discussed

on page 121 in Lang [32]). This makes the solution of the dual formulation in closed form for general

parameter values very unlikely. In the next section, we consider a very special case where for a range of

q, it is possible to obtain a closed form expression. This helps us characterize the optimal order quantity

in the low service level regime by showing that there exists a threshold below which for all critical ratios,

it is optimal to order nothing. We then consider the high service level regime and focus on finding lower

and upper bounds on the worst-case expected value that is valid beyond a certain value of the order

quantity q. Our approach is based on constructing approximately optimal primal-dual solutions that

attains the bounds in this regime. Building on this, we provide in Section 4, a characterization of the

tail behavior of the distribution of F ∗ and the optimal order quantity for high critical ratios.

3.1 Small Values of q

We consider a special case where the moment problem (3.3) can be solved in closed form for any

real number α > 1. Building on this, we provide a characterization of the optimal solution to the

distributionally robust newsvendor problem (3.2) for small values of η.

Proposition 3.1. Given an ambiguity set F1,α, the worst-case expected value is given as:

sup
F∈F1,α

EF [d̃− q]+ = m1 − q
(
mα

1

mα

)1/(α−1)

, if 0 ≤ q ≤
(
α− 1

α

)(
mα

m1

)1/(α−1)

. (3.5)

The worst-case demand distribution in this case is given as:

d̃∗ =


0, w.p. 1−

(
mα

1

mα

)1/(α−1)

,(
mα

m1

)1/(α−1)

, w.p.

(
mα

1

mα

)1/(α−1)

.

(3.6)

Proof. We show tightness of the worst-case expected value by constructing a primal and dual feasible

solution that attains it for the specified range of q. Observe that the demand distribution in (3.6) is a

feasible distribution in the set F1,α, since E[d̃∗] = m1 and E[d̃∗α] = mα and attains the expected value

in (3.5). We next construct a dual solution as follows:

y0 = 0,

y1 = 1− q
(

α

α− 1

)(
m1

mα

)1/(α−1)

,

yα =
q

α− 1

(
m1

mα

)α/(α−1)

.

(3.7)

We first validate that this solution is dual feasible for q ∈ [0, ((α − 1)/α)(mα/m1)1/(α−1)]. To see this,

observe that in the specified range for q, we have y1 ≥ 0. Furthermore since y0 = 0 and yα ≥ 0, the first

dual feasibility constraint in (3.4) is satisfied in a straightforward manner. The second dual feasibility
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constraint can be expressed as:

min
w≥0

(y0 + q + (y1 − 1)w + yαw
α) ≥ 0. (3.8)

This constraint is satisfied at equality for q = 0, since y1 = 1 and yα = 0 in this case. Next, we focus

on the case with q > 0. Since y0 = 0, yα > 0 and y1 ∈ [0, 1), the minimum value in (3.8) is attained at:

w∗ =

(
1− y1

αyα

)1/(α−1)

,

=

(
mα

m1

)1/(α−1)

.

Substituting in the given choice of the dual variables and w∗, the left hand side of (3.8) reduces to:

y0 + q + (y1 − 1)w∗ + yαw
∗α = q − q

(
α

α− 1

)
+

q

α− 1
,

= 0,

implying the feasibility of the second dual constraint. Finally, we verify that this dual feasible solution

is optimal, since the objective value of the dual feasible solution is given as:

y0 + y1m1 + yαmα = m1 − q
(
mα

1

mα

)1/(α−1)

,

which is equal to the objective value of the primal solution.

When α = 2, Proposition 3.1 reduces precisely to the second term in the worst-case expected value

in (1.3) as developed by Scarf [42]. Proposition 3.1 indicates that for any α > 1, there is always a range

of q around 0, where the worst-case value is a linearly decreasing function of q. Building on this closed

form expression, we can identify a characterization of the optimal order quantity for small values of the

critical ratio η where it optimal to order zero units as follows.

Proposition 3.2. Define the threshold value of the critical ratio, η0 = 1−(mα
1 /mα)1/(α−1) ∈ (0, 1). The

optimal order quantity to the distributionally robust newsvendor problem in (3.2) satisfies the following

properties:

(a) For any critical ratio in the range η ∈ [0, η0), the optimal order quantity is given as:

q∗ = 0.

(b) For any critical ratio in the range η ∈ (η0, 1), the optimal order quantity is strictly positive and

satisfies the condition:

q∗ ≥ q0 :=

(
α− 1

α

)(
mα

m1

)1/(α−1)

.

(c) When η = η0, the set of optimal order quantities contains all the values in the range [0, q0].
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Proof. The optimal solution to the distributionally robust newsvendor problem in (3.2) is given as:

min

{
min

0≤q≤q0
(1− η)q + Π1,α(q), min

q>q0
(1− η)q + Π1,α(q)

}
, (3.9)

where Π1,α(q) = supF∈F1,α
EF [d̃− q]+. Using Proposition 3.1, the first term in this expression reduces

to:

min
0≤q≤q0

(1− η)q + Π1,α(q) = min
0≤q≤q0

m1 − q

(
η − 1 +

(
mα

1

mα

)1/(α−1)
)
,

= min
0≤q≤q0

m1 − q (η − η0) .

(3.10)

The minimizer in (3.10) is q∗ = 0 when η < η0 and the corresponding objective value is m1. Since the

objective function in (3.2) is convex in q and increasing in the range [0, q0], the global minimum is also

attained at q∗ = 0 (see Case (a) in Figure 2). Similarly, the minimizer in (3.10) is q0 when η > η0,

since the function is strictly decreasing in this range. Moreover, since the objective function is convex,

the global minimum in this case is attained at some q∗ ≥ q0 > 0 (see Case (b) in Figure 2). Finally,

when η = η0, the minimum value in (3.10) is attained for all q ∈ [0, q0] (see Case (c) in Figure 2).

Furthermore, since the objective function is convex, the global minimum must also be attained at these

values.

0

q

(1
-

)q
 +

 
1,

(q
)

Case (a):  < 
0

0

q

(1
-

)q
 +

 
1,

(q
)

Case (b):  > 
0

0

q

(1
-

)q
 +

 
1,

(q
)

Case (c):  = 
0

m1 m1

q*  q0

m1

q* = q* =q0
q0 q* = q0

Figure 2: Case (a) provides the optimal solution q∗ = 0 for η < η0, case (b) provides the optimal solution q∗ ≥ q0 > 0 for η > η0
case while case (c) provides the set of optimal solutions for η = η0.

Proposition 3.2 generalizes the result from Scarf’s model to identify the range of critical ratios, under

which it is optimal to order zero units for any real α > 1. This shows that for any finite α, regardless

of how high the order of the specified moment in the ambiguity set is, there is always a certain range

of small critical ratios where it is optimal to order zero for the moment based ambiguity set. The

corresponding F ∗ distribution thus has a finite probability mass at a demand of zero. Proposition 3.2
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also illustrates that when critical ratios are larger than the threshold value, the optimal order quantity

is strictly positive. In the next two sections, we identify lower and upper bounds on the worst-case value

that help characterize q∗ for large values of the critical ratio.

