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Principal component analysis (PCA) is one of the most widely used dimensionality reduction tools in scien-

tific data analysis. The PCA direction, given by the leading eigenvector of a covariance matrix, is a linear

combination of all features with nonzero loadings—this impedes interpretability. Sparse principal compo-

nent analysis (SPCA) is a framework that enhances interpretability by incorporating an additional sparsity

requirement in the feature weights (factor loadings) while finding a direction that explains the maximal

variation in the data. However, unlike PCA, the optimization problem associated with the SPCA problem is

NP-hard. Most conventional methods for solving SPCA are heuristics with no guarantees such as certificates

of optimality on the solution-quality via associated dual bounds. Dual bounds are available via standard

semidefinite programming (SDP) based relaxations, which may not be tight and the SDPs are difficult to

scale using off-the-shelf solvers. In this paper, we present a convex integer programming (IP) framework

to derive dual bounds. At the heart of our approach is the so-called ℓ1-relaxation of SPCA. While the ℓ1-

relaxation leads to convex optimization problems for ℓ0-sparse linear regression and relatives; it results in a

non-convex optimization problem for the PCA problem. We first show that the ℓ1-relaxation gives tight mul-

tiplicative bound on SPCA. Then we show how to use standard integer programming techniques to further

relax the ℓ1-relaxation into a convex IP, for which there are good commercial solvers. We present worst-case

results on the quality of the dual bound provided by the convex IP. We empirically observe that the dual

bounds are significantly better than worst-case performance, and are superior to the SDP bounds on some

real-life instances. Moreover, solving the convex IP model using commercial IP solvers appears to scale much

better than solving the SDP-relaxation using commercial solvers. To the best of our knowledge, we obtain

the best dual bounds for real and artificial instances for SPCA problems involving covariance matrices of

size up to 2000× 2000.

Key words : ℓ1 relaxation, Dual bounds, Sparse principal component analysis

1. Introduction

Principal component analysis (PCA) is one of the most widely used dimensionality reduction

methods in data science. Given a data matrix Y ∈Rm×n (with m samples and n features; and each

feature is centered to have zero mean), PCA seeks to find a principal component (PC) direction
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x∈Rn with ‖x‖2 = 1 that maximizes the variance of a weighted combination of features. Formally,

this PC direction can be found by solving

max
‖x‖2=1

x⊤Ax (PCA)

where A, 1
m
Y ⊤Y is the sample covariance matrix. An obvious drawback of PCA is that all the

entries of x̂ (an optimal solution to (PCA)) are (usually) nonzero, which leads to the PC direction

being a linear combination of all features – this impedes interpretability [11, 23, 41]. In biomedical

applications for example, when Y corresponds to the gene-expression measurements for different

samples, it is desirable to obtain a PC direction which involves only a handful of the features

(e.g, genes) for interpretation purposes. In financial applications (e.g, A may denote a covariance

matrix of stock-returns), a sparse subset of stocks that are responsible for driving the first PC

direction may be desirable for interpretation purposes. Indeed, in many scientific and industrial

applications [1, 20, 36], for additional interpretability, it is desirable for the factor loadings to be

sparse, i.e., few of the entries in x̂ are nonzero and the rest are zero. This motivates the notion

of a sparse principal component analysis (SPCA) [20, 23], wherein, in addition to maximizing the

variance, one also desires the direction of the first PC to be sparse in the factor loadings. The

most natural optimization formulation of this problem, modifies criterion PCA with an additional

sparsity constraint on x leading to:

λk(A), max
‖x‖2=1,‖x‖0≤k

x⊤Ax (SPCA)

where ‖x‖0 ≤ k, is equivalent to allowing at most k components of x to be nonzero. Unlike the

PCA problem, the SPCA problem is NP-hard [12, 27].

Many heuristic algorithms have been proposed in the literature that use greedy methods [23, 40,

21, 18], alternating methods [38] and the related power methods [24]. However, conditions under

which (some of) these computationally friendlier methods can be shown to work well, make very

strong and often unverifiable assumptions on the problem data. Therefore, the performance of these

heuristics (in terms of how close they are to an optimal solution of the SPCA problem) on a given

dataset is not clear.

Since SPCA is NP-hard, there has been exciting work in the statistics community [4, 35] in under-

standing the statistical properties of convex relaxations (e.g., those proposed by [13] and variants)

of SPCA. It has been established [4, 35] that the statistical performance of estimators available

from convex relaxations are sub-optimal (under suitable modeling assumptions) when compared

to estimators obtained by (optimally) solving SPCA—this further underlines the importance of

creating tools to be able to solve SPCA to optimality.
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Our main goal in this paper is to propose an integer programming framework that allows the com-

putation of certificates of optimality via dual bounds, which make limited restrictive/unverifiable

assumptions on the data. Dual bounds can also translate into suitable guarantees for statistical

performance of the estimator—see for example, [28][Theorem 4] for results pertaining to approx-

imate solutions for sparse regression settings1. To the best of our knowledge, the only published

methods for obtaining dual bounds of SPCA are based on semidefinite programming (SDP) relax-

ations [15, 17, 18, 39] (see Appendix B for the SDP relaxation) and spectral methods involving a

low-rank approximation of the matrix A [30]. Both these approaches however, have some limita-

tions. The SDP relaxation does not appear to scale easily (using off-the-shelf solver Mosek 8.0.0.60)

for matrices with more than a few hundred rows/columns, while applications can be significantly

larger. Indeed, even a relatively recent implementation based on the Alternating Direction Method

of Multipliers for solving the SDP considers instances with n ≈ 200 [26]. The spectral methods

involving a low-rank approximation of A proposed in [30] have a running time of O(nd) where d is

the rank of the matrix—in order to scale to large instances, no more than a rank 2 approximation

of the original matrix seems possible. The paper [3] presents a specialized branch and bound solver2

to obtain solutions to the SPCA problem, but their method can handle problems with n ≈ 100

– the approach presented here is different, and our proposal scales to problem instances that are

much larger.

The methods proposed here are able to obtain approximate dual bounds of SPCA by solving

convex integer programs and a related perturbed version of convex integer programs that are easier

to solve. The dual bounds we obtain are incomparable to dual bounds based on the SDP relaxation,

i.e. neither dominates the other, and the method appears to scale well to matrices up to sizes of

2000× 2000.

2. Main results

In this paper, we use upper case letters such as A,X to denote symmetric matrices. The (i, j)-th

component of matrix A is denoted as [A]ij or Aij in short. We use lower case letters such as v,x

for vectors, and denote the i-th component of a vector v as [v]i or vi in short. We use upper case

letter I for set of indices. Given a vector where v ∈Rn and I ⊆ [n], we let vI ∈Rn to be the vector:

[vI ]i =

{

vi i∈ I
0 i /∈ I

1 In [28], estimators with certificates on dual bounds translate to simple modifications of error bounds that correspond
to the global solution of the original nonconvex estimator.

2 This paper is not available in the public domain at the time of writing this paper.
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We use the usual notation ‖ · ‖1, ‖ · ‖2 for ℓ1, ℓ2 norm respectively for a given vector. Let ‖ · ‖0 be

the ℓ0 norm which denotes the number of non-zero components. Given a set S, we denote conv(S)

as the convex hull of S; given a positive integer n we denote {1, . . . , n} by [n]; given a matrix A,

we denote its trace by tr(A). Given n scalars v1, . . . vn, diag(v1, . . . , vn) is the n× n matrix whose

diagonal elements are vi’s and the off-diagonal terms are equal to 0. We list all the notation used

in this paper in Table 13.

Notice that the constraint ‖x‖2 = 1,‖x‖0 ≤ k implies that ‖x‖1 ≤
√
k. Thus, one obtains the

so-called ℓ1-norm relaxation of SPCA:

OPTℓ1 , max
‖x‖2≤1,‖x‖1≤

√
k

x⊤Ax. (ℓ1-relax)

The relaxation ℓ1-relax has two advantages:

(a) As shown in Theorem 1 below, ℓ1-relax gives a constant factor bound on SPCA,

(b) The feasible region is convex and all the nonconvexity is in the objective function.

We build on these two advantages: our convex IP relaxation is a further relaxation of ℓ1-relax

(together with some implied linear inequalities for SPCA) which heavily use the fact that the

feasible region of ℓ1-relax is convex. We require to use IP methods and construct the convex IP,

since the objective of ℓ1-relax is non-convex. Thus, we use a combination of ℓ1-relax and IP methods

to obtain strong dual bounds.

We note that ℓ1-relax is an important estimator in its own right [20, 36]—it is commonly used

in the statistics/machine-learning community as one that leads to an eigenvector of A with entries

having a small ℓ1-norm (as opposed to a small ℓ0-norm). We emphasize that ℓ1-relaxation has never

been used to computationally obtain dual bounds for SPCA. Indeed, to the best of our knowledge

there has been no systematic study of the theoretical and empirical computational properties of

the ℓ1-relaxation vis-à-vis SPCA.

The rest of this section is organized as follows: In Section 2.1, we present the constant factor

bound on SPCA given by ℓ1-relax, improving upon some known results. In Section 2.2, we present

the construction of our convex IP and prove results on the quality of bound provided. In Sec-

tion 2.3, we discuss perturbing the original matrix in order to make the convex IP more efficiently

solvable while still providing reasonable dual bounds. In Section 4, we present results from our

computational experiments.

2.1. Quality of ℓ1-relaxation as a surrogate for the SPCA problem

The following theorem is an improved version of a result appearing in [34] (Exercise 10.3.7).

Theorem 1. The objective value OPTℓ1 is upper bounded by a multiplicative factor ρ2 away from

λk(A), i.e., λk(A)≤OPTℓ1 ≤ ρ2 ·λk(A) with ρ≤ 1+
√

k

k+1
.
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Proof of Theorem 1 is provided in Section 3. While we have improved upon the bound presented

in [34], we do not know if this new bound is tight.

The approximation ratio 1 +
√

k

k+1
from Theorem 1 yields an almost 100% gap (see formal

definition of gap in Section 4) in the worst case. From a practitioners’ viewpoint, a 100% gap is

obviously far from ideal and would not be considered as “solving” the problem. However, as we

shall see in Section 4, the ℓ1-relaxation does provide very good dual bounds in many instances.

Moreover, as stated above the approximation ratio of 1+
√

k

k+1
is the best we can prove; however

this bound may be significantly away from the actual bound.

Theorem 1 has implications regarding existence of polynomial-time algorithms to obtain a

constant-factor approximation guarantee for ℓ1-relax. In particular, the proof of Theorem 1 implies

that if one can obtain a solution for ℓ1-relax which is within a constant factor, say θ, of OPTℓ1 ,

then a solution for SPCA problem can be obtained, which is within a constant factor (at most

θρ≈ 4θ) of λk(A). Therefore, the ℓ1-relaxation is also inapproximable in general.

2.2. From ℓ1-relaxation to convex integer programming model

A classical integer programming approach to finding dual bounds of SPCA would be to go to an

extended space involving the product of x-variables and include one binary variable per x-variable

in order to model the ℓ0-norm constraint, resulting in a very large number of binary variables. In

particular, a typical model could be of the form:

max tr(AX) (1)

s.t. −zi ≤ xi ≤ zi, i∈ [n] (2)
n
∑

j=1

zi ≤ k (3)

‖x‖2 ≤ 1 (4)
[

1 x⊤

x X

]

� 0 (5)

rank

([

1 x⊤

x X

])

=1 (6)

z ∈ {0,1}n. (7)

It is easy to see that such a model is challenging due to (a) n binary variables (b) “quadratic”

increase in number of variables (X) and (c) the presence of the rank constraint. Even with signifi-

cant progress, it is well-known that solving such problems beyond n being a few hundred variables

is extremely challenging [5, 19]. Indeed, instances with an arbitrary quadratic objective and bound

constraints cannot be generally solved (exactly) by modern state-of-the-art methods as soon as the

number of variables exceed a hundred or so [10, 7].

