
Fast Core Pricing for Rich Advertising Auctions

Rad Niazadeh
Chicago Booth School of Business, University of Chicago, rad.niazadeh@chicagobooth.edu

Jason Hartline
Computer Science Department, Northwestern University, hartline@eecs.northwestern.edu

Nicole Immorlica
Microsoft Research New England, nicimm@microsoft.com

Mohammad Reza Khani
Amazon, khani87@gmail.com

Brendan Lucier
Microsoft Research New England, brlucier@microsoft.com

Standard ad auction formats do not immediately extend to settings where multiple size configurations

and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly

resembles a combinatorial auction with complementarities, where truthful auctions such as the Vickrey-

Clarke-Groves (VCG) can yield unacceptably low revenue. We therefore study core selecting auctions, which

boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve

their utilities by switching to a different outcome. Our main result is a combinatorial algorithm that finds an

approximate bidder optimal core point with almost linear number of calls to the welfare maximization oracle.

Our algorithm is faster than previously-proposed heuristics in the literature and has theoretical guarantees.

We conclude that core pricing is implementable even for very time sensitive practical use cases such as

realtime auctions for online advertising and can yield more revenue. We justify this claim experimentally

using the Microsoft Bing Ad Auction data, through which we show our core pricing algorithm generates

almost 26% more revenue than VCG on average, about 9% more revenue than other core pricing rules known

in the literature, and almost matches the revenue of the standard Generalized Second Price (GSP) auction.

Key words : Sponsored search auctions, Core pricing, VCG auction, GSP auction, Sale of ad space,

Combinatorial auction

1. Introduction

Auctions with combinatorial preferences are prevalent in practice. One prominent example is the sale

of online advertising space in search engines, also known as the rich advertising auction (Cavallo

et al. 2017), where advertisers with ads of various shapes, configurations, and decoration options have

combinatorial and potentially complementary preferences over the space of ads. A common scenario

is when each advertiser has several possible ads with varying sizes that take up a different number of

1

ar
X

iv
:1

61
0.

03
56

4v
4

 [
cs

.G
T

]
 8

 N
ov

 2
02

0

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
2

lines. The platforms selling the ad space (with limited number of lines) uses auctions to determine

which of these “rich ads” will appear where, and at what price.

Standard solutions for a simple separable position environment – which is the common format for

the sponsored search, e.g., see Edelman et al. 2007 – cannot easily be extended to the sale of ad

space setting. Auctions such as the Generalized Second Price (GSP) auction are typically ill-defined

in combinatorial environments, as their payment rule is tied to the setting where the allocation

problem is only ranking the winner ads. Such an auction can only be extended in ad-hoc ways to

a general combinatorial auction –e.g., charging each advertiser the bid of the next advertiser in the

order regardless of ad sizes– which lack economic grounding.

We instead consider combinatorial auctions for the sale of ad space problem. Among possible

options, two are of particular note: (i) Vickrey-Clark-Groves (VCG) auction (Vickrey 1961, Clarke

1971, Groves 1973) and (ii) core-selecting auctions (Ausubel and Milgrom 2006, Milgrom 2007). These

auctions are direct revelation mechanisms and select the optimal welfare allocation with respect to the

reported bids, i.e., the one with the maximum total declared value for the bidders. Optimizing welfare

itself is a computationally hard problem in many cases of interest (e.g., see Nisan and Ronen 2007,

Sandholm 2002). However, even in settings where this difficulty can be resolved satisfactorily (e.g.,

via heuristics that have exponential runtime in the worst case but tend to solve practical instances

quickly), we still need to address the problem of computing the payments.

In VCG autions, the payment of a bidder is the externality that he imposes on other bidders by

consuming the resources allocated to him. While rarely used in practice (Ausubel and Milgrom 2006),

this auction is a useful point of comparison as it has several important theoretical properties. First,

among welfare-maximizing auctions, it has the unique payment rule (up to additive offsets) that

incentivizes truthtelling as a dominant strategy. Second, given access to an oracle which computes the

optimal welfare allocation, it is computationally efficient: it only takes n+ 1 oracle calls to compute

the allocation and payments, where n is the number of bidders in the auction.

Unfortunately, in the presence of complementarities, the revenue generated by VCG can be quite

low compared to the bidders’ values, and the resulting outcome can seem unfair. Consider, for exam-

ple, a setting with two items, A and B, and three bidders, 1, 2, and 3. Suppose bidder 1 only wants

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
3

item A and has a value of $100 for it. Similarly, bidder 2 only wants item B and also has a value of

$100 for it. Bidder 3 has complementary preferences. He only wants both A and B and has a value

of $101 for this bundle. In this setting, the VCG auction gives item A to bidder 1 and item B to

bidder 2 and charges each of them a price of $1 for a total revenue of $2. This revenue is both low

compared to the values, and also seemingly unfair from the point of bidder 3 who would be willing

to pay quite a bit more than the winners.

Core-selecting auctions attempt to address both the revenue and fairness issues of VCG by achieving

outcomes that are immune to renegotiations among coalitions, while retaining welfare optimality

with respect to the reported bids. Here, payments are set such that no group of bidders, including

the auctioneer, can simultaneously improve outcomes (with respect to reported bids) by switching to

different allocations and payments. In the above example, if the bidders bid their true values, then

any set of payments such that bidders 1 and 2 jointly pay at least $101 while each paying at most

$100 could be the outcome of a core-selecting auction. Notably, given reported bids, all possible core

payments form a polytope in Rn – which we refer to as the core polytope. This polytope has economic

grounding in cooperative game theory (Osborne and Rubinstein 1994).

Core-selecting auctions are not truthful in the sense of dominant strategies, but there are core

selecting auctions that minimally sacrifice the incentives. In particular, Pareto optimal – also known

as bidder optimal – core points are of interest in this paper. In these auctions, it is not possible to

reduce any bidder’s payment and still remain in the core. In the above example, having each of bidders

1 and 2 pay $100 is a core outcome, but is not bidder-optimal; having bidder 1 pay $50 and bidder

2 pay $51 is bidder-optimal. As demonstrated in Day and Raghavan 2007, Day and Milgrom 2008,

picking a bidder optimal core point minimizes the maximum of agents’ utilities from any deviations

from truthful reporting, subject to selecting a core outcome. Moreover, these auctions have natural

(full-information) equilibria that generate welfare-optimal outcomes; see also Day and Cramton 2012

for a discussion on desirable practical properties of bidder-optimal core points and their variations.

As a result, they have been used in practice to sell wireless spectra (Cramton 2013) and more recently

are proposed for use in selling online advertising (Goel et al. 2015).

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
4

To be truly practical for large frequent auctions like sponsored search ad auction, an auction

must be (i) highly computationally efficient, (ii) simple enough for implementation purposes, and

(iii) extendable to different economic objectives. As core-selecting auctions output optimal-welfare

allocations, the computation associated with finding such allocations is unavoidable. However, in

practice and in particular for the application of sale of ad-space, the problem is typically structured

so that it is possible to compute welfare-optimal (or near-optimal) allocations quickly for realistic

preferences. In fact, as we elaborate more later, bidding languages commonly used in practice for

sponsored ad space express preferences for which one can compute (near) optimal outcomes. The main

issue we tackle in this paper is the additional difficulty of computing bidder-optimal core payments,

given a a satisfactory solution to the welfare optimization problem.

To make this separation clear, we assume oracle access to a slightly more general version of the

welfare optimization algorithm. This oracle can handle truncations of reported bids, in which each

bidder’s bid for each bundle is shifted by the same additive offset (for more details see Definition 6).

Notice that while this oracle might be as computationally tractable as the vanilla welfare-optimization

oracle – which is indeed the case for ad auctions with simple bidding languages; see Section 4– they

can potentially impose further computational challenges. Nevertheless, this form of oracle is common

in the core auction literature (Ausubel and Milgrom 2002). Prior work on core computation assume

access to such an oracle and compute core outcomes using either heuristics or computationally inten-

sive convex programming/linear programming methods (Day and Milgrom 2008, Day and Raghavan

2007, Erdil and Klemperer 2010, Bünz et al. 2015).

1.1. Main results

We consider both the theoretical problem of designing a fast algorithm to find a bidder-optimal core

point in a general combinatorial auction (Sections 3), and also the experimental problem of deploying

our algorithm in the highly time sensitive sponsored search ad auction application with rich ads

(Section 4). For the latter, we use Microsoft Bing ad auction models and data.

Theoretical results: Fast core pricing rule. Our main result is a fast and simple deterministic

algorithm for computing bidder-optimal core payments, given access to an oracle that finds a welfare-

optimal allocation for (truncated) profiles of buyer valuations. In contrast to prior work that find

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
5

specific bidder optimal core points (Day and Raghavan 2007, Day and Cramton 2012), we only find

a feasible bidder optimal point; in return, our algorithm provably makes almost linear calls to the

oracle. The algorithm also reveals some specific geometric structures of the core payments polytope.

Theorem (informal): Given oracle access to a welfare-optimal algorithm (for truncated val-

ues), there is a deterministic algorithm computing an ε-approximate bidder-optimal core point with

O(n log(n/ε)) oracle evaluations and in time O(n2 log(n/ε)), where n is the number of bidders.

As discussed earlier, the set of core payments (or equivalently utilities) is a polytope, determined

by the (exponentially many) constraints that no subset of bidders can simultaneously improve their

utilities. Intuitively, the algorithm proceeds by exploring this polytope through making multiple calls

to the oracle. Starting from an arbitrary point in the core, the algorithm attempts to increase bidder

utilities, which corresponds geometrically to following a positively-oriented ray until hitting a facet

of the polytope. It then determines whether there exists a subset of the bidders whose utilities can be

increased while remaining in the core, and if so continues to follow an appropriate ray. This process

repeats until a bidder-optimal core point is reached.

This geometric intuition corresponds to a water-filling algorithm, in which the utilities of agents

are simultaneously increased and frozen as constraints become tight. Implementing this approach

requires an efficient test for inclusion in the core polytope, as well as a method for determining which

bidders are involved in a tight core constraint. It turns out that both questions can be expressed

as queries to the welfare-optimization oracle, with appropriately truncated valuation profiles. This

result involves an analysis related to the geometry of the core constraints. Given these tests, finding a

tight core constraint can be done using binary search (which is what generates the logarithmic factors

in our runtime). The algorithm terminates after at most n iterations, since each iteration will freeze

the payment of at least one bidder. Notice that this result is naturally related to the well-known

equivalence of optimization and separation, and indeed can be interpreted as exploiting the geometry

of the core to implement and employ a specially-tailored separation oracle.

Compared to the VCG auction, our algorithm finds payments nearly as quickly (specifically, with

only a logarithmic factor more oracle calls), and produces higher revenue and a more fair outcome

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
6

on the same profile of bids. Notably, by varying the direction of binary search in the core polytope,

our algorithm can be parameterized to favor different core outcomes. For example, we can maximize

the minimum utility enjoyed by any winner (subject to being in the core), or we can attempt to

equalize, across all winners, the ratio between their utility and the utility they would obtain in the

VCG outcome. We briefly explain this degree of flexibility in Section 3.4.

The main drawback of our proposed core pricing algorithm over VCG is the lack of truthfulness

(similar to GSP). Computational guarantees are under worst-case and hence do not degrade with

strategic play. For revenue (or even welfare) objective, a more principled way is considering outcomes

at equilibria of the auctions. As we discuss in Section 3.4 and further in Section C.2 of the supple-

mentary material, our auction has a natural full information ε-Nash equilibrium in which players

play truncation strategies, i.e., shade all values by an additive constant. This equilibrium, which has

been studied in the literature on core selecting auctions (Milgrom 2007, Day and Raghavan 2007) is

welfare-optimal and has higher revenue than VCG’s dominant strategy equilibrium. Natural bidder

dynamics can converge to this equilibrium, specially for the sale of ad space problem, as we explain in

Section C.2 of the supplementary material. We also shed insights on a few future directions to reason

about the revenue at equilibrium, e.g., using the computational approach introduced in Bosshard

et al. 2017, Lubin and Parkes 2009, Bünz et al. 2018b to approximate the Bayes Nash Equilibrium

(BNE) of core selecting auctions.

