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Consider a publisher of online display advertising that sells its ad resources in both an upfront market and

a spot market. When planning its ad delivery, the publisher needs to make a trade-off between earning a

greater short-term profit from the spot market and improving advertising effectiveness in the upfront market.

To address this challenge, we propose an integrated planning model that is robust to the uncertainties associ-

ated with the supply of advertising resources. Specifically, we model the problem as a distributionally robust

chance-constrained program. We first approximate the program by using a robust optimization model, which

is then transformed into a linear program. We provide a theoretical bound on the performance loss due to

this transformation. A clustering algorithm is proposed to solve large-scale cases in practice. We implement

ad serving of our planning model on two real data sets, and we demonstrate how to incorporate realistic con-

straints such as exclusivity and frequency caps. Our numerical experiments demonstrate that our approach

is very effective: it generates more revenue while fulfilling the guaranteed contracts and ensuring advertising

effectiveness.

Key words : display advertising, ad delivery planning, distributionally robust chance-constrained

optimization, targeted advertising

1. Introduction

Online display ads can range from simple text, image, flash, and video to rich media, and such

ads generally appear together with the contents of web pages. Compared with traditional adver-

tising media such as radio and TV, online advertising offers a better audience targeting capability.

Consequently, online display advertising has become a multi-billion dollar business. For exam-
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ple, according to the data of eMarketer (2019), the worldwide online display advertising revenue

reached $144.7 billion in 2018, representing a 26.8% increase from 2017, and it will exceed $200

billion in 2020.

1.1. The Current Practice

The present study is motivated by the current industry practice. Specifically, we observe the ad

delivery practices of two companies: a leading social network service (SNS) firm and a video

advertising operator. Despite some expected differences in their operations, these companies face

some common challenges. Below, we first detail the typical industry practice by referring to the

SNS firm.

User visits to the publisher’s website generate advertising opportunities that are subject to

uncertainties. These uncertainties are derived from the variations in the number of users visiting

the website, the number of times that the same user visits the website in a day, and the duration

of each visit. Furthermore, users, or user visits, are characterized by various features, e.g., gender,

age, education, occupation, and region, that allow advertisers to precisely target their preferred

audiences. Such features information can be collected by the publisher itself and may also be pur-

chased from third-party data management platform (DMP), such as Oracle and Adobe (Market

Research Future 2019).

The publisher sells its advertising resources via either an upfront market or a spot market. In

the upfront market, the publisher enters into a contract with each advertiser, guaranteeing an

agreed-upon number of impressions over a specified period at a fixed price. These contracts often

vary in the length of the period set for the ads; therefore, at any given time, the publisher has

many contracts, each of which has a varying time span. In the spot market, the publisher auctions

off its remaining advertising resources in real time among advertisers who, either purposefully

or spontaneously, want to display their ads during the current period.

Therefore, at a higher level, over time, the publisher needs to decide whether to enter into guar-

anteed contracts with its advertisers and, if so, on what terms. Such decisions need to consider

issues such as future advertising resource availability and possible revenue from the spot mar-

ket. At the operational level, with the guaranteed contracts in place, the publisher needs to plan

its ad delivery for each period. As its current practice, the publisher manages the two markets

separately, with the upfront market being managed by the sales department and the spot market

being managed by the (technical) operations department. Regarding ad delivery, to ensure that
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the guaranteed ads are fulfilled, the upfront market is given a higher priority, and ad resources

are pre-allocated to the guaranteed ads. The remaining resources are then sold at the spot market

via auction.

Although the above description considers the practice of the SNS firm, this description is rather

typical and basically also applies to the video advertising firm. Large publishers attract a consid-

erable amount of web traffic and thus have incentives to sell their advertising resources directly,

whereas many other websites receive less traffic and may sell their advertising resources via ad

exchange platforms, such as Google’s DoubleClick (Balseiro et al. 2014). In this case, the problem

studied in this paper is more suitable for an ad exchange platform.

1.2. Inefficiencies of the Current Practice

The current practice described above suffers from two major inefficiencies. The first is that sep-

arate management of the upfront market and spot market ignores the value of coordination and

integration and thus misses potential profit. When a user visits a website, due to his/her multi-

dimensional characteristics, a number of ads, from either the upfront or spot market, may set

him/her as a target. In the current practice, an advertiser from the spot market may not receive

the opportunity to display its ads even if it is willing to pay more because guaranteed ads are

given higher priorities in ad delivery. Different ad campaigns may value the same user differently,

and deliberately designed ad delivery can better exploit the value of advertising resources.

The second inefficiency is related to the selling approach in the spot market. Although theo-

retically appealing, simple auction mechanisms (e.g., the generalized second-price auction) have

been found to have many drawbacks in practice. Realistic concerns such as daily budgets set by

advertisers, advertisers’ preference over smooth delivery, and different risk preferences among

advertisers have made the theoretical appeal of the mechanisms doubtful. In fact, Benisch et al.

(2009) proved that simple auction mechanisms can be arbitrarily inefficient in the presence of

advertisers’ budget constraints. Lu et al. (2015), through a game-theoretic analysis, found that

the publisher’s revenue can decrease due to advertisers’ budget constraints. Similar to the results

reported by earlier authors (Zhang and Feng 2011), we have found that advertisers do not change

their bids frequently, although they do adjust over time, often daily. In other words, the publisher

typically holds perfect or sufficient information about advertisers’ bids that allows it to plan ad

delivery over a period. Indeed, some authors from academia, such as Walsh et al. (2010), and from

industry, such as Yang et al. (2010), have proposed adopting a planning approach rather than

auctions to allocate the ads among advertisers.
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1.3. Our Method and Contributions

In this paper, we propose integrating ad delivery planning for guaranteed ads and spot market

ads. Specifically, we study the operational decisions of an online advertising publisher, namely,

how the publisher should allocate its advertising resources to different guaranteed ads and to

spot market ads, considering the uncertain supply of ad resources, the requirement of guaranteed

ads, and the bids submitted from advertisers in the spot market.

As mentioned previously, each upfront contract covers a period ranging from days and weeks

to months. Advertisers typically prefer smooth delivery of the ad campaign, meaning that the

contracted number of impressions rolls out smoothly over time (Bhalgat et al. 2012). This allows

the firm to subdivide the contract into shorter periods (e.g., a day) and plan the ad delivery for

such refined periods. Thus, in each (refined) period, the firm needs to plan its ad delivery to fulfill

its guaranteed contracts and subsequently maximize revenue from the spot market.

A number of concerns arise from the publisher’s planning process. First, it is important to

advertisers that the contracts be fulfilled for an ad campaign to achieve its objective. For exam-

ple, a smart phone manufacturer launching a new product in October may purchase 100 million

impressions from users aged 18 to 60 years in the U.S. from August to September. Achieving the

impression target is critical to brand awareness and to the success of the new product launch, and

the publisher is obliged to deliver the contracted number of impressions.

Second, rather than having its ads displayed to the same group of users repeatedly, an adver-

tiser prefers to display the ads to as many unique targeted users as possible. The measure reach is

defined as the number of unique individuals that an ad campaign has covered. Note that a user

may visit the website several times during a period and that visits vary in duration. Thus, one

user may generate multiple impressions during a period. A higher reach is critical to advertising

effectiveness and is thus highly regarded by advertisers. Therefore, even if the guaranteed con-

tract between the publisher and advertiser does not specify concrete terms regarding reach, to

maintain a long-term relationship with the advertisers and build up its reputation, the publisher

aims to improve along such a dimension.

Third, given all of the above, considering the limited advertising resources and the fixed rev-

enue from guaranteed ads, the publisher has a natural motive to allocate more resources to the

spot market to achieve a higher revenue. Therefore, the firm essentially faces a trade-off between

earning a larger revenue in the spot market and improving the effectiveness of guaranteed ads to

maintain a long-term relationship with advertisers.
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In this paper, we propose an integrated planning model for ad delivery of both guaranteed and

non-guaranteed ads. The proposed model incorporates all of the earlier concerns and allows the

publisher to balance the trade-off between short-term profit and long-term benefit. Specifically,

we make the following contributions.

(1) We derive a closed-form expression for the expected reach and then construct a distribu-

tionally robust chance-constrained (DRCC) programming model that maximizes the spot-market

revenue subject to the attainment of contracted delivery and higher reach. The solution to our

model is an ad delivery plan that is robust to the uncertainties of advertising resources.

(2) To solve the DRCC program, we propose a robust optimization model to safely approxi-

mate the original model, and the robust optimization model is further transformed into a linear

program for tractability. We provide theoretical guarantees for the performance loss due to the

transformation.

(3) We propose a clustering algorithm to efficiently solve large-scale instances of the linear pro-

gram. In practice, the problem is often of a large scale and is challenging to solve. For example, if

the audience is categorized by traits including 50 regions, 2 genders, 10 age groups, 5 education

levels, and 20 occupations, then our planning model will have 100,000 viewer segments. Compu-

tationally efficient algorithms are highly demanded for real implementations of our framework.

(4) We test the approach on random test cases and two real data sets. An efficient ad serving

procedure is designed to incorporate additional constraints such as frequency caps and exclusiv-

ity. We show that our approximation of chance constraints is very tight. We explore the trade-off

between short-term spot market revenue and the effectiveness of guaranteed ads through numer-

ical experiments. The proposed integrated planning of guaranteed and non-guaranteed ads is

shown to be capable of achieving higher profit and also ensuring effective delivery of guaranteed

ads.

The remainder of this paper is organized as follows. We first review the literature in the next

section. Section 3 then formally defines the problem, presents the DRCC model and then safely

approximates the model by using a robust optimization model. Section 4 transforms the robust

optimization model into a linear program and quantifies the transformation performance. Sec-

tion 5 presents the audience clustering algorithm. Section 6 defines the ad serving procedure and

presents the numerical study. The paper is concluded in Section 7. All the proofs are provided in

the e-companion.
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2. Literature Review

Ad delivery is a central problem for publishers and has attracted a substantial amount of atten-

tion from researchers and practitioners. Particularly, we have witnessed increasing interest in

ad delivery from the operations research community. In the literature, however, guaranteed and

non-guaranteed ads are often treated separately. Different application contexts have also led to

different models and perspectives.

The first stream of research is related to the delivery problem for guaranteed ads. Vee et al.

(2010) proposed an online algorithm for the ad delivery of guaranteed advertising by assuming

that they have access to random samples from the future set of user arrivals. Based on this algo-

rithm, Bharadwaj et al. (2012) focused on improving the efficiency of the solution procedure, with

the objective of balancing the feasibility and representativeness of the solution. Representative-

ness measures the distance between an ad delivery plan and an ideal plan. Note that an ad cam-

paign targets a set of viewer segments and that the advertiser prefers that its campaign reaches

viewers from all segments; hence, an ideal plan assigns each ad campaign equal proportions of

impressions from all of its targeted viewer segments (Yang et al. 2010, McAfee et al. 2013). Both

of the above works are online algorithms and do not consider the distribution information of the

uncertain factors. As in Vee et al. (2010) and Bharadwaj et al. (2012), Turner (2012) also minimized

a convex objective function, albeit with a different intention. Specifically, his objective function

minimizes the L2 distance between the delivery plan and the ideal representative plan. Surpris-

ingly, he was able to show that under certain conditions, the plan can simultaneously maximize

reach and minimize the variance of the number of allocated impressions. Furthermore, he pro-

posed very efficient algorithms to handle large-scale cases, and our algorithm borrows ideas from

these algorithms. Deza et al. (2015) formulated the planning problem for guaranteed contracts

as a chance-constrained optimization model and solved the model using sample approximation.