3.2 Lower Bound for Large Values of q

To develop the lower bound, we first consider a related ambiguity set that was studied by Grundy [28]

with a fixed αth moment only:

Fα =

{
F ∈M(<+) :

∫ ∞
0

dF (w) = 1,

∫ ∞
0

wα dF (w) = mα

}
, (3.11)

where F1,α ⊆ Fα. While Grundy [28] evaluated the worst-case value for this ambiguity set in an

option pricing context, the model remains largely unexplored in the newsvendor context. Grundy [28]

characterized the unique two point distribution that attains the bound in supF∈Fα EF [d̃− q]+. Given

a value q > (α− 1)m
1/α
α /α, the worst-case demand distribution was characterized as follows:

d̃∗q =


qα

α− 1
, w.p.

(α− 1)αmα

ααqα
,

0, otherwise,
(3.12)

while for 0 ≤ q ≤ (α − 1)m
1/α
α /α, the worst-case demand distribution is degenerate with the mass at

the point m
1/α
α . The corresponding worst-case expected value is given as:

sup
F∈Fα

EF [d̃− q]+ =


mα

α

(
α− 1

αq

)α−1

, if q >
α− 1

α
m1/α
α ,

m1/α
α − q, if 0 ≤ q ≤ α− 1

α
m1/α
α .

The worst-case distribution in this ambiguity set depends on q, as in Scarf’s model. In the next

proposition, we derive a lower bound on the worst-case expected value by modifying the two point

distribution in (3.12) to a three point distribution to make it feasible for the ambiguity set F1,α.This

brings us to our first main result that provides a lower bound on the worst-case expected value for large

values of q.

Proposition 3.3. Given an ambiguity set F1,α, the following lower bound is valid:

sup
F∈F1,α

EF [d̃− q]+ ≥ (mα −mα
1 )

ααqα−1
(α− 1)α−1, ∀q > q(m1,mα, α), (3.13)

for all values of q greater than q(m1,mα, α) where:

q(m1,mα, α) :=

((
mα −mα

1

m1

)(
α− 1

α

)α−1

+mα−1
1

)1/(α−1)

. (3.14)
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Proof. We derive the lower bound through the construction of a three point feasible distribution. The

proof is developed in two steps. In Step 1, we provide a three point distribution by a modification of the

two point worst-case distribution in (3.12) such that the moment constraints are met while in Step 2,

we show that this defines a valid probability distribution for large values of q. Evaluating the objective

value for this distribution provides the desired lower bound in (3.13).

Step 1: Consider a three point random variable d̃ with a distribution defined as follows:

d̃ =


qα

α− 1
, w.p.

(mα −mα
1 )

ααqα
(α− 1)α,

w, w.p. p,

0, w.p. 1− p− (mα −mα
1 )

ααqα
(α− 1)α,

(3.15)

where we choose particular values of w and p as discussed next to ensure feasibility. Our choice of these

values is such that one obtains a strictly positive value of w that is less than q and a probability p such

that the first and αth moment constraints are met. To do so, we start by ensuring that the αth moment

constraint for this distribution is met as follows:

mα = E[d̃α],

=

(
qα

α− 1

)α (mα −mα
1 )

ααqα
(α− 1)α + wαp,

= mα −mα
1 + wαp.

This gives rise to a condition that w and p must satisfy:

wαp = mα
1 . (3.16)

We next ensure the first moment constraint for the distribution is met as follows:

m1 = E[d̃],

=

(
qα

α− 1

)
(mα −mα

1 )

ααqα
(α− 1)α + wp,

=
(mα −mα

1 )

αα−1qα−1
(α− 1)α−1 + wp.

This gives rise to a second condition that w and p must satisfy:

wp = m1 −
(mα −mα

1 )

αα−1qα−1
(α− 1)α−1. (3.17)

Solving the two simultaneous equations (3.16) and (3.17) gives:

w =
m
α/(α−1)
1(

m1 −
(mα−mα1 )

αα−1qα−1 (α− 1)α−1
)1/(α−1)

, (3.18)
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p =

(
m1 −

(mα−mα1 )
αα−1qα−1 (α− 1)α−1

)α/(α−1)

m
α/(α−1)
1

. (3.19)

Step 2: We note that for large values of q, the demand realization w in (3.18) is smaller than q as it is

given by a strictly decreasing function of q. This condition is satisfied when:

q > q(m1,mα, α) :=

((
mα −mα

1

m1

)(
α− 1

α

)α−1

+mα−1
1

)1/(α−1)

. (3.20)

Under this condition, since we have only one support point that is strictly above q, the expected value

of the objective function is given as:

E[d̃− q]+ =

(
qα

α− 1
− q
)
mα −mα

1

ααqα
(α− 1)α,

=
(mα −mα

1 )(α− 1)α−1

ααqα−1
,

which corresponds to the lower bound on the expected value. To complete the proof, we need to ensure

that (3.15) corresponds to a valid probability measure for the chosen w and p for all q > q(m1,mα, α)

by checking the following four conditions:

(a) To verify that p > 0, we observe that the value of p in (3.19) is strictly positive when:

q > q
1

:=

(
mα −mα

1

m1

)1/(α−1)(α− 1

α

)
. (3.21)

Condition (3.21) is implied by (3.20) since:

q(m1,mα, α) =
(
qα−1

1
+mα−1

1

)1/(α−1)
,

> q
1
,

where m1 > 0.

(b) It is easy to verify that p < 1 for q > q(m1,mα, α), since mα > mα
1 .

(c) We next verify that the probability of the atom qα/(α−1) in (3.15) is strictly less than 1. Observe

that this condition is satisfied when:

q > q
2

:= (mα −mα
1 )1/α

(
α− 1

α

)
, (3.22)

where the non-negativity of the probability of this atom holds trivially. Define z = (mα −
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mα
1 )1/α(α− 1)/α. Condition (3.22) is then implied by (3.20) since:

q(m1,mα, α)

q
2

=

(
z

m1

(
α

α− 1

)
+
(m1

z

)α−1
)1/(α−1)

,

>

(
z

m1
+
(m1

z

)α−1
)1/(α−1)

,

> 1,

where the first inequality holds since α > α − 1 and the second inequality holds for all m1 > 0

and z > 0, since either z/m1 or m1/z is greater than or equal to 1 and α > 1. This implies that

q(m1,mα, α) > q
2
.

(d) The final condition that we need to check for the validity of the probability distribution is to verify

that the probability of the atom 0 given by 1− p− (mα −mα
1 )(α− 1)α/(ααqα) is strictly positive.

Plugging in the value of p, this is equivalent to verifying that for the range of q, the following

inequality holds:(
1− (mα −mα

1 )

(
α− 1

αq

)α)α−1

>

(
1−

(
mα −mα

1

m1

)(
α− 1

αq

)α−1
)α

?

or equivalently:

1− (mα −mα
1 )

(
α− 1

αq

)α
>

(
1−

(
mα −mα

1

m1

)(
α− 1

αq

)α−1
)α/(α−1)

?

This condition is implied by (3.20) since:

1− (mα −mα
1 )

(
α− 1

αq

)α
= 1−

(
mα −mα

1

m1

)(
α− 1

αq

)α−1(m1(α− 1)

αq

)
,

> 1−
(
mα −mα

1

m1

)(
α− 1

αq

)α−1

,

>

(
1−

(
mα −mα

1

m1

)(
α− 1

αq

)α−1
)α/(α−1)

,

where the first inequality holds under the condition that q > m1(α − 1)/α, which is implied by (3.20)

as q(m1,mα, α) > m1 > m1(α− 1)/α and the second inequality holds since the term in the brackets is

strictly less than 1 for q > q(m1,mα, α) and the exponent is greater than 1.