Experimental results: Sale of ad space problem. We conduct a numerical study on using our

core selecting auction for the sale of ad space problem. We test the performance of our proposed core

auction using the data collected from Microsoft Bing ad auction for text ads. Our dataset consists of

around 20,000 auctions, each auction containing at most 23 advertisers, with configurations ranging

from the basic three lines up to fourteen lines. We compare the performance of our core auction

against VCG, minimum revenue core auction of Day and Raghavan (2007), quadratic payment rule

of Day and Cramton 2012, and a linear programming based method that finds a minimum revenue

point in the core by running the volumetric-barrier based cutting plane method of Vaidya 1989, 1996.

We also compare with two ad-hoc variants of GSP: (i) GSP that generates the optimal allocation

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
7

and charges each ad a price equal to the bid of the next ad in the ordering, and (ii) GSP that uses a

greedy allocation – ignoring ad sizes – with the same payment rule.

All of the above algorithms except the GSP auction with greedy allocation require an allocation

oracle that finds the optimal welfare (potentially with truncated valuation profiles). We chose to

implement such an optimal oracle. We show this oracle has an implementation that runs in time

polynomial in the number of ads and amount of ad space. See Section 4.1 for more details.

Our numerical study indicates the existence of complementarities in our setting, which is induced

by variable length ads and the fact that we have a fixed amount of space for ads to be shown. See

Remark 1 for an experimental justification, and Example 1 for a theoretical justification. As a result,

VCG leads to significantly lower revenue than all of core auctions. Considering the reported bids as

a proxy for true valuations and analyzing the advertisers at the full information Nash equilibrium

of bidder optimal core auctions (see Section C.1 and Section C.2 in the supplementary material for

more details), our experimental results suggest that our core auction obtains 26% more revenue than

VCG, and minimum revenue core auctions obtain 15% more revenue than VCG. Moreover, our core

auction almost matches the revenue of GSP and obtains 5% improvement over GSP with greedy

allocation.

The sale of ad space problem is highly time sensitive (as Bing runs around 9.6 billion auctions in

a month, which is on average 3.7 auctions every millisecond), and both running time and number

of query calls to an optimal welfare allocation oracle matter when measuring the performance of

an auction in this domain. We use VCG as a benchmark to compare the running time and query

complexity of different methods. Our numerical experiments suggest that our fast core pricing rule

yields an improvement in terms of speed (at least 6-10 times faster) over the other core pricing

methods we test (Day and Raghavan 2007, Day and Cramton 2012) and the LP based method for

finding a minimum revenue core point using Vaidya’s algorithm (Vaidya 1989, 1996). Moreover, the

running time of our core pricing algorithm is no more than 7.5 times the running time of VCG on

average based on our numerical experiments, which we believe is still in an acceptable speed range

for the sale of ad space application. As expected, both ad-hoc variants of GSP have faster running

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
8

time compared to all core pricing methods and VCG (as they need at most one call to the optimal

welfare allocation oracle), but they lack any economic groundings.

In terms of query complexity, our core pricing algorithm makes far fewer calls to this oracle com-

pared to other core pricing methods. Our numerical experiments suggest that the number of oracle

calls of both of the core pricing methods in Day and Raghavan (2007) and Day and Cramton (2012)

are almost 2.1 times of our algorithm, and Vaidya’s algorithm makes almost 5.9 times number of calls

to the oracle compared to our algorithm. At the same time, our algorithm makes only 3.1 times the

number of calls of the VCG auction (which theoretically speaking makes exactly n+ 1 calls to the

oracle, where n is the number of bidders). We believe this query complexity positions our algorithm

in an acceptable range to be used for the sale of ad space application.

1.2. Further Related work

The ascending proxy auction was proposed by Ausubel and Milgrom 2002 as an alternative to VCG

to resolve practical issues such as low revenue. This ascending auction terminates at a bidder optimal

core outcome. This line of research was further developed by considering the general notion of core-

selecting package auctions (Day and Raghavan 2007, Day and Milgrom 2008, Day and Cramton 2012).

These auctions are used extensively in the public sector where it is of great concern that auctions

are efficient and renegotiation-proofs (e.g., see Ausubel and Cramton 1999).

Bidder optimal core outcomes are implementable at equilibrium, but are not truthful. Payment

rules that pick particular points in the core have been proposed in the literature to mitigate this issue.

For example, the difference between a final payment and the VCG payment represents a measure of

“residual incentive to misreport”. Day and Raghavan 2007 therefore proposed the minimum-revenue

point and Day and Cramton 2012 proposed the closest-to-VCG point, and they showed these are

the bidder optimal core points that minimize `1-norm and `2-norm of this difference respectively. An

alternative practical core payment rule proposed by Erdil and Klemperer 2010 considers robustness

with respect to the submitted bids. More recently, computational approaches to approximate the

BNE of different core payments have been proposed (Bosshard et al. 2017, Lubin and Parkes 2009,

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
9

Lubin et al. 2015, Bünz et al. 2015, 2018b,a), which was further used for an algorithmic search for

“good” core-selecting rules (Bünz et al. 2018b,a)

The winner determination problem for truncated values is effectively a separation oracle for the

core polytope. Therefore, given access to this separation oracle, one can optimize convex objectives

(e.g., revenue or `2-distance from VCG) exactly over the core polytope in polynomial time using

the Ellipsoid algorithm (Grötschel et al. 1981). However, this approach is rather slow in practice.

Core pricing rules of Day and Raghavan 2007 and Day and Cramton 2012 take a different approach:

they keep track of a small relaxation to core polytope that iteratively becomes tighter, and at each

iteration solve a linear programming or quadratic programming (based on the objective function) to

eventually find a feasible core point. To update the relaxation, these methods rely on a core constraint

generation family of algorithms (Day and Raghavan 2007, Day and Cramton 2012, Bünz et al. 2015),

simplest of which send queries to the core separation oracle to find the most violated core constraint

and add it to the current relaxation of the core to make it tighter.

Given the separation oracle for the core polytope, another approach is using “cutting plane meth-

ods” to utilize this oracle efficiently in order to find a minimum revenue core point much faster than

the Ellipsoid method. One such option is Vaidya’s algorithm (Vaidya 1989, 1996), which is essentially

an interior point method using the volumetric barrier (see Bubeck et al. 2015 for details). Moreover, it

finds an ε-close point to a minimum revenue core point with oracle complexity of O ((n/ε) logn) and

extra computation of O (n4/ε). Alternatively, we can use the more recent fast cutting-plane methods

for the feasibility linear programs of Lee et al. 2015 in a black-box fashion, which then finds an ε-close

minimum revenue core point with high probability, using O
(
n(1+ε) logO(1)(n/ε)

)
oracle evaluations

in expectation and additional time O
(
n3 logO(1)(n/ε)

)
. Our algorithm has several advantages over

this general purpose approach in terms of running time, oracle complexity, usage of randomness,

and practicality. See Section 3.4 for a comprehensive theoretical comparison, and Section C.4 in the

supplementary material for a list of practical obstacles to use this approach in our sale of ad space

application.

Numerous work have proposed core auctions specifically to address known drawbacks of VCG

auctions. The Bayesian setting was studied by Ausubel and Baranov 2010, and more recently by Sano

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
10

2012 and Goeree and Lien 2016, providing theoretical and experimental evidence that the revenues

and efficiency from core-selecting auctions improve as correlations among bidders’ values increase,

while the revenues from the VCG auction worsen. Another issue with VCG is the lack of revenue

monotonicity: adding bidders or increasing bids can potentially decrease the seller’s revenue (Goel

and Khani 2014, Lamy 2010, Rastegari et al. 2011, Beck and Ott 2009). Beck and Ott 2009 and

Lamy 2010 proposed revenue-monotone core selection.

Sponsored search has been a central research topic in the past decade (Edelman et al. 2007,

Aggarwal et al. 2006, Wilkens et al. 2016, 2017). The closest in the literature to our sale of ad space

application is the work of Cavallo et al. (2017) that considered the algorithmic question of finding

allocation and pricing for rich ads, but did not study core pricing specifically.

2. Preliminaries

We describe our algorithm and theoretical results in a general model of combinatorial auctions first,

then return to a restricted model tailored to the ad auction setting in Section 4. Consider a combi-

natorial auction with n bidders and m items. Let N , {1,2, . . . , n} be the set of bidders. The auction

asks each bidder to declare a valuation function, which assigns a value to each subset of the items.

We will write bi for the valuation function submitted by agent i. We assume that valuation functions

are normalized so that bi(∅) = 0, and all values are in [0,1]. An allocation is an assignment of item

bundles to agents, {xi}i∈N , such that xi ∈ 2[m] for each i and xi ∩xj = ∅ for all i 6= j.

Given the bid functions {bi}i∈N , where bi : 2[m]→R maps each bundle of items to a real number,

the auction will return an outcome. An outcome is consisting of an allocation {xi}i∈N and a payment

pi ≥ 0 for each bidder. Since our focus is the computational problem of finding core payments, and

not buyer incentives, we do not differentiate between true and declared valuations in our notation.

With this convention, πi denotes the resulting utility of bidder i, so that πi = bi(xi)− pi. We write

π0 for the seller’s revenue. Throughout this paper, we assume that the auction’s allocation rule does

not allocate sets of zero value. We say that a feasible allocation {x∗i }i∈N is welfare-maximizing if and

only if {x∗i }i∈N ∈ argmax
x:xi∩xj=∅,i6=j

∑
i∈N bi(xi). For any feasible allocation {xi}i∈N , let W ({xi}i∈N), {i ∈

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
11

N : xi 6= ∅} be the corresponding winners of this allocation. Let w(S,{bi(·)}i∈N) be the maximum

welfare of coalition S ⊆N with respect to the bids {bi}. That is, w(S,{bi(·)}i∈N) is the maximum

welfare of any allocation that assigns items only to agents in S. Unless noted otherwise, we write

w(S),w(S,{bi(·)}i∈N) for notational convenience.

Definition 1 (Winner Set). A subset W ⊆ N of bidders is a winner set with respect to bids

{bi(·)}i∈N if and only if there exists a feasible allocation {x∗i }i∈N such that

{x∗i }i∈N ∈ argmax
x:xi∩xj=∅,i6=j

∑
i∈N

bi(xi) (1)

and W = {i∈N : x∗i 6= ∅}. Let W({bi(·)}i∈N) be the set of winner sets with respect to {bi(·)}i∈N .

Definition 2 (Core). A vector of non-negative utilities {πi}i∈N∪{0} is said to be in the core with

respect to the submitted bids {bi(·)}i∈N if no blocking coalition exists, that is, no group of bidders

plus the seller can deviate to simultaneously improve their outcomes, including the seller’s revenue:

∀S ⊆N : π0 ≥w(S)−
∑
i∈S

πi. (2)

Similarly, an outcome {(xi, pi)}i∈N is said to be in the core if its corresponding vector of utilities

{πi}i∈N∪{0} is in the core, where πi = bi(xi)− pi for i∈N and π0 =
∑

i∈N pi.

It is easy to see that any core outcome {(xi, pi)}i∈N is welfare-maximizing, as for coalition N we have∑
i∈N bi(xi) = π0 +

∑
i∈N πi ≥w(N). Therefore, one can rewrite Equation 2 as

∀S ⊆N :w(N)−
∑
i∈N

πi ≥w(S)−
∑
i∈S

πi . (3)

We have defined the core with respect to utilities and with respect to outcomes. The following

lemma shows that given a core point in utility space, it is possible to reconstruct core allocations and

payments. This motivates us to focus on the problem of computing core points in utility space.