This is how we address the challenges discussed above.
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1. n binary variables (a): the feasible region of ℓ1-relax is a convex set. Therefore, we do not

have to include binary variables to model the ℓ0-norm constraint. We will use ℓ1-relax as our basic

relaxation.

2. Quadratic increase in number of variables (b) and rank constraint (c): We do not use the X

variables to model the quadratic objective. Instead we upper bound the quadratic objective using

piecewise linear function via integer programming techniques.

In other words, since the feasible region of ℓ1-relax is a convex set and takes care of challenge

(a), we model/upper bound the objective function using IP techniques to deal with challenges (b)

and (c). Specifically, we follow the following procedure:

step-0: By spectral decomposition, let A =
∑n

i=1 λiviv
⊤
i where (λi)

n
i=1, (vi)

n
i=1 are unit norm

orthogonal eigen-pairs. Then the objective function of ℓ1-relax is:

n
∑

i=1

λi(x
⊤vi)

2.

step-1: Assuming that λ≤ λk(A), we have that x⊤Ax= x⊤(A−λI)x+λ for x such that ‖x‖2 =

1, where I is the identity matrix. Therefore, if we split the eigenvalues into two sets as {i : λi >λ}

and {i : λi <λ}, the objective function can be represented as

λ+
∑

i∈{i:λi>λ}

(λi−λ)(x⊤vi)
2 +

∑

i∈{i:λi<λ}

(λi−λ)(x⊤vi)
2

where for each eigenvalue λi that equals to λ, since λi−λ= 0, it does not contribute anything to

objective function. Note that the first term is convex and the second term is concave. Since the

objective is a maximizing, we need to deal with the first term. This idea of splitting the objective

function into convex and concave part is a well-studied approach for attacking non-convex quadratic

objective functions. See for example [6, 9] for use of some similar ideas.

step-2: For each index i∈ {i : λi >λ}, replace x⊤vi with a single continuous variable gi, and set

θi←max{x⊤vi : ‖x‖2 ≤ 1,‖x‖0 ≤ k} (or θi←max{x⊤vi : ‖x‖2 ≤ 1,‖x‖1 ≤
√
k} if we explicitly want

a relaxation of ℓ1-relax) be an upper bound of gi. Then for each gi with i ∈ {i : λi > λ}, construct

a piecewise linear upper approximation ξi for g2i . Such piecewise linear upper approximation is

usually modelled via special ordered sets of type 2 (SOS-2) constraints [29].

step-3: For
∑

i∈{i:λi<λ}(λi − λ)(x⊤vi)
2, since λi − λ < 0, we obtain a convex constraint

∑

i∈{i:λi<λ}−(λi−λ)(x⊤vi)
2 ≤ s.
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Therefore, a convex integer programming problem is obtained as follows:

OPTconvex-IP ,max λ+
∑

i∈{i:λi>λ}(λi−λ)ξi− s

s.t.

{

gi = x⊤vi
−θi ≤ gi ≤ θi

i∈ [n]






gi =
∑N

j=−N
γj
i η

j
i

ξi =
∑N

j=−N
(γj

i )
2ηj

i

(η−N
i , . . . , ηN

i ) ∈ SOS-2

i∈ {i : λi >λ}
{∑n

i=1 x
2
i ≤ 1

∑

i∈{i:λi>λ}

(

ξi− θ2i
4N2

)

+
∑

i∈{i:λi≤λ} g
2
i ≤ 1

{

∑n

i=1 yi ≤
√
k

yi ≥ xi, yi ≥−xi, ∀i∈ [n]
∑

i∈{i:λi<λ}−(λi−λ)g2i ≤ s

(Convex-IP)

Notations and explanations of Convex-IP:

Variable gi: The first set of constraints

{

gi = x⊤vi
−θi ≤ gi ≤ θi

transfers x⊤vi into a single variable for each i ∈ [n].
Variable ξi: Based on step-2 above, for each i∈ {i : λi >λ}, the second set of constraints







gi =
∑N

j=−N
γj
i η

j
i

ξi =
∑N

j=−N
(γj

i )
2ηj

i

(η−N
i , . . . , ηN

i )∈ SOS-2

forms ξi as a piecewise-linear upper approximation of g2i . Let 2N + 1 be the number of splitting

points of the domain [−θi, θi] of variable gi, where the set of splitting points (γj
i )

N
j=−N satisfy

−θi = γ−N
i < . . . γ0

i (= 0)< . . . < γN
i = θi.

Without any prior information of the optimal solution, we partition the set [−θi, θi] equally to

minimize the (worst-case) upper bounds, i.e., by letting (γj
i )

N
j=−N ←

(

j

N
· θi
)N

j=−N
be the value of

jth splitting point. See Section D for details.

Quadratic constraints: The third set of constraints does the following: Since vi’s are orthogonal,

then
∑n

i=1 x
2
i ≤ 1 implies

∑n

i=1 g
2
i ≤ 1. Together with ξi representing g2i , we can obtain the implied

inequality:

∑

i∈{i:λi>λ}

ξi +
∑

i∈{i:λi≤λ}

g2i ≤ 1+
∑

i∈{i:λi>λ}

θ2i
4N2

The second term in the right-hand-side reflects the fact that ξi is not exactly equal to g2i , but

only a piecewise linear upper bound of g2i . Note that the exact value of the second term in the

right-hand-side also depends on the way one splits the set [−θi, θi], the value
∑

i∈{i:λi>λ}
θ2i
4N2 in
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above formula is obtained via splitting [−θi, θi] equally, which can be shown as the minimum upper

bounds without any prior idea of the optimal solution x of SPCA or ℓ1-relax. See the proof in

Section D for details. This constraint (cutting-plane) is not necessarily needed for a correct model

– it is used since it helps improving the dual bound of the LP relaxation and significantly improves

the running-time of the solver.

ℓ1 constraints: The fourth set of constraints (the fourth one within the curly brackets in Convex

IP) introduce new variables yi to denote |xi| for i= 1, . . . , n and model the constraint
n
∑

i=1

|xi| ≤
√
k.

Convex constraint: The final constraint

∑

i∈{i:λi<λ}

−(λi−λ)g2i ≤ s (convex-constraint)

is a convex constraint that we obtained in step-3 where x⊤vi is replaced by a variable gi since

gi = x⊤vi.

We arrive at the following result:

Proposition 1. The optimal objective value OPTconvex-IP of Convex-IP is an upper bound on the

SPCA problem.

Proposition 1 is formally verified in Appendix C.

Next combining the result of Theorem 1 with the quality of the approximation of the objective

function of ℓ1-relax by Convex-IP, we obtain the following result:

Proposition 2. The optimal objective value OPTconvex-IP of Convex-IP is upper bounded by

OPTconvex-IP≤ ρ2λk(A)+
1

4N2

∑

i∈{i:λi>λ}

(λi−λ)θ2i .

A proof of Proposition 2 is presented in Appendix D.

Finally, let us discuss why we expect Convex-IP to be appealing from a computational viewpoint.

Unlike typical integer programming approaches, the number of binary variables in Convex-IP is

(2N + 1) · |{i : λi > λ}| which is usually significantly smaller than n. Indeed, heuristics for SPCA

generally produce good values of λ, and in almost all experiments we found that |{i : λi >λ}|≪ n.

Moreover, N is a parameter we control. In order to highlight the “computational tractability” of

Convex-IP, we formally state the following result:

Proposition 3. Assuming the number of splitting points N and the size of set {i : λi >λ} is fixed,
the Convex-IP problem can be solved in polynomial time.

Note that the convex integer programming method which is solvable in polynomial time, does

not contradict the inapproxamability of the SPCA problem, since OPTconvex-IP is upper bounded

by the sum of ρ2λk(A) and a term corresponding to the sample covariance matrix.
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2.3. Improving the running time of Convex-IP

2.3.1. Perturbation of the covariance matrix A: In practice, we do the following

(sequence of) perturbation on covariance matrix A to reduce the running time of solving con-

vex IP. Again let λ (obtained from some heuristic method) be a lower bound on the λk(A), let

A=
∑n

i=1 λiviv
⊤
i be the spectral decomposition of A with λ1 ≥ . . .≥ λn ≥ 0.

1. Set λ̄ ,max{λi : λi ≤ λ} (where λ1, λ2, . . . , λn are the eigenvalues of A). We assume λ̄ < λ.

However, when λ̄,max{λi : λi ≤ λ}= λ, one can apply Algorithm 1 to obtain a matrix Ā�A such

that none of the eigenvalues of Ā equals λ. We then replace A by Ā. Now letting λ1, λ2, . . . , λn to

be the eigenvalues of (the updated) A and λ̄,max{λi : λi ≤ λ}, we obtain that λ̄ < λ for Ā.

Algorithm 1 Perturbation of A

1: Input : Sample covariance matrix A and λ.

2: Output : A perturbed sample covariance matrix Ā with distinct eigenvalues such that Ā � A

and none of the eigenvalues of Ā equals λ.

3: function Perturbation Method(A,λ)

4: Compute spectral decomposition on A as A= V ⊤ΛV , where Λ= diag(λ1, . . . , λn). Let λi1 >

· · ·>λ= λij
> · · ·λip ≥ 0 be all its distinct values of eigenvalues where p≤ n.

5: Set ∆λ←min{λij
−λij+1

| j =1, . . . , p− 1}.
6: Set Λ̄←Λ+diag

(

i−1
n
ǫ | i= n, . . . ,1

)

with ǫ= 1
2
∆λ.

7: return Ā← V ⊤Λ̄V .

8: end function

2. Perturb the covariance matrix A=
∑n

i=1 λiviv
⊤
i by Ā=

∑

i∈{i:λi>λ} λiviv
⊤
i +

∑

i∈{i:λi≤λ} λ̄viv
⊤
i .

Note that the objective value OPTconvex-IP(Ā) in Convex-IP is an upper bound on OPTconvex-IP(A).

This is because if (x, y, g, ξ, η, s) is a feasible solution of Convex-IP, then the objective function

value of Convex-IP corresponding to Ā is at least as large as that of A. Replace A by Ā.

3. Therefore, the convex constraint
∑

i∈{i:λi≤λ}−(λi−λ)g2i ≤ s in Convex-IP can be replaced by
∑

i∈{i:λi≤λ}−(λ̄−λ)g2i ≤ s, i.e.,
∑

i∈{i:λi≤λ} g
2
i ≤

s

λ− λ̄
.

4. Let (x̄, ȳ, ḡ, ξ̄, η̄, s̄) be an optimal solution for Convex-IP. Since the convex constraint achieves

equality for any optimal solution of Convex-IP, i.e.,

∑

i∈{i:λi≤λ}

−(λ− λ̄)ḡ2i = s̄

together with

n
∑

i=1

ḡ2i =
∑

i∈{i:λi≤λ}

ḡ2i +
∑

i∈{i:λi>λ}

ḡ2i ≤ 1
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1≤
∑

i∈{i:λi>λ}

ξ̄i +
∑

i∈{i:λi≤λ}

ḡ2i ≤ 1+
1

4N2

∑

i∈{i:λi>λ}

θ2i ,

imply the following inequalities:

1− s̄

λ− λ̄
≤

∑

i∈{i:λi>λ}

ξ̄i ≤ 1+
1

4N2

∑

i∈{i:λi>λ}

θ2i −
s̄

λ− λ̄
,

∑

i∈{i:λi>λ}

ḡ2i ≤ 1− s̄

λ− λ̄
.