This implies that the distribution is feasible in F1,α for large values of q. This leads to the desired

result.

3.3 Upper Bound for Large Values of q

To develop the upper bound on the worst-case expected value, we consider the dual formulation for

the moment problem. We will show through an appropriate construction of a dual feasible solution in

conjunction with the primal feasible distribution, that this bound is approximately optimal for large
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values of q.

Proposition 3.4. Consider the ambiguity set F1,α.

(a) When α ∈ (2,∞), the following upper bound is valid:

sup
F∈F1,α

EF [d̃− q]+ ≤ (mα −mα
1 )

ααqα−1 − α2mα−1
1 (α− 1)α−1

(α− 1)α−1, ∀q > q(m1, α), (3.23)

for all values of q greater than q(m1, α) where:

q(m1, α) = m1(α− 1)α(2−α)/(α−1). (3.24)

(b) When α ∈ (1, 2), for all ε ∈ (0, (α/(α− 1))α−1 − α), the following upper bound is valid:

sup
F∈F1,α

EF [d̃− q]+ ≤ (mα −mα
1 )

ααqα−1 − (α+ ε)αmα−1
1 (α− 1)α−1

(α− 1)α−1, ∀q > q(m1, α, ε).

(3.25)

for all values of q greater than q(m1, α, ε) = m1(α− 1)x∗/α where x∗ is defined as the unique root

in the interval ((α+ ε)1/(α−1),∞) to the equation:

xα − (α+ ε)x+ 1−
(
xα−1 − α− ε+ 1

)α/(α−1)
= 0. (3.26)

Proof. We derive the upper bound by constructing a dual feasible solution to (3.4) as follows. Define

y0, y1 and yα as:

y0 =
(α− 1)mα

1 (α− 1)α−1

αα(qα−1 −K)
,

y1 =
−αmα−1

1 (α− 1)α−1

αα(qα−1 −K)
,

yα =
(α− 1)α−1

αα(qα−1 −K)
,

(3.27)

where we choose a strictly positive K in a manner to be specified later in the proof. We first verify that

this forms a dual feasible solution for q satisfying q > K1/(α−1), by checking each of the dual constraints.

Observe that the dual feasibility constraints are equivalent to the following conditions:

min
w≥0

(y0 + y1w + yαw
α) ≥ 0 and min

w≥0
(y0 + q + (y1 − 1)w + yαw

α) ≥ 0 (3.28)

Since the values of the dual variables in (3.27) satisfy yα > 0 and y1 < 0 for q > K1/(α−1), the minimum

value in the first dual constraint is obtained at w∗ = (−y1/(αyα))1/(α−1). Substituting this value, the
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first dual feasibility constraint is equivalent to verifying the condition:

y0 ≥ −y1

(
−y1

αyα

)1/(α−1)

− yα
(
−y1

αyα

)α/(α−1)

,

=
(−y1)α/(α−1)

(αyα)1/(α−1)

(
α− 1

α

)
.

The choice of dual variables in (3.27) satisfy this condition at equality since:

y0 −
(−y1)α/(α−1)

(αyα)1/(α−1)

(
α− 1

α

)
=

(α− 1)mα
1 (α− 1)α−1

αα(qα−1 −K)
−
(
α− 1

α

)
(αmα−1

1 (α− 1)α−1)α/(α−1)

(α(α− 1)α−1)1/(α−1)αα(qα−1 −K)
,

= 0.

Furthermore as yα > 0, the minimum value in the second dual constraint is obtained at:

w∗ = ((1− y1)/(αyα))1/(α−1).

Substituting this in, the second dual feasibility constraint is equivalent to verifying if the following

condition holds:

δ(q) := y0 + q − (1− y1)α/(α−1)

(αyα)1/(α−1)

(
α− 1

α

)
≥ 0? (3.29)

The choice of dual variables in (3.27) leads to the following expression:

δ(q) =
(α− 1)mα

1 (α− 1)α−1

αα(qα−1 −K)
+ q −

(
αα(qα−1 −K) + nmα−1

1 (α− 1)α−1
)α/(α−1)

(α(α− 1))1/(α−1) αα(qα−1 −K)

(
α− 1

α

)
,

=
mα

1 (α− 1)α + ααq(qα−1 −K)−
(
αα−1(qα−1 −K) +mα−1

1 (α− 1)α−1
)α/(α−1)

αα(qα−1 −K)
.

We verify that for q > K1/(α−1) (to ensure positivity of the denominator) and large enough, the following

inequality holds:

mα
1 (α− 1)α + ααq(qα−1 −K)−

(
αα−1(qα−1 −K) +mα−1

1 (α− 1)α−1
)α/(α−1)

> 0?,

Let C = m1(α− 1)/α > 0. Dividing by mα
1 (α− 1)α, this condition is equivalent to verifying that for q

large enough, the following inequality holds:

4(q) :=

(( q
C

)α
− q

(
K

Cα

)
+ 1

)
−
(( q

C

)α−1
−
(

K

Cα−1

)
+ 1

)α/(α−1)

> 0?

We need to verify that 4(q) is strictly positive for large values of q. To do so, we consider two cases:

(a) α ∈ (2,∞): In this case, we set the constant K to αCα−1 = α(m1(α−1)/α)α−1. Then, we need to

verify that for q beyond a certain value q(m1,mα, α) (which will be identified next), the following
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inequality holds:

4(q) =
(( q

C

)α
− α

( q
C

)
+ 1
)
−
(( q

C

)α−1
− α+ 1

)α/(α−1)

> 0?

By setting q(m1,mα, α) = K1/(α−1) = α1/(α−1)C = m1(α − 1)α(2−α)/(α−1), we observe that the

condition is satisfied at equality, since:

4(q(m1,mα, α)) =
(
αα/(α−1) − αα/(α−1) + 1

)
− (α− α+ 1)α/(α−1) ,

= 0.
(3.30)

Furthermore, the derivative of the function 4(q) with respect to q satisfies:

d

dq
4(q) =

α

C

(( q
C

)α−1
− 1−

( q
C

)α−2
(( q

C

)α−1
− α+ 1

)1/(α−1)
)
,

=
αqα−1

Cα

(
1− 1

(q/C)α−1
−
(

1− α− 1

(q/C)α−1

)1/(α−1)
)
,

> 0, ∀q > q(m1,mα, α),

(3.31)

where the first equality is obtained by differentiating the function 4(q), the second equality

is obtained by straightforward algebraic manipulations and the inequality is obtained by using

Bernoulli’s inequality (1−x)t > 1− tx which is valid for t > 1 and 0 < x ≤ 1 and setting t = α−1

and x = (C/q)α−1. Note that since α > 2, q > α1/(α−1)C ≥ C and the conditions t > 1 and

0 ≤ x ≤ 1 are satisfied. This implies that the derivative of the function is positive for all values

of q > q(m1,mα, α). Combining (3.30) and (3.31) implies that 4(q) is positive for all values of q

above the threshold:

4(q) > 0, ∀q > q(m1,mα, α).

