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Abstract

This paper presents and applies models for the valuation and management of mortality-

contingent exposures. Such exposures include insurance and pension benefits as well as novel

mortality-linked securities traded in financial markets. Unlike conventional approaches to

modeling mortality, we consider the stochastic evolution of mortality projections rather than re-

alized mortality rates. Relying on a time series of age-specific mortality forecasts, we develop

a set of stochastic models that—unlike conventional mortality models—capture the evolution

of mortality forecasts over the past fifty years. In particular, the dynamics of our models re-

flect the substantial observed variability of long-term projections, and are therefore particularly

well-suited for financial applications where long-term demographic uncertainty is relevant.
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1 Introduction

Aggregate mortality risk refers to the risk that the future evolution of aggregate mortality rates
deviates from current projections, e.g. due to medical advances or unforeseen events such as the
current Coronavirus pandemic affecting human longevity. Unlike individual mortality risk—i.e.,
the risk of dying young or old—aggregate mortality risk cannot be diversified by pooling across
individuals. Hence, it presents a substantial exposure for insurance companies, pension funds, and
retirement systems. One possibility to manage this risk is via so-called longevity derivatives that
tap diversification possibilities of financial markets.

This paper presents, estimates, and applies novel models for measuring, pricing, and managing
aggregate mortality risk. While many stochastic mortality forecasting models have been presented
and in principle any of them can be used, our models exhibit a number of key advantages in these
contexts. First, we present forward mortality or mortality surface models, in analogy to forward
interest or yield curve models from financial engineering. These models take the current age/term-
surface of mortality as a (non-parametric) input and describe its stochastic evolution going forward.
While a number of papers in the mathematical finance literature have discussed frameworks for
life-contingent forward rate modeling emphasizing advantages in this arena (Bauer et al., 2012;
Tappe and Weber, 2014; Christiansen and Niemeyer, 2015; Buchardt et al., 2019), we are the first
to present an empirically derived mortality surface model.

The forward modeling perspective is not only convenient for certain applications, but it also
leads to fundamentally different dynamics that are more apt in financial applications. More specif-
ically, existing papers on forecasting mortality do not focus attention on the uncertainty associated
with the resulting mortality projections. Rather, the ubiquitous approach following the seminal
work by Lee and Carter (1992) relies on past mortality rates to furnish an estimate of the mortality
experience for subsequent years that matches past observations in some optimal sense. And while
resulting models present excellent tools for applications where the uncertainty in mortality rates
is central, they are not built for depicting the risk situation in mortality projections that is more
relevant for measuring and managing long-term mortality exposures in pension and insurance.

To illustrate, Figure 1 plots cohort life expectancies for 70-year old US females—which can
also be interpreted as the present values of an immediate life annuity under a zero interest rate—
as forecast via the Lee and Carter (1992) model until 2016 (blue solid line).1 In addition, the
figure shows mean life expectancy forecasts from 2017 until 2036 (blue solid line) as well as
corresponding point-wise 95% prediction intervals (red dashed line) based on Lee-Carter and years
1987-2016 for the estimation. We observe significant variation in the time series but the prediction

1Here and in what follows, we curtail the age range because of data quality in very high ages. Hence, “life
expectancy” technically should be interpreted as expected number of years lived until age 95. Generalizations are
possible (Thatcher et al., 2002, e.g.) but not in our focus.
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(a) Mortality Surface Model
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(b) Gompertz Hazard Models

Figure 1: Showing cohort life expectancies for 70-year old U.S. females based on the Lee-Carter
model until 2016 and corresponding future twenty-year (2017-2036) forecasts (blue solid), includ-
ing 95% prediction intervals based on Lee-Carter (red dashed) and mortality models with long-term
risk. (a): Mortality surface model (blue dotted). (b): Gaussian (blue dotted) and Gamma (green
dotdashed) hazard models.

intervals are rather narrow—too narrow from a historical perspective. For instance, the historical
path veers outside of past prediction bands in backtests, and univariate time series forecasts of
life expectancies break the intervals far more often than predicted (see Online Appendix E for
details). This observation echoes findings in the literature. For instance, Cocco and Gomes (2012)
assume a higher dispersion than suggested by Lee-Carter estimates, pointing to statements by
the Government Actuary’s Department (2001) “that uncertainty over long-term mortality levels
is higher” than suggested by statistical techniques. In fact, even in their original work, Lee and
Carter (1992) pose the question of why “the confidence bands on life expectancy [based on their
procedure] are so narrow”?

As an alternative approach, in this paper, we base our analysis on a time series of age-specific
mortality forecasts as they are tabulated within cohort (or generational) life tables that are common
in business and governmental operations, such as pricing life annuities in the insurance industry
or estimating future cash flows in the U.S. Old-Age, Survivors, and Disability Insurance (OASDI)
program (Bell and Miller, 2005). We note that resulting models are theoretically equivalent: A
stochastic model for mortality experience in every period implies a stochastic mortality forecast
and vice versa. In other words, one can reformulate a spot model into a forward model and vice
versa. However, the distinction is relevant for the statistical approach and, therefore, is important
for the specification and estimation process. In particular, including the current forecast in the
cross-sectional view is important to identify the persistence and transiency of random shocks.