Thus a simplified convex IP corresponding to the perturbed covariance matrix is:

OPTpert-convex-IP ,max λ+
∑

i∈{i:λi>λ}(λi−λ)ξi− s

s.t.

{

gi = x⊤vi
−θi ≤ gi ≤ θi

i ∈ {i : λi >λ}






gi =
∑N

j=−N
γj
i η

j
i

ξi =
∑N

j=−N
(γj

i )
2ηj

i

(η−N
i , . . . , ηN

i )∈ SOS-2

i ∈ {i : λi >λ}










∑n

i=1 x
2
i ≤ 1

∑

i∈{i:λi>λ} g
2
i ≤ 1− s

λ−λ̄

1− s

λ−λ̄
≤
∑

i∈{i:λi>λ} ξi ≤ 1+
∑

i∈{i:λi>λ}
θ2i
4N2 − s

λ−λ̄
{
∑n

i=1 yi ≤
√
k

yi ≥ xi, yi ≥−xi, ∀i∈ [n]
v⊤y ≤ b(v)

(Pert-Convex-IP)

where the quadratic constraints in Pert-Convex-IP are updated based on the discussion above and

the final constraint v⊤y ≤ b(v) represents the cutting planes that we add, see Proposition 5 for

details.

Proposition 4. The optimal objective value OPTPert-Convex-IP is upper bounded by

OPTPert-Convex-IP ≤ ρ2λk(A)+ ρ2(λ̄−λmin(A))+
1

4N2

∑

i∈{i:λi>λ}

(λi−λ)θ2i .

Note that in Pert-Convex-IP, we do not need the variables gi, i ∈ {i : λi ≤ λ} which greatly

reduces the number of variables since in general |{i : λi ≥ λ}|≪ n. In practice, we note a significant

reduction in running time, while the dual bound obtained from Pert-Convex-IP model remains

reasonable. More details are presented in Section 4.

2.3.2. Refining the splitting points Since the Pert-Convex-IP model runs much faster than

the Convex-IP model, we run the Pert-Convex-IP model iteratively. In each new iteration, we add

one extra splitting point describing each ξi function. In particular, once we solve the Pert-Convex-IP

model, we add one splitting point at the optimal value of gi.
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2.3.3. Cutting planes

Proposition 5. Let x∈Rn. Let |xi1 | ≥ |xi2 | ≥ · · · ≥ |xin−1
| ≥ |xin |. Then let v be the vector:

vij =

{

|xij
| if j ≤ k

|xik
| if j > k.

(8)

Also let b(v) := ‖(vi1 , vi2 , vi3 , . . . , vik)‖2. The inequality

v⊤y ≤ b(v), (9)

is a valid inequality for SPCA.

The validity of this inequality is clear: If (x, y) is a feasible point, then the support of y is at most

k and ‖y‖2 ≤ 1. Therefore, v⊤y ≤ ‖(vi1 , vi2 , vi3 , . . . , vik)‖2 = b(v). Notice that this inequality is not

valid for ℓ1-relax. Also see [25].

We add these inequalities at the end of each iteration for the model where the seeding x for

constructing v is chosen to be the optimal solution of the previous iteration.

3. Proof of Theorem 1

Given a vector v ∈Rn, we denote the jth coordinate of v as vj , and for some J ⊆ [n] we denote the

projection of v onto the coordinates in the index set J as vJ . Define

Sk , {x ∈Rn | ‖x‖2 ≤ 1,‖x‖0 ≤ k}, (10)

Tk , {x ∈Rn | ‖x‖2 ≤ 1,‖x‖1 ≤
√
k}. (11)

Note that any x ∈ Tk can be represented as a nonnegative combination of points in Sk, i.e.,

x= x1 + · · ·+ xm and xi ∈ Sk for all i. Here we think of each xi as a projection onto some unique

k components of x and setting the other components to zero. Let yi = xi

‖xi‖2
, then yi ∈ Sk. Now we

have, x=
∑m

i=1 ‖xi‖2 · yi, and therefore

1
∑m

i=1 ‖xi‖2
x=

m
∑

i=1

‖xi‖2
∑m

i=1 ‖xi‖2
· yi. (12)

Thus, if we scale x ∈ Tk by ‖x1‖2 + . . .+ ‖xm‖2, then the resulting vector belongs to conv(Sk).

Since we want this scaling factor to be as small as possible, we solve the following optimization

problem:

min‖x1‖2 + . . .+ ‖xm‖2 : x= x1 + . . .+xm; xi ∈ Sk,∀i∈ [m]. (Bound)

Without loss of generality, we assume that x≥ 0 and x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Let x= v̄1+ . . .+ v̄m

where v1, . . . , vm ∈ Sk is an optimal solution of Bound. The following proposition presents a result

on an optimal solution of Bound.
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Proposition 6. Let I1, . . . , Im be a collection of supports such that: I1 indexes the k largest (in

absolute value) components in x, I2 indexes the second k largest (in absolute value) components in

x, and so on (note that m= ⌈n
k
⌉). Then I1, . . . , Im is an optimal set of supports for Bound.

Proof. We prove this result by the method of contradiction. Suppose we have an optimal repre-

sentation as x= v̄1 + · · · v̄m — and without loss of generality, we assume that ‖v̄1‖2 ≥ · · · ≥ ‖v̄m‖2.
Let Ī1, . . . , Īm be the set of supports of v̄1, . . . , v̄m respectively, where we assume that the indices

within each support vector are ordered such that

(xĪj)1 ≥ (xĪj )2≥ · · · ≥ (xĪj )g

for all j ∈ {1, . . . ,m} (note that g= k if j <m).

Let Īp be the first support that is different from Ip, i.e., Ī1 = I1, . . . , Īp−1 = Ip−1 and Īp 6= Ip.

Let Ipq be the first index in Ip that does not belong to Īp with q≤ k since ‖Īp‖0 = k. Therefore, Ipq

must be in Īp
′

where p′ >p. Note now that by construction of I and our assumption on Ī, we have

that (xIp)q ≥ (xĪp)q ≥ (xĪp)k. Now we exchange the index Ipq in Īp
′

with Īpk in Īp. We have:

√

‖xĪp‖22 +((xIp)q)2− ((xĪp)k)2 +
√

‖x
Īp

′ ‖22 +((xĪp)k)2− ((xIp)q)2≤ ‖xĪp‖2 + ‖xĪp
′‖2, (13)

which holds because ‖xĪp‖2 ≥ ‖xĪp
′‖2 and ((xIp)q)

2− ((xĪp)k)
2≥ 0.

Now repeating the above step, we obtain the result. �

Based on Proposition 6, for any fixed x ∈ Tk, we can find out an optimal solution of Bound in

closed form. Now we would like to know, for which vector x, the scaling factor ‖v1‖2 + . . .+ ‖vm‖2
will be the largest. Let ρ be obtained by solving the following optimization problem:

ρ=maxx ‖xI1‖2 + · · ·+ ‖xIm‖2
s.t. x= xI1 + · · ·+xIm

‖x‖22 = ‖xI1‖22 + · · ·+ ‖xIm‖22 ≤ 1

‖x‖1 = ‖xI1‖1 + · · ·+ ‖xIm‖1 ≤
√
k

x1 ≥ · · · ≥ xn ≥ 0.

(Approximation ratio)

Then we obtain

Tk ⊆ ρ ·Conv (Sk) . (14)

Although the optimal objective value of Approximation ratio is hard to compute exactly, we can

still find an upper bound.

Lemma 1. The objective value ρ of Approximation ratio is bounded from above by 1+
√

k

k+1
.
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Proof. First consider the case when n ≤ 2k. In this case, m ≤ 2. Consider the optimization

problem:

θ=max u+ v

s.t. u2 + v2 ≤ 1

If we think of ‖xI1‖2 as u and ‖xI2‖2 as v, then we see that the above problem is a relaxation of

Approximation ratio and therefore θ=
√
2 is an upper bound on ρ. Noting that

√
2≤ 1+

√

k

k+1
for

all k≥ 1, we have the result.

Now we assume that n > 2k and consequently m> 2. From Approximation ratio, let ‖xI1‖1 = t

and ‖xI1‖2 = γ. Based on the standard relationship between ℓ1 and ℓ2 norm, we have

γ ≤ t≤
√
kγ.

Since each coordinate of xI2 is smaller in magnitude than the average coordinate of xI1 , we have

‖xI2‖2 ≤

√

(‖xI2‖1
k

)2

k=
t√
k
. (15)

Also note that an alternative bound is given by

‖xI2‖2 ≤
√

1− γ2.

Using an argument similar to the one used to obtain (15), we obtain that

m
∑

i=3

‖xIi‖2 ≤
m−1
∑

i=2

√

(‖xIi‖1
k

)2

k=
1√
k

m−1
∑

i=2

‖xIi‖1 ≤
√
k− t√
k

.

Therefore we obtain

m
∑

i=1

‖xIi‖2 = ‖xI1‖2 + ‖xI2‖2 +
m
∑

i=3

‖xIi‖2 ≤ γ+min

{

t√
k
,
√

1− γ2

}

+1− t√
k
. (Upper-Bound)

Now we consider two cases:

1. If t√
k
≥√1− γ2, then Upper-Bound becomes γ +

√
1− γ2 +1− t√

k
. Since γ ≥ t√

k
≥√1− γ2,

γ satisfies γ ≥ 1√
2
. Moreover we have that t≥ γ, t≥

√

k(1− γ2). Since γ ≤
√

k(1− γ2) iff γ ≤
√

k

k+1

we obtain two cases:

γ+
√

1− γ2 +1− t√
k
≤







γ+
√
1− γ2 +1−

√
1− γ2 if γ ∈

[

1√
2
,
√

k

k+1

]

γ+
√
1− γ2 +1− γ√

k
if γ ∈

[√

k

k+1
, 1
]

≤







1+
√

k

k+1

1+
√

k

k+1

(16)
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where (i) the first inequality holds when γ =
√

k

k+1
, (ii) the second inequality holds since the

function f(γ) = γ+
√
1− γ2+1− γ√

k
achieves (local and global) maximum at point γ =

√

k+1−2
√
k

2k+1−2
√
k

which is less than
√

k

k+1
for k = 1,2, . . ., thus f(γ)≤max

{

f
(√

k

k+1

)

, f(1)
}

= 1+
√

k

k+1
for part

γ ∈
[√

k

k+1
, 1
]

.

2. If t√
k
≤
√
1− γ2, then Upper-Bound becomes γ+1. Note now that γ√

k
≤ t√

k
≤
√
1− γ2, implies

that γ satisfies γ ≤
√

k

k+1
. Therefore, 1+ γ ≤ 1+

√

k

k+1
.

Therefore, this upper bound holds. �

Therefore, we can show Theorem 1 holds.

Proof of Theorem 1. Since Tk ⊆ ρ ·Conv(Sk) with ρ≤ 1+
√

k

k+1
and the objective function is

maximizing a convex function, we obtain that λk(A)≤OPTℓ1 ≤ ρ2 ·λk(A). �

4. Numerical experiments

In this section, we report results on our empirical comparison of the performances of Convex-IP

method, Pert-Convex-IP method and the SDP relaxation method.

4.1. Hardware and Software

All numerical experiments are implemented on MacBookPro13 with 2 GHz Intel Core i5 CPU and

8 GB 1867 MHz LPDDR3 Memory. Convex-IPs were solved using Gurobi 7.0.2. SDPs were solved

using Mosek 8.0.0.60.

4.2. Obtaining primal solutions

We used a heuristic, which is very similar to the truncated power method [38], but has some advan-

tages over the truncated power method. Given v ∈Rn, let Ik(v) be the set of indices corresponding

to the top k entries of v (in absolute value).