In comparison, our chance-constrained model is distributionally robust. Hojjat et al. (2017) con-

sidered the ad delivery problem for a new type of guaranteed contract. Each contract specifies

the reach and a minimum frequency, where frequency is the number of times that each individ-

ual is exposed. They developed a flexible framework that aims for minimal under-delivery and

proper representativeness. Lejeune and Turner (2019) presented an ad delivery planning method

that maximizes the spreading of impressions (across viewer segments and time) measured by the

Gini coefficient, while it penalizes the unfulfillment of guaranteed impressions for ad campaigns.
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Although all of the above works aimed to achieve robustness, with the exception of Deza et al.

(2015), the majority of them did not achieve robustness in a quantifiable manner. In the present

work, we explicitly handle the uncertainty using a distributionally robust chance-constrained

program.

The second stream of literature is related to the issues of how a publisher should optimize its

revenue from non-guaranteed ads. The majority of the research, however, focuses on the auc-

tion mechanism design (Edelman et al. 2007, Feng et al. 2007, Chen et al. 2009, Zhu and Wilbur

2011, Abhishek and Hosanagar 2013, Chen 2017). Walsh et al. (2010) suggested adopting an inven-

tory planning approach rather than auction mechanisms. They designed efficient algorithms to

compute the optimal ad inventory allocation solution for the scenarios in which the number of

user segments is enormous. Najafi-Asadolahi and Fridgeirsdottir (2014) studied the optimal pric-

ing decisions for an online advertising publisher that faces dynamic, price-dependent advertiser

arrivals and needs to decide its pricing quotation (“ask price”) to ad networks. Pricing functions

as an indirect tool for allocating advertising resources to advertisers. Shamsi et al. (2014) also

studied the allocation of non-guaranteed ads but adopted an online planning approach. They pro-

posed a framework for allocating impressions to advertisers with limited budgets to minimize

the risk of the ad network.

The above works indicate an increasing interest in using a planning approach rather than auc-

tions for non-guaranteed ads. Note that the so-called planning approach can actually be consid-

ered a generalized auction. However, the generalized auction is market-share based (Chen et al.

2009) rather than event based. In other words, the traditional auction implies holding an auction

for each event, namely, whenever an ad display opportunity arises. An undesirable consequence

is that ads with higher bids may exhaust their daily budget in the early part of a day, result-

ing in ads with lower bids being shown throughout the rest of the day (Lu et al. 2015). Such a

consequence first means non-smooth delivery for the advertiser. It also means a loss of potential

revenue due to a lack of global optimization (Benisch et al. 2009). In practice, the publisher and

advertisers may address these drawbacks using some ad hoc arrangements, such as intentionally

lowering bid prices for certain periods of a day or randomly participating in some of the auctions

throughout the day. With the planning approach, ads with higher bids will eventually gain larger

shares over a period, although they do not necessarily win each event-based auction. The above

drawbacks of the auction mechanism can be greatly alleviated.
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The third research stream, which is also the closest to the present study, considers the ad

resource allocation problem in the presence of both guaranteed and non-guaranteed ads. Using

a stylized model, Araman and Popescu (2010) studied the trade-off between upfront and spot

market sales. Although the setting is more tailored to traditional media advertising such as cable

networks and TV, their results are of great value to online display advertising. One of their major

findings is that “ignoring audience uncertainty can have a significant cost for media capacity

planning and allocation”. Ghosh et al. (2009) argued that bids signal the value of an ad slot and

thus suggested that publishers assign randomized bids (random variables selected from a uni-

form distribution) to the guaranteed ads and have them compete with the non-guaranteed ads

based on bid values. Yang et al. (2010) proposed a multi-objective optimization model for inven-

tory allocation between guaranteed and non-guaranteed ads; however, this model does not con-

sider the uncertainties embedded in the problem. Considering uncertainty, Balseiro et al. (2014)

approached the problem of jointly optimizing the quality of guaranteed ads, as measured by

the click-through rates (CTRs), and the spot-market revenue. They proposed a bid-price control

policy that is similar in spirit to the one proposed by Ghosh et al. (2009). Their dynamic program-

ming approach is more applicable to small- to medium-sized publishers, and they do not consider

reach.

To obtain an ad delivery plan that is “quantifiably” robust to the uncertainty of the impression

supply, we formulate this ad delivery problem as a DRCC model. Chance-constrained program-

ming was first introduced by Charnes and Cooper (1959) and further strengthened by Miller and

Wagner (1965). Many researchers have proposed safe approximation methods to replace chance

constraints with tractable deterministic convex constraints. For example, Nemirovski and Shapiro

(2006) presented a convex Bernstein approximation of chance-constrained programs, Chen et al.

(2007) introduced the forward and backward deviations to approximate chance constraints, Chen

et al. (2010) and Zymler et al. (2013) presented the conditional-value-at-risk (CVaR)-based approx-

imations for chance constraints, and Postek et al. (2018) constructed safe approximations of chance

constraints by deriving an upper bound on the moment-generating functions of random vari-

ables. However, some chance constraints in our model are not affine in either random variables or

decision variables, which violates the settings of chance constraints in the above works and hence

prevents the adoption of their results. Moreover, in our case, a major challenge is to ensure that

the transformed model is practically tractable for large-scale implementation. For this purpose,

we will build upon the existing studies and design some new approximation techniques.
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3. Model

3.1. Problem Definition

Consider an online advertising publisher that is planning its ad delivery for a single period, e.g.,

a day. The publisher receives a large number of user visits to its website, which creates adver-

tising opportunities. The website viewers (the audience) can be categorized into multiple viewer

segments according to their characteristics, such as residence and demographics. We assume here

that a viewer segment is the finest, that is, it cannot be further divided; thus, a viewer can be cat-

egorized into a unique viewer segment only. Note that the arrival of a single viewer may create

multiple impressions and that multiple ads can be displayed on the same web page. The supply of

ad resources (impressions) is random due to the uncertainties related to viewer arrivals and visit

durations. Note that we do not need assumptions on the stationarity of viewer arrivals, which

typically show strong of-day and day-of-the-week effects. Rather, we only need information on

the aggregated amount of supply in the period.

The publisher serves two types of ads. The guaranteed ads are from contracts that the publisher

signed with advertisers in the upfront market. Each guaranteed ad (or ad campaign) is associated

with a set of targeted viewer segments and a certain number of impressions to be delivered. The

publisher guarantees the advertisers that the contracts will be fulfilled. In the spot market, adver-

tisers submit their bids for each ad, specifying targeted viewer segments, their willingness to pay,

and a daily budget. In a period, the revenue from guaranteed ads is fixed, and the publisher can

earn additional revenue from the spot market only. However, to ensure advertisers’ satisfaction,

the publisher will first endeavor to ensure that the contracted numbers of impressions are deliv-

ered. Some advertisers also specify a targeted reach for their ad campaigns. Even if no reach is

specified for some contracts, to improve advertising effectiveness and to attract more advertisers,

the publisher attempts to improve the reach of ad delivery whenever possible. See Section 6.1 for

more discussion on reach, and for now, we simply assume that a targeted reach is specified for

each guaranteed contract. The advertising resources are limited, perishable, and shared among all

advertisements; thus, the publisher faces a trade-off in its ad delivery planning between earning

a short-term revenue and maintaining its long-term benefit.

In this paper, we propose an integrated model that allows the publisher to plan its ad delivery

for guaranteed ads and non-guaranteed ads simultaneously. The proposed model will consider

the uncertainties embedded in the problem and also address the trade-off mentioned earlier. To

the best of our knowledge, this is the first work in the literature to make such an attempt.
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Table 1 Notation definitions

Symbol Description

V set of viewer segments

J set of guaranteed ad campaigns

W set of non-guaranteed ad campaigns

Vj set of viewer segments targeted by guaranteed ad campaign j

Vw set of viewer segments targeted by non-guaranteed ad campaign w

Jv set of guaranteed ad campaigns that target viewer segment v

Wv set of non-guaranteed ad campaigns that target viewer segment v

Dj demand of guaranteed ad campaign j

Rj minimum expected reach of guaranteed ad campaign j

Bw budget of non-guaranteed ad campaign w

Nv population size of viewer segment v

ϕ number of available ad slots on a web page

evw average revenue per impression from non-guaranteed ad campaign w on
viewer segment v

s̃v supply (impressions) of viewer segment v

r̃vj reach of guaranteed ad campaign j on viewer segment v

Decision variables:

pvj proportion of impressions from viewer segment v allocated to guaran-
teed ad campaign j

pvw proportion of impressions from viewer segment v allocated to non-
guaranteed ad campaign w

Notations. For easy reference, we list the primary notations used in this paper in Table 1. We

label random variables with tildes (e.g., the supply of viewer segment v, s̃v, is random), while their

realizations are represented by the same symbols without tildes. We also use lower-case boldface

letters and upper-case calligraphic letters to denote vectors and sets, respectively. In particular,

we define p = {pvj | v ∈ V , j ∈ Jv; pvw | v ∈ V , w ∈Wv} as the ad delivery plan, where pvj and pvw

denote the proportions of viewer segment v’s total impressions allocated to the guaranteed ad

campaign j and the non-guaranteed ad campaign w, respectively.

Before proceeding to the model, we first list two important assumptions.

ASSUMPTION 1. Individuals in the same viewer segment are homogeneous. Therefore, an impression from

a viewer segment is equally likely to be supplied by any individual in this segment.
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The homogeneity assumption is reasonable because we assume that individuals within a

viewer segment share common behavioral patterns. We can always further divide a segment into

finer viewer segments if the assumption fails to hold.

ASSUMPTION 2. The supplies {s̃v | v ∈ V} are independent across all viewer segments. Moreover, for

each viewer segment v ∈ V , s̃v is symmetrically distributed in [µv − ŝv, µv + ŝv] with E[s̃v] = µv.

The assumption essentially says that the users of different segments do not affect each other. We

validate the assumption in the e-companion Section EC.1. To explore the effect of the assumption

failing to hold, we also test a model without this assumption in the e-companion Section EC.12.