We develop our models by analyzing different time series of mortality forecasts in the form of
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expected survival probabilities as objects on some space of functions in two variables (current age
and forecasting term). We find that one factor explains the vast majority of the variation in the data,
and the shape as a function of term and age is highly systematic and very similar across different
populations and data sources. While statistical (factor) models are easily derived, we demonstrate
that a five-parameter affine forward mortality model—three parameters for capturing the age pat-
tern and two for capturing the dynamic evolution—is able to depict the relevant relationships and
results in very similar predictions as the (non- or high-parametric) statistical models. In addition,
the surface model is self-consistent, i.e. the expected value when successively forecasting single
year mortality will line up with the expected value ingrained in current long-term forecasts—which
is analogous to absence of arbitrage in forward interest rate models. Importantly, in contrast to
conventional approaches, the model captures the empirical variability in mortality projections. To
illustrate, in Panel (a) of Figure 1 we include prediction intervals for future life expectancies based
on our mortality surface model (blue dotted line), which are are substantially wider.

The intuition for this observation becomes clear when reformulating our forward model as a
spot (hazard) model. The spot dynamics—in contrast to the surface dynamics—are non-Markovian
and depend on two state variables that are driven by the same source of randomness. One of the
state variables captures the contemporaneous impact of a random shock, similarly as in conven-
tional mortality models. However, the second state variable puts a persistent effect on the evolution
of mortality rates, and thus generates substantial variability in the long run. Both aspects are rel-
evant to modeling mortality risk in financial applications. We propose fully parametric (Gaussian
and non-negative Gamma) hazard models as stochastic extensions to the Gompertz mortality law
that capture both aspects and perform similarly to our forward model for the evolution of the full
age/term-surface of mortality—but are easy-to-use, parsimonious (six/seven parameters in total),
transparent, and tractable. Panel (b) of Figure 1 depicts resulting prediction intervals.

We showcase these models with a focus on their difference in performance to conventional
models in two financial applications: Pricing a so-called guaranteed annuity option in insurance
savings contracts; and a (mortality) call spread option, which we present in context with some
background on the longevity risk transfer market. Results from both applications reiterate the key
point illustrated in Figure 1, namely that conventional models fail to adequately describe the risk
situation. We discuss potential consequences of this observation for related financial markets.

Related Literature and Organization of the Paper

This paper relates to several literatures. We present models that are suited for the valuation and
risk management of life-contingent and mortality derivative securities. Broadie and Detemple
(2004) highlight the contributions of the OR/MS literature to the study of derivative securities,
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although the focus has been on options for financial indices. In particular, a number of affine
pricing models have been presented due to their analytical tractability (Kou, 2002; Broadie and
Kaya, 2006; Christoffersen et al., 2009; Kang et al., 2017, e.g.). We contribute by proposing novel,
empirically motivated, tractable (affine) models suited for the analysis of these alternate contracts.

The statistical, demographic, and insurance literatures have produced a variety of statisti-
cal mortality forecasting models, such as the popular Lee and Carter (1992) and its extensions
(Wilmoth, 1993; Booth et al., 2002; Cairns et al., 2006b, e.g.). In contrast to these approaches and
as a major innovation, we do not rely on a time series of age-specific mortality rates as a start-
ing point, but the basis for our approach is a time series of age-specific mortality forecasts. This
allows us to identify the persistence and transiency of random shocks affecting the age/term struc-
ture of mortality. This point is widely recognized for interest rate models: Models for short rate
give models for the entire term structure of interest rates; yet any meaningful empirical approach
for forecasting the yield curve requires the consideration of all cross-sectional data and not only
observations on the short end, and one usually distinguishes level, slope, and curvature factors de-
scribing the shocks’ impact across the term structure (Diebold and Li, 2006; Piazzesi, 2010, e.g.).
We provide parallel insights for the age/term structure of mortality.

A number of contributions in the actuarial literature discuss pricing and managing mortality-
contingent claims (Milevsky and Promislow, 2001; Dahl and Møller, 2006; Cairns et al., 2006a,
e.g.), yet they rely on simple models that are not able to capture relevant aspects of long-term
mortality risk in financial applications. We focus on specifying and estimating suitable models
by an extensive analysis of suitably compiled mortality data for these applications. We draw on
approaches and models from the fixed income literature (Hull and White, 1990; Litterman and
Scheinkman, 1991; Björk and Gombani, 1999; Duffee, 2011, among others), and we compare and
contrast our results to those produced by alternate popular mortality models.

Section 2 discusses the modeling of mortality forecasts. Here we draw on the forward mortality
modeling frameworks from prior literature (Bauer et al., 2012; Tappe and Weber, 2014) but present
some new results that are conducive to deriving our models. Section 3 uses a variety of different
data sources to specify and estimate a parametric forward mortality model. Section 4 discusses
the resulting model dynamics and presents a set of simple, transparent, and tractable hazard rate
models with long-term risk. Sections 5 and 6 apply our models for pricing insurance options and
derivatives for longevity risk transfer, respectively. The Online Appendix collects proofs, other
technical material, model extensions, supporting analyses, and rich robustness analyses for various
datasets.
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2 Modeling Mortality Forecasts

The typical starting point in mortality modeling are realized “annual age-specific death rates” (Lee
and Carter, 1992, p. 659) leading to models for mortality experience. In contrast, we base our
analysis on a time series of age-specific mortality forecasts as expectations to survive for a certain
period of time. More specifically, we assume that at time t, we are given {τpx(t)| (τ, x) ∈ C},
where τpx(t) denotes the probability for an x-year old to survive for τ periods until time t + τ

based on the information at time t, and C denotes a (large) collection of term/age combinations.2

Our goal is to propose dynamic stochastic models for mortality forecasts ({τpx(t)| (τ, x) ∈ C})t≥0.
We note that once the forecast at time t is available, various quantities follow immediately.