Hence the constructed solution is dual feasible for q above the q(m1,mα, α). The objective function

value of this dual feasible solution reduces to the form below which yields the desired result:

y0 + y1m1 + yαmα =
(mα −mα

1 )(α− 1)α−1

ααqα−1 − α2mα−1
1 (α− 1)α−1

.

(b) α ∈ (1, 2): Note that unlike the α > 2 case, setting K = αCα−1 does not ensure a dual feasible

solution for α ∈ (1, 2). To see this, observe that by applying the generalized binomial expansion,

the term 4(q) reduces to:

4(q) =
(( q

C

)α
− α

( q
C

)
+ 1
)
−
∞∑
k=0

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α)k,

where
(
r
k

)
is defined as r(r − 1) . . . (r − k + 1)/k! for general values of r (not necessarily integer).
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Expanding the first few terms, gives:

4(q) =
( q
C

)α
− α

( q
C

)
+ 1−

( q
C

)α
+ α

( q
C

)
− α

2

( q
C

)2−α
−
∞∑
k=3

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α)k,

= −α
2

( q
C

)2−α
+ 1−

∞∑
k=3

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α)k,

where the leading term of the expression with exponent 2− α > 0 has a negative coefficient. This

implies that for large values of q, 4(q) becomes negative. To deal with this, we modify the dual

solution by choosing for a strictly positive small ε > 0, the value K = (α+ε)Cα−1. In this case, we

need to verify that for q above a certain value (that needs to be identified), the following inequality

holds:

4(q) =
(( q

C

)α
− (α+ ε)

( q
C

)
+ 1
)
−
(( q

C

)α−1
− α− ε+ 1

)α/(α−1)

> 0?

Note that, by applying the generalized binomial expansion, the term 4(q) reduces to:

4(q) =
( q
C

)α
− (α+ ε)

( q
C

)
+ 1−

∞∑
k=0

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α− ε)k,

=
( q
C

)α
− (α+ ε)

( q
C

)
+ 1−

( q
C

)α
+ α

(
1 +

ε

α− 1

)( q
C

)
−
∞∑
k=2

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α− ε)k,

=

(
ε

α− 1

)( q
C

)
+ 1−

∞∑
k=2

( α
α−1

k

)( q
C

)α−(α−1)k
(1− α− ε)k,

where the leading term of the expression with exponent 1 has a positive coefficient. The derivative

of the function 4(q) with respect to q is given by:

d

dq
4(q) =

α

C

(( q
C

)α−1
− 1− ε

α
−
( q
C

)α−2
(( q

C

)α−1
− α− ε+ 1

)1/(α−1)
)
. (3.32)

Furthermore, the second derivative of the function 4(q) with respect to q is given by:

d2

dq2
4(q) =

αqα−3

Cα−1
h(q), (3.33)

where h(q) is defined as:

h(q) := (α− 1)
( q
C

)
+ (2− α)

(( q
C

)α−1
− α− ε+ 1

)1/(α−1)

−
( q
C

)α−1
(( q

C

)α−1
− α− ε+ 1

)(2−α)/(α−1)

,

> 0, ∀q > (α+ ε− 1)1/(α−1)C,

(3.34)
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with the nonnegativity of the second derivative following from using the strict form of the weighted

arithmetic and geometric mean inequality given by λx1 + (1 − λ)x2 > xλ1x
1−λ
2 which is valid for

λ ∈ (0, 1) and x1, x2 > 0, x1 6= x2 by setting λ = α − 1 ∈ (0, 1) with α ∈ (1, 2), x1 = q/C and

x2 = ((q/C)α−1 − α − ε + 1)1/(α−1). To finish the proof, observe q = (α + ε)1/(α−1)C is a root of

the equation 4(q) = 0, since:

4(q) =
(

(α+ ε)α/(α−1) − (α+ ε)α/(α−1) + 1
)
− (α+ ε− α− ε+ 1)α/(α−1) ,

= 0.
(3.35)

Furthermore, the derivative:

d

dq
4(q)|q=q =

α

C

(
α+ ε− 1− ε

α
− (α+ ε)(α−2)/(α−1) (α+ ε− α− ε+ 1)1/(α−1)

)
,

=
α+ ε

C

(
α− 1− α (α+ ε)−1/(α−1)

)
,

< 0,

(3.36)

where the first equation is obtained by plugging in q into (3.32), the second equation is obtained

from straightforward algebraic manipulations and the inequality is obtained by observing that for

0 < ε < (α/(α − 1))α−1 − α, the right hand side is negative. Since the function is strictly convex

from (3.34) with limq→∞4(q) = ∞ and one of the roots is given by q where the derivative is

negative, the function is positive for all values of q above the second root q to the equation:

4(q) = 0,

which lies in the range (q,∞). The objective function value of this dual feasible solution reduces

to the form below which yields the desired result for α ∈ (1, 2):

y0 + y1m1 + yαmα =
(mα −mα

1 )(α− 1)α−1

ααqα−1 − (α+ ε)αmα−1
1 (α− 1)α−1

.

3.4 Numerical Example

We provide a numerical illustration of the quality of the bounds from Propositions 3.3 and 3.4 re-

spectively. To compute the worst-case expected value, we solve the dual formulation in (3.4) using a

semidefinite program (SDP) for rational values of α. Assume that α = p/q, where p and q are strictly

positive integers. Then, the dual formulation is given as:

inf y0 + y1m1 + yp/qmp/q

s.t. y0 + y1w + yp/qw
p/q ≥ 0, ∀w ≥ 0,

y0 + q + (y1 − 1)w + yp/qw
p/q ≥ 0, ∀w ≥ 0.

(3.37)
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Applying the transformation by defining the variable d = w1/q or equivalently d = eq, we obtain a

reformulation of the dual problem as:

inf y0 + y1m1 + yp/qmp/q

s.t. y0 + y1d
q + yp/qd

p ≥ 0, ∀d ≥ 0,

y0 + q + (y1 − 1)dq + yp/qd
p ≥ 0, ∀d ≥ 0,

(3.38)

The constraints in (3.38) are the standard nonnegativity conditions on univariate polynomials over the

half-line for which semidefinite representations are available (see Bertsimas and Popescu [4], Lasserre

[33], Nesterov [39]). For example, with α = 3 (p = 3, q = 1), the semidefinite programming formulation

is given as:

inf
y0,y1,y3,a1,b1,c1,a2,b2,c2

y0 + y1m1 + y3m3

s.t.


y0 0 a1 b1

0 y1 − 2a1 −b1 c1

a1 −b1 −2c1 0

b1 c1 0 y3

 � 0,


y0 + q 0 a2 b2

0 y1 − 1− 2a2 −b2 c2

a2 −b2 −2c2 0

b2 c2 0 y3

 � 0,

(3.39)

while for α = 3/2 (p = 3, q = 2), the semidefinite programming formulation is given as:

inf
y0,y1,y3/2,a1,b1,c1,a2,b2,c2

y0 + y1m1 + y3/2m3/2

s.t.


y0 0 a1 b1

0 −2a1 −b1 c2

a1 −b1 y1 − 2c2 0

b1 c2 0 y3/2

 � 0,


y0 + q 0 a1 b1

0 −2a1 −b1 c2

a1 −b1 y1 − 1− 2c2 0

b1 c2 0 y3/2

 � 0,

(3.40)