Let s̃ = {s̃v | v ∈ V} be a vector of supplies from all viewer segments, and

Ξs̃ =
{

s̃ ∈R|V| | µv − ŝv ≤ s̃v ≤ µv + ŝv, ∀v ∈ V
}

be the support of s̃. Denote the probability distribution of s̃ by Ps̃; based on Assumption 2, Ps̃

belongs to a confidence set of distributions Ds̃ (also called the ambiguity set) defined as follows:

Ds̃ =

{
Ps̃ ∈M(Ξs̃)

∣∣∣∣ ∫
Ξs̃

dPs̃ = 1,
∫

Ξs̃

s̃ dPs̃ = µ

}
,

whereM(Ξs̃) denotes the set of all symmetric probability distributions on Ξs̃ that satisfy mutual

independence of s̃, and µ = {µv | v ∈ V}.

3.2. Reach of the Ad Campaign

To construct our model, we first need to quantify the reach, and for an ad campaign, reach is

defined as the total number of unique individuals who have seen the ads in this campaign. A

high reach is important for the effectiveness of display advertising and is therefore preferred by

advertisers. More than one ad may be used in an ad campaign. However, for our purposes, we do

not need to differentiate the ads in the same campaign.

Before an ad delivery plan is realized, the reach of an ad campaign is uncertain for two reasons.

(1) The supply process of ad resources is stochastic. It is impossible to know whether an individual

will arrive, the number of times that he/she will arrive, and the duration of each visit. (2) Ad

serving is subject to randomness, as is the serving result of any ad delivery plan. The ad delivery

plan is ex ante, and it specifies only the proportions of viewer segment’s impressions allocated

to different ad campaigns. When an ad display opportunity arises, a qualified ad is randomly

selected according to the plan. We will detail the ad serving procedure in Section 6.2.

Consequently, the reach remains uncertain even if the supply of impressions is known. Con-

fronted with this issue, we measure the expected reach with respect to the random supply of

impressions.
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PROPOSITION 1 (Quantifying Reach). The expectation of r̃vj (reach of the guaranteed ad campaign j on

viewer segment v) with respect to supply s̃v and impression proportion pvj is

E [r̃vj | (s̃v, pvj)] = Nv − Nv

[
1− 1

Nv
+

(1− pvj)
ϕ

Nv

]s̃v

, ∀j ∈ J , v ∈ Vj,

and the total expected reach of the guaranteed ad campaign j with respect to supplies {s̃v | v ∈ Vj} and

impression proportions {pvj | v ∈ Vj} is ∑v∈Vj
E[r̃vj | (s̃v, pvj)], ∀j ∈ J .

3.3. Model Formulation

We are now ready to present our model. Our objective is to find an integrated ad delivery plan

that maximizes the total revenue from the spot market while achieving the guaranteed delivery

and reach for the upfront market. We formulate the problem into a DRCC program. The model,

denoted by ADP-0 (ADP for ad delivery planning), is presented first, followed by detailed expla-

nations.

[ADP-0] max t, (1)

s.t. inf
Ps̃∈Ds̃

Ps̃

{
∑

w∈W
min

(
∑

v∈Vw

ϕs̃vevw pvw, Bw

)
≥ t
}
≥ 1− ε, (revenue constraint) (2)

inf
Ps̃∈Ds̃

Ps̃

{
∑

v∈Vj

ϕs̃v pvj ≥ Dj

}
≥ 1− εd

j , ∀j ∈ J , (delivery constraint) (3)

inf
Ps̃∈Ds̃

Ps̃

{
∑

v∈Vj

E [r̃vj | (s̃v, pvj)]≥ Rj

}
≥ 1− εr

j, ∀j ∈ J , (reach constraint) (4)

∑
j∈Jv

pvj + ∑
w∈Wv

pvw ≤ 1, ∀v ∈ V , (supply constraint) (5)

0≤ pvj ≤ 1, ∀v ∈ V , j ∈ Jv; 0≤ pvw ≤ 1, ∀v ∈ V , w ∈Wv. (6)

Objective Function. Because there are ϕ available ad slots on a webpage (ϕ ≥ 1), the number

of impressions from viewer segment v is ϕs̃v, and the impressions allocated to non-guaranteed

ad campaign w ∈Wv in the spot market is ϕs̃v pvw. The average revenue per impression from ad

campaign w on segment v is evw. Note that adopting our approach implies that the publisher is

not running event-based auctions, and the bids help advertisers win a share of the targeted ad

resources. For evw, it is simply the bid price if the advertiser does not adjust its bid in the period,

which is often the case; otherwise, it can be estimated based on the eCPM (effective cost per

mille impression) of this ad campaign or the most similar ad campaigns. Given that the budget
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of the non-guaranteed ad campaign cannot be over-consumed, the revenue from ad campaign

w is min{∑v∈Vw ϕs̃vevw pvw, Bw}, which is a truncated random variable (with uncertainty from the

impression supply) and is difficult to model using traditional approaches (e.g., maximizing the

expectation). Therefore, we seek to maximize the ε−percentile of the total revenue from non-

guaranteed campaigns, which equals t as stipulated by (1) and (2). Furthermore, maximizing the

percentile also allows the publisher to incorporate its risk attitude by adjusting the value of ε.

Delivery and Reach. Constraint (3) guarantees that the demand of each ad campaign j is satis-

fied with a probability of no less than (1− εd
j ) and constraint (4) ensures that the expected reach

of ad campaign j is at least Rj with a probability of no less than (1− εr
j). We will discuss how to

set the risk levels (ε, εd
j , εr

j) in Section 6.3 and for now, we assume they are exogenously given.

Other Constraints. Constraint (5) prevents the total advertising resources of each viewer seg-

ment v from being over-allocated, and constraint (6) maintains the validity of decision variables

pvj and pvw. For convenience, in the following, constraints (2), (3), (4), and (5) are called the revenue,

delivery, reach, and supply constraints, respectively.

3.4. Safe Approximation

ADP-0 is difficult to solve because (1) it is not in closed form and can be non-convex (Nemirovski

and Shapiro 2006), and (2) the reach constraint is not affine in either decision variables or random

variables, thereby preventing the direct application of recently developed methods for chance-

constrained programs (e.g., Zymler et al. 2013, Postek et al. 2018). In robust optimization, Ben-Tal

et al. (2015) used Fenchel duality to construct tractable robust counterparts of nonlinear uncertain

inequalities, which involves calculating the conjugate function of the constraint function. How-

ever, in our model, calculating the conjugate function of the reach constraint function is complex

and time consuming; therefore, their result is not suitable for our case.

In this section, we transform ADP-0 into a more tractable robust optimization model via safe

approximation of the chance constraints. Considering the nature of our problem, the tractability

of the resulting model is critical in choosing the approximation approach. Li et al. (2012) com-

pared methods for approximating chance constraints with different uncertainty sets, including

box, ellipsoid, polyhedron, “interval + ellipsoid”, and “interval + polyhedron”. They showed that

all five approximation approaches share similar bounds on the probability of constraint viola-

tion. We choose to work with the “interval + polyhedron” uncertainty set, which leads to a more

tractable robust model. In particular, the following probability bound derived by Bertsimas and

Sim (2004) is used, and they have shown that the bound is tighter than the other classical bounds

in the literature, particularly when the number of random variables is large.
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THEOREM 1 (Violation Probability Bound, Bertsimas and Sim (2004)). Let {ξ̃k | k ∈K} be a set of

n independent random variables, where for each k ∈ K, ξ̃k is symmetrically distributed in the interval

[−1, 1]. Given a set of bounded coefficients {λk ∈ [0, 1] | k ∈K}, for any scalar Γ ∈ [1, n], we have

Pξ̃

{
∑
k∈K

λk ξ̃k ≥ Γ
}
≤ g(n, Γ),

where

g(n, Γ) =
1
2n

[(
1− Γ + n

2
+
⌊Γ + n

2

⌋)( n
b Γ+n

2 c

)
+

n

∑
m=b Γ+n

2 c+1

(
n
m

)]
.

As shown by Bertsimas and Sim (2004), g(n, Γ) in Theorem 1 is the best possible bound, i.e., it

is achievable. Accordingly, our approximations are tight, as our experiments in Section 6.4 will

show.

LEMMA 1. The function g(n, Γ), where Γ ∈ [1, n] and n is a positive integer, is strictly decreasing in Γ;

and moreover, g(n, 1) = 1/2, g(n, n) = 1/2n.

By Lemma 1, for a given n, as Γ ranges from 1 to n, g(n, Γ) is strictly decreasing from 1/2 to

1/2n. In our approximations, we need to connect the Γ with the risk level (i.e., ε, εd
j , εr

j) via this

function. To this end, we define the following function that outputs a minimum Γ that guarantees

the violation probability.

g−1(n, ε) =


min

Γ∈[1,n] : g(n,Γ)≤ε
Γ, if ε≥ 1/2n,

n, if ε < 1/2n.

PROPOSITION 2 (Delivery Approximation). A solution {p∗vj | v ∈ Vj, j ∈ J } must fulfill the delivery

constraint (3) in ADP-0 if it satisfies the constraint

min
θj∈Fθj

(Γd
j )

{
∑

v∈Vj

ϕ (µv + ŝvθvj) pvj

}
≥ Dj, ∀j ∈ J ,

where Γd
j = g−1(|Vj|, εd

j ) and

Fθj(Γ
d
j ) =

θvj, v ∈ Vj

∣∣∣∣∣∣∣
∑v∈Vj

θvj ≥−Γd
j

−1≤ θvj ≤ 0, ∀v ∈ Vj

 , ∀j ∈ J .

To approximate the reach constraint in ADP-0, we first approximate the expected reach

E[r̃vj | s̃v, pvj] by its lower bound that is bilinear in s̃v and pvj, as stated in the following lemma.
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LEMMA 2. For any v ∈ Vj, j ∈ J , the expected reach E[r̃vj | (s̃v, pvj)] has a lower bound:

min
l∈L

{
αl

v s̃v pvj + βl
v s̃v + γl

v pvj + δl
v

}
,

where L = {1, . . . , L − 1} is a predefined set of indices (L ≥ 2) and {αl
v, βl

v, γl
v, δl

v | l ∈ L} is a set of

parameters defined as
αl

v = [ f 1
v ( p̂l+1

v )− f 1
v ( p̂l

v)]/ ( p̂l+1
v − p̂l

v) , βl
v = [ p̂l+1

v f 1
v ( p̂l

v)− p̂l
v f 1

v ( p̂l+1
v )]/ ( p̂l+1

v − p̂l
v) ,

γl
v = [ f 2

v ( p̂l+1
v )− f 2

v ( p̂l
v)]/ ( p̂l+1

v − p̂l
v) , δl

v = [ p̂l+1
v f 2

v ( p̂l
v)− p̂l

v f 2
v ( p̂l+1

v )]/ ( p̂l+1
v − p̂l

v) ,

where { p̂l
v | l = 1, . . . , L} is a set of predefined points such that 0 = p̂1

v < · · · < p̂L
v = 1, f 1

v (p) and f 2
v (p)

are functions defined as
f 1

v (p) = [ fv(µv + ŝv, p)− fv(µv − ŝv, p)]/2ŝv,

f 2
v (p) = [(µv + ŝv) fv(µv − ŝv, p)− (µv − ŝv) fv(µv + ŝv, p)]/2ŝv,

fv(s, p) = Nv − Nv
[
1− 1/Nv + (1− p)ϕ /Nv

]s .