For instance, for the expected future lifetime (cohort life expectancy,
◦
ex (t)) and the expected

discounted payoff of an annual life annuity of $1 (ax(t)) for an x-year old at time t, we have:

◦
ex (t) =

∫ ∞
0

τpx(t) dτ and ax(t) =
∞∑
k=1

B(t, k) kpx(t),

where B(t, τ) is the time-t price of a zero-coupon bond maturing at t+ τ (τ -year discount factor).
A (continuous-time) model for ({τpx(t)| (τ, x) ∈ C})t≥0 can be formulated via a stochastic

(differential) equation on a suitable function space. However, since the specific monotonicity and
boundedness requirements of the forecasted probabilities lead to complications in their modeling,
assuming sufficient regularity, it is easier to work with the transformed objects:

µt(τ, x) = − ∂

∂τ
log {τpx(t)} with τpx(t) = exp

{
−
∫ τ

0

µt(s, x) ds

}
. (1)

Here, µt(τ, x) is called the forward force of mortality (Cairns et al., 2006a), and we interpret µt(·, ·)
as an element of some spaceH of continuous functions (we refer to Bauer et al. (2012) and Tappe
and Weber (2014) for details on these models).

2.1 Gaussian Forward Models

We commence by considering time-homogeneous, Gaussian models of the type:

dµt = (Aµt + α) dt+ σ dWt, (2)

where (Wt) is a D-dimensional Brownian motion, α ∈ H, σ ∈ L(RD,H) (linear mappings
from RD to H), and A is the infinitesimal generator of a strongly continuous semigroup (St) that

2Our notation is based on International Actuarial Notation, where ‘p’ generally denotes survival probabilities, but
we extend it to introduce time dependence via ·(t).

https://en.wikipedia.org/wiki/Actuarial_notation
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coincides with the translation semigroup of left shifts in the first and right shifts in the second
variable:

(St f) (τ, x) = f(τ + t, x− t), 0 ≤ t ≤ x.

To provide intuition for the latter, for a particular future rate, age decreases and forecasting term
increases as we move backward in time t. We obtain A = ∂/∂τ − ∂/∂x on the domain of A,
dom(A).

While the focus on Gaussian models limits generality and is associated with the possibility of
survival probabilities exceeding unity, these shortcomings are countervailed by statistical tractabil-
ity that we exploit below. We present non-negative variants of our models in Section 4. In addition,
Equation (2) entails that µt is stationary as well as Markovian. However, we note that this is not
as restrictive as it may seem, since the stationarity/Markov properties are on the forward force of
mortality (the object µt(·, ·)) instead of the age-specific spot force of mortality (hazard) µt(0, x).
In particular, we can—and will—include time trends within the initial surface. And while the as-
sumption of a Markovian spot force model leads to highly restrictive conditions on the forward
force model (e.g., Musiela and Rutkowski, 1998, Prop. 13.3.2), the Markovian assumption directly
on the surface is much less restrictive. In particular, the equivalent spot force model corresponding
to Equation (2) generally is neither stationary nor Markovian (see Proposition 2.2 in Bauer et al.
(2012))—and, indeed, the models we propose below are neither Markovian nor time-homogeneous
when formulated as a model for the hazard (see Proposition 4.1 below).

Assume cohort mortality data τpx(tj) is provided for different dates tj , j = 0, 1, . . . , N . In
addition, denote by l the lag time, and choose a sub-collection C̃ ⊂ C, |C̃| = K, such that for
(τ, x) ∈ C̃, (τ + l, x), (τ + tj+1 − tj, x− tj+1 + tj), (τ + l + tj+1 − tj, x− tj+1 + tj) ∈ C ,∀j ∈
{0, 1, . . . , N − 1}. For each (τ, x) ∈ C̃, j ∈ {0, 1, . . . , N − 1}, define:

Fl (tj, tj+1, (τ, x)) = − log

{
τ+lpx(tj+1)

τpx(tj+1)

/
τ+l+tj+1−tjpx−tj+1+tj(tj)

τ+tj+1−tjpx−tj+1+tj(tj)

}
. (3)

Conceptually, Fl (tj, tj+1, (τ, x)) measures the log change of the l-year marginal survival probabil-
ity for the period [tj+1 + τ, tj+1 + τ + l) from projection at time tj+1 relative to time tj , for an—at
time tj+1—x-year old individual. We obtain:

Proposition 2.1. Under the dynamics (2) the vectors:

Fl(tj, tj+1) =

(
Fl(tj, tj+1, (τ, x))
√
tj+1 − tj

)
(τ,x)∈C̃

=

(
Fl(tj, tj+1, (τ1, x1))√

tj+1 − tj
, . . . ,

Fl(tj, tj+1, (τK , xK))
√
tj+1 − tj

)
,

j = 0, 1, . . . , N − 1, are independent and Gaussian distributed.3 If the data is equidistant with
3By scaling the data points by 1/

√
tj+1 − tj , we ascertain that the vectors Fl(tj , tj+1), j = 0, 1, . . . , N − 1, are
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tj+1 − tj = ∆, Fl(tj, tj+1) are also identically distributed.

In what follows, for simplicity of exposition and without loss of generality, unless stated oth-
erwise we assume equidistant annual data (tj+1 − tj ≡ 1, j ≥ 0) and the lag time l = 1. We
write:

F1(tj, tj + 1) = F j+1 =
(
F j+1(τ, x)

)
(τ,x)∈C̃ .