In Figures 3 and 4, we compare the upper and lower bounds and the worst-case expected value obtained

from solving the SDP. The semidefinite programs were solved in Matlab R2017a with SDPT3 version

4.0 (see Toh, Todd and Tutuncu [46, 47]). To compare the results, we use a mean demand of 50

and assume that m3 = 125150 and m3/2 =
√

125150 respectively where Holder’s inequality requires

m3 ≥ m2
3/2 ≥ m3

1. The value of the worst-case expected values and the bounds for α = 3 are smaller

than the values for α = 3/2 for a given q as should be expected since the former ambiguity set makes

stronger assumptions on the existence of moments. The figures also illustrate that the scaling behavior
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of the bounds as a function of q and provides the range of q from Propositions 3.3 and 3.4 over which

the bounds are valid in these instances. We observe that for α = 3/2 for the range of q considered

in the figure, the upper bounds are closer to the exact value in comparison to lower bound. While

this suggests that it might be possible to construct stronger closed form lower bounds, especially when

α < 2, as we show in the next section, the proposed lower and upper bounds are sufficient to provide

a characterization of the worst-case value for large values of q using the theory of regularly varying

functions.
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Figure 3: Plot (a) compares the upper and lower bounds with the exact bound obtained from solving a SDP as a function of q while
plot (b) provides a log-log plot to characterize the scaling behavior. The mean demand is set to m1 = 50 and the third moment is
set to m3 = 125150. The lower bound is valid for q > 50.013 and the upper bound is valid for q > 57.735.
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Figure 4: Plot (a) compares the upper and lower bounds with the exact bound obtained from solving a SDP as a function of q while
plot (b) provides a log-log plot to characterize the scaling behavior. The mean demand is set to m1 = 50 and the highest moment is
set to m3/2 =

√
125150 with α = 3/2. The bounds are plotted by setting ε = 0.1 where the lower bound is valid for q > 50.034 and

the upper bound is valid for q > 240.67.
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4 Characterization of Heavy-Tail Optimality

In this section, we use the lower and upper bounds to provide a characterization of the tail of the demand

distribution F ∗ for which the distributionally robust newsvendor order quantity remains optimal. To

do so, we make use of the notion of regularly varying distributions that is popularly used to characterize

heavy-tailed distributions (see Bingham, Goldie and Teugels [10], de Haan [20]). The key property of

such distributions is that the behaviour at infinity is similar to the behaviour of a power law distribution.

As we see in this section, this is exactly the type of behavior that F ∗ satisfies.

4.1 Regularly Varying Distributions

We first review the popular paradigm of distributions with regularly varying tails that has been used

to characterize non-negative heavy-tailed distributions. A function u : <+ → <+ is said to be regularly

varying at infinity with index α ∈ < if for all t > 0, we have:

lim
x→∞

u(tx)

u(x)
= tα.

We express this by u ∈ RVα. A non-negative random variable d̃ with cumulative distribution function

F is regularly varying if F := 1− F ∈ RV−α for some α ≥ 0. The distribution function is said to have

tail parameter α if F ∈ RV−α. Two classical examples of regularly varying random variables that are

particularly relevant in our context are:

(a) Pareto(xm, α): This random variable is defined with two parameters - a scale parameter xm > 0

and a shape parameter α > 0 with probability density function given as follows:

g(w) =
αxαm
wα+1

, ∀w ≥ xm, (4.1)

Then for w ≥ xm, we have:

F (w) :=

∫ ∞
w

g(x)dx = xαmw
−α,

and hence clearly F ∈ RV−α. Note that in Grundy’s model discussed in Section 3.2, we obtain a

characterization of the distribution F ∗ as follows:

F ∗(w) = P(d̃∗ ≤ w) =


1−mα

(
α− 1

αw

)α
, if w >

α− 1

α
m1/α
α ,

0 if 0 ≤ w ≤ α− 1

α
m1/α
α .

(4.2)

This defines a Pareto random variable as follows:

d̃∗ = Pareto

(
(α− 1)m

1/α
α

α
, α

)
, (4.3)

where F
∗ ∈ RV−α.

(b) t̃ν(µ, σ2): The t-location scale random variable is defined with three parameters - a location
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parameter µ > 0 and a scale parameter σ > 0 and degree of freedom parameter ν. This distribution

is regularly varying at infinity with index ν. Note that in Scarf’s model discussed in Section 2.1,

we have F
∗ ∈ RV−2.

Regularly varying functions have a rich theory (see Bingham, Goldie and Teugels [10], de Haan [20])

and has found many applications in the study of power-law distributions and extreme risk behavior

in insurance, finance, telecommunication, social networks (see Embrechts, Klüppelberg, Mikosch [21],

Resnick [41] for details). The class of regularly varying functions admits certain nice properties with

respect to summation, composition, taking quotients, integrating and differentiating which helps in

understanding tail behavior of regularly varying random variables, their moments and other functionals.

The following result below attributed to Karamata [34] shows the effect of integration on regularly

varying functions. We state the special case relating to regularly varying distributions with at least first

moment finite (see Resnick [41, Theorem 0.6(a)]). In the following theorems, one can think of U as the

distribution tail and u as the density in the context of distribution functions.

Theorem 4.1 (Karamata’s Theorem). Suppose u : <+ → <+ satisfies u ∈ RV−α for some α > 1.

Then
∫∞
x u(t) dt is finite,

∫∞
x u(t)dt ∈ RV−α+1 and:

lim
x→∞

xu(x)∫∞
x u(t) dt

= α− 1.

The next result provides the reverse implication to Karamata’s theorem and shows what happens

when a regularly varying function is differentiated; see Landau [36], Bingham, Goldie and Teugels [10,

Theorem 1.6.1], de Haan [20, p. 23], Resnick [41, Theorem 0.7] for different formulations and proofs.

Theorem 4.2. Suppose u : <+ → <+ is locally integrable in [0,∞) and define:

U(x) :=

∫ ∞
x

u(t) dt.

(a) If for α > 0, we have functions u and U satisfying:

lim
x→∞

xu(x)

U(x)
= −α, (4.4)

then U ∈ RV−α.

(b) If U ∈ RV−α for α > 0 and u is monotone, then (4.4) holds and u ∈ RV−α−1.

4.2 From the Ambiguity Set F1,α to a Regularly Varying Distribution F ∗

Propositions 3.3 and 3.4 indicate that in fact the tails of the worst-case expected value are close to

a power-law (Pareto-like) tail with index α − 1. In this section, we show that there exists a random

variable d∗ ∼ F ∗ which attains the worst-case expected value for large values of q using the theory of

regularly varying functions.

Theorem 4.3. Given the ambiguity set F1,α as defined in (3.1), the following holds:
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(a) The worst-case expected value as a function of q satisfies:

Π1,α(q) := sup
F∈F1,α

EF [d̃− q]+ ∈ RV−(α−1).

(b) There exists a distribution function F ∗ that does not lie in F1,α, such that for d̃∗ ∼ F ∗, we have:

EF ∗ [d̃∗ − q]+ = sup
F∈F1,α

EF [d̃− q]+, ∀q ≥ 0.

Furthermore, F
∗ ∈ RV−α with EF ∗ [(d̃∗)α1 ] < ∞ for all 0 ≤ α1 < α and EF ∗ [(d̃∗)α1 ] = ∞ if

α1 ≥ α.