Lemma 1. Given a core point {πi}i∈N and any maximum welfare allocation {x∗i }i∈N , let p∗i = bi(x
∗
i)−

πi for all i∈N . Then {(x∗i , p∗i)}i∈N will be an outcome in the core.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
12

Proof. By Definition 2, as long as payments are non-negative, we have the outcome {(x∗i , p∗i)}i∈N

to be in the core. So, we only need to show for every i ∈ N , πi ≤ bi(x∗i). By looking at the core

constraint for coalition N \ {i}, we have:

w(N)−
∑
j∈N

πj ≥w(N \ {i})−
∑

j∈N\{i}

πj⇒

πi ≤w(N)−w(N \ {i}) =
∑
j∈N

bj(x
∗
j)−w(N \ {i})

≤
∑
j∈N

bj(x
∗
j)−

∑
j∈N\{i}

bj(x
∗
j) = bi(x

∗
i) ,

where the last inequality holds as {x∗j}j∈N\{i} is a feasible allocation for bidders N \ {i}. �

Our goal is to compute bidder optimal core points, i.e., points in the core that are not dominated

by any other point in the core with respect to bidder utilities. We relax this condition by defining

ε-bidder optimal core points, i.e., core points that are ε-close to being bidder Pareto optimal.

Definition 3. A vector of utilities {πi}i∈N is said to be ε-bidder optimal for ε > 0, if

• {πi}i∈N is in the core with respect to the submitted bids {bi(·)}i∈N , and

• There exists no other core point {π′i}i∈N such that for every bidder i ∈N , π′i ≥ πi, and for at

least one bidder j, π′j >πj + ε.

Similarly, an outcome {(xi, pi)}i∈N is called ε-bidder optimal if its utility vector is ε-bidder optimal.

Observe that the set of core points forms a polytope in utility space, described by the (exponentially

many) constraints of the form in inequality (3). To understand the structure of this polytope, it is

instructive to consider the core constraint in Definition 2 whose right-hand side takes the maximum

value. Therefore, we define the notion of maximum binding core constraints.

Definition 4. Given a vector of utilities {πi}i∈N , a subset S ⊆ N is a Maximum Binding Core

Constraint (MBCC) if and only if S ∈ argmax
S′⊆N

w(S′)−
∑
i∈S′

πi.

Definition 5. Given a vector of utilities {πi}i∈N , a subset S ⊆N is an ε-tight core constraint (or a

tight core constraint when ε= 0) if and only if

w(S)−
∑
i∈S

πi ≤w(N)−
∑
i∈N

πi ≤w(S)−
∑
i∈S

πi + ε . (4)

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
13

3. The Water-Filling Algorithm

In brief, our algorithm is a water-filling method that starts from an arbitrary point in the core (e.g.,

pay-your-bid, where all agents receive utility 0) and then at each iteration does the following:

• Finding a feasible direction: It first finds a subset of bidders such that if we increase all of their

utilities uniformly by a small amount, we still remain in the core.

• Uniform utility increase: It then increases the utilities for those bidders uniformly, until it hits

a facet of the core (approximately).

• Checking termination condition/tepeat: Finally, it checks whether there exists any remaining

subset of bidders who can increase their utilities and still remain in the core. If so, the algorithm

iterates. Otherwise it terminates.

See Figure 1 for an overview of the algorithm, and its geometric interpretation.

figures

Figure 1 Water-filling algorithm for the following example in Day and Raghavan 2007. 2 items A and B, 5 bidders;

bids are as follow (each bidder submits one bid): b1(A) = 60, b2(B) = 100, b3(AB) = 60, b4(A) = 20, and

b5(B) = 20. The filled area is the core-polytope, and the arrow shows the path that algorithm follows. Note

that S0 = {1,2,3,4,5}, T0 = {1,2}, S1 = {1,2}, T1 = {2,4}, S2 = {2}, T2 = {3} and S3 = ∅.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
14

3.1. Winner Determination Oracle Model

In this paper, we focus on the winner determination oracle model as our model of computation. More

accurately, suppose we have access to a winner determination oracle under sincere strategies, where

a sincere strategy is a truncation of {bi(.)} by offsets {πi}, that is, {max(bi(.)− πi,0)}. The oracle

accepts submitted bids and the required truncations as input, and then simulates truncated bids to

find a maximum welfare allocation. To make this more concrete, we define the oracle WIN-ORAC.

Definition 6. Let WIN-ORAC be a black-box oracle with this input-output relation:

• Input: submitted bids {bi(.)}i∈N and required truncations {πi}i∈N .

• Output: max welfare with truncated bids := w(N,{max(bi(.)− πi,0)}i∈N), and a winning set,

i.e., S ∈W({max(bi(.)−πi,0)}i∈N) (or NULL if no such set exists).

3.2. The Algorithm

Here is the full description of our algorithm (Algorithm 1). It uses the subroutine Core-Search

(Procedure 2) at each iteration, which is basically binary-search to find the next feasible subset of

coordinates/bidders quickly, and it only requires Õ(1) number of calls to the oracle WIN-ORAC.

The iterations of the algorithm are indexed by t. The algorithm maintains a current core point π(t)

(initially the origin) and a collection of active bidders, St, whose utilities can potentially be increased

(initially all bidders). On each iteration, the algorithm updates the set of active bidders St by finding

and removing a set St \ Tt of bidders whose utilities cannot be increased without violating a core

constraint (Finding the next feasible set might take several iterations, without changing the point

π(t), for reasons that will become clear in the proof). It then applies binary search along the ray of

points consisting of uniform increases to the utilities of all agents in St+1, described in subroutine

Core-Search. This finds a pair of points {
¯
πi} and {π̄i}, where

¯
π is in the core, π̄ is outside the core,

and the points are within ε of each other in `1 distance, i.e.

w(N)−
∑
i∈N

¯
πi ,

¯
π0 ≥w (N,{max(bi(.)−

¯
πi,0)}) , . feasible core point.

w(N)−
∑
i∈N

π̄i , π̄0 <w (N,{max(bi(.)− π̄i,0)}) , . infeasible (out of core).

∑
i∈N

π̄i−
∑
i∈N

¯
πi ≤ ε .

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
15

Algorithm 1: Water-filling for finding an ε-bidder optimal core point

Input: submitted bids {bi(.)}, set of bidders N , and ε > 0

1 initialize π
(0)
i = 0 and π̄

(0)
i = 0 for all i∈N // utilities in pay-your-bid auction.

2 t← 0, S0←N

3 while St 6= ∅ do

4 Tt ← any set in W({max(bi(.)− π̄(t)
i ,0)}) // needs a query call to WIN-ORAC.

5 St+1← St ∩Tt

6 if St+1 6= ∅ then

7 Run procedure Core-Search({bi(.)}, π(t), St+1, ε) to return {π̄i}i∈N & {
¯
πi}i∈N

8 π
(t+1)
i ←

¯
πi , i∈N

9 π̄
(t+1)
i ← π̄i , i∈N

10 t← t+ 1

11 return π(t)

The algorithm uses
¯
π as its updated core point, and uses π̄ to update the set of active bidders in the

subsequent iteration, by finding the set of winners for sincere bids {max(bi(.)− π̄i,0)}, i.e. Tt+1. Once

all bidders are frozen, the algorithm returns the current core point. An illustration of each iteration

and how sets St and Tt are set at each iteration can be seen in Figure 1, which describes simulating

our algorithm on the example in Day and Raghavan (2007).

3.3. Proof of Correctness and Running Time

The main idea behind the proof of correctness of the algorithm is the following simple observation.

Suppose π is a point in the core and S is a tight core constraint with respect to π. Note that there

always exists at least one tight core constraint, as the constraint for coalition N is always tight. Now,

one is allowed to increase πi by a small amount and still have a core point as long as bidder i is

participating in every tight core constraint S ⊆N . This is true because the change in the left-hand

side and right-hand of Equation 3 will be the same for all currently tight constraints, which are

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
16

Procedure 2: Core-Search for water-filling algorithm

Input: submitted bids {bi(.)}i∈N , core point π, subset of bidders S ⊆N , and ε > 0

1 initialize ∆l = 0 and ∆h = 1.

2 while ∆h−∆l >
ε
|S| do

3 ∆← ∆l+∆h
2

// do binary-search to find ∆l and ∆h.

4 Let π̃i = πi + ∆ for i∈ S, π̃i = πi for i∈N \S, and π̃0 =w(N)−
∑

i∈N π̃i

5 if π̃0 ≥w (N,{max(bi(.)− π̃i,0)}) then

/* requires one query call to oracle WIN-ORAC. */

6 ∆l←∆.

7 else

8 ∆h←∆

9 return {π̄i}i∈N ,{
¯
πi}i∈N , where


π̄i = πi + ∆h and

¯
πi = πi + ∆l, if i∈ S.

π̄i = πi and
¯
πi = πi, otherwise.

the only candidates for violation after the small change. Inspired by this observation, the algorithm

starts from a point in the core and increases utilities of nested subsets of bidders uniformly at each

iteration, until no bidder in the intersection of all tight (and almost tight) core-constraints exists.

Given this observation, here is the intuition behind the correctness of the algorithm. As mentioned

earlier, Algorithm 1 keeps track of {π(t)
i }i∈N (inside the core), and {π̄(t)

i }i∈N (outside of the core),

while these two points are always ε-close in `1-norm distance. As a result, they help the algorithm

to find the next subset of bidders St+1 ⊂ St, with the property that the algorithm can potentially

increase their corresponding utilities uniformly. Furthermore, for a fixed run of the algorithm consider

sequence ∅= G0 ⊂ G1 ⊂ G2 ⊂, . . ., where Gt , {T1, . . . , Tt−1}. By closeness of the two points, it can be

shown that Gt is always a collection of ε-tight core constraints with respect to π(t). This sequence

acts as a certificate of correctness for the algorithm: at each iteration t the algorithm ensures that

bidders in St+1 =
⋂t

t′=0 Tt are indeed the subset of bidders appearing in every constraint of Gt+1, and

hence those which could have increased their utility. So, at termination it ensures that St+1 is empty,

and therefore there exists no bidder that appears in all ε-tight core constraints.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
17

More concretely, we prove the correctness of the algorithm in two steps. We first show upon

termination the algorithm outputs a point in the core that is ε-bidder optimal, and then we show that

the algorithm terminates in at most |N |= n iterations. To do so, we start by proving the following

lemma, which is crucial in understanding how our algorithm works. Notably, the first bullet of this

lemma is inspired by similar results in Day and Raghavan 2007.

Lemma 2. Fix a vector of utilities {πi}i∈N . Let S ⊆N . The following are true:

• S is a maximum binding constraint if it is also the set of winning bidders for some maximum

welfare allocation under bids {max(bi(.)−πi,0)}i∈N .

• Suppose we have ∀i∈ S : πi > 0. Then S is a maximum binding constraint only if it is the set of

winning bidders for some maximum welfare allocation under bids {max(bi(.)−πi,0)}i∈N .

Proof. Let S′ be the set of winners for a maximum welfare allocation x′ under truncated bids

{max(bi(.)−πi,0)}i∈N . Note for all i∈ S′, bi(x′i)>πi (otherwise, allocation x′ gives items for free to

some bidder j, because x′j 6= ∅ & max(bj(x
′
j)−πj,0) = 0 as bj(x

′
j)≤ πj). Let S be a maximum binding

constraint and xS be the maximum welfare allocation restricted to bidders S. We have

w(S)−
∑
i∈S

πi =
∑
i∈S

(bi(x
S
i)−πi)≤

∑
i∈N

max(bi(x
S
i)−πi,0)

≤
∑
i∈N

max(bi(x
′
i)−πi,0) =

∑
i∈S′

(bi(x
′
i)−πi)≤w(S′)−

∑
i∈S′

πi . (5)

Therefore S′ is also a maximum binding constraint.