Modifications in the examples where these assumptions do not hold are straightforward but no-
tationally tedious. With equidistant data, the i.i.d. property can now be immediately exploited in
devising non-parametric and factor models for mortality forecasting. For instance, to devise non-
parametric forecasts we can sample with replacement (non-parametric bootstrap) from the (i.i.d.)
vectors {F 1, F 2, . . . ,FN} and use Equation (3) to forecast {τpx(T + 1)} based on {τpx(T )},
{τpx(T + 2)} based on {τpx(T + 1)}, and so on. We refer to Online Appendix B for details.

However, for similar ages and terms, of course the components of the Gaussian vectors F j,

j = 1, 2, . . . , N, are highly correlated (which motivates the assumption of a finite-dimensional
process in the dynamics (2)). Hence, in analogy to basic approaches for forecasting yield curves
(Litterman and Scheinkman, 1991; Diebold and Li, 2006, e.g.) or period age-dependent mortality
rates (Lee and Carter, 1992, e.g.), we can obtain a more parsimonious and tractable class of models
from conventional factor analysis.

The procedure is standard: We decompose the empirical covariance matrix of {F 1, F 2, . . . ,FN}
as Σ̂ =

∑K
ν=1 λν uν u

′
ν , where λν , ν = 1, 2, . . . , K, are the eigenvalues of Σ̂ in decreasing order,

and uν , ν = 1, 2, . . . , K, are the corresponding eigenvectors. We then pick the D greatest eigen-
values that explain the majority of the variation in the data. Therefore, the resulting approximate
covariance matrix is

∑D
ν=1 λν uνu

′
ν = Cov

(∑D
ν=1 uν

√
λν εν

)
, where εν are i.i.d. (scalar) stan-

dard Normal random variables, ν ∈ {1, . . . , D}. Isolating the first D eigenvalues suggests the
following factor model:

F = F̄ · +
D∑
ν=1

uν
√
λν εν , (4)

so that mortality forecasts can be generated as described above by sampling D univariate Normal
random variables rather than bootstrapping {F 1, . . . ,FN} (see also Online Appendix B).

2.2 Mortality Surface Models

While non-parametric and factor forecasting models for mortality projections are simple to imple-
ment, the expected value of forecasts does not necessarily align with the projection ingrained in the
current cross-section. So-called mortality surface models enforce this self-consistency relationship

also approximately i.i.d. when using non-equidistant data.
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(Bauer et al., 2012). To elaborate, self-consistency of a dynamic model for mortality forecasts
takes the form of a martingale property—expected realized mortality rates should align with the
given forecasts (Et denotes the expectation operator based on information up to time t):

Et
[
exp

{
−
∫ T

0

µs(0, x0 + s) ds

}]
= exp

{
−
∫ t

0

µs(0, x0 + s) ds

}
T−tpx0+t(t), (5)

that is, (exp{−
∫ t
0
µs(0, x0 + s) ds} T−tpx0+t(t))t≥0 are martingales. This yields a condition akin

to the well-known HJM drift condition for models of the yield curve (see Equation (3.5) in Cairns
et al. (2006a), Corollary 3.1 in Bauer et al. (2012), or Theorem 5.3 in Tappe and Weber (2014)):

α(τ, x) = σ(τ, x)×
∫ τ

0

σ′(s, x) ds. (6)

Similarly to Equation (4) above, we are interested in factor models µt(τ, x) = G (τ, x;Zt),
where G is a known deterministic function, and (Zt)t≥0 is a finite-dimensional stochastic process.
Proposition 4.1 in Bauer et al. (2012) shows that for the time-homogeneous Gaussian models we
consider here, in order for such a factor model to exist, the volatility structure must necessarily be
of the form:

σ(τ, x) = C(x+ τ)× exp {H τ} × J , (7)

where J ∈ Rm×D,H ∈ Rm×m, and C ′ ∈ C1 ([0,∞),Rm) ; the factor model is then given by:

µt(τ, x) = µ0(τ + t, x− t) (8)

+

∫ t

0

C(x+ τ) exp {H (τ + t− s)} J J ′
∫ τ+t−s

0

exp {H u} C ′(x− t+ s+ u)du ds

+ C(x+ τ) exp {H τ}
∫ t

0

exp {H (t− s)} J dWs︸ ︷︷ ︸
=Zt

.

The intuition is that for any specification of σ(·, ·) other than (7), the innovations of the Brownian
path (Wt) over [0, t] will be convoluted dissimilarly for different ages x and forecasting terms τ ,
so that the resulting model will not be finite-dimensionally realized. That is, the form in (7) is
necessary and sufficient for the existence of a finite-dimensional realization of the model (2) (see
e.g. Björk and Gombani (1999) or Filipović and Teichmann (2004) for interest rate modeling).

Equations (7) and (8) now present a semi-parametric representation, and the task for specifying
a self-consistent forward mortality or mortality surface model is to find appropriate choices for D,
m,H , J , and C(·) in the context of given mortality data.
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3 Forward Mortality Model: Specification and Estimation

As indicated, instead of relying on realized age-specific death rates, we base our statistical analysis
on a time series of age-specific mortality forecasts. We first describe our data sources, and then
detail how we use these data to specify and estimate different models for mortality forecasts.

3.1 Data

There are at least three potential data sources for age-specific mortality forecasts: (i) cohort mor-
tality tables as employed by insurance companies, pension funds, or government agencies; (ii)
mortality forecasts based on different windows of past mortality experience for a given population,
using a fixed projection methodology; and (iii) mortality forecasts stripped from prices of pension
annuities or other life-contingent insurance contracts.