We start with a random initialization x0 such that ‖x0‖2 = 1, and set I0← Ik(V
⊤x0) where V is

a square root of A, i.e. A= V ⊤V . In the ith iteration, we update

Ii← Ik(V
⊤xi), xi+1← argmax

‖x‖2=1

x⊤AIix (17)

where AI ∈Rn×n is the matrix with [AI ]i,j = [A]i,j for all i, j ∈ I and [AI ]i,j =0 otherwise. It is easy

to see that x1, x2, . . . satisfy the condition ‖x‖0 ≤ k. Moreover, using the fact A is a PSD matrix,

it is easy to verify that (xi+1)⊤Axi+1 ≥ (xi)⊤Axi for all i. Therefore, in each iteration, the above

heuristic method leads to an improved feasible solution for the SPCA problem.

Our method has two clear advantages over the truncated power method:

• We use standard and efficient numerical linear algebra methods to compute eigenvalues of

small k× k matrices.
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• The termination criteria used in our algorithm is also simple: if Ii = Ii
′

for some i′ < i, then

we stop. Clearly, this leads to a finite termination criteria.

In practice, we stop using a stopping criterion based on improvement and number of iterations

instead of checking Ii = Ii
′

. Details are presented in Algorithm 2.

Algorithm 2 Primal Algorithm

1: Input : Sample covariance matrix A, cardinality constraint k, initial vector x0.

2: Output : A feasible solution x∗ of SPCA, and its objective value.

3: function Heuristic Method(A,k,x0)

4: Start with an initial (randomized) vector x0 such that ‖x0‖2 = 1 and ‖x0‖0 ≤ k.

5: Set the initial current objective value Obj← (x0)⊤Ax0.

6: Set the initial past objective value Õbj← 0.

7: Set the maximum number of iterations be imax.

8: while Obj− Õbj> ǫ and i≤ imax do

9: Set Õbj←Obj.

10: Set Ii← Ik(V
⊤xi).

11: Set xi+1← argmax‖x‖2=1 x
⊤AIix.

12: Set Obj← (xi+1)⊤Axi+1.

13: end while

14: return x∗ as the final x obtained from while-loop, and Obj.

15: end function

We use the values of ǫ= 10−6 and imax = 20 in our experiments in Algorithm 2. We repeat this

algorithm with multiple random initializations. We repeat 20 times and take the best solution. We

emphasize that Algorithm 2 may not lead to a global solution of SPCA.

Our Algorithm may also be interpreted as a version of the “alternating method” used regularly

as a heuristic for bilinear programs as the sparse PCA problem can be equivalently rewritten as

max{x⊤Ay | ‖x‖2 = ‖y‖2 = 1,‖x‖0 ≤ k,‖y‖0 ≤ k}. We have compared our primal method to two

standard heuristics for finding primal feasible solutions of the sparse PCA problems in the literature:

truncated power method (TPM, [37]), generalized power method (GPM, [24]) with ℓ0-penalty. The

performances of all these methods are quite similar to our method (in terms of primal objective

function values) on the real instances; see details in Appendix I.

4.3. Implementation of Convex-IP model and Pert-Convex-IP model

4.3.1. Deciding λ, N
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1. Deciding λ: The size of the set {i : λi > λ} denoted by Ipos plays an important role for the

computational tractability of our method. So our algorithm inputs an initial value, I inipos . From the

primal heuristic, we obtain a lower bound LBprimal on λk(A). Let

λi1 ≥ λi2 ≥ · · · ≥ λin

be the eigenvalues of A. If λi
Iinipos

< LBprimal, then we set λ, λi
Iinipos

. On the other hand, if λi
Iinipos

>

LBprimal, then let l be the smallest index such that λil
> LBprimal and we set λ, λil

.

2. Deciding N : In practice, θi was found to be significantly smaller than 1. So we used a value

of N = 3 in all our experiments.

4.3.2. Final details A total time of 7200 seconds were given to each instance for running

the convex IP (any extra time reported in the tables is due to running time of singular value

decomposition and primal heuristics). We have run all our experiments with k = 10,20. For the

Convex-IP method, we use: (I inipos,N) = (10,3). For the Pert-Convex-IP method, we let “iter” denote

the maximum number of iterations. We used three settings in our experiments:

(I inipos,N, iter) ∈ {(5,3,10), (10,3,3), (15,3,2)} .

The overall algorithms using the Pert-Convex-IP model and the Convex-IP model are presented

in Appendix G.

4.4. Data Sets

We conduct numerical experiments on two types of data sets. Details of these two types of data

sets are presented in Appendix H.

• Artificial data set: Tables 4, 5, 6, 7, 8, 9 present results for artificial/synthetic datasets.

• Real data set: Tables 10, 11, 12 show results for real data sets.

4.5. Description of the rows/columns in the tables

Note that the labels for each of the columns in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12 are as follows:

• Case: The first part is a name. ‘Case 1’ or ‘Case 2’ denotes the instance number. The second

part is the format (size, cardinality) which denotes the number of columns/rows of the A matrix

and the right-hand-side of the ℓ0 constraint of the original SPCA problem.

• LB-ℓ0: denotes the lower bound on the SPCA problem obtained from the (heuristic) Algo-

rithm 2 in Section 4.2.

• #-λ: denotes the size of set {i |λi > LB-ℓ0} where λi are the eigenvalues of the covariance

matrix.
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• Convex-IP-ℓ0, Pert-Convex-IP0: denote the Convex-IP and the Pert-Convex-IP models.

• SDP: denotes the semidefinite programming relaxation solved using Mosek. In Appendix J,

we compare the dual bounds by alternative methods [16] to solve the SDP-relaxation for the real

instances. Our conclusion based on our implementation of other algorithms is that when Mosek

solves the instance, the best dual bound is obtained from Mosek. For some slightly larger instances,

other algorithms might produce dual bounds. Usually, these dual bounds are extremely poor in

quality. Moreover, these other methods do not scale up to instances with d ≥ 1000. Therefore,

we have chosen to present results only from Mosek in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12; and the

remaining results are relegated to Appendix J.

• UB: denotes the upper bound obtained from current dual bound method (i.e., Convex-IP-ℓ0,

Pert-Convex-IP0, SDP).

• gap: denotes the approximation ratio (duality gap) obtained by the formula gap= UB−LB-ℓ0
LB-ℓ0

.

• time: denotes the total running time—we present the overall running time due to singular

value decomposition, heuristic method to obtain primal solutions, and solvers (Gurobi, Mosek)

used to solve integer programming (set to terminate within 7200 seconds).

The three rows corresponding to Pert-Convex-IP, corresponds to experiments with three settings:

(Ipos,N, iter) = {(5,3,10), (10,3,3), (15,3,2)} .

4.6. Conclusions and summary of numerical experiments

Based on numerical results reported in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12 we draw some preliminary

observations:

1. Size of instances solved:

• SDP: Because of limitation of hardware and software, the SDP relaxation method does not

solve instances with input matrix of size greater than or equal to 300× 300.

• Convex-IP: The convex IP shows better scalability than the SDP relaxation and produces dual

bounds for instances with input matrix of size up to 500× 500.

• Pert-Convex-IP: The perturbed convex IP scales significantly better that the other methods.

While we experimented with instances up to size 2000× 2000, we believe this method will easily

scale to larger instances, when k= 10,20 with (Ipos,N) being chosen appropriately.

2. Quality of dual bound:

• SDP vs Best of {Convex-IP, Pert-Convex-IP}: While on some instances SDP obtained better

dual bounds, this was not the case for all instances. For example, on the ‘controlling sparsity’

random instances and both the real data sets Eisen-1 and Eisen-2, SDP bounds are weaker.

• Convex-IP vs Pert-Convex-IP: If the convex IP solved within the time limit, then usually the

bound is better than that obtained for Pert-Convex-IP. In other cases, Pert-Convex-IP performs

better as it is easy to solve and usually solves within 1 hour.
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• Overall gaps for Best of {Convex-IP, Pert-Convex-IP}: Except for the random instances of

type ‘controlling sparsity’ of size 1000× 1000, and Lymphoma data set, in all other instances at

least one method had a gap less that 10%.

• Cardinality 10 vs Cardinality 20: When the cardinality budget is allowed to increase, based

on our numerical results, we can see that the running time of our Convex-IP and Pert-Convex-IP

methods do not change a lot, since the parameter of cardinality k of Convex-IP and Pert-Convex-IP

method only influences the linear constraint
∑n

i=1 yi ≤
√
k, which is more robust to changes in the

value of the cardinality k than typical cardinality constraint in interger programming.

3. Comparison of different numbers of splitting points (parameter N): We compare

the performances of the Pert-Convex-IP0 method under distinct initialization splitting points with

(Ipos,Nini,# of iterations) = (5,1,1), (5,3,1), (5,5,1), see Table 1. We present results with just one

round of iterations to clearly understand the effect of number of splitting points. We observe that

the gap decreases when the number of splitting points increases. On the other hand, the running

time increases with the number of splitting points incereasing. However increasing splitting points

from 3 to 5 does not significantly improve the bounds.

Table 1 Comparison of distinct splitting points

Instance \ Splitting points LB
(5,1,1) (5,3,1) (5,5,1)
gap Time gap Time gap Time

Eisen-1 (79, 10) 17.335 2.619 % 2.762 0.588 % 3.049 0.329 % 3.127
Eisen-2 (118, 10) 11.718 13.245 % 5.738 4.736 % 7.194 4.207 % 7.78
Colon (500, 10) 2641.229 30.652 % 72.802 27.755% 73.149 27.673 % 76.115
Lymphoma (500, 10) 6008.741 52.412 % 95.561 43.956 % 83.902 43.587 % 86.422
Reddit (2000, 10) 1052.934 8.548 % 1628.128 4.136 % 1450.775 3.999 % 1488.936

4. Comparison between ℓ1-relaxation and original sparsity constraint: To further illus-

trate why we prescribe the use of ℓ1 relaxation to obtain dual bounds of SPCA, we compare the

following two models: (1) The Pert-Convex-IP model used in the paper; (2) The same “perturbed

convex IP” where the ℓ1 constraint is replaced by a cardinality constraint (with the introduction
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of binary variables), denoted as Model-with-ℓ0.

max λ+
∑

i∈{i:λi>λ}(λi−λ)ξi− s

s.t.

{

gi = x⊤vi
−θi ≤ gi ≤ θi

i ∈ {i : λi >λ}






gi =
∑N

j=−N
γj
i η

j
i

ξi =
∑N

j=−N
(γj

i )
2ηj

i

(η−N
i , . . . , ηN

i )∈ SOS-2

i ∈ {i : λi >λ}










∑n

i=1 x
2
i ≤ 1

∑

i∈{i:λi>λ} g
2
i ≤ 1− s

λ−λ̄

1− s

λ−λ̄
≤
∑

i∈{i:λi>λ} ξi ≤ 1+
∑

i∈{i:λi>λ}
θ2i
4N2 − s

λ−λ̄
{
∑n

i=1 zi ≤ k
zi ≥ xi, zi ≥−xi, zi ∈ {0,1},∀i∈ [n] (ℓ0 constraint)

(Model-with-ℓ0)

We tested on the real-life data for k = 10 and k = 20 in Table 2, Table 3. All parameters

(Ipos,Nini,#iter) are also listed in Table 2, Table 3 which are the same as the parameters that used

in the Section 4.3.2 (except for #iter = 1 here).