Next, suppose S is a maximum binding constraint. Let xS be the allocation that maximizes the

welfare restricted to bidders in S. Note that in such an allocation, all the bidders in S will be winners,

i.e. xSi 6= ∅ for i ∈ S (because otherwise there exists S′ ⊂ S such that w(S) = w(S′), and therefore

w(S) −
∑

i∈S πi < w(S′) −
∑

i∈S′ πi which is a contradiction). Now let x′ be a maximum welfare

allocation for truncated bids, and let S′ be the set of winners under such an allocation. Then:

∑
i∈N

max(bi(x
′
i)−πi,0) =

∑
i∈S′

(bi(x
′
i)−πi)≤w(S′)−

∑
i∈S′

πi ≤w(S)−
∑
i∈S

πi

=
∑
i∈S

(bi(x
S
i)−πi)≤

∑
i∈S

max(bi(x
S
i)−πi,0) =

∑
i∈N

max(bi(x
S
i)−πi,0) . (6)

Therefore xS is an optimal allocation under {max(bi(.)−πi,0)}i∈N , and S is its winner set. �

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
18

Now, using Lemma 2, we can prove the following invariants of our algorithm: π(t) is a core point

for each t, and {Gt} is a collection of ε-tight core constraints with respect to π(t).

Proposition 1. Given submitted bids {bi(.)}i∈N and ε > 0, there exists a finite sequence of collections

∅= G0 ⊂G1 ⊂ . . .⊂GT+1, such that the following invariants hold at each iteration t of Algorithm 1:

(1) {π(t)
i }i∈N is always in the core, and {π̄(t)

i }i∈N is outside of the core for t≥ 1.

(2) St is the subset of bidders that are simultaneously participating in all core constraints included

in the collection Gt , {T0, . . . , Tt−1}. Moreover, for t≥ 1, St \Tt 6= ∅ and Gt 6= Gt+1.

(3) Gt+1 is a collection of ε-tight core constraints with respect to π(t) (as in Definition 5).

Proof of Part (1): To prove this part, we use induction. For the base case t= 0, all-zero vector π(0)

is always in the core as w(N)≥w(S) for all S ⊆N . Now suppose π(t−1) is in the core. If π(t) = π(t−1)

we are done. So let π(t) 6= π(t−1). As a result, π(t) =
¯
π in the binary search phase at iteration t− 1.

Therefore, due to termination condition of Core-Search, for all S ⊆N we have:

w(N)−
∑
i∈N

π
(t)
i =

¯
π0 ≥w

(
N,{max(bi(.)−π(t)

i ,0)}
)
≥w(S)−

∑
i∈S

π
(t)
i ,

where the last inequity holds because of Lemma 2. So, π(t) is a core point. Also, for t≥ 1 the point

π̄(t) is outside of the core, since once binary search stops at iteration t− 1, for some S ⊆N we have:

w(N)−
∑
i∈N

π̄
(t)
i = π̄0 <w

(
N,{max(bi(.)− π̄(t)

i ,0)}
)

=w(S)−
∑
i∈S

π̄
(t)
i �

Proof of Part (2): First of all, note that St is the subset of bidders that are simultaneously par-

ticipating in all of {Tt′}t−1
t=1, simply because St =

⋂t−1

t′=0 Tt′ due to the update rule of St. Moreover, at

iteration t−1 (for t≥ 1) the algorithm starts from a feasible core point π(t−1) and uniformly increases

the utilities only for bidders in St, until it reaches to a point π̄(t) that is outside of the core. Note

that no constraint S ⊇ St will get violated during this process, simply because the changes in the left

hand side and right hand side of these constraints (refer to Definition 2 and inequality (3)) are equal,

following the fact that St =
⋂t−1

t′=0 Tt′ . In particular, no constraint in Gt will get violated by π̄(t). At

iteration t, Tt is set to one of the most binding core constraint with respect to π̄(t) (due to Lemma 2),

and therefore it should be a violated core constraint, because π̄(t) is outside of the core. Combining

the above arguments, St \Tt 6= ∅. So, Tt /∈ Gt and therefore Gt 6= Gt+1. �

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
19

Proof of Part (3): To prove this part, we again use induction. For the base case t= 1, G1 = {T0}

is the set of winning bidders of maximum welfare allocation under original bids {bi(.)}i∈N . Therefore,

due to Lemma 2, it is also a maximum binding constraint for all-zero vector π(0). Moreover, coalition

N is always a tight core constraint (as in Definition 5), and therefore any maximum binding core

constraint is also a tight core constraint. Now suppose Gt = {T0, . . . , Tt−1} is a collection of ε-tight core

constraints with respect to π(t−1). Note that if a constraint is ε-tight core constraint at some iteration,

it will always remain ε-tight, as utilities never decrease and π(t) is also in the core. At iteration t,

π(t) =
¯
π and π̄(t) = π̄, where these parameters are set in binary search phase at the previous iteration

t− 1. Moreover, Tt will be a violated constraint under π̄ (as in the proof of Part (2)). Therefore,

w(N)−
∑
i∈N

π
(t)
i

(1)

≤ w(N)−
∑
i∈N

π̄
(t)
i + ε

(2)

< w(Tt)−
∑
i∈Tt

π̄i + ε
(3)

≤ w(Tt)−
∑
i∈Tt

π
(t)
i + ε ,

where inequality (1) holds as
∑

i∈N π̄i −
∑

i∈N ¯
πi ≤ ε, inequality (2) holds as Tt is a violated core

constraint for π̄(t) = π̄, and inequity (3) holds as for all i∈N , π
(t)
i =

¯
πi ≤ π̄i. So, Tt is also an ε-tight

core constraint for π(t) and Gt+1 is a collection of ε-tight core constraints with respect to π(t). �

Lemma 3. The Algorithm 1 terminates in at most |N |= n iterations.

Proof. By using Proposition 1, Algorithm 1 terminates, as Gt 6= Gt+1 for t ≥ 1 and there are

only finitely many such collections. Moreover, following the fact that St \ Tt 6= ∅, one can conclude

St+1 (St. S0 =N , and hence the algorithm terminates in at most |N | iterations. �

Theorem 1. Algorithm 1 returns an ε-bidder optimal core point. Moreover, it requires O(n log(n/ε))

evaluations of the oracle WIN-ORAC and an additional time O(n2 log(n/ε)).

Proof. Combining Proposition 1 and Lemma 3, after at most |N | = n iterations the algorithm

terminates. At termination time T , ST+1 = ∅ is the subset of bidders that are participating simulta-

neously in all of the core constraints in the collection GT+1. Also, GT+1 is a collection of ε-tight core

constraints with respect to π(T). Combining those, we conclude that the intersection of all ε-tight

core constraints with respect to π(T) is empty. Now, π(T) is in the core and if you increase one of its

coordinates, lets say j, by more than ε then we know there exists at least one ε-tight core constraint

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
20

S with respect to π(T) such that j /∈ S and therefore by this change this constraint will be violated.

So, by Definition 3, π(T) is ε-bidder optimal. Moreover, at each iteration t the algorithm uses one

query call to WIN-ORAC to find St+1, at most log(
|St+1|
ε

) query calls to do the binary search, and at

most |St+1| log(
|St+1|
ε

) extra additions during the binary search. So in total it only needs

Total # of oracle calls≤ n+
T∑
t=0

log

(
|St+1|
ε

)
≤ n+

n∑
t=1

log

(
t

ε

)
= n+ log

(
n!

εn

)
=O(n log(n/ε)) .

Extra time needed≤
T∑
t=0

|St+1| log

(
|St+1|
ε

)
≤

n∑
t=1

t log

(
t

ε

)
=O(n2 log(n/ε)) . �

3.4. On the Virtues of Our Bidder Optimal Core selection Rule

Water-filling versus cutting plane methods. As mentioned earlier in Section 1.2, given access

to the separation oracle for the core polytope (which is essentially the procedure described in Def-

inition 6), one can use Vaidya’s algorithm (Vaidya 1989, 1996) or even the faster cutting plane

methods for (feasibility) linear programmings such as Lee et al. 2015 to find a minimum revenue

core point. As a recap, Vaidya’s algorithm is deterministic and finds an ε-close minimum revenue

core point with oracle complexity of O ((n/ε) logn) and extra computation of O (n4/ε). The algo-

rithm in Lee et al. 2015 is a randomized algorithm, and finds an ε-close minimum revenue core

point with high probability using O
(
n(1+ε) logO(1)(n/ε)

)
oracle evaluations in expectation and addi-

tional time O
(
n3 logO(1)(n/ε)

)
. Relative to this (more general) approach, our water-filing algorithm

(Algorithm 1) (i) requires asymptotically fewer oracle calls (i.e., O(n log(n/ε) query calls) and less

additional time (i.e., O (n2 log(n/ε)) time); see Theorem 1, (ii) has an improved oracle complexity

as a function of the precision parameter ε, which hugely matters in the application domain we are

interested in (i.e., the sale of ad space problem), (iii) is deterministic, which is advantageous for the

incentive and equilibrium properties of bidder optimal core points, (iv) is a simple combinatorial

algorithm which makes it more interpretable and easy-to-understand, and finally (v) is easier to

implement and less sensitive to the choice of the precision parameter (and in general has less number

of parameters to tune compared to the aforementioned cutting plane methods); see Section C.4 in

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
21

the supplementary material for a list of practical issues that we observed in our implementation of

Vaidya’s algorithm. These points highlight the advantages of our proposed core pricing algorithm,

and in particular its practicality to be used in the sponsored search auction.

Water-filling versus VCG. VCG is a combinatorial auction in which reporting true values is a

dominant strategy equilibrium. Computing payments in this auction can be done with O(n) query

calls to an optimal welfare oracle. Note also that by relaxing the incentive constraints to hold in

expectation, approximate VCG payments can be computed implicitly by just one call to the allocation

oracle in single dimensional (Babaioff et al. 2015) or combinatorial (Wilkens and Sivan 2015) settings.

In comparison, our water-filling algorithm (Algorithm 1) induces a truncated strategy (i.e., i ∈N :

bi(·) = max(vi(·) − πi,0)) that is a full-information ε-Nash equilibrium, as its payment rule is an

ε-bidder optimal core payment (Day and Raghavan 2007). Moreover, as we showed in Theorem 1,

computing payments only requires Õ(n) query calls to truncated maximum welfare allocation oracle.

Furthermore, our payments produce more revenue at equilibrium (Day and Milgrom 2008) and no

coalition (subset of all bidders) can form a mutually beneficial renegotiation among themselves (Day

and Milgrom 2008) (to compare the revenue, one can consider the coalition N \ {i} and note that

πi ≤ w(N) − w(N \ {i}), which is indeed the VCG utility of player i. Therefore, total generated

revenue is lower-bounded by the VCG revenue).

Parametrizing the path in water-filling. The choice of direction for water-filling at each iteration

t of Algorithm 1 is flexible, as long as it is only restricted to increasing utilities for bidders in set St.

Therefore it can potentially implement different core payment rules tailored for different economic

objectives. E.g., uniform water-filling will guarantee the approximate-equity of utilities subject to

being a bidder optimal core point. Another desired objective is fairness with respect to VCG. For this

objective, we can consider a variant of our algorithm that at each iteration performs Core-Search

along the ray that connects π(t) to VCG. This “VCG-pursuit” heuristic finds a bidder optimal point

that attempts to minimize the angle with the ray connecting the origin with the VCG outcome, and

therefore it heuristically implements an equilibrium in which winning bidders receive (almost) the

same fraction of their utilities as in VCG. See Figure 2 for an example.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
22

Notably, our algorithm is not the only one in the literature that poses “degrees of flexibility”

to be adapted for different applications and economic goals. For example, Day and Raghavan 2007

also propose a refinement of their algorithm when the set of bidder optimal payments is large. In

that sense, their approach has a degree of flexibility. Another example is the computational search

approach in Bünz et al. 2018a,b that provides a wide variety of core selecting rules based on different

target goals (which can be fairness, revenue, or efficiency at an approximate Bayes Nash equilibrium).