Since insurance prices in (iii) are obscured by insurance expenses, idiosyncrasies of the partic-
ular insured population, and credit risk, we limit our analyses to (i) and (ii), with an emphasis on
(ii). More precisely, for (i) we rely on U.K. life tables and projections for pension annuities as pub-
lished by the Institute and Faculty of Actuaries. And for (ii), we rely on gender- and region-specific
mortality data from the Human Mortality Database in concert with three popular mortality models
to generate forecasts: The Lee-Carter model, the two-factor CBD model (Cairns et al., 2006b), and
the P-spline method (Currie et al., 2004).4

However, we note that when utilizing these mortality forecasting models in (ii), we do not adopt
the assumptions on the forecasting errors but view them merely as methodologies to generate deter-

ministic extrapolations, which is common actuarial practice to generate trend-adjusted life tables;
and, indeed, “Mortality improvement modeling” via the Lee-Carter and the CBD models that we
rely on here is common (Dickson et al., 2020, Chapter 19). Our approach may be interpreted as an
attempt to devise a suitable “stochastic wrap” around resulting deterministic forecasts. Thus, it can
also be used in situations where generating different paths of age-specific mortality forecasts—
rather than just a central projection—is not straightforward, such as within the P-spline method
also considered here or within non-stochastic/statistical models such as demographic accounting
methods that Land (1986) highlights for long-term mortality forecasting.

To keep the presentation concise, if not mentioned otherwise, in the main text results and
statements refer to our primary data set relying on approach (ii) using mortality for the U.S. female
population and the Lee-Carter approach5 for generating forecasts. Due to changes in demographic

4Our approach is not limited to these three forecasting models, and can be applied to more complex models (incl.
cohort effects, other factors, e.g.). We choose these as popular representatives.

5For the Lee-Carter parameter estimation, we use the modified weighted least-squares algorithm from Wilmoth
(1993) and further adjust the driving process by fitting a Poisson regression model to the annual number of deaths at
each age (Booth et al., 2002).

www.mortality.org
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patterns around the middle of the twentieth century (Wilmoth, 2005), we rely on post World War II
data only. Specifically, we have cohort mortality tables compiled for forty-three consecutive years
(1974-2016) each using historical mortality data of the past thirty years (that is, for the table for
year 1974, data from years 1945-1974 is employed; for the table for year 1975, data from years
1946-1975 is employed; etc.). Hence, the resulting time series comprises 43 mortality forecasts.
As suggested above, the lag time l is chosen at 1. We use ages ranging from 30 to 95, and choose
C̃ as large as possible, which yields K = 2145. We also considered different choices for the time
windows and/or choosing the lag l = 5, obtaining analogous results.

For some analyses, we also show results based on (i) the U.K. pensioner life tables, as well as
for similar data sets based on (ii) and using other combinations of gender (male, female); region
(England & Wales, France, Japan, and the U.S.); and mortality forecasting methods (Lee-Carter,
CBD, and P-spline). Online Appendix F shows results for all relevant analyses. We also refer to
the description there for more details on all the data sets.

3.2 Factor Analysis and Model

Having available a time series of mortality forecasts, as outlined above we calculate the F j,

j = 1, . . . , N, based on Equation (3). Following the standard procedure to obtain principal
components, we calculate the empirical mean F̄ · and covariance matrix Σ̂, and then determine
the eigenvalues and eigenvectors of Σ̂. Note that each K-dimensional column in the data matrix
(F 1, . . . ,FN) is a function of age x and term τ, and therefore so are the eigenvectors. In par-
ticular, we can illustrate the eigenvectors—which in the factor model (4) govern how different
age/term improvement factors, F j(τ, x), are affected by the random shock ε—as a function in the
two variables.

Table 1 and Figure 2 provide key empirical results. Table 1 shows the four largest eigenvalues
(factor loadings) for a selection of data sets, and Figure 2 plots first corresponding scaled eigenvec-
tors (factors) u1

√
λ1 as a function of x and τ. The leading factor explains the vast majority of the

variation in the data for all considered sets (minimum: 71.73%, mean: 93.01%, median: 96.03%),
and the corresponding factor is highly systematic. In particular, for all data sets the factor entries
increase exponentially in both the age and the term dimension, whereas the diagonals (where age
at maturity, x+ τ , is constant) are increasing and concave.

The exponentially increasing pattern in age of course is familiar for mortality data, and indeed
this is part of the reason why the first factor dominates. However, when considering the eigen-
decomposition of the correlation matrix instead of the covariance matrix, we still find that the first
factor accounts for roughly 75% of total variation. Furthermore, when determining the appropriate
number of factors relying on the framework from Bai and Ng (2002), a single-factor model results
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Sample Value (Weight)
λ1 λ2 λ3 λ4

U.S. female, Lee-Carter 0.0241 (94.47%) 0.0009 ( 3.44%) 0.0002 (0.94%) 0.0001 (0.45%)
U.S. female, CBD 0.0297 (98.54%) 0.0004 ( 1.19%) 0.0001 (0.24%) 0.0000 (0.02%)

U.S. female, P-spline 0.1481 (98.22%) 0.0023 ( 1.50%) 0.0003 (0.22%) 0.0001 (0.04%)
U.S. male, Lee-Carter 0.0401 (90.36%) 0.0023 ( 5.17%) 0.0011 (2.37%) 0.0005 (1.20%)