Table 2 Comparison: Real Instances, cardinality parameter k= 10

(size, index) (Ipos, Nini, # iter)
Pert-Convex-IP Model-with-ℓ0
Gap Time Gap Time

Eisen Data 1 (79) (5, 3, 1) 0.588 % 2.86 0.392 % 8.591
(10, 3, 1) 0.796 % 3.863 0.525 % 99.168
(15, 3, 1) 0.865 % 10.049 0.588 % 685.519

Eisen Data 2 (118) (5, 3, 1) 4.736 % 6.576 4.48 % 86.251
(10, 3, 1) 2.364 % 27.525 2.321 % 2105.51
(15, 3, 1) 1.997 % 195.356 1.971 % 5935.205

Matrix CovColon (500) (5, 3, 1) 27.755 % 90.362 4.48 % 86.251
(10, 3, 1) 2.364 % 27.525 2.321 % 2105.51
(15, 3, 1) 5.349 % 2610.972 11.51 % 7288.835

Matrix LymphomaCov (500) (5, 3, 1) 43.956 % 87.159 47.93 % 7305.024
(10, 3, 1) 23.662 % 355.236 39.431 % 7289.135
(15, 3, 1) 17.863 % 4224.933 39.526 % 7309.047

Reddit (2000) (5, 3, 1) 4.136 % 1867.157 5.826 % 8765.165
(10, 3, 1) 3.446 % 1831.221 8.867 % 8638.037
(15, 3, 1) 3.523 % 3726.841 10.356 % 8542.98

Based on the Table 2 3, following conclusions can be obtained:

(a) For instances with relative small size (≤ 500): the upper bounds (UB) obtained from

Model-with-ℓ0 is a slightly better than the upper bounds (UB) from Pert-Convex-IP, but the

running time used for Model-with-ℓ0 is much longer than Pert-Convex-IP.

(b) For instances with relative large size (≥ 500): both the upper bounds and the running

time obtained from Pert-Convex-IP method are significantly better than those obtained from

Model-with-ℓ0. In another words, the Pert-Convex-IP is more scalable.

(c) Effect of k: We see that for k= 20 the performance of Pert-Convex-IP method is even more

dramatically better than that of Model-with-ℓ0. In fact, now Pert-Convex-IP beats Model-with-ℓ0
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Table 3 Comparison: Real Instances, cardinality parameter k= 20

(size, index) (Ipos, Nini, # iter)
Pert-Convex-IP Model-with-ℓ0
Gap Time Gap Time

Eisen Data 1 (79) (5, 3, 1) 0.559 % 3.183 1.298 % 7204.468
(10, 3, 1) 0.813 % 20.568 2.985 % 7204.059
(15, 3, 1) 0.886 % 1016.839 5.519 % 7229.677

Eisen Data 2 (118) (5, 3, 1) 1.837 % 6.48 2.65 % 8062.349
(10, 3, 1) 1.18 % 46.001 4.223 % 7211.949
(15, 3, 1) 1.087 % 443.759 3.664 % 7205.331

Matrix CovColon (500) (5, 3, 1) 17.014 % 75.267 18.539 % 7268.644
(10, 3, 1) 6.528 % 372.802 12.903 % 7271.37
(15, 3, 1) 6.066 % 7275.58 12.737 % 7273.013

Matrix LymphomaCov (500) (5, 3, 1) 24.042 % 91.786 26.622 % 7288.825
(10, 3, 1) 14.498 % 214.784 24.381 % 7302.236
(15, 3, 1) 11.811 % 3349.161 35.286 % 8831.009

Reddit (2000) (5, 3, 1) 4.286 % 4652.869 7.139 % 8708.004
(10, 3, 1) 4.288 % 1677.933 9.647 % 8546.823
(15, 3, 1) 4.776 % 4274.327 12.157 % 8560.558

on quality of bound and time even for small (≤ 500) instances. Indeed, this is another nice property

of the ℓ1-relaxation, namely it handles larger values of k more robustly.
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Table 4 Spiked Covariance Recovery - Cardinality 10

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 10) 511.95 1 0.005 % 380 0.007 % 76 0.001 % 1277
0.005 % 230
0.005 % 1605

Case 2 (200, 10) 592.45 1 0.003 % 469 0.006 % 615 0.002 % 1458
0.006 % 236
0.005 % 325

Case 1 (300, 10) 414.04 1 0.027 % 1692 0.03 % 642 NaN -
0.029 % 407
0.027 % 796

Case 2 (300, 10) 568.56 1 0.011 % 1067 0.016 % 82 NaN -
0.014 % 493
0.012 % 942

Case 1 (400, 10) 478.24 1 0.025 % 2598 0.04 % 793 NaN -
0.03% 610
0.03% 1495

Case 2 (400, 10) 426.91 1 0.037 % 3374 0.06 % 181 NaN -
0.05 % 846
0.04 % 2137

Case 1 (500, 10) 256.82 1 0.164 % 7525 0.21 % 1345 NaN -
0.18 % 1512
0.17 % 3279

Case 2 (500, 10) 551.74 1 0.029 % 7196 0.04 % 152 NaN -
0.04 % 725
0.03 % 1694

Case 1 (1000, 10) 315.16 1 NaN - 0.57 % 1147 NaN -
0.52 % 776
0.53 % 3633

Case 2 (1000, 10) 383.44 1 NaN - 0.34 % 2745 NaN -
0.32 % 403
0.34 % 3643
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Table 5 Spiked Covariance Recovery - Cardinality 20

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 20) 516.756 1 2.05 % 493 0.008 % 746 - % -
0.073 % 3116
0.573 % 7214

Case 2 (200, 20) 593.651 1 0.98 % 1847 0.005 % 323 -% -
0.006 % 5992
0.102 % 7215

Case 1 (300, 20) 499.92 1 0.70 % 1848 0.018 % 745 -% -
0.021 % 4799
0.399 % 7230

Case 2 (300, 20) 600.553 1 1.13 % 1771 0.014 % 530 -% -
0.013 % 2964
0.272 % 7232

Case 1 (400, 20) 483.995 1 2.74 % 6398 0.034 % 1186 -% -
0.168 % 7262
0.832 % 7255

Case 2 (400, 20) 428.275 1 1.92 % 7426 0.045 % 576 -% -
0.074 % 6965
0.53 % 7251 -

Case 1 (500, 20) 294.35 1 1.19 % 7027 0.162 % 1341 -% -
0.165 % 6087
1.285 % 7294

Case 2 (500, 20) 571.15 1 1.96 % 4628 0.039 % 1862 - % -
0.2 % 1935
1.215 % 3360

Case 1 (1000, 20) 414 1 - % - 0.53 % 3133 - % -
0.50 % 2760
0.50 % 5844

Case 2 (1000, 20) 391.795 1 - % - 0.311 % 4756 -% -
0.74 % 3596
2.906 % 7516
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Table 6 Synthetic Example - Cardinality 10

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 10) 5634.143 3 11.884 % 7205 0.14 % 38 0.10 % 1092
0.15 % 16
0.15 % 186

Case 2 (200, 10) 7321.23 3 1.703 % 7205 0.13 % 23 0.09 % 1086
0.13 % 13
0.12 % 47

Case 1 (300, 10) 4157.46 3 51.072 % 7210 0.27 % 83 NaN -
0.29 % 21
0.27 % 486

Case 2 (300, 10) 5135.50 3 65.275 % 7210 0.23 % 62 NaN -
0.22 % 59
0.23 % 58

Case 1 (400, 10) 6519.37 3 55.308 % 7219 0.22 % 98 NaN -
0.23 % 23
0.22 % 349

Case 2 (400, 10) 5942.05 3 45.396 % 7218 0.36 % 56 NaN -
0.42 % 29
0.41 % 364

Case 1 (500, 10) 5125.86 3 65.98 % 7230 0.38 % 149 NaN -
0.38 % 44
0.37 % 132

Case 2 (500, 10) 5545.85 3 48.328 % 7230 0.39 % 50 NaN -
0.38 % 30
0.38 % 231

Case 1 (1000, 10) 5116.08 3 NaN - 0.58 % 257 NaN -
0.57 % 128
0.57 % 1373

Case 2 (1000, 10) 6946.12 3 NaN - 0.39 % 323 NaN -
0.36 % 129
0.34 % 1167
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Table 7 Synthetic Example- Cardinality 20

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 20) 11222.152 2 0.779 % 7205 0.041 % 2391 -% -
0.042 % 2178
0.466 % 3707

Case 2 (200, 20) 14588.507 2 0.503 % 7205 0.032 % 1285 -% -
0.036 % 2772
0.479 % 7212

Case 1 (300, 20) 8282.32 3 13.336 % 7212 0.089 % 2745 - % -
0.159 % 1386
1.523 % 7227

Case 2 (300, 20) 10233.583 3 4.182 % 7210 0.078 % 1835 -% -
0.07 % 99
0.817 % 7229

Case 1 (400, 20) 12976.349 3 55.172 % 7219 0.08 % 2563 -% -
0.105 % 5278
4.288 % 7248

Case 2 (400, 20) 11809.325 2 45.209 % 7219 0.082 % 4257 -% -
0.084 % 6934
0.08 % 485

Case 1 (500, 20) 10218.591 3 65.637 % 7231 0.13 % 3882 -% -
0.142 % 6568
2.067 % 7288

Case 2 (500, 20) 11032.377 3 48.034 % 7229 0.114 % 6603 -% -
0.138 % 2753
4.88 % 7280

Case 1 (1000, 20) 10193.919 3 - % - 1.38 % 303 -% -
1.358 % 1707
0.24 % 3257

Case 2 (1000, 20) 13867.929 3 - % - 0.691 % 318 -% -
0.674 % 1927
0.18 % 8807
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Table 8 Controlling Sparsity - Cardinality 10

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 10) 706 1 0.14 % 925 2.9 % 117 0.42 % 1360
2.6 % 340
2.6 % 3663

Case 2 (200, 10) 680 1 0.14 % 1195 3.53 % 176 1.2 % 1148
3.38 % 372
3.53 % 3672

Case 1 (300, 10) 972 1 1.4 % 1958 3.91 % 135 NaN -
3.81 % 453
3.70 % 3635

Case 2 (300, 10) 976 1 1.1 % 3007 3.79 % 278 NaN -
3.48 % 1558
3.69 % 3772

Case 1 (400, 10) 1239 1 1.3 % 7207 4.21 % 769 NaN -
3.96 % 699
3.96 % 3699

Case 2 (400, 10) 1207 1 1.6 % 7206 3.56 % 221 NaN -
3.48% 1894
3.40 % 3697

Case 1 (500, 10) 1498 1 2.1 % 12180 5.21 % 1026 NaN -
4.74 % 2881
4.81 % 3661

Case 2 (500, 10) 1498 1 2.1 % 13917 4.14 % 251 NaN -
4.07 % 1039
4.01 % 3783

Case 1 (1000, 10) 3948 1 - - 59.7 % 2206 NaN -
53.3 % 8318
49.5 % 3600

Case 2 (1000, 10) 4002 1 NaN - 58.1 % 3270 NaN -
51.0 % 8356
47.6 % 3600
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Table 9 Controlling Sparsity - Cardinality 20

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Case 1 (200, 20) 1341.432 1 0.97 % 277 0.01 % 1434 -% -
0.009 % 4726
0.735 % 2554

Case 2 (200, 20) 1287.45 1 1.63 % 332 0.009 % 887 -% -
0.008 % 2847
1.22 % 1971

Case 1 (300, 20) 1839.578 1 1.25 % 1019 0.551 % 1932 -% -
0.636 % 4854
7.027 % 7280

Case 2 (300, 20) 1849.485 1 0.192 % 2217 0.19 % 897 -% -
0.796 % 7229
4.287 % 7226

Case 1 (400, 20) 2339.441 1 1.45 % 907 2.140 % 4343 -% -
5.47 % 7265
9.847 % 7248