Figure 2 VCG-Pursuit. In this variation of our water-filling algorithm at every iteration the algorithm tries to move

along a ray that connects the current point to the VCG point (which can be outside of the core).

4. Sale of Ad Space: a Numerical Study Based on Microsoft Bing Data

In this section, we experimentally study our proposed algorithm (Algorithm 1) for sale of ad space

by simulating it on ad auction bidding data. Our bidding data is collected through the Microsoft

Bing search engine and its sponsored search auction platform. See Section C.1 in the supplementary

material for more details on data collection and limitations on estimating true valuations. Using this

dataset, we estimate and compare revenue, fairness (this metric will be detailed later), running time,

and number of calls to the (truncated) winner determination oracle for our algorithm and various

benchmark auctions.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
23

4.1. Sale of Ad Space Allocation Problem

We begin by describing the allocation problem and the bidding language for the sale of ad space

problem, also known as rich ads auction (as in the title of this paper). In this problem, advertisers

bid on search queries, called keywords. For each keyword that an advertiser bids on, she provides a

collection of basic ads and, potentially, enhanced configurations (e.g., decorations that extend the

size of an ad). When a user searches for a keyword, a maximum amount of space to devote to ads

(i.e., a specific number of lines) is exogenously determined, and an auction is used to determine which

ads and in what order to show in that space. The auction also specifies a per-click payment for each

winning advertiser, denoted by cost per click (CPC), which will be charged to the advertiser if a user

clicks on her winning ad in the auction. The total expected revenue is then estimated by a winning

ad’s probability of click (pclick) times the CPC of its corresponding advertiser, when summed over

all of the winning ads. Click rates are modeled and estimated by the search platform. Notably, this

problem is different from the fully substitute separable model and suffers from complementarities

because of its knapsack nature (which are observable in our experiments, as we will see later).

We use the Bing click prediction estimates in our experiment, which are based on the keyword, user,

and few other contextual parameters. While we do not directly observe an advertiser’s true value for

an advertising assignment, we will estimate it as the probability of click, pclick, times the advertiser’s

bid amount b on that ad. In this sense, our experiments are essentially using the declared bid as a

proxy for true values (not assuming that the auction is truthful), which is a common practice in the

sponsored search auction industry. See Section C.1 in the supplementary material for a comprehensive

discussion.

The goal of winner determination allocation problem is to determine which ads to show in the

available space (and which advertisers to pick as winners) to maximize the (declared) welfare. This

allocation is subject to various feasibility constraints. In particular, we impose that 1) each advertiser

can place at most one ad, 2) the total number of ads is bounded by a constant, and 3) the total number

of lines must not exceed the available space. In practice the platform may face other constraints as

well, such as measures of user and advertiser quality; we omit those for simplicity.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
24

Definition 7 (Winner Determination Allocation Problem). There is a slate of space,

divided into k lines (i.e, each is a single line of text). A feasible allocation provides each advertiser

with a consecutive block of lines. Each advertiser i= {1,2, . . . , n} has a set of possible ads Di with

different lengths (which we call decorations). She has a bid bi(d) and a probability of click pi(d) for

each decoration d ∈Di. The total number of ads is m,
∑n

i=1|Di|. The problem is then to select an

ordered set of at most h ads, one ad per advertiser, so that the total number of lines is no greater

than k and the total expected (declared) welfare of winning ads is maximized, where the expected

(declared) value of a winning ad (i, d) is equal to pi(d)× bi(d).

For such advertiser preferences, we note that the welfare-maximizing allocation can be computed

efficiently, i.e., in polynomial running time in the number of ads m and the number of lines k,

via dynamic programming (DP). This is also the case even when valuations are truncated as in

Definition 6, meaning that we give a different input to the algorithm where each advertiser has a

truncation amount, and we essentially bring down the bids for all of her decorations by the that

same truncation amount. This optimal algorithm is essentially a simple dynamic programming for

the knapsack problem with two modifications (1) one additional dimension to limit the number of

assigned items, (2) having different classes of items (one class for each advertiser), and being allowed

to pick only one item from each class. With only the latter condition, this problem is an instance of

the classic multiple-choice knapsack problem (Sinha and Zoltners 1979) and our DP is very similar to

the solution for this problem. See Section A in the supplementary material (in particular Algorithm 3)

for details of our DP. See also Section C.3 in the supplementary material for a discussion on using

faster approximation alternatives.

4.2. Our experiments

We implemented the following list of auctions/algorithms, and simulated them on the collected Bing

bidding data in several experiments (the code for our implementation is provided as supplementary

materials): Vickrey-Clarke-Groves auction (VCG), GSP with optimal welfare allocation (GSP with

Optimal), GSP with greedy allocation (GSP with Greedy), minimum revenue core payment rule of

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
25

Day and Raghavan (2007) (Min Rev Core), quadratic core payment rule of Day and Cramton (2012)

(Quad Core), Vaidya’s cutting plane method (Vaidya Min Rev) for minimum revenue core, and our

algorithm (Fast Core). See Section B in the supplement for details of each auction/pricing rule.

Our numerical experiments are based on a dataset of 19,996 auctions chosen uniformly at random

from all of the Bing search advertising auctions that ran on January 23rd, 2018. The average number

of different ads participating in each auction is 107 and the average number of different advertisers

is 7. Therefore, the average number of configurations/decorations per advertiser is approximately 15.

The maximum number of ads that can be allocated in each auction is at most 4. The maximum

number of line counts that can be assigned, however, is variable across auction instances. We run a

separate experiment on all of the auctions with the same line count. We consider line counts equal to

25, 30, 35, 40 and 45. We report the corresponding results for each one of these cases. In all of these

numerical experiments, we set ε= 0.01 (a parameter needed in Algorithm 1), and tried our best to

optimize the parameters needed by other algorithms through trial-and-error for a fair comparison.

Revenue. Table 1 shows the average expected revenue of the various algorithms we have studied

in this paper, for different line counts. Figure 3 shows how the revenue of each algorithm changes

as a function of the total number of ads (or decorations) of all the advertisers attending the auction

for a fixed line count=40. Due to Bing’s policy of protecting advertisers data, we are only allowed

to report the normalized revenue, i.e., normalized by the average VCG revenue for each line count

in Table 1, and normalized by the average VCG revenue among all the auctions with the same line

count of 40 in Figure 3. Note that (1) we are not normalizing by VCG revenue for each number of

ads separately, and (2) All three of Min Rev Core, Quad Core and Vaidya Min Rev are minimum

revenue core points (which are also bidder optimal), and hence obtain the same revenue. On the

contrary, Fast Core only finds a bidder optimal point, which is not necessarily minimum revenue.

Table 1 shows that selecting a core outcome can significantly boost revenue compared to VCG. For

different line counts, our core pricing algorithm attains ≈26% improvement over VCG, and all other

core pricing algorithm (which find a minimum revenue core point) obtain ≈15% over VCG. Also,

our core pricing algorithm obtains around 5% improvement over GSP Greedy, and almost matches

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
26

Line count VCG GSP Optimal GSP Greedy

Minimum Revenue Core
(Day and Raghavan 2007);

(Day and Cramton 2012);

(Vaidya 1996, 1989) Fast Core

25 1.00 1.252 1.151 1.149 1.264

30 1.00 1.267 1.239 1.148 1.265

35 1.00 1.282 1.234 1.150 1.265

40 1.00 1.283 1.250 1.154 1.269

45 1.00 1.301 1.287 1.153 1.269

Table 1 Average revenue per auction normalized by the revenue of VCG for each line count

50 100 150 200 250 300 350

Number of Ads

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

liz
e

d
 R

e
v
e

n
u

e

Number of Lines=40

Minimum Revenue Core

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 3 Normalized revenues versus total number of ads for line count=40.

the average revenue of GSP Optimal (with less than 1% loss on average). Notably, the minimum

revenue core algorithms (i.e., Min Rev Core, Quad Core and Vaidya Min Rev) obtain less revenue

on average than both versions of GSP for all different line counts. Finally, as seen in Figure 3, the

ratio between the revenue of our core pricing algorithm and all other methods increases as the number

of ads increases, e.g., our fast core pricing algorithm generates at least 6% more revenue compared

to GSP Optimal if number of ads is at least 300 for line count 40. See Section E in the supplement

for similar figures for other line counts (Figures 7, 8, 9, and 10).

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
27

Remark 1. Having ads with different decorations creates complementarity in valuations, and our

experimental results suggest that these complementarities are salient: there is a gap between the

revenue of VCG and all of the core outcomes we study (which are all bidder Pareto optimal core

points). Therefore, the shape of our core is not a hypercube, and VCG is not in the core (see Day and

Milgrom 2008 for a proof). Also, our experiments show that the bidder Pareto optimal frontier of the

core contains points that are not necessarily minimum revenue (as there is a revenue gap between

minimum revenue core points found by different methods and our bidder optimal core point).

For completeness, consider the following example that theoretically proves VCG is not necessarily in

the core in the sale of ad space problem, which verifies the experimental observation in Remark 1.

Example 1. Consider an instance of the sale of ad space problem with k = 9 lines and h= 2 slots.

Suppose all the ads have pclick = 0.5. There are 5 advertisers. A1 has 2 decorations: one with bid

10 and number of lines 3, and one with bid 20 and number of lines 6. A2 has one decoration with

bid 31 and number of lines 8. A3 has one decoration with bid 15 and number of lines 5. A4 has one

decoration with bid 11 and number of lines 3. Finally, A5 has one decoration with bid 17 and number

of lines 4. In the optimal welfare allocation, bidders A3 and A5 win (with total generated welfare of

16). Moreover, VCG prices of these bidders (after multiplying with pclick) are 7 and 8 respectively.

Interestingly, this point is not in the core, as simple calculations show that the core polytope is the

set of all the prices satisfying p3 + p5 ≥ 15.5, p3 ∈ [7,15], p5 ∈ [8,15.5].

Remark 2. As mentioned earlier, our experiments use declared values as proxies for true valuations.

Under this treatment, our revenue report should basically be interpreted as total payments of our

bidder optimal core point in the core with respect to true valuations. Note that core auctions are

not truthful, but bidder optimal core points (similar to those in this paper) admit a natural full

information Nash equilibrium, so that revenue under this outcome is equal to total payments in

the core with respect to true valuations (Day and Milgrom 2008). Notably, the non-truthfulness of

core auction impose these limitations in our experiments. We provide more details on the impact of

incentives on short/long term revenue, other interpretations of our results, and future avenues for

research to overcome these limitations in Section C.2 in the supplement.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
28

Running time. Table 2 shows the average normalized running times of different auctions for

various line counts, where we normalized with respect to the average running time of VCG. We also

report the average running time of VCG in milliseconds in Table 2. Figure 4 shows how normalized

running times change as the number of ads increases for the line count 40. Here, the normalization

is with respect to the average running time of VCG for each specific number of ads. See Section E in

the supplement for similar figures for other line counts (Figures 11, 12, 13, and 14).