REMARK 1. From Proposition 1, it is easy to verify that E[r̃vj|(s̃v, pvj)] is concave in s̃v and

pvj, respectively. The lower bound in Lemma 2 is obtained via two steps: (1) approximating

E[r̃vj | (s̃v, pvj)] by its secant on s̃v within the interval [µv − ŝv, µv + ŝv], denoted by F(s̃v, pvj), which

is linear in s̃v and nonlinear in pvj; and (2) approximating F(s̃v, pvj) by its piecewise linear inter-

polation on pvj with breakpoints { p̂l
v | l = 1, . . . , L} in the interval [0, 1]. Note that in the second

step, given L, we fix s̃v as its mean value µv, and follow the scheme of Kontogiorgis (2000) to auto-

matically select the breakpoints. Specifically, p̂1
v = 0, p̂L

v = 1, and p̂l
v is the solution to the following

equation: ∫ p̂l
v

0

d2F(µv, p)
dp2

 1
2

dp =
l − 1
L− 1

∫ 1

0

d2F(µv, p)
dp2

 1
2

dp, l = 2, . . . , L− 1.

Kontogiorgis (2000) has shown that under the above scheme, the approximation error between

F(µv, pvj) and its piecewise linear interpolation will decrease at the optimal rate of O(L−2).

PROPOSITION 3 (Reach Approximation). A solution {p∗vj | v ∈ Vj, j ∈ J } must fulfill the reach con-

straint (4) in ADP-0 if it satisfies the following constraint

min
ηj∈Fηj (Γ

r
j )

{
∑

v∈Vj

min
l∈L

{
al

v(pvj)ηvj + bl
v(pvj)

}}
≥ Rj, ∀j ∈ J ,
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where Γr
j = g−1(|Vj|, εr

j) and

Fηj(Γ
r
j) =

ηvj, v ∈ Vj

∣∣∣∣∣∣∣
∑v∈Vj

ηvj ≥−Γr
j

−1≤ ηvj ≤ 0, ∀v ∈ Vj

 ,∀j ∈ J ,

al
v(pvj) = ŝvαl

v pvj + ŝvβl
v, ∀v ∈ Vj, l ∈ L,

bl
v(pvj) =

(
µvαl

v + γl
v

)
pvj + µvβl

v + δl
v, ∀v ∈ Vj, l ∈ L.

REMARK 2. The probability terms in delivery and reach constraints are replaced by deterministic

constraints as stipulated in Propositions 2 and 3. This is achieved via approximating the probabil-

ity terms with their deterministic lower bounds (obtained by Theorem 1).

Motivated by the above approximations, we approximate the revenue constraint and objective

function by the following new objective function.

max
p

min
φ∈Fφ(Γ)

{
∑

w∈W
min

{
∑

v∈Vw

ϕevw (µv + ŝvφv) pvw, Bw

}}
,

where Γ = g−1(|V|, ε), and

Fφ(Γ) =

φv, v ∈ V

∣∣∣∣∣∣∣
∑v∈V φv ≥−Γ

−1≤ φv ≤ 0, ∀v ∈ V

 .

Subsequently, we arrive at the following deterministic model, denoted by ADP-1.

[ADP-1] max
p

min
φ∈Fφ(Γ)

∑
w∈W

min
{

∑
v∈Vw

ϕevw (µv + ŝvφv) pvw, Bw

}
(revenue objective) (7)

s.t. min
θj∈Fθj

(Γd
j )

∑
v∈Vj

ϕ (µv + ŝvθvj) pvj ≥ Dj, ∀j ∈ J , (delivery constraint) (8)

min
ηj∈Fηj (Γ

r
j )

∑
v∈Vj

min
l∈L

{
al

v(pvj)ηvj + bl
v(pvj)

}
≥ Rj, ∀j ∈ J , (reach constraint) (9)

constraints (5) and (6).

Note that the decision variable t is not present in model ADP-1. In fact, t is not a decision,

and there is no feasibility issue as well for the revenue constraint (2): many feasible t values are

available for any given p. As specified in the following theorem, we can employ a semidefinite

programming (SDP) model to obtain the best t for a given p, denoted by t∗. Note that the SDP

model can be solved easily thanks to its limited scale, which is largely determined by the number

of campaigns, i.e., |W|. Theorem 2 says that model ADP-1 effectively provides a safe approxima-

tion of ADP-0 indirectly.
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THEOREM 2 (Safe Approximation). Let p∗ be an optimal solution to ADP-1. Based on p∗, we can

obtain a t∗ such that (p∗, t∗) is a feasible solution to ADP-0, where

t∗ = ∑
w∈W

∑
v∈Vw

ϕevwµv p∗vw −
T (p∗)

ε
,

and T(p∗) is the optimal objective value of the following model.

min εz + ψ + 〈Σ, X〉,

s.t.

 X, A1

Aᵀ
1 , M1

� 0,

 2X, A2

Aᵀ
2 , M2

� 0,

 2X, A3

Aᵀ
3 , M3

� 0,

X ∈ S|W| and X � 0,

where Σ ∈ S|W| is a symmetric matrix of dimension |W| defined by

Σw1,w2 = ∑
v∈(Vw1∩Vw2 )

ϕ2evw1 evw2 ŝ2
v p∗vw1

p∗vw2
,∀w1, w2 ∈W ,

〈Σ, X〉 is the Frobenius inner product of two matrices Σ and X, {A1, A2, A3 ∈R|W|; M1, M2, M3 ∈R} is

defined based on p∗ and detailed in the e-companion Section EC.4.

4. Model Transformation

The objective function of ADP-1 is in the form of “max-min-min”, and its reach constraint has a

“min-min” sub-problem. For problems of this feature, Ardestani-Jaafari and Delage (2016) pro-

pose two approximation approaches. Their SDP approximation is not applicable here due to the

large scale of the problem. We adopt a linear approximation similar to theirs. However, we extend

their results by establishing (1) the exactness of the reach constraint transformation under general

uncertainty budgets and (2) an analytical performance bound for the objective function, which is

absent in their paper.

4.1. Transformation of Objective Function

The objective function (7) in ADP-1 is equivalent to

max
p

Π(p),
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where

Π(p) = min ∑
w∈W

yw

(
∑

v∈Vw

ϕevw(µv + ŝvφv)pvw

)
+ ∑

w∈W
(1− yw)Bw,

s.t. ∑
v∈V

φv ≥−Γ,

− 1≤ φv ≤ 0, ∀v ∈ V ,

yw ∈ {0, 1} , ∀w ∈W .

In model Π(p), the variable yw is a binary such that, for a given φ, yw = 0 if the consumption of

non-guaranteed campaign w is greater than its budget Bw, and yw = 1 otherwise.

Note that the objective function in the above model has a set of quadratic terms {φvyw | v ∈

Vw, w ∈W} and is thus difficult to solve. We linearize the model by introducing a set of auxiliary

variables {∆vw | v ∈ Vw, w ∈W}, and replacing each φvyw with ∆vw such that ∆vw ≥max{φv,−yw}.

Subsequently, we have the following lemma.

LEMMA 3. Model Π(p) is equivalent to a mixed integer programming model as follows:

Π(p) = min ∑
w∈W

∑
v∈Vw

ϕevw ŝv pvw∆vw + ∑
w∈W

(
∑

v∈Vw

ϕevwµv pvw − Bw

)
yw + ∑

w∈W
Bw,

s.t. ∑
v∈V

φv ≥−Γ,

∆vw ≥−yw, ∀v ∈ Vw, w ∈W ,

∆vw ≥ φv, ∀v ∈ Vw, w ∈W ,

φv ≤ 0, ∀v ∈ V ,

yw ∈ {0, 1} , ∀w ∈W .

We relax the binary constraint on {yw | w ∈W}, and denote the relaxed linear program by Π̂(p).

The dual of Π̂(p) can be formulated as (detailed in the e-companion Section EC.5):

dual-Π̂(p) = max− Γx + ∑
w∈W

hw,

s.t. x≥ ∑
w∈Wv

mvw, ∀v ∈ V ,

hw − ∑
v∈Vw

mvw ≤ ∑
v∈Vw

ϕevw(µv − ŝv)pvw,∀w ∈W ,
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0≤mvw ≤ ϕevw ŝv pvw, ∀v ∈ Vw, w ∈W ,

hw ≤ Bw, ∀w ∈W .

Since Π̂(p) has a finite optimal value, strong duality holds between Π̂(p) and dual-Π̂(p). We then

have the following proposition.

PROPOSITION 4 (Objective Transformation). The objective max
p

dual-Π̂(p) is a lower bound of the

objective function (7) in ADP-1.

REMARK 3. By max
p

dual-Π̂(p), the inner minimization of the “max-min” objective function of

max
p

Π(p) is transformed into a maximization problem, which can be further combined with the

outer maximization. Since dual-Π̂(p) ≤ Π(p) for any given plan p, there is a potential transfor-

mation error. Theoretical error bounds are discussed in Section 4.3.

4.2. Transformation of Constraints

The left-hand side of the delivery constraint (8) in ADP-1 involves a minimization problem, which

can be replaced by its dual. We then perform an exact transformation of the constraint as follows.

PROPOSITION 5 (Delivery Transformation). The delivery constraint (8) in ADP-1 can be equivalently

transformed into the following set of constraints.

∑v∈Vj
ϕµv pvj −∑v∈Vj

md
vj − Γd

j hd
j ≥ Dj, ∀j ∈ J ,

hd
j + md

vj ≥ ϕŝv pvj, ∀v ∈ Vj, j ∈ J ,

hd
j ≥ 0, ∀j ∈ J ,

md
vj ≥ 0, ∀v ∈ Vj, j ∈ J .

Next, we transform the reach constraint (9) in ADP-1. By introducing binary variables {yl
vj | v ∈

Vj, l ∈ L}, the reach constraint is equivalent to

Qj(p)≥ Rj, ∀j ∈ J ,

where

Qj(p) = min ∑
v∈Vj

∑
l∈L

al
v(pvj)yl

vjηvj + bl
v(pvj)yl

vj,

s.t. ∑
l∈L

yl
vj = 1, ∀v ∈ Vj,
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∑
v∈Vj

ηvj ≥−Γr
j ,

− 1≤ ηvj ≤ 0, ∀v ∈ Vj,

yl
vj ∈ {0, 1} , ∀v ∈ Vj, l ∈ L.

Similar to that in model Π(p), the objective function of model Qj(p) has a quadratic term yl
vjηvj.

Therefore, we can transform the model into a mixed integer linear program by a similar approach.

Specifically, we first introduce auxiliary variables {∆l
vj | v ∈ Vj, l ∈ L} and replace each yl

vjηvj by

∆l
vj with two additional constraints: −yl

vj ≤ ∆l
vj ≤ 0 and ∑l∈L ∆l

vj = ηvj. Fortunately, we are able to

prove here that the linear relaxation of the resulting model has no relaxation error, as shown in

the following proposition.