French female, Lee-Carter 0.0383 (96.03%) 0.0008 ( 2.09%) 0.0003 (0.77%) 0.0002 (0.55%)
Japanese male, Lee-Carter 0.0384 (91.31%) 0.0017 ( 4.08%) 0.0009 (2.18%) 0.0005 (1.23%)

England & Wales female, CBD 0.1410 (97.20%) 0.0038 ( 2.65%) 0.0002 (0.12%) 0.0000 (0.03%)
U.K. pensioner 0.0229 (71.73%) 0.0076 (23.86%) 0.0009 (2.84%) 0.0004 (1.21%)

Table 1: Showing the absolute values and relative weights of the four largest eigenvalues based
on principal component analysis of various data sets. The data sets are chosen as representative
combinations of forecasting method and gender/region-specific mortality data as available from
the Human Mortality Database (see Online Appendix F for all data sets). We also consider U.K.
life tables and projections for pension annuities.
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Figure 2: Showing the first eigenvectors (slope factor) that correspond to the data sets considered
in Table 1 (see Online Appendix F for all data sets). Each eigenvector is plotted as a function of
age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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in the smallest value of the penalty function (Bai and Ng, 2002, p. 201). So again we have evidence
that the first factor dominates and captures the most important patterns. The corresponding factors
based on maximum likelihood look highly similar to those from the conventional factor analysis.

The increasing pattern on the diagonal implies that a random shock (ε in Equation (4)) affects
mortality in the future more severely, i.e. mortality in the future is more volatile than near-term
mortality. This contrasts implicit patterns for long-term mortality in popular mortality models for
the hazard—that were conceived based on time series of (period) mortality rates. For instance,
mean-reverting mortality models that are used for evaluating life contingencies in the actuarial
literature imply a decreasing diagonal pattern, i.e. lower volatility for mortality in the future (see
e.g. Milevsky and Promislow (2001); Dahl and Møller (2006), among others, for mortality models
based on mean-reverting processes). A unit-root AR(1) process driving (log)-mortality as within
Lee-Carter and similar models implies a flat diagonal pattern, so rates are affected similarly across
the term structure. In analogy to the literature on forecasting the yield curve, we refer to this
leading factor as the slope factor as the influence varies with the term. The shape for the sec-
ond factor (eigenvector) u2 is drastically different than that of the leading factor—but again it is
similar/systematic across all considered sets. We omit the discussion here, referring to Online
Appendix F for illustrations and discussion (as explained there, we refer to it as the curvature

factor).
The factor model (4) as well as the non-parametric forecasting approach from Algorithm B.1 in

B rely on the assumption that the F j, j = 1, . . . , N, are i.i.d. (which is implicit from the dynamics
(2), cf. Prop. 2.1). To validate whether the assumption is satisfied in the data, we run (univariate)
tests for independence (Ljung-Box test) and Normality (Jarque-Bera test) for the components of F
(combinations of x and τ ). We find that at the 95% level, only 78 of the 2145 components (3.64%)
reject the Normality test. However, the Ljung-Box test for independence rejects for 406 out of the
2145 components (18.93%). In line with this observation, independence is rejected for the first
principal component (u1

√
λ1)
′ F (p-value 0.01), whereas Normality is not rejected.

It turns out that the key driver for the lack of independence are the components for high values
of τ . Indeed, when considering the weights corresponding to the second eigenvector, (u2

√
λ2)
′ F ,

the tests neither reject Normality nor independence (p-value 0.29)—since the second principal
component puts less weight on high-τ combinations. Similarly, when restricting the consideration
to components with τ ≤ 20, only 100 of the 1155 (8.66%) univariate independence tests are re-
jected, and the independence test for (u1

√
λ1)
′ F does not reject (p-value 0.11). Hence, it appears

that violations are associated with forecasts in the far future, which may be linked to “irregularities”
for long-term Lee-Carter forecasts (McNown, 1992). We note that for corresponding approaches
for yield curve forecasting, the independence assumption for the component vectors is typically
not satisfied, so the evolution of the factors is generally modeled via (vector)-auto-regressions (see
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Piazzesi (2010) and references therein). Of course, a similar approach is feasible here.
Whether a one-factor or a higher/non-parametric model is suitable depends on the application.

The observation that the first factor by far dominates points to a single-factor model. Indeed, e.g.
for forecasting future life expectancies as within Figure 1, a single-factor model:

F = F̄ · + φu1 ε, ε ∼ N(0, 1), (9)

delivers similar prediction intervals as the non-parametric model. Again in analogy to the literature
on yield curve forecasting (Duffee, 2002, e.g.), it is straightforward to (re)-estimate the parameter
for the factor loading φ: Simply multiply the (ortho-normal) vector u′1 from the left to the centered
data vectors F j − F̄ ·, j = 1, . . . , N, and determine φ as the sample standard deviation (similarly
we can determine the factor loadings in multi-factor models).

3.3 Mortality Surface Model

As outlined in Section 2.2, the task for specifying a self-consistent model for mortality forecasts is
to find appropriate choices for D,m ∈ N, J ∈ Rm×D, H ∈ Rm×m, and C ∈ C1([0,∞),Rm) in
Equation (8) given our data sets. Based on our previous discussion, we limit our consideration to
one-factor models so that we set D = 1. We describe extensions to multi-factor models in Online
Appendix D.1.