Proof. Note that the case α = 2 boils down to Scarf’s model discussed in Section 1.1. From (1.3), we

have for q ≥ m2/2m1,

Π1,2(q) =
1

2

(√
q2 − 2m1q +m2 − (q −m1)

)
.

Now it is easy to check that:

lim
t→∞

Π1,2(tq)

Π1,2(t)
= lim

t→∞

m2
2tq + o(1/t)
m2
2t + o(1/t)

=
1

q
.

Hence Π1,2(q) ∈ RV−1 which is as claimed in (a). Moreover, from (2.3)-(2.5), we have d̃∗ ∼ F ∗ satisfying

(b) where F
∗ ∈ RV−2 and is a censored t-distribution with shape parameter (degree of freedom) ν = 2

for which EF ∗ [d̃∗2] =∞. We now concentrate on α 6= 2 for the rest of the proof.

(a) Notice that from Proposition 3.3, for q > q(m1,mα, α), we have:

Π1,α(q) = sup
F∈F1,α

EF [d̃− q]+ ≥ C1
1

qα−1
, (4.5)

where C1 = (mα −mα
1 ) (α−1)α−1

αα . Furthermore, we have the following upper bounds.

(i) For α ∈ (2,∞), using Proposition 3.4, for q > q(m1, α), we have:

Π1,α(q) ≤ C1
1

qα−1

(
1− C2

qα−1

)−1

, (4.6)

where C2 = mα−1
1

(α−1)α−1

αα−2 .

(ii) For α ∈ (1, 2), fixing small ε > 0 using Proposition 3.4, for q > q(m1, α, ε), we have:

Π1,α(q) ≤ C1
1

qα−1

(
1− C2

qα−1

)−1

, (4.7)

where C2 = mα−1
1

(α−1)α−1

αα−1 (α+ ε).
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Now if α ∈ (2,∞), choose Q∗ = max(q(m1,mα, α), q(m1, α)) and if α ∈ (1, 2), then fix ε > 0 and choose

Q∗ = max(q(m1,mα, α), q(m1, α, ε)). Hence combining (4.5), (4.6) and (4.7), for q > Q∗ we get:

q−(α−1)

(
1− C2

tα−1

)
≤ Π1,α(tq)

Π1,α(t)
≤ q−(α−1)

(
1− C2

(tq)α−1

)−1

.

Since 1− C2/(tq)
α−1 → 1 and 1− C2/t

α−1 → 1, as t→∞, we can infer that:

lim
t→∞

Π1,α(tq)

Π1,α(t)
= q−(α−1).

Hence Π1,α(q) = supF∈F1,α
EF [d̃− q]+ ∈ RV−(α−1).

(b) As a consequence of Theorem 2.1 and Section 3.1, page 32 in Shapiro and Kleywegt [45], we observe

that given the ambiguity set F1,α, there exists a non-negative random variable d̃∗ following a distribution

F ∗ such that, for any q ≥ 0,

Π1,α(q) = sup
F∈F1,α

EF [d̃− q]+ = EF ∗ [d̃∗ − q]+.

We can write:

EF ∗ [d̃∗ − q]+ =

∫ ∞
q

Pr(d̃∗ > w) dw =

∫ ∞
q

F
∗
(w) dw, (4.8)

where F
∗

= 1− F ∗. From part (a), we have for q →∞,∫ ∞
q

F
∗
(w) dw = EF ∗ [d∗ − q]+ = Π1,α(q) ∈ RV−(α−1).

Now since−(α−1) < 0 and F
∗

is non-increasing, using Theorem 4.2 (b) (the converse part of Karamata’s

Theorem), we have F
∗ ∈ RV−α. Note that for any α1 ≥ 0, and some C > 0, we have:

EF ∗ [(d̃∗)α1 ] =

∫ C

0
tα1−1F

∗
(t) dt+

∫ ∞
C

tα1−1F
∗
(t) dt.

The first sum in the summand is bounded above by Cα1 which is finite. The integrand in the second

term tα1−1F
∗
(t) ∈ RVα2 where α2 = −(α− α1)− 1. For α1 < α, we have α2 < −1 and using Theorem

4.1,
∫∞
C tα1−1F

∗
(t) dt is finite (which is what we need) and regularly varying with index (α−α1). Hence

for α1 < α, we have EF ∗ [(d̃∗)α1 ] < ∞. Finally, we show that EF ∗ [(d̃∗)α] = ∞ which implies that any

higher moment will also be infinite. Note that for any q > 0 we have

Π1,α(q)−Π1,α(2q) = EF ∗ [d̃∗ − q]+ − EF ∗ [d̃∗ − 2q]+,

=

∫ 2q

q
F
∗
(y) dy,

≤ qF ∗(q),

since F
∗

is non-increasing. Hence, for large enough q satisfying both (4.5) and (4.6) (or (4.7) depending
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on the value of α), we have

F
∗
(q) ≥ 1

q
[Π1,α(q)−Π1,α(2q)] ,

≥ 1

q

[
C1

qα−1
− C1

(2q)α−1

(
1− C2

(2q)α−1

)−1
]
,

≥ 1

q

[
C1

qα−1
− C1

(2q)α−1
×
(

1− 1

2α−1

)−1
]

(for qα−1 > C2),

=
1

qα
C3,

where C3 = C1(1− 1/(2α−1 − 1)). Hence we have for q large enough:

EF ∗ [(d̃∗)α] =

∫ q

0
tα−1F

∗
(t) dt+

∫ ∞
q

tα−1F
∗
(t) dt,

≥
∫ ∞
q

tα−1F
∗
(t) dt,

≥
∫ ∞
q

tα−1C3

tα
dt = C3

∫ ∞
q

1

t
dt =∞.

Hence for any α1 ≥ α, we also have EF ∗ [(d̃∗)α1 ] =∞.

As a consequence of Theorem 4.3, we can relate the optimal order quantity of the distributionally

robust newsvendor, the optimal worst-case newsvendor cost defined in (1.2) and the newly character-

ized distribution F ∗, when the critical ratio approaches 1. While a similar characterization has been

previously obtained by researchers in modeling the relationship between Value-at-Risk and Conditional

Value-at-Risk in risk management for distributions with regularly varying tails (see Proposition 1 in

Hua and Joe [29]), the connection to distributionally robust optimization does not seem to be have been

made, to the best of our knowledge.

Proposition 4.1. Consider the ambiguity set F1,α with α > 1. For η ∈ (0, 1), let q∗η be an optimal

order quantity to the distributionally robust newsvendor in (1.2) and C∗η be the optimal cost. Then q∗η

is also optimal to a standard newsvendor problem with the underlying demand distribution F ∗ described

in Theorem 4.3(b) and satisfies the property:

q∗η ∼
α− 1

α

1

1− η
C∗η , as η → 1. (4.9)

Proof. Note that from Theorem 4.3(b) , we have

q∗η = arg min
q∈<+

sup
F∈F1,α

(
(1− η)q + EF [d̃− q]+

)
= arg min

q∈<+

(
(1− η)q + EF ∗ [d̃− q]+

)
,
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and hence is optimal for (2.2) with F ≡ F ∗ and d̃∗ ∼ F ∗. Moreover, we have 1− η = P(d̃∗ > q∗η), and,

C∗η = min
q∈<+

sup
F∈F1,α

(
(1− η)q + EF [d̃− q]+

)
,

= min
q∈<+

(
(1− η)q + EF ∗ [d̃∗ − q]+

)
,

= (1− η)q∗η + EF ∗ [d̃∗ − q∗η]+.