THEOREM 3 (Perfect Formulation). Qj(p) is equivalent to the following linear program.

min ∑
v∈Vj

∑
l∈L

al
v(pvj)∆l

vj + bl
v(pvj)yl

vj,

s.t. ∑
l∈L

yl
vj = 1, ∀v ∈ Vj,

∑
v∈Vj

∑
l∈L

∆l
vj ≥−Γr

j ,

− yl
vj ≤ ∆l

vj ≤ 0, ∀v ∈ Vj, l ∈ L,

yl
vj ≥ 0, ∀v ∈ Vj, l ∈ L.

Based on the above theorem and duality theory, we can perform an exact transformation of the

reach constraint.

PROPOSITION 6 (Reach Transformation). The reach constraint (9) in ADP-1 can be equivalently

transformed into the following set of constraints.

−Γr
j hr

j + ∑v∈Vj
mr

vj ≥ Rj, ∀j ∈ J ,

−hr
j + mr

vj ≤−al
v(pvj) + bl

v(pvj), ∀v ∈ Vj, j ∈ J , l ∈ L,

mr
vj ≤ bl

v(pvj), ∀v ∈ Vj, j ∈ J , l ∈ L,

hr
j ≥ 0, ∀j ∈ J .
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4.3. Performance Analysis of Transformation

Based on the results in Sections 4.1 and 4.2, ADP-1 can be transformed into the following linear

program, denoted by ADP-2:

[ADP-2] max− Γx + ∑
w∈W

hw, (10)

s.t. x≥ ∑
w∈Wv

mvw, ∀v ∈ V , (11)

hw − ∑
v∈Vw

mvw ≤ ∑
v∈Vw

ϕevw(µv − ŝv)pvw,∀w ∈W , (12)

mvw ≤ ϕevw ŝv pvw, ∀v ∈ Vw, w ∈W , (13)

hw ≤ Bw, ∀w ∈W , (14)

∑
v∈Vj

ϕµv pvj − ∑
v∈Vj

md
vj − Γd

j hd
j ≥ Dj, ∀j ∈ J , (15)

hd
j + md

vj ≥ ϕŝv pvj, ∀v ∈ Vj, j ∈ J , (16)

− Γr
j h

r
j + ∑

v∈Vj

mr
vj ≥ Rj, ∀j ∈ J , (17)

− hr
j + mr

vj ≤−al
v(pvj) + bl

v(pvj), ∀v ∈ Vj, j ∈ J , l ∈ L, (18)

mr
vj ≤ bl

v(pvj), ∀v ∈ Vj, j ∈ J , l ∈ L, (19)

∑
j∈Jv

pvj + ∑
w∈Wv

pvw ≤ 1, ∀v ∈ V , (20)

0≤ pvj ≤ 1, md
vj ≥ 0, ∀v ∈ Vj, j ∈ J , (21)

0≤ pvw ≤ 1, mvw ≥ 0, ∀v ∈ Vw, w ∈W , (22)

hd
j ≥ 0, hr

j ≥ 0, ∀j ∈ J . (23)

For simplicity, ADP-2 can be rewritten as follows:

[ADP-2] max
p∈P

dual-Π̂(p),

where P is a polyhedron defined by P = {p | p satisfies constraints (15)∼ (23)}.
Model ADP-2 is a linear program that can be efficiently solved; therefore, it is considerably more

tractable than ADP-1. However, there is an optimality gap between ADP-1 and ADP-2. Denote

the optimality gap by

Ω = ZADP−1 − ZADP−2,



22

where ZADP−1 and ZADP−2 are the optimal objective values of ADP-1 and ADP-2, respectively. By

Proposition 4, it follows that ZADP−2 ≤ ZADP−1; thus, Ω ≥ 0. In the following, we aim to find (1)

the conditions under which Ω = 0 and (2) an upper bound of Ω.

LEMMA 4. Let p∗ be an optimal solution of ADP-2, and (y∗, φ∗) be an optimal solution of Π̂(p∗). We

have Ω = 0 if y∗w ∈ {0, 1} for all w ∈W , and Ω > 0 otherwise.

Lemma 4 provides a trivial ex post condition to check whether the solution to ADP-2 has posi-

tive performance gap. In the case that it does, the following optimality condition for Π̂(p) can be

used to analyze the optimality gap Ω.

LEMMA 5. Given p ∈ P , denote the optimal solution of Π̂(p) by (y∗, φ∗). For each w ∈W , we have:

• y∗w = 0 if ∑v∈Vw ϕevwµv pvw ≥ Bw + ∑v∈Vw :φ∗v<0 ϕevw ŝv pvw;

• y∗w = 1 if ∑v∈Vw ϕevwµv pvw ≤ Bw + ∑v∈Vw :φ∗v=−1 ϕevw ŝv pvw;

• 0 < y∗w < 1 if Bw + ∑v∈Vw :φ∗v=−1 ϕevw ŝv pvw < ∑v∈Vw ϕevwµv pvw < Bw + ∑v∈Vw :φ∗v<0 ϕevw ŝv pvw,

and moreover, y∗w = −φ∗v′ , where v′ ∈ Vw is uniquely determined by the inequality Bw +

∑v∈Vw :φ∗v<φ∗
v′

ϕevw ŝv pvw ≤∑v∈Vw ϕevwµv pvw ≤ Bw + ∑v∈Vw :φ∗v≤φ∗
v′

ϕevw ŝv pvw.

For a given p ∈ P , Lemma 5 provides the condition under which the optimal y∗ for Π̂(p) is

binary. Since Π̂(p) is obtained by linearizing the binary variable {yw | w ∈ W} in Π(p), we can

obtain the following sufficient condition for Ω = 0.

PROPOSITION 7 (Optimality Condition). Denote the optimal solution of ADP-1 by p∗. If for any w ∈

W , either Bw ≤∑v∈Vw ϕevw(µv − ŝv)p∗vw or Bw ≥∑v∈Vw ϕevwµv p∗vw holds, then Ω = 0.

REMARK 4. Note that ∑v∈Vw ϕevwµv p∗vw is the expense of non-guaranteed campaign w under plan

p∗ in the nominal case (s̃v = µv, ∀v ∈W), and ∑v∈W ϕevw(µv− ŝv)p∗vw is the expense of campaign w

under plan p∗ in the worst case (s̃v = µv − ŝv,∀v ∈W). Thus, the optimality condition essentially

states that if under the optimal resource allocation plan, each campaign’s budget is either not

fully used in the nominal case or fully used even in the worse case, then the optimal solutions to

ADP-1 and ADP-2 coincide. In general, we have the following performance guaranteed for the

approximation.

PROPOSITION 8 (Error Bound). We have Ω≤∑v∈VΓ
ϕŝv ēv, where ēv = maxw∈Wv evw, and VΓ is a subset

of V such that |VΓ|= dΓe and minv∈VΓ ŝv ēv ≥maxv∈V\VΓ ŝv ēv.
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REMARK 5. Considering the realistic situation of our problem, the error bound ∑v∈VΓ
ϕŝv ēv will

not be large compared to the optimal objective function value of ADP-1. To illustrate, consider the

case |V|= 10, 000 and ε = 0.01, and the corresponding Γ = g−1(|V|, ε) is only nearly 234. Moreover,

note that ŝv is often considerably smaller than µv for segments of larger supply. Nevertheless, the

error bound may perform badly if (1) the demand of guaranteed ad campaigns is very high (high

sell-through) and the guaranteed ads and non-guaranteed ads compete intensively for the same

resources (which means ∑w∈Wv pvw is much below 1; the proof of Proposition 8 shows that this will

lead to an exaggeration of the error) and (2) supplies are too concentrated on a limited number

of segments. We will comment on this further in the numerical studies. Henceforth, we focus on

solving model ADP-2.

5. Clustering Algorithm

Although model ADP-2 is a linear program, solving it directly becomes computationally chal-

lenging when the number of viewer segments is rather large, which is often the case in practice.

Therefore, for the purpose of real applications, a more efficient solution algorithm is required.

To overcome this challenge, we propose a clustering algorithm (Zipkin 1980, Turner 2012). This

algorithm essentially partitions viewer segments into clusters, effectively reducing the problem

scale; thus, the resulting problem is solved efficiently. In the remainder of this section, we first

illustrate the clustering approach with an example and then present the clustered model, followed

by a description of the steps involved in the clustering algorithm. The optimality gap of the algo-

rithm is also characterized.

The notations introduced in Section 3.1 are extended and shown in Table 2. We illustrate the

idea of clustering with an example. Suppose that there are two ad campaigns, j and w, and five

viewer segments, with campaign j targeting segment {1, 4, 5} and campaign w targeting segments

{2, 3, 5}. We partition the viewer segments into two clusters, c1 and c2, with viewer segments 1,

2, and 3 in cluster c1 and the other viewer segments in cluster c2. Therefore, the cluster set is

C = {c1, c2}, with Vc1 = {1, 2, 3}, Vc2 = {4, 5}, Vc1 j = {1}, Vc1w = {2, 3}, Vc2 j = {4, 5}, and Vc2w = {5}.

Furthermore, clusters c1 and c2 are both targeted by ad campaigns j and w; thus, Cj = Cw = {c1, c2}.

As shown in this example, viewer segments are partitioned into non-overlapping clusters; thus,

there are typically considerably fewer clusters than viewer segments.
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Table 2 Extended notations

Symbol Description

C set of clusters

c(v) the cluster containing viewer segment v

Vc set of viewer segments in cluster c

Vcj set of viewer segments in cluster c and targeted by guaranteed campaign j

Vcw set of viewer segments in cluster c and targeted by non-guaranteed campaign w

Jc set of guaranteed ad campaigns targeting cluster c

Cj set of clusters targeted by guaranteed ad campaign j

Wc set of non-guaranteed ad campaigns targeting cluster c

Cw set of clusters targeted by non-guaranteed ad campaign w

5.1. Clustered Model

For a given clustering C, we first define the corresponding clustered model, which is denoted by

ADP-3(C), and we then present some properties of the clustered model.

Let q(C) = {qcj | j ∈ J , c ∈ Cj; qcw | w ∈ W , c ∈ Cw} be the clustered ad delivery plan, in which

qcj and qcw are the proportions of impressions from cluster c allocated to guaranteed ad cam-

paign j and non-guaranteed ad campaign w, respectively. Moreover, let n(C) = {nd
cj, nr

cj | j ∈ J , c ∈

Cj; ncw | w ∈W , c ∈ Cw} be the set of clustered auxiliary variables, which correspond to auxiliary

variables {md
vj, mr

vj, mvw} in model ADP-2. The clustered model can be constructed from model

ADP-2 in two steps.

In the first step, we confine pvj (resp. pvw) to be equal for all viewer segments in the same cluster

for any guaranteed ad campaign j (resp. non-guaranteed ad campaign w), i.e.,

pvj = qc(v)j, v ∈ Vj, ∀j ∈ J ; and pvw = qc(v)w, v ∈ Vw, ∀w ∈W . (24)

Similarly, auxiliary variables for all viewer segments in the same cluster are also confined to be

equal, i.e.,

md
vj =

nd
c(v)j

|Vc(v)j|
, mr

vj =
nr

c(v)j

|Vc(v)j|
, v ∈ Vj, ∀j ∈ J ; and mvw =

nc(v)w

|Vc(v)w|
, v ∈ Vw, ∀w ∈W . (25)

This is clearly a restriction of the original problem and will lead to a sub-optimal solution. How-

ever, it will also reduce the problem scale.