Case 2 (400, 20) 2273.785 1 2.34 % 3106 3.572 % 3059 -% -
5.864 % 5164
10.537 % 7249

Case 1 (500, 20) 2870.013 1 2.34 % 2773 3.376 % 6013 -% -
4.077 % 10870
5.572 % 7285

Case 2 (500, 20) 2832.149 1 2.37 % 3015 3.539 % 5011 -% -
5.087 % 7293
5.063 % 7283

Case 1 (1000, 20) 7535.996 1 -% - 31.656 % 7851 -% -
27.151 % 721
25.326 % 7518

Case 2 (1000, 20) 7759.88 1 - % - 29.393 % 311 -% -
25.230 % 809
23.433 % 7510

Table 10 First six sparse principal components of Pitprops

Cardinality LB-ℓ0
Convex-IP-ℓ0 Pert-Convex-IP SDP
gap Time gap Time gap Time

Cardinality 5 3.406 3.2 % 0.40 6.0 % 0.34 1.5 % 3.70
Cardinality 2 1.882 1.4 % 0.23 3.6 % 0.34 0 % 2.49
Cardinality 2 1.364 3.8 % 0.30 7.6 % 0.85 1.0 % 2.69
Cardinality 1 1 1.8 % 0.75 3.5 % 1.02 0 % 2.40
Cardinality 1 1 2.2 % 0.30 3.6 % 0.61 0 % 2.42
Cardinality 1 1 1.2 % 0.30 2.1 % 0.51 0 % 2.32
Sum of above 9.652 2.5 % 2.28 4.8 % 3.67 0.7 % 16.02
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Table 11 Biological and Internet Data - Cardinality 10

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Eisen-1 (79, 10) 17.33 1 0.3 % 4.6 0.12 % 63 2.2 % 15
0.17 % 113
0.4 % 412

Eisen-2 (118, 10) 11.71 1 1.4 % 96 4.10 % 69 2.0 % 52
2.13 % 139
1.70 % 385

Colon (500, 10) 2641 1 14.7 % 9000 27.7 % 708 NaN -
9.58 % 1181
6.89 % 353

Lymphoma (500, 10) 6008 3 20.7 % 3723 41 % 610 NaN -
21 % 1526
17 % 2808

Reddit (2000, 10) 1052 1 NaN - 3.59 % 5663 NaN -
2.142 % 8584
3.615 % 4318

Table 12 Biological and Internet Data - Cardinality 20

Case LB-ℓ0 #-λ
Convex-IP-ℓ0 Pert-Convex-IP0 SDP
gap Time gap Time gap Time

Eisen-1 (79, 20) 17.719 1 1.30 % 742 0.062 % 450 2.37% 13
0.102 % 7928
0.333 % 7205

Eisen-2 (118, 20) 19.323 1 2.02 % 64 1.309 % 283 2.28% 53
0.502 % 904
1.294 % 7206

Colon (500, 20) 4255.694 1 15.3 % 7230 16.537 % 4510 - % -
5.77 % 2931
5.89 % 7286

Lymphoma (500, 20) 9082.158 2 18.7 % 7239 22.569 % 1677 - % -
12.3 % 1442
11.81 % 3721

Reddit (2000, 20) 1119.046 1 - % - 4.256 % 7920 - % -
4.288 % 1677
4.776 % 4274
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Appendix A: Notation

Table 13 Notation

Notation Definition

Y data matrix of size Y ∈Rm×n

A sample covariance matrix A= 1
m
Y ⊤Y

‖ · ‖0,‖ · ‖1,‖ · ‖2 ℓ0, ℓ1, ℓ2 norm
k sparsity parameter of sparse PCA problem

λk(A) optimal value of max‖x‖0≤k,‖x‖2≤1 x
⊤Ax

conv(S) convex hull of set S
[n] short notation of index set {1, . . . , n}

diag(v) diagonal matrix generated from a given vector v
tr(A) trace of a matrix A
OPTℓ1 optimal value of max‖x‖1≤

√
k,‖x‖2≤1 x

⊤Ax
ρ multiplicative approximation ratio between sparse PCA and its ℓ1 relaxation

{λi, vi}ni=1 eigenpair of covariance matrix A
{gi}ni=1 continuous variable gi := x⊤vi
{θi}ni=1 upper bound of gi defined as θi =max{x⊤vi : ‖x‖2 ≤ 1,‖x‖0 ≤ k}
{γj

i }Nj=−N splitting points of interval [−θi, θi] for each i
{ξi}ni=1 piecewise linear upper approximation of g2i

s upper bound of
∑

i∈{i:λi<λ}−(λi−λ)(x⊤vi)
2

2N +1 number of splitting points for interval [−θi, θi] for each i∈ {i : λi >λ}
λ̄ λ̄ :=max{λi : λi ≤ λ}

{λij
}pj=1 λi1 ≥ · · · ≥ λip ≥ 0 distinct values of eigenvalues of A

∆λ eigenvalue gap ∆λ=min{λij
−λij+1

} for j = 1, . . . , p− 1
Ā perturbed covariance matrix of A

(x̄, ȳ, ḡ, ξ̄, η̄, s̄) optimal solution for convex-IP
OPTconvex-IP optimal value of convex integer programming model

OPTpert-convex-IP optimal value of perturbed convex integer programming model
b(v) parameter used for cutting planes defined in Section 2.3.3
Sk feasible region of sparse PCA with sparsity parameter k
Tk ℓ1 relaxation of sparse PCA with sparsity parameter k
Ipos the size of set {i : λi >λ}
I inipos initial input of {i : λi >λ}
iter number of iterations used for perturbed convex IP method

Appendix B: SDP relaxation

The SPCA problem max‖x‖2=1,‖x‖0≤k x
⊤Ax is equivalent to a nonconvex problem:

max tr(AX)

s.t. tr(X) = 1,‖X‖0 ≤ k2,X � 0, rank(X) = 1.

Further relaxing this by replacing its rank and cardinality constraints with 1⊤|X|1≤ k gives the

standard SDP relaxation:

max tr(AX)
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s.t. tr(X) = 1,1⊤|X|1≤ k,X � 0. (SDP)

Appendix C: Proof of Proposition 1

Proof of Proposition 1: Let x∗ = (x∗
i )

n
i=1 be an optimal solution of SPCA. Then set























g∗i ← (x∗)⊤vi, i∈ [n],
(

(η−N
i )∗, . . . , (ηN

i )∗
)

←
(

η−N
i , . . . , ηN

i

)

∈ SOS-2 and
∑N

j=−N
γj
i (η

j
i )

∗ = g∗i , i∈ {i : λi >λ},
ξ∗i ←

∑N

j=−N
(γj

i )
2ηj

i , i∈ {i : λi >λ},
y∗
i ← |x∗

i |, i∈ [n],
s∗i ←

∑

i∈{i:λi≤λ}−(λi−λ)g∗i .

Note that the above solution (x∗, y∗, g∗, ξ∗, η∗, s∗) is a feasible solution for Convex-IP. This is

easy to verify for all the constraints except the constraint
∑

i∈{i:λi>λ} ξi +
∑

i∈{i:λi≤λ} g
2
i ≤ 1 +

1
4N2

∑

i∈{i:λi>λ} θ
2
i . Note that to verify this constraint, it is sufficient to verify that ξi ≤ g2i +

1
4N2 θ

2
i

for i ∈ {i : λi > λ}. This is easily verified based on the size of the discretization and the structure

of SOS-2 constraints.

Moreover, the objective value of feasible solution (x∗, y∗, g∗, ξ∗, η∗, s∗) is

λ+
∑

i∈{i:λi>λ}

(λi−λ)ξ∗i − s∗≥λ+
∑

i∈{i:λi>λ}

(λi−λ)(g∗i )
2− s∗

=λ+
∑

i∈{i:λi>λ}

(λi−λ)((x∗)⊤vi)
2 +

∑

i∈{i:λi≤λ}

(λi−λ)((x∗)⊤vi)
2

=λ+
n
∑

i=1

(λi−λ)((x∗)⊤vi)
2.

Note that the optimal solution x∗ of SPCA has property ‖x∗‖2 = 1 and
∑n

i=1 viv
⊤
i = In. Then

λ+
∑n

i=1(λi−λ)((x∗)⊤vi)
2 = (x∗)⊤Ax∗ = λk(A). Therefore, OPTconvex-IP≥ λk(A).

Appendix D: Proof of Proposition 2

Proof of Proposition 2: Let (x̄, ȳ, ḡ, ξ̄, η̄, s̄) be an optimal solution for Convex-IP. Its optimal

value then satisfies the following:

OPTconvex-IP = λ+
∑

i∈{i:λi>λ}

(λi−λ)ξ̄i− s̄

= λ+
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i + ḡ2i
)

− s̄

= λ+
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i
)

+
∑

i∈{i:λi>λ}

(λi−λ)ḡ2i − s̄.

Since variable s satisfies
∑

i∈{i:λi≤λ}−(λi−λ)g2i ≤ s, to maximize the objective function, s̄ should

be equivalent to
∑

i∈{i:λi≤λ}−(λi−λ)ḡ2i , then the above formula can be represented as

λ+
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i
)

+
∑

i∈{i:λi>λ}

(λi−λ)ḡ2i − s̄
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=λ+
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i
)

+
∑

i∈{i:λi>λ}

(λi−λ)ḡ2i +
∑

i∈{i:λi≤λ}

(λ−λ)ḡ2i

=
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i
)

+

(

λ+
n
∑

i=1

(λi−λ)ḡ2i

)

. (18)

By previous results, λ+
∑n

i=1(λi−λ)ḡ2i = x̄⊤Ax̄. Note that due to the ℓ2−norm constraint ‖x‖2 ≤ 1

and the ℓ1−norm constraint present in Convex-IP problem, we have x̄ ∈ Tk = {x ∈ R
n : ‖x‖2 ≤

1,‖x‖1 ≤
√
k} ⊆ ρ ·Conv(Sk). Therefore x̄⊤Ax̄ is upper bounded by the value ρ2 ·λk(A).

To upper bound the first term in (18), since gi =
∑N

j=−N
γj
i η

j
i , ξi =

∑N

j=−N
(γj

i )
2ηj

i for i ∈ {i :
λi > λ} and the SOS-2 construction enforces that there are at most two active continuous SOS-2

variables ηj
i , η

j+1
i such that ηj

i + ηj+1
i = 1 with ηj

i , η
j+1
i ≥ 0 and the other SOS-2 variables are all

zeros, then

ξi− g2i =
N
∑

j=−N

(γj
i )

2ηj
i −
(

N
∑

j=−N

γj
i η

j
i

)2

= (γj
i )

2ηj
i +(γj+1

i )2ηj+1
i −

(

γj
i η

j
i + γj+1

i ηj+1
i

)2
for ηj

i , η
j+1
i active

= (γj+1
i − γj

i )
2ηj

i (1− ηj
i ) via ηj

i + ηj+1
i = 1

≤ max
j=−N,...,N−1

(γj+1
i − γj

i )
2 · 1

4

where in all possible partition of [−θi, θi], the evenly partition of [−θi, θi] achieves the minimum

value of maxj=−N,...,N−1(γ
j+1
i − γj

i )
2 =

θ2i
N2 . Hence (18) can be upper bounded as follows:

OPTconvex-IP =
∑

i∈{i:λi>λ}

(λi−λ)
(

ξ̄i− ḡ2i
)

+

(

λ+
n
∑

i=1

(λi−λ)ḡ2i

)

≤ 1

4N2

∑

i∈{i:λi>λ}

(λi−λ)θ2i + ρ2 ·λk(A).