Line count
VCG

running time
GSP

Optimal
GSP

Greedy
Mini Rev Core

(Day and Raghavan 2007)
Quad Core

(Day and Cramton 2012)

Vaidya Min Rev

(Vaidya 1996, 1989)
Fast
Core

25 5.264 (ms) 0.50 0.05 47.25 86.47 59.00 7.53

30 6.552 (ms) 0.49 0.05 44.15 77.15 53.19 7.44

35 7.465 (ms) 0.49 0.05 44.67 75.16 49.25 7.45

40 8.648 (ms) 0.49 0.05 42.22 68.99 50.19 7.42

45 10.163 (ms) 0.48 0.05 40.13 64.49 47.66 7.39

Table 2 Average running time per auction normalized by the average running time of VCG for each line count

50 100 150 200 250 300 350

Number of Ads

0

100

200

300

400

500

600

N
o

rm
a

liz
e

d
 R

u
n

n
in

g
 t

im
e

 (
b

y
 V

C
G

 t
im

e
)

Number of Lines=40

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

GSP with Optimal

GSP with Greedy

Figure 4 Normalized running times versus total number of ads for line count=40.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
29

As it can be seen from both Table 2 and Figure 4, the running time of our core pricing algorithm is

no more than ≈ 7.5 times the VCG running time, which is still in an acceptable range for sponsored

search auction of Bing. As expected, both variants of GSP have much smaller running time compared

to all other auctions (as GSP Optimal only calls the winner determination oracle once, and GSP

Greedy does not even need to call it once). The running time of all other core pricing algorithms is at

least 6− 10 times the running time of our core pricing algorithm. In particular, as seen in Figure 4,

all three of Day and Raghavan 2007, Day and Cramton 2012 and Vaidya’s algorithm have larger

running time when the number of ads is small (smaller than 10), and they obtain a more comparable

running time as the number of ads increase (still, slower than our core pricing algorithm by a factor

of 5− 8). Still, our experiments never identified a scenario in which Vaidya or any other core pricing

rule could beat our algorithm in terms of running time.

Remark 3. It should be noted that the convergence of LP-based (or quadratic programming based)

heuristics, as well as interior point methods such as Vaidya to solve the minimum revenue core LP,

is highly sensitive to selected internal parameters of these algorithm (e.g., the initialization point,

the termination condition, or the barrier thresholds in Vaidya), as our experiments suggest. On the

contrary, our core pricing algorithm only needs an assignment for ε > 0, and our experiments indicate

that its performance is not very much sensitive to the choice of this parameter.

Remark 4. We observed somewhat frequent unstable behavior when running Vaidya’s algorithm in

our application, e.g., in some auctions by slightly changing the barrier thresholds or the initial point

the algorithm had a very slow convergence. See Section C.4 in the supplement for a comprehensive

discussion.

Query complexity. To have a more comprehensive comparison between the speed of different

algorithms, and to compare how efficiently they utilize the winner determination oracle, we also

compare the query complexity of various core pricing algorithms. Table 3 shows the average query

complexity, i.e., number of calls to the oracle, of different core pricing algorithms and how they are

compared with the VCG auction as a benchmark (which is basically equal to the average number of

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
30

advertisers winning the auction). Figure 5 shows how the query complexity of different core pricing

algorithms vary as the number of ads increases for the line count 40. See Section E in the supplement

for similar figures for other line counts (Figures 15, 16, 17, and 18).

Line count VCG
Mini Rev Core

(Day and Raghavan 2007)
Quad Core

(Day and Cramton 2012)

Vaidya Min Rev

(Vaidya 1996, 1989)
Fast
Core

25 3.740 19.750 20.513 75.584 11.648

30 3.757 23.824 24.574 69.478 11.741

35 3.763 23.797 24.572 64.393 11.741

40 3.764 23.669 24.439 65.944 11.754

45 3.765 23.639 24.400 62.867 11.753

Table 3 Average query complexity for each line count

50 100 150 200 250 300 350

Number of Ads

0

10

20

30

40

50

60

70

80

90

100

Q
u

e
ry

 c
o

m
p

le
x
it
y

Number of Lines=40

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

VCG

Figure 5 Query complexity versus total number of ads for line count=40.

As it is clear from Table 3, our core pricing algorithm makes drastically smaller number of calls

to the oracle compared to other core pricing methods: core pricing rules of Day and Raghavan 2007

and Day and Cramton 2012 make ≈ 2.1 times, and Vaidya’s algorithm makes ≈ 5.9 times number

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
31

of calls on average to the winner determination oracle compared to Algorithm 1. Moreover, our core

pricing algorithm makes ≈ 3.1 times more number of calls than the VCG baseline (which still is an

acceptable range for our application). Finally, as can be seen in Figure 5, Vaidya’s algorithm has a

rather high variance in its number of query calls compared to other methods, which is another factor

that makes it unstable to be used for our application. See Section C.4 in the supplement for more

details.

Fairness. Another measure we study is the fairness to the advertisers. For a given auction, our

notion of fairness is the ratio of the maximum utility to the minimum utility among the winning

advertisers, i.e.,
maxad∈A p(ad)(b(ad)−CPC(ad))

minad∈A p(ad)(b(ad)−CPC(ad))
, where A is the set of all of the winning ads. Figure 6 shows

how the fairness ratio of different algorithms change as the number of ads increases for the line count

40. See Section E in the supplement for other line counts (Figures 19, 20, 21, and 22).

10 20 30 40 50 60 70 80 90 100

Number of Ads

0

1

2

3

4

5

6

F
a

ir
n

e
s
s
 r

a
ti
o

 =

m
a
x
/

m
in

Number of Lines=40

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 6 Fairness ratio versus total number of ads for line count=40.

As can be seen in Figure 6, VCG has the maximum fairness (i.e., the fairness ratio is closer to

1) among other methods. All of the core selecting rules (including ours) have better fairness ratios

compared to the two variants of GSP. One interpretation is that when we uniformly increase utilities

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
32

of advertisers in Algorithm 1, we tend to fairly divide the extra surplus between eligible advertisers

while not violating the core constraints. Note that a core constraint, however, might cause a specific

advertiser to pay a large amount compared to the VCG prices, and hence caps the utility of this

advertiser. Consequently, the core tends to lie between VCG and GSP in terms of fairness.

5. Conclusion

We proposed a fast algorithm, with provable correctness and running time, that finds a bidder optimal

core point with almost linear calls to the winner determination oracle for truncated valuations. Our

running time advantage compared to prior work is both in terms of query complexity of calling this

oracle and extra computations needed. We demonstrated our algorithm in the time-sensitive sale of

the ad space application through numerical experiments on Microsoft Bing auction data. Our results

suggested a considerable revenue improvement over VCG by our core pricing rule, but only with

respect to reported valuations. We also studied the fairness of our core pricing rule compared to other

methods using a simple measure, and our experimental study showed our algorithm retains acceptable

fairness properties. See Section D in the supplement for future directions and open problems.

Acknowledgment

The authors would like to thank Bob Day, Larry Ausubel, Paul Milgrom, Sven Seuken, and Microsoft

Bing Ad Auction team for their insightful comments. We would also like to thank the anonymous

referees and the associate editor for extraordinarily helpful comments during the revision process.

The second author was supported in part by NSF CCF 1618502.

References

Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful auctions for pricing search keywords. In Pro-

ceedings of the 7th ACM conference on Electronic commerce, pages 1–7. ACM, 2006.

Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding with constraints. In Inter-

national Conference on Web and Internet Economics, pages 17–30. Springer, 2019.

Lawrence Ausubel and Oleg V Baranov. Core-selecting auctions with incomplete information. University of

Maryland, 121, 2010.

Lawrence Ausubel and Peter Cramton. The optimality of being efficient. University of Maryland, 1999.

Lawrence Ausubel and Paul Milgrom. Ascending auctions with package bidding. Advances in Theoretical

Economics, 1(1), 2002.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
33

Lawrence Ausubel and Paul Milgrom. The lovely but lonely vickrey auction. Combinatorial auctions, 17:22–26,

2006.

Moshe Babaioff, Robert D Kleinberg, and Aleksandrs Slivkins. Truthful mechanisms with implicit payment

computation. Journal of the ACM (JACM), 62(2):1–37, 2015.

Marissa Beck and Marion Ott. Revenue monotonicity in core-selecting package auctions. Working paper, 2009.

Vitor Bosshard, Benedikt Bünz, Benjamin Lubin, and Sven Seuken. Computing bayes-nash equilibria in com-

binatorial auctions with continuous value and action spaces. In IJCAI, pages 119–127, 2017.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends® in

Machine Learning, 8(3-4):231–357, 2015.

Benedikt Bünz, Sven Seuken, and Benjamin Lubin. A faster core constraint generation algorithm for com-

binatorial auctions. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages

827–834. AAAI Press, 2015.

Benedikt Bünz, Benjamin Lubin, and Sven Seuken. Designing core-selecting payment rules: A computational

search approach. Available at SSRN 3178454, 2018a.

Benedikt Bünz, Benjamin Lubin, and Sven Seuken. Designing core-selecting payment rules: A computational

search approach. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 109–

109. ACM, 2018b.

Ruggiero Cavallo, Prabhakar Krishnamurthy, Maxim Sviridenko, and Christopher A Wilkens. Sponsored search

auctions with rich ads. In Proceedings of the 26th International Conference on World Wide Web, pages

43–51. International World Wide Web Conferences Steering Committee, 2017.

Edward H Clarke. Multipart pricing of public goods. Public choice, 11(1):17–33, 1971.

Peter Cramton. Spectrum auction design. Review of Industrial Organization, 42(2):161–190, 2013.

Robert Day and Peter Cramton. Quadratic core-selecting payment rules for combinatorial auctions. Operations

Research, 60(3):588–603, 2012.

Robert Day and Paul Milgrom. Core-selecting package auctions. international Journal of game Theory, 36

(3-4):393–407, 2008.

Robert Day and Subramanian Raghavan. Fair payments for efficient allocations in public sector combinatorial

auctions. Management Science, 53(9):1389–1406, 2007.

Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit auctions. In Proceedings of the 8th ACM

conference on Electronic commerce, pages 346–351. ACM, 2007.

Benjamin Edelman and Michael Ostrovsky. Strategic bidder behavior in sponsored search auctions. Decision

support systems, 43(1):192–198, 2007.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized second-

price auction: Selling billions of dollars worth of keywords. American economic review, 97(1):242–259, 2007.

Aytek Erdil and Paul Klemperer. A new payment rule for core-selecting package auctions. Journal of the

European Economic Association, 8(2-3):537–547, 2010.

Gagan Goel and Mohammad Reza Khani. Revenue monotone mechanisms for online advertising. In Proceedings

of the 23rd international conference on World wide web, pages 723–734. ACM, 2014.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
34

Gagan Goel, Mohammad Reza Khani, and Renato Paes Leme. Core-competitive auctions. In Proceedings of

the Sixteenth ACM Conference on Economics and Computation, pages 149–166. ACM, 2015.

Jacob K Goeree and Yuanchuan Lien. On the impossibility of core-selecting auctions. Theoretical economics,

11(1):41–52, 2016.

Nick Gould and Philippe L Toint. Preprocessing for quadratic programming. Mathematical Programming, 100

(1):95–132, 2004.

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its consequences in

combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

Theodore Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages 617–631, 1973.

Laurent Lamy. Core-selecting package auctions: a comment on revenue-monotonicity. International Journal of

Game Theory, 39(3):503–510, 2010.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for

combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science, pages 1049–1065. IEEE, 2015.

Benjamin Lubin and David C Parkes. Quantifying the strategyproofness of mechanisms via metrics on payoff

distributions. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages

349–358. AUAI Press, 2009.

Benjamin Lubin, Benedikt Býnz, and Sven Seuken. New core-selecting payment rules with better fairness and

incentive properties. In 3rd Conference on Auctions, Market Mechanisms and Their Applications. ACM,

2015.

Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on optimiza-

tion, 2(4):575–601, 1992.

Paul Milgrom. Package auctions and exchanges. Econometrica, 75(4):935–965, 2007.

Noam Nisan and Amir Ronen. Computationally feasible vcg mechanisms. Journal of Artificial Intelligence

Research, 29:19–47, 2007.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

Baharak Rastegari, Anne Condon, and Kevin Leyton-Brown. Revenue monotonicity in deterministic, dominant-

strategy combinatorial auctions. Artificial Intelligence, 175(2):441–456, 2011.

Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artificial intelli-

gence, 135(1-2):1–54, 2002.

Ryuji Sano. Non-bidding equilibrium in an ascending core-selecting auction. Games and Economic Behavior,

74(2):637–650, 2012.

Amin Sayedi. Real-time bidding in online display advertising. Marketing Science, 37(4):553–568, 2018.

Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem. Operations Research, 27(3):

503–515, 1979.

Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. In 30th Annual Symposium

on Foundations of Computer Science, pages 338–343. IEEE, 1989.

Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathematical program-

ming, 73(3):291–341, 1996.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
35

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of finance, 16(1):

8–37, 1961.

Christopher A Wilkens and Balasubramanian Sivan. Single-call mechanisms. ACM Transactions on Economics

and Computation, 3(2):10, 2015.

Christopher A Wilkens, Ruggiero Cavallo, Rad Niazadeh, and Samuel Taggart. Mechanism design for value

maximizers. arXiv preprint arXiv:1607.04362, 2016.

Christopher A Wilkens, Ruggiero Cavallo, and Rad Niazadeh. Gsp: the cinderella of mechanism design. In

Proceedings of the 26th International Conference on World Wide Web, pages 25–32, 2017.

Haifeng Xu, Bin Gao, Diyi Yang, and Tie-Yan Liu. Predicting advertiser bidding behaviors in sponsored search

by rationality modeling. In Proceedings of the 22nd international conference on World Wide Web, pages

1433–1444. ACM, 2013.

Yin Zhang. Solving large-scale linear programs by interior-point methods under the matlab environment.

Optimization Methods and Software, 10(1):1–31, 1998.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
36

Appendix A: Dynamic programming for sale of ad space

Our simple dynamic programming is explained in Algorithm 3. We assume (without loss) that the

m ads are indexed so that all ads from the same advertiser lie in a contiguous range. That is, no

ad of one advertiser comes between two ads from another advertiser. Then the subproblem for our

dynamic program is sub(i, h′, k′), which gives the optimal welfare while using ads from index i to m,

allocating at most h′ ads from distinct advertisers and using at most k′ lines. The solution to the full

allocation problem is then sub(1, h, k). We use l (adi) as a notation for the number of lines for adi

and W (adi) for the expected (declared) value of adi to its associated advertiser.

Algorithm 3: (Dynamic program for winner determination)

Input: ads {adi}i∈m, index I, number of ads to be allocated h′ and maximum number of

available lines k′

1 initialize bestWF← 0.

2 if I >m or h′ < 1 or k′ < 1 then
3 return 0

4 else
5 for i= I to m do
6 Let j be next ad from different advertiser than i.

7 if bestWF<W (adi) + sub (j,h′− 1, k′− l (adi)) then
8 bestWF←W (adi) + sub(j,h′− 1, k′− l (adi))

9 Let π̃i = πi + ∆ for i∈ S, π̃i = πi for i∈N \S, and π̃0 =w(N)−
∑

i∈N π̃i.

10 return bestWF

Appendix B: Benchmark core pricing algorithms and other auctions

Here is a detailed list of payment rules/auctions we implemented in this paper:

i. The Vickrey-Clarke-Groves auction (VCG): See Vickrey 1961;Clarke 1971;Groves 1973.

ii. The Generalized Second Price auction with optimal welfare allocation (GSP with Optimal):

this auction uses the optimal welfare allocation. For payments, similar to traditional GSP, it prices

each ad according to the pclick times bid of the subsequent ad (the last ad will be priced by the best

ad that was not assigned and can be fit within the line count limit).

iii. The Generalized Second Price auction with greedy allocation (GSP with Greedy): for the

allocation, it greedily allocates ads based on pclick times bids. For payments, similar to GSP, uses the

next best ad for pricing. Greedy GSP has faster runtime, since it does need not to call the winner

determination oracle, but has worse revenue performance relative to Optimal GSP (as we will see in

our experimental results).

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
37

iv. Minimum revenue core payment rule (Min Rev Core; Day and Raghavan 2007): this is the

first and simplest heuristic algorithm that finds a minimum revenue core point, given access to an

oracle for the winner determination problem (with truncated values). This algorithm is based on a

heuristic called Core Constraint Generation (CCG). The simple version in Day and Raghavan 2007

starts from an initial small LP for minimizing revenue (which is basically the hyper-cube when pay-

ments are above VCG prices and below bids), and in each iteration finds the most violated core

constraint by the current point (by sending a query to the winner determination oracle of Defini-

tion 6) and adds this constraint to the LP. It then re-solves the LP to find the next point, and iterates

until it finds a feasible core point. We use Matlab’s large-scale LP solver based on the interior-point

methods (Zhang 1998) for the LP-solving part of this algorithm.

v. Quadratic core payment rule (Quad Core; Day and Cramton 2012): this algorithm finds the

closest minimum revenue core point to VCG prices. It is again a heuristic algorithm that first uses

CCG and finds the minimum revenue core point at each iteration similar to Day and Raghavan 2007.

Then, by fixing this revenue, it searches for another point in the current feasible polytope of core can-

didates (with one additional constraint for fixing the revenue) that has minimum `2-distance to VCG.

This search is done using convex quadratic programming. The algorithm iterates over this procedure

until it finds a feasible core point. We use Matlab’s large-scale LP solver based on the interior-

point methods (Zhang 1998) for the linear programming part, and Matlab’s large scale interior-point

method for solving convex quadratic programming (Mehrotra 1992, Gould and Toint 2004) for the

quadratic programming part of each iteration.

vi. Vaidya’s cutting plane method (Vaidya Min Rev; Vaidya 1989, 1996): one approach to find a

minimum revenue core point in polynomial-time is to solve the LP for the minimum revenue directly,

as we have access to a separation oracle for the core polytope. As a reminder, this oracle is essentially

the allocation algorithm for the winner determination problem with truncated values, as in Definition

6. Vaidya’s volumetric cutting plane method is a fast algorithm that makes efficient use of the sepa-

ration oracle. If n is the number of bidders, it has oracle complexity O(n log(n)) and computational

complexity O(n4). For details on different steps of this algorithm and its analysis see Bubeck et al.

2015. We implemented Vaidya’s algorithm by following the steps in Section 2.3 of Bubeck et al. 2015

to be used in our numerical experiments.

vii. Our bidder optimal core pricing algorithm (Fast Core): we implemented our core pricing rule

following the steps of Algorithm 1, which uses Algorithm 2 as a subroutine.

Remark 5. Note that we studied above auctions without reserve prices. Importantly, tuned reserve

prices are commonly used to boost revenue. However, as reserves can be applied to all seven of these

auctions, we choose not to include them in our experiment in order to focus on the impact of the

auction pricing rule.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
38

Remark 6. In fact, the computational complexity of Vaidya can even be improved further, and

the recent breakthrough by Lee et al. 2015 shows that it can essentially (up to logarithmic factors)

be brought down to O(n3). As we will elaborate in Section C.4, we already faced several practical

complications and obstacles to implement Vaidya for our application (mostly due to the sensitivity

of its performance to various parameters of the algorithm to make use of volumetric barrier). Hence,

we left implementing the algorithm of Lee et al. 2015 and adapting it for our application as a future

direction.

Appendix C: Practical considerations and limitations in our experimental study

Here we note a few important practical notes that apply to our numerical results of this section,

together with potential interpretations or road-maps on how to deal with them based on various work

in the literature. Further and deeper discussion on these points is beyond the scope of this work and

we leave them as interesting open directions for future work.

C.1. Bid collection vs. true valuations

During bid collection, the sponsored search platform was running its own native auction (which

roughly speaking is a variant of the generalized second price auction with optimized reserve prices).

These bids by no means are guaranteed to be truthful bids, neither are collected through a controlled

experiments in which bidders are aware of changing the auction to a core selecting auction or any

other auction that we are simulating in this section. Moreover, in online advertising, it is difficult

to evaluate an advertiser’s true valuation of a click from the submitted bids, because of several

fundamental reasons: (1) Importantly, advertisers usually run sophisticated learning algorithms to bid

based on their past experiences with the platform, which leads to complicated bid shading mechanics,

(2) Indeed, the advertiser itself might not know the true valuations for the clicks received from the

search engine, as the quality of clicks differs and is dependent on the user, publisher, and other

contexts, (3) Advertisers might not be utility maximizers, for example they might be maximizing

clicks given a budget, or might be valuing the conversion (when a defined transaction such as a sale

or subscribing happens from the user after the click) or just a visit to their page, and hence their

behavior diverge from the classic quasi-linear rational models in microeconomics, and finally (4) Even

if the appropriate metrics were known, the platform typically does not get to observe them accurately.

Understanding and modeling true advertisers’ behavior is still an important open problem for ad

auction research and industry, and is beyond the scope of this paper (Edelman and Ostrovsky 2007,

Xu et al. 2013, Sayedi 2018).

Nevertheless, in the absence of knowing the exact behavior of advertisers and the possibility of run-

ning a controlled exclusive experiment, the bidding numbers are our best estimates for the advertisers’

true values for clicks. Therefore, when using bidding data to evaluate our algorithms, we implicitly

assumed truthful bidding and took each advertiser’s bid as a proxy for their value. We made this

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
39

choice in part due to necessity, and in part because it is a common practice in search advertising

auction industry. As a minor note, there are also strong empirical evidences for modeling advertisers

as ROI (Return of Investment) constrained value maximizers (e.g., see Aggarwal et al. 2006, Wilkens

et al. 2017), under which GSP is provably a truthful auction (Wilkens et al. 2017). Yet, these results

heavily rely on myopic rational behavior for advertisers, which might not be the case in practice.

C.2. Non-truthfulness in core auctions and short/long-term incentive issues

One important property that core selecting auctions lack is truthfulness. So, even though in our

numerical experiments the reported bids are acceptable proxies for the true valuations, it is critical to

understand the behavior of bidders, both in short-term and long-term, and how they respond to the

non-truthfulness of the auction. This response can have implications on the revenue of the auction.

For example, when bidders bid strategically or run a learning algorithm to respond, the platform’s

revenue could be hurt. We propose the following interpretations and methodologies to study this

phenomena. Digging deeper in some of these methodologies is beyond the scope of this work and we

leave as future research directions:

• Running a bidder optimal core selecting auction imposes a natural full information Nash equi-

librium, where bidders truncate their values by the utility they get from the bidder optimal core

pricing based on the the core with respect to the true valuations (Day and Milgrom 2008). More-

over, the revenue of the seller at this equilibrium is equal the revenue of the bidder optimal core

pricing with respect to the true valuations. As we are running bidder optimal core selecting auctions

and advertises have not responded to this auction (so, bids are proxies of true valuations), one can

therefore interpret our experimental results as evaluating the short-term impact of employing core

pricing, modulo the assumption that advertisers are playing the aforementioned full information Nash

equilibrium above.

• Assuming that advertisers play the full information Nash equilibrium can be problematic in

sponsored search auctions, as these markets are highly uncertain and information about competitors

is incomplete. In such an environment, an advertiser might run a learning algorithm or some other

dynamic responding mechanism to bid. However, there are evidences that bidder optimal core auctions

“guide the advertisers” who run natural dynamics, in a way that advertisers converge fast to this full

information Nash equilibrium, without actually needing complete information. To see this, consider

the following two-step process: in the first step, advertisers bid truthfully (as they have no information

about other competitors) and each winner obtains some utility. Now, as the auction is a bidder optimal

core auction, these utilities will reveal the full information Nash equilibrium mentioned earlier. In

fact, each bidder only needs to play a truncated strategy that shades the bid of each package by

the utility obtained in the first step (which is a somehow natural bid shading algorithm), and in

this way the full information Nash equilibrium will be played in the second step. One can also think

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
40

of other generalizations of the mentioned two-step dynamic, where the bidders only shade their bid

by truncating based on a fraction of the utility of the previous round. We conjecture this simple

dynamics, as well as other dynamics such as iterative best response, converge to the full information

Nash equilibrium in the sale of ad space problem, and we leave investigating further as an open

question (interestingly, there are examples showing that for a general combinatorial auction this

dynamics does not converge, and at the same time there is a simple proof showing that for simple

settings such as single-minded combinatorial auctions this dynamics converges to the full information

Nash equilibrium).