Plugging µt into the basic Equation (1) for τpx(t), and evaluating F (τ, x) in Equation (3)
yields:

F j(τ, x) = E[F (τ, x)] +

∫ τ+1

τ

C(x+ ν) exp{H ν} dν
∫ tj+1

tj

exp{H (tj+1 − s)}J dWs(10)

≈ E[F (τ, x)] +

∫ τ+1

τ

C(x+ ν) exp{H (ν + 1)} dν J (Wtj+1
−Wtj)︸ ︷︷ ︸

=εj∼N(0,1)

,

where the approximation originates from the standard Euler-Maruyama method. This expression
is directly analogous to the single-factor model (9) above. In particular, equating F j(τ, x) with the
factor model yields:

(φu1)(τ,x) ≈
∫ τ+1

τ

C(x+ ν) exp{H (ν + 1)} dν J ≈ C
(
x+ τ + 1/2

)
exp

{
H
(
τ + 3/2

)}
J︸ ︷︷ ︸

=σ(τ+3/2,x−1)

,

(11)
where the second approximation originates from a standard midpoint rule. Hence, the principal
components are directly related to the volatility structure in the dynamics (2).
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In order to determine a functional structure that is able to capture the shape of the first eigen-
vector, and particularly the increasing and concave shape of the diagonals (Fig. 2), we rely on a
modification of Example 6.2 in Björk and Gombani (1999) for interest models and set:

C(x+ τ) = f(x+ τ)×
[

0 1
]
,H =

[
−2b −b2

1 0

]
, and J =

[
1− ab
a

]
, which yields:

σ(τ, x) = f(x+ τ)(a+ τ) exp(−bτ). (12)

Using this functional form in Equation (11), we rely on least-squares regression to determine a
non-parametric estimate for f(·). The solid blue curves in Panels (b) and (c) of Figure 3 illustrate
the fit. We also include a parametric fit based on a simple Gompertz-Makeham function f(z) =

k+ c× exp(r× z) (red dotted curves), one of the most common analytical mortality laws (Bowers
et al., 1997, Chap. 3.7). As is usual in the mortality context, it provides a good match, especially
for higher ages. In Panel (d) we plot the predicted parametric approximation for the scaled leading
eigenvector u1

√
λ1, which we re-plot in Panel (a) for a direct comparison (identical to Panel (a) in

Figure 2). As is evident, the functional form is able to accurately capture the relationship.
Using the Gompertz-Makeham functional form, we thus have a parametric model for mortality

forecasts with parameters k, c, and r (Gompertz-Makeham form); plus a and b (dynamics). Since
the F js are i.i.d. Normal (Prop. 2.1), we can obtain maximum likelihood estimates by deriving the
mean and the covariance matrix as functions of the parameters from expressions (8) and (10).

Proposition 3.1. We have for the mean M = (M(τi,xi))(τi,xi)∈C and the covariance matrix Σ =

(Σ(τi,xi),(τj ,xj))(τi,xi),(τj ,xj)∈C of F :

Σ(τi,xi),(τj ,xj) =

∫ 1

0

∫ τi+2−s

τi+1−s
σ(u, xi − 1 + s) du

∫ τj+2−s

τj+1−s
σ′(u, xj − 1 + s) du ds

M(τi,xi) =
1

2
Σ(τi,xi),(τi,xi) +

∫ 1

0

∫ τi+2−s

τi+1−s
σ(u, xi − 1 + s) du

∫ τi+1−s

0

σ′(u, xi − 1 + s) du ds.

We note the different integration limits in the second term forM(τi,xi), which arise since in the
survival probabilities (that are subject to the martingale constraints (5)) the innovations in the dif-
ferent components of F aggregate. Plugging in the volatility specification (12) with the Gompertz-
Makeham form for f(z), we can solve the integrals in closed form. We omit the presentation here
since Mathematica outputs more than 2,000 terms, although simplifications may be possible.

We derive parameter estimates by (numerically) maximizing the log-likelihood function. To
avoid numerical instabilities, we set Σ̃ = Σ + ζ × IK similar as in ridge regression or as for the
measurement equation in state-space models. Intuitively, we allow for non-systematic deviations
to the model-implicit vectors accounting for noisy mortality observations as well as variation not
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Figure 3: Showing fits of the first eigenvector. Panel (a) replots Figure 2(a) for comparison. Panels
(b) and (c) show the non-parametric estimate for f(x+τ) (blue solid line) and Gompertz-Makeham
fit (red dotted line). Panels (d) to (f) show the parametric prediction under the least-squares regres-
sion, MLE without self-consistency condition, and MLE with self-consistency condition, respec-
tively.
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Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency 1.57× 10−6 (1.0× 10−6) 1.95× 10−10 (3.6× 10−10) 0.146 (0.01) 16.54 (2.1) 0.0042 (0.001)
wo\ self-consistency 1.96× 10−6 (1.2× 10−6) 2.00× 10−10 (3.3× 10−10) 0.145 (0.01) 16.65 (2.2) 0.0041 (0.001)

Table 2: Showing maximum likelihood point estimates for the parameters k, c, r, a, and b, both
with and without the self-consistency constraint. Standard deviations (in parentheses) based on
100 bootstrap samples.

accounted for by only considering the leading factor, so we set the parameter ζ as the sum of
all remaining eigenvalues. We note that while the results are not very sensitive to the choice of
ζ , alternative specifications of the non-systematic deviations, such as adding noise relative to the
variance of each observation (ζ×diag{Σ}), will change the estimates substantially. We work with
Σ̃ since for forecasts of life expectancy or of the population age-distribution, what is relevant are
absolute mortalities so that higher relative errors for low ages have little impact—as was already
pointed out by Lee and Carter (1992, p. 662).