Since P(d̃∗ > x) = F
∗
(x) ∈ RV−α, a direct application of Karamata’s theorem (cf. [29], page 351)

yields:

lim
η↑1

C∗η
(1− η)q∗η

= lim
η↑1

(1− η)q∗η + EF ∗ [d̃∗ − q∗η]+
(1− η)q∗η

,

= 1 + lim
η↑1

∫∞
q∗η

P(d̃∗ > x) dx

q∗ηP(d̃∗ > q∗η)
,

= 1 +
1

α− 1
,

=
α

α− 1
.

5 Numerical Examples

In this section, we provide numerical examples to compare the performance of a classical newsvendor

model where the demand is assumed to be known with the distributionally robust newsvendor model.

We consider the following three demand distributions that possess different kinds of tail behavior:

(a) Exponential random variable with mean 50

(b) Lognormal random variable with parameters m = log(50/
√

2) and s =
√

log(2)

(c) Pareto random variable with shape parameter β = 1+
√

2 and scale parameter xm = 50
√

2/(1+
√

2).

The exponential distribution is light-tailed where all moments of finite order exist, the lognormal

distribution is heavy-tailed where all moments of finite order exist ,while the Pareto random variable is

a heavy-tailed distributon with finite moments only for α < β. Among these three distributions, only

the Pareto distribution is regularly varying. The parameter of the demand distributions are selected

such that for all three distributions, the mean is 50 and standard deviation is 50. Hence, Scarf’s model

would prescribe exactly the same optimal order quantity in all the three cases. On the other hand,

since the moments mα are different for these demand distributions when α is not equal to 2, the order

quantities from the distributionally robust newsvendor models would change for other values of α.

In the numerical experiments, to find the robust optimal order quantities, one approach is to directly

use the dual SDP formulations discussed in Section 3.4. For example, for α = 3, this would reduce to
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solving:

min
q,y0,y1,y3,a1,b1,c1,a2,b2,c2

(1− η)q + y0 + y1m1 + y3m3

s.t.


y0 0 a1 b1

0 y1 − 2a1 −b1 c1

a1 −b1 −2c1 0

b1 c1 0 y3

 � 0,


y0 + q 0 a2 b2

0 y1 − 1− 2a2 −b2 c2

a2 −b2 −2c2 0

b2 c2 0 y3

 � 0,

q ≥ 0,

(5.1)

However, a standard reformulation comes at the price that for large values of α, the SDP involves

several additional variables, besides q, y0, y1, yα. In our setting, since the dual constraints are equivalent

to nonnegativity constraints of sparse univariate polynomials, we can use a technique from relative

entropy reformulations for signomial optimization which preserves sparsity (see Chandrasekaran and

Shah [15]). Specifically for any α > 1, the problem is given as follows:

min (1− η)q + y0 + y1m1 + yαmα

s.t. y0 + yαw
α ≥ −y1w, ∀w ≥ 0,

y0 + q + yαw
α ≥ (1− y1)w, ∀w ≥ 0

q ≥ 0,

(5.2)

where the variables y0 and yα must be nonnegative for feasibility. Using a change of variable with

w = ez where z ∈ < and dividing the first two constraints throughout by ez, we get:

min (1− η)q + y0 + y1m1 + yαmα

s.t. y0e
−z + yαe

(α−1)z ≥ −y1, ∀z,
(y0 + q)e−z + yαe

(α−1)z ≥ 1− y1, ∀z.
q ≥ 0,

(5.3)

Equivalently, the formulation reduces to:

min (1− η)q + y0 + y1m1 + yαmα

s.t. min
z
y0e
−z + yαe

(α−1)z ≥ −y1,

min
z

(y0 + q)e−z + yαe
(α−1)z ≥ 1− y1,

q ≥ 0,

(5.4)

where the minimization problems over z are convex optimization problems, since the coefficients of e−z

and e(α−1)z. Now using Lagrangian duality (see Lemma 1 on page 1150 in [15]), we can rewrite the
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problem as a relative entropy optimization problem:

minq,y0,y1,yα,v1,v2,v3,v4 (1− η)q + y0 + y1m1 + yαmα

s.t. v1 log

(
v1

ey0

)
+ v2 log

(
v2

eyα

)
≤ y1,

v3 log

(
v3

e(y0 + q)

)
+ v4 log

(
v4

eyα

)
≤ y1 − 1,

(α− 1)v2 = v1,

(α− 1)v4 = v3,

q, v1, v2, v3, v4 ≥ 0,

(5.5)

which is a convex optimization problem in the variables q, y0, y1, yα, v1, v2, v3, v4. The advantage of

solving (5.5) is that the size of the problem formulation does not grow unlike the SDP reformulation,

thus exploiting sparsity and is particularly efficient when solving the problem for large values of α. Such

a relative entropy formulation can be solved using an off the shelf convex optimization solver such as

MOSEK.

5.1 Value of Incorporating Moments Beyond Scarf’s Model

We compute the optimal order quantities for the distributionally robust model assuming the highest

order moment is given for α = 4/3, 3/2, 7/4, 2, 3, 5 and 8 respectively in cases (a) and (b), while for case

(c), we consider α = 4/3, 3/2, 7/4 and 2 only. Note that for the Pareto random variable in case (c), the

moments are finite only for α < 1 +
√

2 ≈ 2.4142. We estimate the optimal order quantities for critical

ratios η in the range [0.97, 0.99998].

In Figures 5, 6 and 7, we provide the log-log plots of the distributionally robust optimal order

quantities and the optimal order quantities for the exponential, lognormal and Pareto distributions

respectively. We observe in all the three figures that as higher order moment information is assumed

to be known (higher values of α), the robust solution gets closer to the optimal order quantity for the

distribution, as the critical ratio gets higher. For the lognormal demand distribution, for the specified

range of critical ratios, we observe that the optimal order quantity for α = 8 still exceeds α = 5, but

as the critical ratio increases further, this result is reversed (see Table 1). Note that on the other hand,

Scarf’s model would prescribe the same optimal order quantity for all three cases and does not capture

the tail behavior. This clearly indicates the value of having additional moment information in better

approximating the tail behavior of the optimal order quantity for a given distribution.