• Another possible approach to interpret the the long-term effects of the incentive issues of core

auctions is to focus on an incomplete information equilibrium concept such as Bayes Nash Equilibrium

(BNE). While characterizing closed-form equilibria is intractable (and probably impossible), one

can use the recent progress on computational methods to approximate the BNE of core selecting

auctions (Bosshard et al. 2017, Lubin and Parkes 2009, Lubin et al. 2015, Bünz et al. 2015, 2018b,a),

in order to obtain an educated guess ball-park characterization of how far we might expect the

revenue to be from the simulation results in practice (basically after platform uses this auction

and advertisers respond to it in a way that they approximately land in the aforementioned BNE).

Bünz et al. 2018a,b used the computational search approach to help with better understanding the

quadratic core payment rule, as well as designing an automatic search for “better” core payment

rules. This paper cannot be used in a blackbox fashion to assess our core pricing rule (as one needs to

run the computational search approach for our core pricing rule. Also they have considered different

domains than ours and revenue is very domain dependent). Yet, it can be used to obtain very rough

estimates of how much revenue reduction we might face at the (approximate) BNE. By looking at the

revenue column of Tables 1-7 in Bünz et al. 2018a,b, it seems the revenue ratio of quadratic payment

rule over VCG is a number between 0.88-1.44 among 7 different domains (which is averaged at 11.27%

improvement). Our numerical experiments suggest an improvement around 15% (see Table 1). One

might try to repeat the same approach, but tailored to our core selection algorithm and our domain,

and refine the 26.5% improvement over VCG that our experimental results suggest for the revenue of

our core pricing algorithm. We leave this refined experimental study as an interesting future direction.

C.3. Using approximate winner determination for faster auctions

We described a dynamic program for generating a welfare-optimal slate of ads, and showed that it

was feasible within the time constraints imposed by a production advertising platform for a realistic

number of ads and lines. However, if the number of advertisers or lines increases, and/or there is a

change on the assumptions that can be made on buyer utilities, it may turn out that the dynamic

programming solution is not always feasible in practice. If not, we note that one can replace the

optimal allocation with an approximate Maximal-In-Range allocation (see Dobzinski and Nisan 2007)

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
41

and get the same result as in this paper, but for the core polytope restricted to that range. In other

words, if one can compute the optimal allocation within a restricted range of allocations (e.g., those

that allocate at most 4 ads, or that only show ads of the same size, etc.), then our algorithm – using

such a restricted welfare maximization oracle – will generate core payments for the auction that

restricts outcomes to lie in that range.

C.4. Comments on implementing cutting plane methods

We observed the following issues while implementing Vaidya’s algorithm (Vaidya 1989, 1996) for the

sale of ad space application (we use notations used in Section 2.3 of Bubeck et al. 2015), which we

believe makes this algorithm (and other cutting plane methods with similar operations) impractical

for our purpose:

i. Vaidya’s algorithm hugely depends on the precision handling, where precision controls “how

much the final point is close to a minimum revenue core point”. In fact, it is very susceptible to

overflow as it needs to compute the logarithm function for different “slack” terms, and overflow easily

happens when these slack terms approach to zero. Hence, in practice, the precision has to be very

lax in order for the algorithm to converge.

ii. Vaidya’s algorithm convergence hugely depends on different parametric choices (e.g., when to

break the algorithm based on the volume of the search region, choice of parameter β in each iteration,

etc.). So, even with a lax precision it takes a long time to converge in some cases.

In implementing Vaidya’s algorithm, we note that as we increase the precision of the solution

slightly, its running time degrades significantly. Our experiments show that the running time scales

by a factor comparable to O(1
ε
) in order to obtain an small precision of ε. This is in contrast to our

algorithm where running time only scales by O(log(1
ε
)) to get the precision ε (and our experiments

validate this fact as well). Another important factor in practice is the ignored constants of the big O

notation in the running time. We again argue that comparing to our algorithm Vaidya’s algorithm has

much larger constants in its running time, as suggested by our experiments and carefully implementing

the algorithm following the recipe in Section 2.3 of Bubeck et al. 2015). As a result, even obtaining

a point with a rather large precision of ε= 0.1 requires a long processing time.

To better understand the reasons behind the precision sensitivity, which are also true for other

barrier-based cutting plane methods such as Lee et al. 2015, consider the following. The Vaidya’s

algorithm has three main parameters that govern the precision of its final solution (and therefore its

running time). The first parameter is the stopping threshold for the volume of the search polytope

(measured indirectly using the volumetric barrier), below which we stop reducing the feasible region

and terminate. The second parameter governs how small the leverage score of a hyperplane associated

to a face of the search polytope should be to be removed (see Section 2.3.2 of Bubeck et al. 2015, line

(1) in the description of the algorithm for more details). Finally the last parameter is the standard

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
42

floating point precision which is used for floating point operations in practice. Our experiments (and

further playing around with Vaidya’s algorithm to optimize its running time) suggest that Vaidya’s

running time is very sensitive to the choice of the first and second parameters above, mostly due to

the logarithm function used in the volumetric barrier.

Appendix D: Future directions and open problems

Here is a list of a few concrete theoretical and practical future directions:

i. Our fast core pricing algorithm (Algorithm 1) does not target any global objective function,

which is in contrast to other traditional methods such as Day and Raghavan (2007) (minimizing `1

distance from VCG) and Day and Cramton (2012) (minimizing `2 distance from VCG). Can one use

the way we explore the core polytope efficiently to optimize a tractable (maybe convex) objective

function in a fast fashion?

ii. Give the practical considerations in Section C.4, how can one adapt the state of the art cutting

plane methods such as Lee et al. (2015) to work for the sale of ad space problem? Our simulations

suggest these algorithms are very sensitive to different precision parameters. Designing a robust

version of them sounds like a roadmap to approach this challenge.

iii. In sponsored search, advertisers either use sophisticated online learning algorithms, or are

relying on automated bidding softwares provided by the platform (Aggarwal et al. 2019). What can

we say about the way they respond to a core selecting auction, in comparison to GSP auction and

other auction formats that are common in sponsored search?

iv. Designing auctions for video ads is another combinatorial setting that can potentially benefit

from a combinatorial auction such as core selecting. An interesting open problem is to use the

techniques in our paper to tackle this multi-billion dollar industry problem.

Appendix E: More experimental results for various line counts

We report the revenue, fairness, running time and query complexity of different algorithms in our

experiments for line counts 25, 30, 35, and 45. For revenue results, see Figures 7, 8, 9, and 10. For

running time results, see Figures 11, 12, 13, and 14. For query complexity results, see Figures 15, 16,

17, and 18. Finally, for fairness results, see Figures 19, 20, 21, and 22.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
43

50 100 150 200 250 300 350

Number of Ads

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 R

e
v
e
n
u
e

Number of Lines=25

Minimum Revenue Core

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 7 Normalized revenues versus total number of ads for line count=25.

50 100 150 200 250 300 350

Number of Ads

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 R

e
v
e
n
u
e

Number of Lines=30

Minimum Revenue Core

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 8 Normalized revenues versus total number of ads for line count=30.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
44

50 100 150 200 250 300 350

Number of Ads

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 R

e
v
e
n
u
e

Number of Lines=35

Minimum Revenue Core

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 9 Normalized revenues versus total number of ads for line count=35.

50 100 150 200 250 300 350

Number of Ads

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 R

e
v
e
n
u
e

Number of Lines=45

Minimum Revenue Core

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 10 Normalized revenues versus total number of ads for line count=45.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
45

50 100 150 200 250 300 350

Number of Ads

0

100

200

300

400

500

600

700

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 t
im

e
 (

b
y
 V

C
G

 t
im

e
)

Number of Lines=25

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

GSP with Optimal

GSP with Greedy

Figure 11 Normalized running times versus total number of ads for line count=25.

50 100 150 200 250 300 350

Number of Ads

0

100

200

300

400

500

600

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 t
im

e
 (

b
y
 V

C
G

 t
im

e
)

Number of Lines=30

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

GSP with Optimal

GSP with Greedy

Figure 12 Normalized running times versus total number of ads for line count=30.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
46

50 100 150 200 250 300 350

Number of Ads

0

100

200

300

400

500

600

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 t
im

e
 (

b
y
 V

C
G

 t
im

e
)

Number of Lines=35

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

GSP with Optimal

GSP with Greedy

Figure 13 Normalized running times versus total number of ads for line count=35.

50 100 150 200 250 300 350

Number of Ads

0

50

100

150

200

250

300

350

400

450

500

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 t
im

e
 (

b
y
 V

C
G

 t
im

e
)

Number of Lines=45

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

GSP with Optimal

GSP with Greedy

Figure 14 Normalized running times versus total number of ads for line count=45.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
47

50 100 150 200 250 300 350

Number of Ads

0

20

40

60

80

100

120

140

Q
u
e
ry

 c
o
m

p
le

x
it
y

Number of Lines=25

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

VCG

Figure 15 Query complexity versus total number of ads for line count=25.

50 100 150 200 250 300 350

Number of Ads

0

20

40

60

80

100

120

Q
u
e
ry

 c
o
m

p
le

x
it
y

Number of Lines=30

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

VCG

Figure 16 Query complexity versus total number of ads for line count=30.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
48

50 100 150 200 250 300 350

Number of Ads

0

20

40

60

80

100

120

Q
u
e
ry

 c
o
m

p
le

x
it
y

Number of Lines=35

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

VCG

Figure 17 Query complexity versus total number of ads for line count=35.

50 100 150 200 250 300 350

Number of Ads

0

20

40

60

80

100

120

Q
u
e
ry

 c
o
m

p
le

x
it
y

Number of Lines=45

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

Vaidya Min Rev

VCG

Figure 18 Query complexity versus total number of ads for line count=45.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
49

10 20 30 40 50 60 70 80 90 100

Number of Ads

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

F
a
ir
n
e
s
s
 r

a
ti
o
 =

m

a
x
/

m
in

Number of Lines=25

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 19 Fairness ratio versus total number of ads for line count=25.

10 20 30 40 50 60 70 80 90 100

Number of Ads

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

F
a
ir
n
e
s
s
 r

a
ti
o
 =

m

a
x
/

m
in

Number of Lines=30

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 20 Fairness ratio versus total number of ads for line count=30.

Niazadeh et al.: Fast Core Pricing for Rich Advertising Auctions
50

10 20 30 40 50 60 70 80 90 100

Number of Ads

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

F
a
ir
n
e
s
s
 r

a
ti
o
 =

m

a
x
/

m
in

Number of Lines=35

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 21 Fairness ratio versus total number of ads for line count=35.

10 20 30 40 50 60 70 80 90 100

Number of Ads

0

1

2

3

4

5

6

F
a
ir
n
e
s
s
 r

a
ti
o
 =

m

a
x
/

m
in

Number of Lines=45

Day and Raghavan [2007]

Day and Cramton [2012]

Fast Core

GSP with Optimal

GSP with Greedy

VCG

Figure 22 Fairness ratio versus total number of ads for line count=45.

	1 Introduction
	1.1 Main results
	1.2 Further Related work

	2 Preliminaries
	3 The Water-Filling Algorithm
	3.1 Winner Determination Oracle Model
	3.2 The Algorithm
	3.3 Proof of Correctness and Running Time
	3.4 On the Virtues of Our Bidder Optimal Core selection Rule
	4 Sale of Ad Space: a Numerical Study Based on Microsoft Bing Data
	4.1 Sale of Ad Space Allocation Problem
	4.2 Our experiments

	5 Conclusion
	A Dynamic programming for sale of ad space
	B Benchmark core pricing algorithms and other auctions
	C Practical considerations and limitations in our experimental study
	C.1 Bid collection vs. true valuations
	C.2 Non-truthfulness in core auctions and short/long-term incentive issues
	C.3 Using approximate winner determination for faster auctions
	C.4 Comments on implementing cutting plane methods
	D Future directions and open problems
	E More experimental results for various line counts