Therefore, in the second step, we make a relaxation. The supply constraint after the restriction

in step one is

∑
j∈Jv

qc(v)j + ∑
w∈Wv

qc(v)w ≤ 1, ∀v ∈ V .
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For each supply constraint on viewer segment v, we multiply it by µv on both sides and then sum

them across viewer segments in each cluster c ∈ C, leading to the following new supply constraint

for model ADP-3(C):

∑
j∈Jc

µcjqcj + ∑
w∈Wc

µcwqcw ≤ µc, ∀c ∈ C, where µcj = ∑
v∈Vcj

µv, µcw = ∑
v∈Vcw

µv, µc = ∑
v∈Vc

µv. (26)

For all the other constraints with respect to each viewer segment v ∈ V , we simply sum them

across viewer segments in each cluster c ∈ C.

Now, we present the formulation of ADP-3(C) as follows:

[ADP-3(C)] max− Γx + ∑
w∈W

hw,

s.t. |Vc|x≥ ∑
w∈Wc

ncw, ∀c ∈ C,

hw − ∑
c∈Cw

ncw ≤ ∑
c∈Cw

ϕecwqcw,∀w ∈W ,

ncw ≤ ϕêcwqcw, ∀c ∈ Cw, w ∈W ,

hw ≤ Bw, ∀w ∈W ,

∑
c∈Cj

ϕµcjqcj − ∑
c∈Cj

nd
cj − Γd

j hd
j ≥ Dj, ∀j ∈ J ,

|Vcj|hd
j + nd

cj ≥ ϕŝcjqcj, ∀c ∈ Cj, j ∈ J ,

− Γr
j h

r
j + ∑

c∈Cj

nr
cj ≥ Rj, ∀j ∈ J ,

− |Vcj|hr
j + nr

cj ≤−al
cj(qcj) + bl

cj(qcj), ∀c ∈ Cj, j ∈ J , l ∈ L,

nr
cj ≤ bl

cj(qcj), ∀c ∈ Cj, j ∈ J , l ∈ L,

∑
j∈Jc

µcjqcj + ∑
w∈Wc

µcwqcw ≤ µc, ∀c ∈ C,

0≤ qcj ≤ 1, nd
cj ≥ 0, ∀c ∈ Cj, j ∈ J ,

0≤ qcw ≤ 1, ncw ≥ 0, ∀c ∈ Cw, w ∈W ,

hd
j ≥ 0, hr

j ≥ 0, ∀j ∈ J ,

where ecw = ∑v∈Vcw evw(µv − ŝv) and êcw = ∑v∈Vcw evw ŝv, ∀c ∈ Cw, w ∈ W ; ŝcj = ∑v∈Vcj
ŝv, al

cj(qcj) =

∑v∈Vcj
al

v(qcj), and bl
cj(qcj) = ∑v∈Vcj

bl
v(qcj), ∀c ∈ Cj, c ∈ J .
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Note that ADP-3(C) remains as a linear program, but the problem scale depends on the number

of clusters. Thus, the problem can be of much smaller scale compared to ADP-2 and allows better

tractability.

Equations (24) and (25) map the solution to ADP-3(C) back to ADP-2. However, the relaxed

constraints in ADP-3(C) cannot guarantee that the constraints in ADP-2 with respect to viewer

segments are all satisfied in the mapped solution. If the mapped solution is infeasible for ADP-2,

then we will need to refine the clustering, as is discussed in the next subsection.

5.2. Solution Procedure

Clustering Initialization. To start the clustering algorithm, we need a set of initial clusters, which

is denoted by C0. Turner (2012) proposed to start with a mega-cluster, that is, all viewer seg-

ments initially belongs to one unique cluster. Conceivably, this initialization algorithm may not

work well when the scale of instance is very large. For this reason, we propose an alternative

algorithm that generates a specified number of initial clusters. The details are provided as the

e-companion Section EC.7. However, as the limited test cases show in the e-companion Section

EC.9, the performance of the alternative algorithm does not exhibit significant dominance over

the mega-clustering algorithm. More effort is called for in future research.

Clustering Refinement. With an initial clustering C0, we solve ADP-3(C0) and obtain a plan

q(C0). However, as previously mentioned, the plan p(C0) mapped from q(C0) may be infeasible

for ADP-2. Thus, we need to refine the clustering to eliminate such infeasibility. The entire refining

procedure is protected by the following property.

PROPOSITION 9 (Limited Infeasibility). If a clustered plan q(C) is feasible for ADP-3(C), then the

mapped solution p(C) according to equation (24) has the following property: for each cluster c ∈ C, define

V s
c = {v ∈ C | supply constraint (20) is satisfied for viewer segment v}, then, V s

c 6= ∅.

The basic procedure for the clustering refinement is as follows. Denote the current clustering

by C1. For the mapped plan p(C1), identify those clusters c ∈ C1 with V s
c 6= Vc, and for each such

cluster, split it into two clusters: V s
c and Vc \ V s

c . We cannot exclude the possibility (although we

never encounter this in the experiments) that the mapped solution p(C) and m(C) is infeasible

whereas for all clusters V s
c = Vc, namely, all the supply constraints are satisfied. In this case, we

will then randomly pick up some clusters to split.
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Turner (2012) was able to show that if the optimal solution to a clustered model is also feasible

for the original problem, then the solution is also optimal for the original problem. Simply speak-

ing, this is because the duals to both the clustered and original problems have no constraints other

than simple bounds of dual variables; therefore, the optimal solution to the dual of the clustered

problem can be transformed into a feasible solution to the dual of the original problem while

keeping the same objective value. Unfortunately, our clustering algorithm does not have this nice

property — our original problem (ADP-2) has many auxiliary variables introduced for transform-

ing chance constraints, which correspond to many constraints in the dual problem. Nevertheless,

the clustering refinement is guaranteed to terminate in a finite number of steps, according to the

following simple, yet important, proposition.

PROPOSITION 10 (Clustering Convergence). The clustering refinement procedure will converge to a

feasible solution in a finite number of steps if the original problem ADP-2 is feasible.

Heuristic Method. Although Proposition 10 guarantees the convergence of the clustering

refinement, for very large problem scales, the convergence may be time consuming. Therefore, we

allow the refinement to stop earlier when the supply over-allocation is not serious.

Suppose that we stop with an infeasible plan p′. We attempt to convert p′ into a feasible plan

using a two-phase heuristic method. The first phase iteratively searches for a feasible plan tailored

for guaranteed campaigns (all the proportions of supply allocated to non-guaranteed campaigns

are manually set as zero), and each iteration consists of two steps, with the first step addressing the

issue of supply over-allocation and the second step addressing the newly introduced violations of

reach and delivery constraints. Successfully finding a feasible plan in the first phase will invoke

the second phase; otherwise, the heuristic is terminated. In the second phase, we re-compute the

proportions of supply allocated to the non-guaranteed campaigns in the feasible plan by solving

an auxiliary linear program. The details of the heuristic method are provided in the e-companion

Section EC.9.

5.3. Upper Bound

For very large-scale cases, due to time limitation, we may want to stop the clustering algorithm

earlier if we have found a very good solution. To measure the optimality gap, considering that

it is difficult to establish the optimal value of ADP-2, we seek to find its upper bound. For this

purpose, we present the following linear program, which is denoted by RADP-2.

[RADP-2] max ∑
w∈W

uw,
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s.t. uw ≤ ∑
v∈Vw

ϕevw (µv − ŝvφ̄v) pvw, ∀w ∈W ,

uw ≤ Bw, ∀w ∈W ,

∑
v∈Vj

ϕ
(
µv − ŝvθ̄vj

)
pvj ≥ Dj, ∀j ∈ J ,

∑
v∈Vj

uvj ≥ Rj, ∀j ∈ J ,

uvj ≤−η̄vjal
v(pvj) + bl

v(pvj), ∀v ∈ Vj, j ∈ J , l ∈ L,

∑
j∈Jv

pvj + ∑
w∈Wv

pvw ≤ 1, ∀v ∈ V ,

0≤ pvj ≤ 1, ∀v ∈ V , j ∈ Jv; 0≤ pvw ≤ 1, ∀v ∈ V , w ∈Wv,

where

φ̄v =


1 if v ∈ V(Γ)

Γ− bΓc if v = v∗(Γ)

0 o.w.

, θ̄vj =


1 if v ∈ Vj(Γd

j )

Γd
j − bΓd

j c if v = v∗(Γd
j )

0 o.w.

, η̄vj =


1 if v ∈ Vj(Γr

j)

Γr
j − bΓr

jc if v = v∗(Γr
j)

0 o.w.

,

and in the above, V(Γ) ⊆ V is a set with bΓc viewer segments with the largest ŝv, i.e., for any

v ∈ V(Γ), ŝv ≥maxv′∈V\V(Γ) ŝv′ , v∗(Γ) = arg maxv∈V\V(Γ) ŝv; similarly, for each j ∈ J , Vj(Γd
j ) ⊆ Vj is

a set with bΓd
j c elements with the largest ŝv, v∗(Γd

j ) = arg maxv∈Vj\Vj(Γ
d
j )

ŝv, and the definitions of

Vj(Γr
j) and v∗(Γr

j) are similar with that of Vj(Γd
j ) and v∗(Γd

j ).

PROPOSITION 11 (Clustering Bound). Denote the optimal value of RADP-2 by ZRADP−2. We have

ZADP−2 ≤ ZADP−1 ≤ ZRADP−2.

We thus have an upper bound for the optimal value of ADP-2. Throughout the computation,

we may stop earlier if we have found a very satisfactory solution that is close to the upper bound.

Denote a lower bound to ZADP−2 by Z, Proposition 11 also provides an upper bound for Ω: Ω ≤

ZRADP−2 − Z.

6. Ad Serving Implementation

By solving the ad planning model, we have obtained an ad delivery plan. In this section, we detail

the ad serving procedure, i.e., how to implement the ad delivery plan in real time. We precede

our discussion with a description of the data sets to be used for the numerical studies, including

two real data sets that motivate the following discussions.
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6.1. Data Sets and Setting Reach

For the numerical studies, we will use three data sets, including one randomly generated data set

and two real data sets, with a total of 14 test cases. Among them, A1∼A6 are randomly generated

cases, produced by a method adapted from Turner (2012) as detailed in the e-companion Section

EC.10. Note that these 6 test cases are characterized by sell-through and targeting intensity. Sell-

through is the ratio of the total demand from all guaranteed ad campaigns to the total expected

impressions of viewer segments targeted by guaranteed ad campaigns. Targeting intensity is the

average percentage of viewer segments targeted by an ad campaign. Intuitively, a higher sell-

through implies a greater difficulty in achieving feasibility, and a higher targeting intensity means

a greater problem complexity. The random test cases are chosen to represent different combina-

tions of the defining characteristics.