η q∗logn q∗η (α = 5) q∗η (α = 8)

0.99998 1080.46 1389.84 1913.45
0.999998 1643.65 2177.66 2549.77
0.9999998 2405.78 3371.15 3134.68
0.99999998 3418.24 4414.89 4292.02

Table 1: Comparison of optimal order quantities for lognormal with the distributionally robust model for α = 5 and α = 8.
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Figure 5: The log-log plot compares the optimal order quantities for the distributionally robust newsvendor with α =
4/3, 3/2, 7/4, 2, 3, 5, 8 with the optimal order quantity for the exponential distribution for η ∈ [0.97, 0.99998]. As the figure illus-
trates for larger critical ratios, the knowledge of higher moment information makes the robust model less conservative and closer to
the y = x line.
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Figure 6: The log-log plot compares the optimal order quantities for the distributionally robust newsvendor with α =
4/3, 3/2, 7/4, 2, 3, 5, 8 with the optimal order quantity for the lognormal distribution for η ∈ [0.97, 0.99998]. As the figure illus-
trates for larger critical ratios, the knowledge of higher moment information makes the robust model less conservative and closer to
the y = x line. Only for α = 8, the line is above the α = 5 line for the chosen critical ratios, but the slope indicates that for even
higher critical ratios, the robust order quantities for α = 8 will get closer to the y = x in comparison to the α = 5. This is verified in
Table 1.
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Figure 7: The log-log plot compares the optimal order quantities for the distributionally robust newsvendor with α = 4/3, 3/2, 7/4, 2
with the optimal order quantity for the Pareto distribution for η ∈ [0.97, 0.99998]. As the figure illustrates for larger critical ratios,
the knowledge of higher moment information makes the robust model less conservative and closer to the y = x line.

5.2 Scaling Behavior of Optimal Order Quantities and Optimal Costs

We next validate the scaling behavior of the optimal order quantity and the optimal cost for the

distributionally robust model as discussed in Proposition 4.1, illustrating the regularly varying structure

and compare it with the corresponding behavior of the optimal solution and the optimal costs for the

three distributions in (a)-(c). The scaling constant as the critical ratio approaches 1 for the robust

model is provided in Table 2 for the specified values of α. In Figures 8, 9 and 10, we plot these values

for the range of critical ratios in [0.97, 0.99998]. In the case of the exponential distribution and the

lognormal distribution, a simple calculation indicates that these ratios converge to 1 as the critical ratio

approaches 1, while the distributionally robust newsvendor model shows a different scaling behavior.

On the other hand, for the Pareto distribution, the ratio of (β − 1)/β is exactly valid for all critical

ratios η as shown in the figure.

α 4/3 3/2 7/4 2 3 5 8

lim
η→1

(1− η)q∗η
C∗η

=
α− 1

α
1/4 1/3 3/7 1/2 2/3 4/5 7/8

Table 2: Scaling behavior of the optimal order quantity and the optimal cost for the distributionally robust model.

5.3 Robustness to Contamination

In this section, we compare the performance of the two optimal order quantities - the solution to the

classical newsvendor problem and the distributionally robust newsvendor problem. To compare the

performance, we use a mixture of two distributions, F0 and F1, where F0 is the original distribution

and F1 is a heavy-tailed (contamination) distribution. The mixture distribution is parameterized by
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Figure 8: The plot provides the ratios (1 − η)q∗η/C
∗
η for the distributionally robust newsvendor model (with different values of α)

and the corresponding values for the exponential distribution (which is the dashed line, which tends to 1 as η tends to 1). The figure
illustrates the difference in the scaling behavior of the two models with the limit value given by the numbers in Table 2.
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Figure 9: The plot provides the ratios (1 − η)q∗η/C
∗
η for the distributionally robust newsvendor model (with different values of α)

and the corresponding values for the lognormal distribution (which is the dashed line which tends to 1 as η tends to 1). The figure
illustrates the difference in the scaling behavior of the two models with the limit value given by the numbers in Table 2.
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Figure 10: The plot provides the ratios (1− η)q∗η/C
∗
η for the distributionally robust newsvendor model (with different values of α)

where the moments are obtained from a Pareto distribution. The Pareto distribution is regularly varying and in this case, the ratio
is exactly

√
2/(1 +

√
2) ≈ 0.5858.

λ ∈ [0, 1]:

Fλ ≡ (1− λ)F0 + λF1, 0 ≤ λ ≤ 1.

Such a contamination technique has been proposed in Dupačová [19] to analyze the stability of optimal

solutions in stochastic programs when the true distribution is contaminated by another distribution.

For the choice of the distribution F0, we use each of the distributions in (a)-(c). A natural choice for

the contamination distribution is F1 = F ∗ where F ∗ is the distribution described in Theorem 4.3(b)

and Proposition 4.1 for a chosen α. When λ = 0, the optimal order quantity is the solution to the

newsvendor problem with the corresponding distribution in (a)-(c). On the other hand, when λ = 1,

the optimal order quantity is the solution to the distributionally robust newsvendor for the given α.

Denote the corresponding optimal order quantities by q∗0 and q∗1 respectively. The order quantities

satisfy:

C0(q∗0) ≤ C0(q∗1),

C1(q∗0) ≥ C1(q∗1),
(5.6)

where C0 is the newsvendor cost under distribution F0 and C1 is the newsvendor cost under distribution

F1. Then, a natural question is the what is the value of λ∗, beyond which the robust order quantity

outperforms the classical solution under contamination. If λ∗ < 0.5, it indicates that with less than

50% contamination, the robust order quantity outperforms the standard newsvendor order quantity.

On the other if λ∗ > 0.5, this indicates that more than 50% contamination is needed for the robust

order quantity to outperform the standard newsvendor order quantity. In Figures 11, 12 and 13, we plot

the λ∗ values for each of the exponential, lognormal and Pareto distributions with the contaminating

distribution given by the regularly varying distribution for the corresponding α value. The figures

illustrate that for high service levels, with even a small amount of contamination, the distributionally
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robust models will outperform the standard newsvendor solution.
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Figure 11: The plot provide the λ∗ values for the case where the original distribution is exponential. In each of the cases, we see
that as the critical ratio approaches 1, the value of λ∗ rapidly drops to 0. This indicates that a small amount of contamination is
sufficient for the robust solution to outperform the classical solution for high service levels.

6 Conclusion

The goal of this paper was to characterize properties of the optimal order quantities in a newsvendor

model under a robust framework of distributional ambiguity with moment constraints. Building on the

observation that the optimal order quantity in Scarf’s model is also optimal for a censored student-t

distribution with parameter 2, we show that by assuming knowledge of the first and α-th moment,

the optimal order quantity is also optimal for a regularly varying with tail index α. This provides a

characterization of a new distribution, which does not lie in the original ambiguity set, but for which

the order quantity from a robust model, continues to remain optimal. We provied numerical evidence

to illustrate these results and its applicability.

Several interesting questions still remain to be answered. While our results provide a characterization

of the distribution F ∗ in the tails with moment information, it would be interesting to see if there is a

more precise analytical characterization of other aspects of the distribution F ∗. Secondly, it would be

interesting to characterize the distribution F ∗ for other types of ambiguity sets that include distributions

around a nominal distribution using other probability metrics. We believe this will help managers better

understand as to the types of data under which, the solutions from other robust models will do. Lastly,

implications of these results for multidimensional newsvendor problems need to be studied. We leave

this for future research.

38



0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6
*

 = 4/3
 = 3/2
 = 7/4

0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

*

 = 2

0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

*

 = 3
 = 5
 = 8

Figure 12: The plot provide the λ∗ values for the case where the original distribution is lognormal. In each of the cases, we see
that as the critical ratio approaches 1, the value of λ∗ rapidly drops to 0. This indicates that a small amount of contamination is
sufficient for the robust solution to outperform the classical solution for high service levels.
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Figure 13: The plot provide the λ∗ values for the case where the original distribution is Pareto. In each of the cases, we see that as
the critical ratio approaches 1, the value of λ∗ rapidly drops to 0. This indicates that a small amount of contamination is sufficient
for the robust solution to outperform the classical solution for high service levels.
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