Appendix E: Appendix: Proof of Proposition 3

Proof of Proposition 3: Given the heuristic lower bound λ, the number of splitting points N ,

the size of set Ipos = |{i : λi >λ}|, for each i∈ {i : λi >λ}, there are at most 2N possible choices of

active SOS-2 variables, i.e.,

ηj
i , η

j+1
i > 0, for j =−N, . . . ,0, . . . ,N − 1.

Thus there are at most (2N)|Ipos| choices of active SOS-2 variables for a Convex-IP problem.

For a fixed value of active SOS-2 variables, the Convex-IP problem reduces to be a continuous

convex optimization problem which can be solved exactly within polynomial time, say T . Thus the

Convex-IP can be solved within (2N)|Ipos| ·T .
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Appendix F: Proof of Proposition 4

Proof of Proposition 4: Based on Proposition 2, we have

OPTPert-Convex-IP ≤ ρ2λk(Ā)+
1

4N2

∑

i∈{i:λi>λ}

(λi−λ)θ2i .

Note that Ā−A=
∑

i∈{i:λi≤λ}(λ̄−λi)viv
⊤
i . Therefore,

ρ2λk(Ā) = ρ2λk
(

A+(Ā−A)
)

≤ ρ2λk(A)+ ρ2λk(Ā−A)

≤ ρ2λk(A)+ ρ2(λ̄−λmin(A)).

Appendix G: Convex-IP Method and Pert-Convex-IP Method

Algorithm 3 presents all the details of the convex IP solved. Algorithm 4 presents all the details

of the Pert-Convex-IP solved.

Algorithm 3 Convex-IP Method

1: Input : Sample covariance matrix A, cardinality constraint k, size of set {i : λi > λ} we desire,

number of one branch splitting points N .

2: Output : Lower and upper bound of SPCA or ℓ1-relax based on the choice of θi.

3: function Convex-IP Method(A,k, Ipos,N)

4: Set lower bound and warm starting point (LB, x̄)←Heuristic Method(A,k,x0).

5: Set parameter λIpos+1
≤ λ≤ LB if possible, otherwise set λ←LB.

6: Set splitting points γj
i as above based on N and the choice of θi, see Section 2.2 [2.2] .

7: To warm start, add additional splitting points based on the point x̄.

8: Add cutting-plane (9) to the model based on the choice of θi.

9: Run Convex-IP problem.

10: Set UB← Convex-IP if running to the optimal, or the current dual bound obtained from

Convex-IP.

11: return LB, UB.

12: end function

Appendix H: Description of Data Sets

H.1. Artificial Data Sets

We first conduct numerical experiments on three types of artificial data sets, denoted as the spiked

covariance recovery from the paper [30], the synthetic example from the paper [41], and the con-

trolling sparsity case from the paper [15]. A description of each of these three types of instances is

presented below:
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Algorithm 4 Pert-Convex-IP Method

1: Input : Sample covariance matrix A, cardinality constraint k, size of set {i : λi > λ} we desire,

number of one branch splitting points N , maximum number of iterations iter.

2: Output : Lower and upper bound of SPCA or ℓ1-relax based on the choice of θi.

3: function Pert-Convex-IP Method(A,k, Ipos,N, iter)

4: Set lower bound and warm starting point (LB, x̄)←Heuristic Method(A,k,x0).

5: Set parameter λIpos+1
≤ λ≤ LB if possible, otherwise set λ←LB.

6: Set parameter λ̄,max{λi : λi ≤ λ}<λ if possible.

7: Set splitting points γj
i as above based on N and the choice of θi, see Section 2.2 [2.2].

8: To warm start, add additional splitting points based on the point x̄.

9: while current iteration does not exceed the maximum number of iterations iter or time

limit is not up do

10: Run Pert-Convex-IP problem.

11: Set UB← Pert-Convex-IP if running to the optimal, or the current dual bound obtained

from Pert-Convex-IP.

12: Set x̂← current feasible solution obtained from Pert-Convex-IP.

13: Add additional splitting points based on solution obtained in solving Pert-Convex-IP

problem.

14: Add cutting-plane (9) to the model based on the choice of θi.

15: end while

16: return LB, UB.

17: end function

H.1.1. Spiked covariance recovery Consider a covariance matrix Σ, which has two sparse

eigenvectors with dominated eigenvalues and the rest eigenvector are unconstrained with small

eigenvalues. Let the first two dominant eigenvectors v1, v2 of Σ be:

[v1]i =

{

1√
10

i= 1, . . . ,10,

0 otherwise
, [v2]i =

{

1√
10

i= 11, . . . ,20,

0 otherwise
, (19)

with the eigenvalues corresponding to the first two dominant eigenvectors be λ1≫ 1 and λ2≫ 1,

and the remaining eigenvalues be 1. For example, in our numerical experiments, set Σ← 399 ·
v1v

⊤
1 +299 · v2v⊤2 + I.

We have four distinct settings under the spiked covariance recovery case. Let n be the number of

features, i.e., the size of the sample covariance matrix of our numerical cases. Let m be the number

of samples we generated. We set n= {200,300,400,500,1000} and m= {50}. Therefore, under each
setting of n, we generate m random samples xi ∼N(0,Σ), and get our sample covariance matrix
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Σ̂ = 1
50

∑50

i=1 xix
⊤
i . In Table 4, for each setting, we repeat the experiment for 2 times (case 1, case

2), and compare the dual bounds obtained from all three methods.

H.1.2. Synthetic Example Given n, let n1, n2, n3 ∈
{

⌈n
3
⌉, ⌊n

3
⌋
}

such that n1+n2+n3 = n. Let

0p×q be the matrix of all zeros with size p× q. Let 1p be the vector of all ones with length p.

Then:

Σ=





290 ·1n1
1⊤
n1

+ In1
0n1×n2

−87 ·1n1
1⊤
n3

0n2×n1
300 ·1n2

1⊤
n2

+ In2
277.5 ·1n2

1⊤
n3

−87 ·1n3
1⊤
n1

277.5 ·1n3
1⊤
n2

582.7875 ·1n3
1⊤
n3

+ In3



 . (20)

In our experiments, we set n = {200,300,400,500,1000}, and generate m = 50 samples such

that xi ∼N(0,Σ). Again, the sample empirical covariance matrix is Σ̂ = 1
50

∑50

i=1 xix
⊤
i . In Table 6,

for each setting of n, we repeat the experiment twice (case 1, case 2), and compare dual bounds

obtained from all three methods.

H.1.3. Controlling Sparsity Like the spiked covariance recovery case, the covariance matrix Σ

of controlling sparsity case can also be represented as the summation of a term generated by sparse

eigenvector with dominated eigenvalue and the remaining part with small eigenvalues. Generate a

n× n matrix U with uniformly distributed coefficients in [0,1] which can be seen as white noise.

Let v ∈ {0,1}n be a sparse vector with ‖v‖0 ≤ k. We then form a test matrix Σ = U⊤U + σvv⊤,

where σ is the signal-to-noise ratio and is set to 15.

In our experiments, we set n = {200,300,400,500,1000} and generate m = 50 samples xi ∼
N(0,Σ) for i= 1, . . . ,50. Therefore the sample empirical covariance matrix is Σ̂ = 1

50

∑50

i=1 xix
⊤
i . In

Table 8, for each setting of n, we repeat the experiment twice (case 1, case 2), and compare dual

bounds obtained from all three methods.

H.2. Real Data Sets

We conduct numerical experiments on three types of real data sets, the benchmark pitprops data

from [22], biological data from [14, 30, 38] and large-scale data collected from internet.

H.2.1. Pitprops Data The PitProps data set in [22] (consisting of 180 observations with 13

measured variables) has been a standard benchmark to evaluate algorithms for sparse PCA.

Based on previous work, we also consider the first six k−sparse principal components. Note

the i-th k−sparse principal component xi is obtained by solving argmax‖x‖2=1,‖x‖0≤k x
⊤Aix where

A1 ← A and Ai ← (I − xi−1(xi−1)⊤)Ai−1(I − xi−1(xi−1)⊤) for i = 2, . . . ,6. Table 10 lists the six

extracted sparse principal direction with cardinality setting 5− 2− 2− 1− 1− 1.

H.2.2. Biological Data In Table 11 we present numerical experiments on four biological data

sets. The first two biological data sets (Eisen-1, Eisen-2) are from [38]. The Colon cancer data set

is from Alon et al. (1999). The Lymphoma data set is from Alizadeh et al. (2000).
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H.2.3. Large-scale Internet Data In Table 11 we also present numerical experiments on

internet dataset. This dataset is constructed out of textual posts shared on the popular social

media Reddit. Based on prior work [2, 32], the archive of all public Reddit posts shared on Google’s

Big Query was utilized to obtain a set of 3292 posts from the subreddit r/stress from December

2010 to January 2017. The r/stress community allows individuals to self-report and disclose their

stressful experiences and is a support community. For example, two (paraphrased) post excerpts

say: “Feel like I am burning out (again...) Help: what do I do?”; and “How do I calm down when I

get triggered?”. The community is also heavily moderated; hence these 3292 posts were considered

to be indicative of actual stress. [32].

Then on this collected set of posts, standard text-based feature extraction techniques were

applied per post, starting with cleaning the data (stopword elimination, removal of noisy words,

stemming), and then building a language model with the n-grams in a post (n=2). The outcomes

of this language model provided us with 1950 features, after including only the top most statis-

tically significant features. Additionally, the psycholinguistic lexicon Linguistic Inquiry and Word

Count (LIWC) [31] was leveraged to obtain features aligning with 50 different empirically validated

psychological categories, such as positive affect, negative affect, cognition, and function words.

These features have been extensively validated in prior work to be indicative of stress and similar

psychological constructs [33]. Our final dataset matrix comprised 3092 rows, corresponding to the

3092 posts, and 2000 features in all.

The purpose of testing the sparse PCA technique on this dataset is to identify those features

that are theoretically guaranteed to be the most salient in describing the nature of stress expressed

in a post. In turn, these salient features could be utilized by a variety of stakeholders like clin-

ical psychologists, and community moderators and managers to gain insights into stress-related

phenomenon as well as to direct interventions as appropriate.

The final A matrix can be found on the website:

https://www2.isye.gatech.edu/ sdey30/publications.html

Appendix I: Comparison with Existing Primal Heuristics for Lower Bounds

In this section, we compare our method Algorithm 2 for obtaining good primal feasible solutions

with two standard heuristics methods for sparse PCA in the literature: truncated power method

(TPM, [37]), generalized power method (GPM, [24]) with ℓ0-penalty. See Table 14 for a comparison

on all the real instances. As we can see, all the methods produce solutions with more or less the

same objective function values.
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Table 14 Compare with existing primal methods

Instance
SPCA-Primal (Our method) TPM GPM

LB Time LB Time LB Time

Pitprops k=5 3.406 0.1 3.406 0.0 3.406 0.1
Eisen-1 k= 10 17.335 0.0 17.335 0.0 17.335 2.3
Eisen-2 k= 10 11.718 0.0 11.718 0.0 11.605 4.1
CovColon k=10 2641.228 0.4 2641.228 0.4 2641.228 59.7
Lymp k= 10 5911.412 0.3 5911.412 0.2 5753.563 81.4
Reddit k= 10 1052.020 7.4 1052.020 4.5 1052.020 1881.4

Appendix J: Comparison with Existing Methods for Dual Bounds

In this section, we compare the performance of our convex integer program method with (1) Mosek,

in our experience one of the best commercial implementations of SDP solvers; and (2) two variants

of the approach presented in [16], which uses the main idea of [8]. The variants are listed as follows:

1. DADAL: Directly using code available online from [16]: Dual Alternating Direction Aug-

mented Lagrangian (DADAL) method can be used to find out the upper bounds of the SDP

problem. In order to use the freely available implementation, the DADAL method requires the

remodeling of the original problem into the following standard format:

min〈A,X〉 s.t A(X) = b, X � 0.