Table 3 Test data

Test Num. viewer Num. guaranteed Num. non-guaranteed Sell- Targeting
case segments campaigns campaigns through (%) intensity (%)

A1 10,000 100 100 31.8 18.1

A2 10,000 100 100 55.1 18.4

A3 10,000 100 100 80.2 3.4

A4 100,000 100 100 31.7 17.6

A5 100,000 100 100 54.2 18.3

A6 100,000 100 100 79.2 3.3

B1 13,133 232 214 47.4 1.5

B2 13,343 222 224 33.5 1.6

B3 11,682 207 212 38.3 1.7

B4 13,526 227 228 38.8 1.6

C1 35,563 322 83 72.6 18.8

C2 31,184 347 101 59.7 24.5

C3 30,862 312 124 56.4 23.4

C4 29,190 490 118 64.4 20.3

We also use two real data sets, one (test cases B1∼B4) from an SNS firm and the other (test

cases C1∼C4) from a video advertising firm, each of which the first author spent four months

working within. The latter, FastAdv (whose real name has been withheld for confidentiality), is a

major digital video advertising solution provider, and its ad serving platform is used by many TV

networks and major video distributors to serve ads alongside their content online and on mobile.
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Headquartered in the U.S., its operations and engineering teams are located in Asia. Around

300 engineers are currently working for supply/demand forecasting, ads planning and serving,

system maintenance, and product design and test. The company has helped a large number of

broadcasters manage the delivery of ads for live, news-breaking events, and programming, such

as sport events and movie streaming.

In the data set used here, we focus on an EU-based TV network, STV (the actual name is dis-

guised), one of FastAdv’s clients. STV streams its content online and sells its advertising inventory

to big brands and other advertisers. It uses FastAdv for targeted advertising through dynamic

insertion of ads into its TV programs. To put simply, STV outsources advertisement delivery to

FastAdv. Advertisers negotiate contracts with STV, which specify all the requirements in terms

of the number of impressions and target segments among others. Then STV hands over FastAdv

to fulfill these contracts by displaying the ads over time and in the meantime fulfilling all the

requirements that are similar to those of our earlier model.

Setting Reach. The FastAdv data set is more sophisticated than the SNS data set. Specifically,

there are three situations regarding reach specification in FastAdv. (1) Some upfront advertisers

specify their reach requests. In this case, we then have a natural hard reach constraint. (2) Some

advertisers do not fill in their reach requests, but they specify frequency caps for their ad cam-

paigns. A frequency cap specifies the maximum number of times that an ad campaign can be

shown to the same viewer over a period. Note that all guaranteed ads specify the number of

impressions. Combining the impressions and frequency caps, we can have a natural lower bound

for a campaign’s reach:

minimum reach = number of impressions / frequency cap.

Such a lower bound is also a hard constraint for fulfilling advertisers’ frequency cap specification.

(3) However, the rest of the advertisers specify neither reach nor frequency caps. The firm then

uses a very loose frequency cap (specifically, the maximum frequency cap found from other cam-

paigns r̄+ 1) to compute a target reach. The purpose is to prevent from delivering extremely unde-

sirable reach outcomes, which would shock the advertisers when they see the delivery reports.

Note that a very loose frequency cap has little impact on the objective of maximizing spot market

revenue.

The SNS provider is an NYSE listed company that operates a social networking service and

internet finance business in China. Its SNS website and mobile application had approximately 240
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million activated users as of December 31, 2016. At the time of our data collection, the firm had

over 50 million active SNS users per month and derived its major revenue from online display

advertising. As we have described in the introduction, the firm attempts to maximize its spot-

market revenue while also fulfilling its commitment with guaranteed ads. To grow its business in

the upfront market, the firm hopes to build up its reputation of quality advertising, and for this

reason, it aims to have a reasonable reach for each guaranteed campaign given that this does not

sacrifice its spot-market revenue considerably. Therefore, the firm needs to try different reaches

and then select one that is acceptable to itself. Nevertheless, such a reach target is considered a soft

constraint. Motivated by the practice of FastAdv, we generate the SNS firm’s initial reach inputs

by imposing a loose frequency cap (specifically, we set the frequency cap as the ratio of total

supply to the total number of unique individuals for test cases B1∼B4, and also for A1∼A6) on ad

campaigns, and then we gradually increase the reach to generate an efficiency frontier between

reach and revenue, which allows the firm to select its preferred reach level.

6.2. Ad Serving Method

To conform to Assumption 1, we need to maintain the randomness of ad serving. Therefore, we

propose the following slate method for ad serving.

For each ad viewer segment v, we first generate a slate that has Ψ slots. We then assign Ψ · pvj

slots of the slate to each guaranteed ad campaign j ∈ Jv. If Ψ · pvj is not an integer, then we assign

bΨ · pvjc slots to ad campaign j and an additional one with probability (Ψ · pvj − bΨ · pvjc). In

the same way, we assign slots of the slate to each non-guaranteed ad campaign w ∈ Wv. The

slot sequence is shuffled after all campaigns are assigned. The slate length Ψ is chosen such that

it is long enough to ensure each ad campaign receives a sufficient number of slots but not too

long to affect running efficiency. In the experiment, we set Ψ = dµv/3e if µv < 3000 and Ψ = 1000

otherwise. Ad serving is then implemented based on the slate. Specifically, the impressions are

assigned one by one in the order of the slot sequence. The slate is regenerated every Ψ impressions

following the same procedure to further ensure randomness.

Any model is just an approximation to reality, and ours is no exception. Aside from frequency

caps, exclusivity constraint is also not accounted for by our planning model, yet both exist in the

FastAdv data set. With exclusivity constraints, advertisers specify that their ad campaigns cannot

be shown together with some other ad campaigns (usually from competing brands) in the same

video. Nevertheless, the above slate procedure can be adapted to incorporate the two constraints.
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Briefly speaking, when an ad display opportunity arises but the scheduled ad campaign cannot

be displayed due to violation of either frequency cap constraint or exclusivity constraint, we first

try to search for the next feasible ad campaign on the slate. If one is found, we then swap the

current ad campaign with the feasible ad campaign. If none can be found, we then generate a new

slate and append it to the current slate (thus, we maintain no more than three slates at any time)

and continue the above search procedure; we perform this step because feasible ad campaigns

may likely be in the executed part of the current slate. If still no feasible ad campaign can be

found, we then give up and choose to display either a compatible campaign (satisfying viewer

targeting, frequency cap and exclusivity constraints, if any) or some charity (free) ads.

With the above slate method, the ad serving procedure is easy and efficient to implement, while

maintaining randomness and ensuring that the percentages of impressions allocated are basically

the same as stipulated in the plan. Finally, we can make a simple yet important adjustment during

implementation. Whenever we find a guaranteed ad campaign has reached its impressions target

and reach target or a non-guaranteed ad campaign has used up its budget, we will remove the

ad campaign from the slate and assign the spare ad resource to the remaining ad campaigns

proportionally. As we will see shortly, the adjustment is effective because such situations often

arise due to the conservatism of the robust model.

6.3. Experiment Setup

To set up the ad planning model ADP-0, some parameters of the model deserve our special atten-

tion.

Segment Supplies Specification. For test cases A1∼A6, we first randomly generate the mean

segment supply µv following the method in Turner (2012), as described in the e-companion Sec-

tion EC.10, and then let the half interval width ŝv = ζµv, where ζ ∼ Uniform(5%, 30%). For test

cases B1∼B4 from the SNS firm and C1∼C4 from the video advertising firm, since we know the

true supply (denoted by sv), we first set the half interval width ŝv = ζsv, where ζ ∼ Uniform(5%,

30%), and then randomly generate the mean supply by letting µv ∼Uniform(sv− ŝv, sv + ŝv). Note

that by this setting, the true supply sv must lie in the interval [µv − ŝv, µv + ŝv]. The underlying

assumption is that the firm can make a reasonably good prediction on segment supplies, which

is the case as of today. In the real practice of the video advertising company, over 100 engineers

are working on forecasting. They are able to make quite satisfactory predictions with sophisti-

cated machine learning techniques. In Section EC.11 of the e-companion, we vary the half interval



33

width ŝv to see the effect of prediction accuracy on the solution performance. As the prediction

accuracy increases, the model becomes less conservative (as reflected by the decreasing difference

between the percentage of unfilled campaigns and the specified εd
j in the model), and the revenue

from non-guaranteed ads increases.

Specifying Risk Levels. For our DRCC model, we need to specify risk levels for the revenue

constraint, delivery constraints, and reach constraints, i.e., ε, εd
j , εr

j in model ADP-0. We use the fol-

lowing guidelines: for hard constraints such as delivery constraints and also the reach constraints

specified by advertisers or derived from advertisers’ frequency caps, we set a lower risk level, and

let εd
j = 5%, εr

j = 5%; for soft constraints, namely, reach constraints set by the publisher, we set a

higher risk level, and let εr
j = 10%. Moreover, for a few campaigns with impressions target below

1000, we set εd
j = 1%, εr

j = 1% because these campaigns receive a very small proportion of supply

and are susceptible to ad serving uncertainty. We simply choose ε = 10% for no particular reason,

as this depends on the publisher’s risk appetite.

6.4. Experimental Results

We now describe the experiments based on the 14 test cases. Our purposes are to assess the

effectiveness of the ad delivery plan and the ad serving procedure, learn the conservatism of the

approximations, explore the trade-off between upfront market and spot market, and examine the

performance of our solution algorithms.

All experiments were implemented in Java, and we used MOSEK (version 9), an off-the-shelf

solver for convex optimization models, to solve the models. The experiment was conducted on

a PC equipped with an Intel i7 processor (clocked at 3.2 GHz) and 32GB RAM, running 64-bit

Windows 10 operating system. Notably, for 8 out of the 14 test cases, i.e., A1∼A3, A6, and B1∼B4,

we are able to directly solve model ADP-2 to optimality. Note that although test case A6 is of large

scale, it has a lower targeting intensity and is thus easier to solve. For the remaining larger test

cases, we need to resort to the clustering algorithm and solve model ADP-3(C).

Note that we do not have the real user arrival information for the first 10 test cases (A1∼B4).

To evaluate the performance of the obtained ad delivery plan for those 10 cases, we simulate real-

time ad serving based on our plan for 1000 runs. In each run, for each viewer segment, we first

randomly generate the impression supply (the number of user arrivals) according to its distri-

bution. Then, based on Assumption 1 (all users in a segment are homogeneous), we draw each

user arrival uniformly from all the users of the segment. The ad serving is conducted based on
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our slate ad serving method described earlier, and after the ad serving is completed, we record

the total revenue gained from all non-guaranteed ad campaigns and the fill rate of the impression

demand for each guaranteed ad campaign. For FastAdv test cases, since we have the detailed

historical information, we directly implement our plan on the real data.

Robustness of the Plan. Table 4 reports the robustness of our plan in fulfilling the guaranteed

delivery for ad campaigns in the upfront market. Note that the results for test cases A1∼B4 are

the average over 1000 simulations, while for test cases C1∼C4 we run the simulation only once

by replicating the history. Recall that we set εd
j = 5% for most campaigns and εd

j = 1% for smaller

campaigns with impressions target below 1000. First, we can see that the generated plan is very

robust and for almost all test cases, the fulfillment rate (here we measure the fulfillment only by

impression delivery because reach is satisfied 100% due to the loose specification) is over 95%.

Second, for those unfulfilled campaigns, the extent of under-delivery is rather low, mostly much

below 5%. Third, for test cases A3 and B1∼B4 because of their low targeting intensity, we have set

for many of their campaigns εd
j = 1%, and therefore, their fulfillment rates are all 100%. Overall,

the generated plan has delivered its promise. Note that the reported results follow the slate ad

serving procedure, without adjusting the delivery plan in the process to release and reallocate the

ad resource allocated to the fulfilled guaranteed or non-guaranteed ads, which will distort the

comparison.

Table 4 Robustness of ad delivery

Test Unfulfilled Unfulfilled Test Unfulfilled Unfulfilled
case campaigns (%) demand (%) case campaigns (%) demand (%)

A1 0.21 0.17 B2 0 0

A2 2.49 0.16 B3 0 0

A3 0 0 B4 0 0

A4 0.05 0.06 C1 3.42 1.14

A5 1.88 0.07 C2 2.88 1.76

A6 0.02 0.09 C3 2.24 1.07

B1 0 0 C4 3.88 3.29

Another indication from Table 4 is that our approximations of the chance constraint seem very

tight, especially for the FastAdv test cases. In using the chance-constrained program, setting risk

levels can be critical, especially when safe approximations are involved. If the approximations
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are very conservative, then we will need to set the risk levels much higher than the standard

levels 5% or 10%. To assess the conservatism of our method, we take case C4 as an example. The

resulting percentages of unfulfilled campaigns are 9.80%, 7.76%, and 3.88% respectively when

εd
j = 15%, 10%, 5%. From this example, we can see that our chance constraint approximation can

be considered reasonably tight. When setting risk levels, a slight amplification of the intended risk

level will be fine, or one may even go straight with no amplification. (As campaigns run multiple

days, slight under-delivery in one period can be compensated in the next day by adjusting that

day’s target upward. Hence, under-delivery in one day will not necessarily lead to overall non-

fulfillment.)

Frequency Cap and Exclusivity. FastAdv data set contains constraints that are not modeled

directly in our ad planning model ADP-0. A simple incorporation of unmodeled constraints, espe-

cially the exclusivity constraints, will no doubt lead to some infeasibility. However, our robust

approach actually allows certain redundancy that can be used to deal with such constraints. Table

5 reports the results of implementing our plan to incorporate the constraints on test cases C1∼C4.

There are three scenarios according to whether we incorporate the constraints and whether we

adjust the ad serving to reallocate ad resources originally dedicated to fulfilled ad campaigns; the

scenario with exclusivity constraints but without adjustment is not reported because the infeasi-

bility is very high (over 10%). The first scenario corresponds to the original optimization model.

In the second scenario, adjustment is made to better utilize the resources. Consequently, we see

that all three performance measures (unfulfilled campaigns, unfulfilled demand, and realized rev-

enue) are improved. In the third scenario, while making adjustment, we incorporate frequency

and exclusivity, which inevitably make the performance related to guaranteed ads worse com-

pared with the second scenario because essentially the ad resources become less effective. How-

ever, this leaves more ad resources to the spot market, and the revenue from non-guaranteed ads

improves. In other words, scenarios 2 and 3 both make adjustment. Scenario 2 dominates scenario

1, while scenario 3 performs the best in terms of spot-market revenue, but not as good in terms of

the performance of guaranteed ads.

It is noteworthy that for the four real test cases, after incorporating all the constraints in ad

serving and with adjustment, our approach recorded on average about 10% more revenue than

the delivery approach of the firm.

Trade-off Between Revenue and Reach. If the advertisers specify their targeted reach, then

we consider the reach constraints as compulsory, hard constraints. Otherwise, the publisher may
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Table 5 Dealing with frequency cap and exclusivity

Test case Scenario
Unfulfilled Unfulfilled Realized Guaranteed

campaigns (%) demand (%) revenue revenue (t∗)

C1

1: w/o constraints, w/o adjustment 3.42 1.14 48676

464412: w/o constraints, w/ adjustment 1.55 4.93 52255

3: w/ constraints, w/ adjustment 1.86 23.16 52957

C2

1: w/o constraints, w/o adjustment 2.88 1.76 49864

477142: w/o constraints, w/ adjustment 0.00 0.00 53331

3: w/ constraints, w/ adjustment 3.75 8.51 53711

C3

1:w/o constraints, w/o adjustment 2.24 1.07 37500

362182: w/o constraints, w/ adjustment 0.00 0.00 39176

3: w/ constraints, w/ adjustment 0.96 11.17 39699

C4

1: w/o constraints, w/o adjustment 3.88 3.29 30907

300852: w/o constraints, w/ adjustment 0.61 3.59 31713

3: w/ constraints, w/ adjustment 3.27 10.71 31831

want to voluntarily impose reach constraints for the purpose of ensuring advertising quality.

However, the publisher does not expect such voluntary action to jeopardize its spot-market prof-

itability. Therefore, a reach-revenue efficient frontier will help the publisher choose the ideal reach

level. For this purpose, we first set an initial loose-reach target for each campaign and then gradu-

ally increase it. We solve a few such resulting models to construct the efficient frontier. The initial

reach is set following the way described in Section 6.1. For each test case, we first solve model

ADP-2 with the initial reach to obtain an ad delivery plan, and run 1000 simulations of ad serv-

ing based on the obtained plan. Next, we increase the reach for all the campaigns gradually and

repeat the above steps iteratively.

Figure 1 shows the variations of the average total realized revenue from the spot market under

different reach commitment values on test case A3; the other test cases produce similar results.

The trade-off between revenue and reach is explicitly captured in the figure. As expected, increas-

ing reach results in decreased revenue. The publisher then may pick up a point from the efficient

frontier. Among other possibilities (such as boosting reputation in a short period of time), a target

reach may be chosen such that an even larger reach will lead to a sharp decrease in revenue.

Clustering Algorithm. We now examine the efficiency and effectiveness of the clustering algo-

rithm. Table 6 reports the performance of the clustering algorithm on the six test cases that model
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Figure 1 Revenue and reach in test case A3
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Table 6 Performance of clustering algorithm

Test case Obj value UB RADP Gap (%)

A4 657976 687370 4.47

A5 452574 489008 8.05

C1 48007 49461 3.03

C2 49335 50934 3.24

C3 37071 38200 3.05

C4 30382 31211 2.73

ADP-2 cannot be solved directly. The optimality gap to the upper bound given by model RADP-2

ranges from 2.73% to 8.05%, which is reasonable, considering that RADP-2 is an upper bound.

To make more sense of this, on the other 8 test cases of which we know the optimal solutions,

RADP-2 gives upper bounds on average 2.28% higher than the optimal objective values, ranging

from 0.61% to 7.19%.

Error Bound. Finally, we comment on the performance loss from ADP-1 to ADP-2. Proposition

8 gives an upper bound on the absolute performance loss. The ratio of the upper bound to the

objective value of our solution gives an upper bound on the relative error because our objective

value is a lower bound to ZADP−1. We report this relative error for all test cases in the column “EB”

in Table 7. We note that the error bounds vary significantly, from less than 1% to nearly 15%. How-

ever, as noted in the earlier remark, the error bound by Proposition 8 can be an exaggeration of

the true loss when the sell-through is high or the supplies are over-concentrated, which is exactly

the case of test cases with high error bound, e.g., B1, C1, and C2. From a different angle, according

to Proposition 11, the performance loss from ADP-1 to ADP-2 is also bounded by (ZRADP−2 − Z),
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where Z here can be the objective value of our solution. Therefore, (ZRADP−2 − Z)/Z also gives

an upper bound for the performance loss, and we report it in the column “EB-1” in Table 7. The

minimum of the two columns “EB” and “EB-1” gives a tighter measure of the performance from

ADP-1 to ADP-2, which is quite reasonable. Therefore, we are basically safeguarded to focus on

solving ADP-2.

Table 7 Error bound

Test case EB (%) EB-1 (%) min{EB, EB-1} Test case EB (%) EB-1 (%) min{EB, EB-1}

A1 1.39 1.10 1.10 B2 4.82 1.38 1.38

A2 1.88 1.86 1.86 B3 5.36 1.77 1.77

A3 3.65 7.19 3.65 B4 5.91 1.89 1.89

A4 0.51 4.47 0.51 C1 8.09 3.03 3.03

A5 0.77 8.05 0.77 C2 15.10 3.24 3.24

A6 1.31 0.61 0.61 C3 4.62 3.05 3.05

B1 7.25 2.48 2.48 C4 3.51 2.73 2.73

7. Conclusions

Online display advertising publishers face the problem of planning their ad delivery, which is

critical to both their short-term and long-term profitability. In particular, planning for advertising

resources needs to consider several objectives. First, the publisher is required to fulfill its contrac-

tual promises to the advertisers in the upfront market. Second, it is of great importance for the

publisher to maximize the revenue from the spot market, because the revenue in the upfront mar-

ket is already fixed. Third, to maintain a long-term relationship with advertisers in the upfront

market, the publisher needs to ensure that the advertising is effective, as measured by the audi-

ence reach.

The current way of selling ad resources suffers from drawbacks. For one thing, auction as

a way of selling ad resources at the spot market has been recognized to be inefficient due to

factors such as the advertisers’ daily budgets (Parkes and Sandholm 2005, Benisch et al. 2009).

For websites such as social network sites or others with relatively predictable traffic, a planning

approach promises considerable potential. Second, ad resource allocation typically lacks coordi-

nation between the upfront market and spot market, although the same ad resources are shared

by both markets.
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Therefore, in this study, we proposed to integrate ad delivery planning of the upfront market

and spot market. We formulated the problem as a DRCC program and designed solution methods.

In the model, the guaranteed delivery and reach in the upfront market are modeled as constraints,

and the spot market revenue is maximized. Representativeness, although not directly incorpo-

rated into the model, is reflected to a certain extent; to achieve robustness and a high reach, a good

plan tends to allocate the supply of each viewer segment to multiple ad campaigns and serve each

ad campaign by many viewer segments, and hence, representativeness is also implicitly favored

by our model. The extensive numerical studies demonstrate the effectiveness of the approach.

Note that a prerequisite of using the model in practice is that the impression supplies are rel-

atively predictable, and this is the case in most situations of display advertising such as social

network sites. Further improved forecasting capability will no doubt benefit the application of

our approach. Moreover, implementing our approach on an even larger scale (consider Facebook,

for example) may require publishers to further decompose their problems into subproblems of a

smaller scale, e.g., from continent level to country level.
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