Thus to find the dual bounds of the sparse PCA with covariance matrix of size d, we need to (1)

add additional auxiliary variables for inequality constraints, (2) reformulate the variables into a

p.s.d. matrix. For the step-(1), the original sparse PCA problem can be formulated in the following

fashion:

min 〈−A,X〉 (SDP-equality)

s.t. 〈Id,X〉+µ1 =1

〈Id2,diag(Y )〉+µ2 = k

〈E+
ij ,X ⊕ diag(Y )〉+ γ+

ij = 0, ∀ ij

〈E−
ij ,X ⊕ diag(Y )〉+ γ−

ij =0, ∀ ij

X,diag(Y ),diag(γ+),diag(γ−),diag(µ)� 0

where ⊕ is the direct sum of two matrices, i.e., A⊕B :=

(

A 0
0 B

)

, the matrix diag(Y ) is a short

notation of diag(vec(Y )) with vec(Y ) the vectorization of matrix Y , and the matrix E+
ij ,E

−
ij are

E+
ij :=

(

Eij 0
0 −diag(vec(Eij))

)

, E−
ij :=

(

−Eij 0
0 −diag(vec(Eij))

)

, ∀i, j ∈ [d]× [d]
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with Eij ∈ R
d×d the standard basis matrix (i.e., the component (i, j) equals to 1, and the rest

components equal to 0). Rewrite the variables of SDP-equality into a p.s.d. matrix

X̃ :=











X
diag(Y )

diag(γ+)
diag(γ−)

µ











∈R(d+3d2+2)×(d+3d2+2).

For the step-(2), the SDP-equality can be further transferred into the standard SDP format as

follows:

min 〈−A⊕0d2 ⊕0d2 ⊕0d2 ⊕02,X̃〉 (standard-SDP)

s.t. 〈Id⊕0d2 ⊕0d2 ⊕0d2 ⊕ diag(1,0),X̃〉= 1

〈0d⊕ Id2 ⊕0d2 ⊕0d2 ⊕ diag(0,1),X̃〉= k

〈(E+
ij +E+

ij)⊕ (diag(vec(Eij))+diag(vec(Eji)))⊕0d2⊕02,X̃〉=0, ∀i≥ j

〈(E−
ij +E−

ij)⊕0d2 ⊕ (diag(vec(Eij))+diag(vec(Eji)))⊕02,X̃〉= 0, ∀i≥ j

X̃ � 0

with the size of variable matrix n= d+3d2 +2 and the number of linear constraints m= 2+ d×
(d+1). The code of DADAL method is downloaded from the author’s [16] homepage 3.

2. DADAL-SPCA: A DADAL-SPCA method designed by us (which uses the main ideas of

the DADAL method) works specifically for the sparse PCA problem. As we have seen above, using

the standard code of DADAL involves increasing dimension to (d+3d2 +2)2 which appears to be

quiet inefficient for solving the standard SDP relaxation of sparse PCA. Therefore we alternatively

pursued the following approach: Consider the primal and dual SDP relaxation of sparse PCA,

Primal :=minX,Y 〈−A,X〉
s.t. 〈I,X〉 ≤ 1 (µ1≥ 0)

〈11⊤,Y 〉 ≤ k (µ2≥ 0)
Y ≥X (γ+≥ 0)
Y ≥−X (γ−≥ 0)
X � 0 (Z � 0)

Dual :=max −µ1−µ2k
s.t. µ1I +γ+−γ−−A−Z = 0

µ211
⊤−γ+−γ− = 0

Z � 0
µ1, µ2,γ

+,γ− ≥ 0

with its augmented Lagrangian

Lσ(µ,γ,Z;X,Y ) := −µ1−µ2k+ 〈M1,X〉+ 〈M2,Y 〉−
σ

2
‖M1‖2F −

σ

2
‖M2‖2F ,

where M1,M2 are defined as

M1 := µ1I +γ+−γ−−A−Z,

M2 := µ211
⊤−γ+−γ−.

3 https://www.math.aau.at/or/Software/

https://www.math.aau.at/or/Software/
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We initialize X0,Y 0,Z0 as follows: Compute eigenvalue decomposition of A=V ΛAV
⊤, let v1 be

the leading eigenvector of V with respect to the largest eigenvalue. Set

X0← v1v
⊤
1 ,

Y 0← |X0|,

Z0← 0,

along with the starting augmented Lagrangian parameter σ0. In (k+1)-th iteration, update each

variable based on the following rule which is similar as the DADAL method proposed in [16].

µk+1,γk+1← argmax
µ≥0,γ≥0

Lσk(µ,γ,Zk;Xk,Y k)

Zk+1←
(

−Xk

σk
+µk+1

1 I +(γ+)k+1− (γ−)k+1−A

)

�0

Xk+1← −σ ·
(

−Xk

σk
+µk+1

1 I +(γ+)k+1− (γ−)k+1−A

)

�0

Y k+1← |Xk+1|

Update σ based on Algorithm 1 in [16]

where (A)�0, (A)�0 denote the positive semi-definite, negative semi-definite part of symmetric

matrix A. That is: Let A = UΣU⊤ be its eigenvalue decomposition. Represent Σ = Σ+ +Σ−

where Σ+
ii =max{Σii,0} and Σ−

ii =min{Σii,0}, then

(A)�0 := UΣ+U⊤,

(A)�0 := UΣ−U⊤.

Remark 1. The way we update our dual variables (and primal variables) in each iteration, there

is no guarantee that the dual variables satisfy the equality constraints in the dual, namely,

M1 := µ1I +γ+−γ−−A−Z =0,

M2 := µ211
⊤−γ+−γ− = 0.

Therefore, it is not true that we can always obtain exact dual bounds from every iteration. We

store the dual bounds of iterations where the equality constraints are satisfied within a tolerance

of 0.01, i.e.,

‖M1‖F + ‖M2‖F ≤ 0.01.
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Moreover, after the final iteration, we add one more step by solving the following linear program,

µfinal,γfinal := argmaxµ,γ −µ1−µ2k
s.t. µ1I +γ+−γ−−A−Zfinal = 0,

µ211
⊤−γ+−γ− = 0,

µ1, µ2,γ
+,γ−≥ 0,

(final-dual)

where Zfinal � 0 is the dual variable obtained in the final step of DADAL-SPCA. It is easy to

observe that (µfinal,γfinal,Zfinal) is a dual feasible solution, and therefore a dual bound can be

obtained from this dual feasible solution.

Stopping criteria: The stopping criteria includes three conditions. Meeting any of the criteria

stops the DADAL-SPCA algorithm.

(a) The maximum number of iteration is set to be 200.

(b) The stopping criteria quantity δ proposed in Algorithm 1 [16] is set to be 0.001, i.e., at

the end of each iteration, we compute the primal and dual infeasibility errors as follows:

rP :=
max{Tr(X)− 1,0}+max{〈11⊤,Y 〉− k,0}

1+
√
1+ k2

,

rD :=
‖M1‖F + ‖M2‖F

1+ ‖A‖F
,

and set δ :=max{rP , rD}.
(c) Since there is no closed form solution of the following updating step:

µk+1,γk+1← argmax
µ≥0,γ≥0

Lσk(µ,γ,Zk;Xk,Y k),

we use commercial solver Gurobi (called via Python) to solve this quadratic programming sub-

problem in each iteration. For small instances (i.e., d < 500, Pitprops, Eisen-1, Eisen-2), the total

time limit given for Gurobi solver is 3600 seconds (1 hour); and for middle-size instance (i.e.,

d= 500, CovColon, Lymp), the total time limit given for Gurobi solver is 7200 seconds (2 hours),

and for large instance (i.e., d= 2000, Reddit), the total time limit given for Gurobi solver is 18000

seconds (5 hours).

Algorithm 5 is the pseudocode of finding dual bounds using DADAL-SPCA.

The gap obtained by DADAL-SPCA as described above with various values of σ0 is reported in

Table 15.

The “Time” column in Table 15 denotes the total running time used for the DADAL-SPCA

method. We can see that the “Time” of CovColon, Lymp reported in Table 15 are greater than

time limit for solver, since additional time are required to implement the other four updating steps

in each iteration. The out of memory (O.M.) for Reddit instance is due to the memory limitation

to load Reddit instance d= 2000 for the update step

µk+1,γk+1← argmax
µ≥0,γ≥0

Lσk(µ,γ,Zk;Xk,Y k).
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Algorithm 5 Dual Bound DADAL-SPCA

1: Input : Covariance matrix A, sparsity parameter k, maximum number of iteration Tmax, total

time limit for solver Ttotal, starting Lagrangian augmented parameter σ0.

2: Output : Dual bound of sparse PCA.

3: function Dual Bound Method(A, k, Tmax, Ttotal)

4: Compute eigenvalue decomposition on A, let v1 be its leading eigenvector.

5: Initialize X← v1v
⊤
1 ,Y ←|X|,Z← 0d×d, (µ1, µ2)← (0,0),γ±← 0d×d.

6: Run DADAL-SPCA with stopping criteria described above with starting Lagrangian aug-

mented parameter σ0 ∈ {0.001,0.01,0.1,1}, and return UBDADAL-SPCA.

7: Solve final-dual for a dual bound UBfinal-dual.

8: return UB←min{UBfinal-dual, UBDADAL-SPCA}.
9: end function

Table 15 DADAL-SPCA under different starting augmented Lagrangian parameter σ
0.

Instance \ σ0 LB
σ0 = 0.001 σ0 = 0.01 σ0 = 0.1 σ0 = 1

gap % Time gap % Time gap % Time gap % Time

Pitprops k=5 3.406 3.96 6 1.79 5 1.70 2 1.64 3
Eisen-1 k= 10 17.33 2.23 270 2.19 225 11.07 294 39.10 288
Eisen-2 k= 10 11.71 2.32 1053 2.37 610 2.08 898 2.12 897
CovColon k=10 2641 14.16 7492 13.51 7281 19.05 7369 26.82 7301
Lymp k= 10 6008 29.67 7339 34.79 7331 46.84 7367 59.09 7373
Reddit k= 10 1052 - O.M. - O.M. - O.M. - O.M.

We tried to solve the final-dual linear program for Reddit instance, but the LP did not solve in 5

hours. (This LP has order d2 variables, whereas the number of variables of convex integer program

is order dIposN and IposN ≪ d in this instance.)

To complete the comparison, we also list the comparison between our model in paper and

DADAL, DADAL-SPCA, Mosek in Table 16.

Table 16 Compare with existing SDP methods

Instance LB
Model-in-Paper DADAL [16] DADAL-SPCA (best) Mosek
gap % Time gap % Time gap % Time gap % Time

Pitprops k=5 3.406 3.26 0.4 82.43 593 1.64 3 1.52 5
Eisen-1 k= 10 17.33 0.115 63 - O.M. 2.19 225 2.19 15
Eisen-2 k= 10 11.71 1.71 385 - O.M. 2.08 898 1.96 52
CovColon k=10 2641 2.37 28 - O.M. 13.51 7281 - O.M.
Lymp k= 10 6008 17.86 4225 - O.M. 29.67 7339 - O.M.
Reddit k= 10 1052 2.24 8584 - O.M. - O.M. - O.M.
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Based on Table 16, we observe that the SDP-relaxation solved by Mosek produces the best

bounds for the small instances (Pitprops, Eisen-1, Eisen-2), while DADAL-SPCA is able to produce

bounds for Pitprops, Eisen-1, Eisen-2, CovColon, and Lymp. However, as we can see, except for

Pitprops, the best dual bounds are obtained by solving convex IP model of this paper.
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