Table 2 presents our estimation results. We provide two sets of estimates that differ by whether
they incorporate cross-sectional self-consistency constraints associated with the interpretation as
forecasts. More precisely, note that within Equation (8), the model parameters not only affect
the volatility term but also the expected values (this originates from the drift condition (6)). In
particular, unlike the mortality factor models (4)/(9) where the expected value is simply taken to
be the sample mean, Proposition 3.1 demonstrates that E[F (τ, x)] in (10) is also given in terms
of the model parameters. In the first set of estimates (“w\ self-consistency”), we enforce these
constraints, whereas in the second set of estimates (“wo\ self-consistency”), we simply plug in the
sample mean for E[F (τ, x)]. Hence, one can interpret the latter model/estimates as a version of the
single-factor model (9), where we replace the vector φu1 by the parametric form (10).

Table 2 gives point estimates as well as bootstrapped standard errors (based on one hundred
non-parametric bootstrap samples of the F realizations). The Gompertz parameter r is similar
to but on the high end relative to other studies, possibly because of the forward-looking nature
of our analysis. In particular, note that here r does not directly impact mortality, but solely the
mortality volatility. The dynamic parameters a and b suggest an increasing, concave diagonal as
observed in Figure 2. For comparison, we plot the factor surfaces (first eigenvector) based on the
parameters without and with enforcing the self-consistency constraint in Figure 3, Panels (e) and
(f), respectively. The shape is similar to the factor from the PCA (Panel (a)) and the least-squares
approximation (Panel (d)), suggesting that the parametric model captures the relevant patterns and
that the maximum-likelihood estimation is in line with our previous results. The bootstrap error
of the mortality level c is large relative to the estimate, which is due to a few large estimates for c
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for certain bootstrap samples. However, in these samples the other parameters, particularly r and
b in the exponents, also show relatively large deviations to their point estimates, and in concert the
volatility function (12) still closely resembles the shape in Figure 3.

The most blatant result from Table 2, however, is that the two sets of estimates are highly simi-
lar. To interpret this finding, we lean on the interest rate modeling literature, where the necessity—
and also the conduciveness—of imposing similar cross-sectional constraints that arise from no-
arbitrage is heavily debated (Duffee, 2002; Diebold and Li, 2006; Piazzesi, 2010; Duffee, 2011,
among others). As pointed out by Piazzesi (2010), the constraints should increase the efficiency
of estimates, particularly since in our setting there are no risk premiums segregating the dynamic
(t) and cross-sectional (τ ) perspective. However, our bootstrapped errors do not clearly support
this. Possibly the efficiency gain may become apparent as the data availability (length of series)
increases.

An important insight from Duffee (2011), that imposing cross-sectional constraints should not
invalidate estimates resulting in their absence as long as these constraints are satisfied in the data,
is relevant in our context. In other words, if the estimates significantly change after the self-
consistency condition is imposed, this is an indication that the cross-sectional constraints do not
hold true in the data—or that current forecasts deviate from future realizations in some non-random

fashion. Indeed, it is possible to formalize this intuition via a misspecification test, e.g. by com-
paring the empirical distribution of Y = (u1

√
λ1)

TF to the (known) distribution when enforcing
self-consistency. Given the similarity of the “w\” and “wo\” estimates, clearly here such a test
does not reject—lending support that the forecasts and the model are not misspecified.

We illustrate the model in Figures 1 (a) and 4. Figure 4 presents box-whisker plots of future
cohort life expectancy from the terminal point of the underlying mortality time series t0, for 50-
year olds in 20 years

◦
e50 (t0 + 20) (

◦
e50 (t0) = 34.59) and for 70-year olds in 10 years

◦
e70 (t0 + 10)

(
◦
e70 (t0) = 16.54). We show results for different approaches, from left to right: (i) the Lee-Carter

model forecasts with error terms; (ii) the single-factor model (9); and (iii) the mortality surface
model (8) with enforcing the cross-sectional constraint (we return to the remaining two models
later). Panel (a) in Figure 1 shows projected cohort life expectancies for 70-year old US females
◦
e70 (t) over time with corresponding prediction intervals based on Lee-Carter and our mortality
surface model.

There are two main observations. First, we observe that while the median projections are
very close in all cases, the variation is far greater for the approaches proposed here relative to the
Lee-Carter intervals. The similarity in the median projections arises since the (deterministic) Lee-
Carter forecasts are the basis for all projections. The increased variation is in line with previous
assessments (Cocco and Gomes, 2012; Government Actuary’s Department, 2001, e.g.), and the
key driver is the high uncertainty in mortality projections for the far future, as demonstrated by
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Figure 4: Showing realizations of expected future life-time for age-50 in 20 years (left panel) and
age-70 in 10 years (right panel), t0 = 2016. Left-to-right: Lee-Carter predictions; one-factor model
(9); mortality-surface model (w\ self-consistency); Gaussian Gompertz-hazard model; Gamma
Gompertz-hazard model.

the shape of the leading principal component. Second, the factor and the mortality surface model
produce highly similar results. This validates the parametric model, as it performs very similar to
the (purely) statistical factor models. These observations carry through across all the considered
data sets. We refer to Online Appendix F for details, where we also demonstrate that the surface
model without self-consistency constraints and the non-parametric bootstrapping forecasts perform
very similarly to the two models showcased here.

4 Models for the Hazard

4.1 Dynamics

Models for mortality forecasts and for mortality rates are theoretically equivalent, as a stochastic
model for mortality experience in every period implies a stochastic mortality forecast and vice
versa. In particular, we can determine the model for the hazard µt(0, x)—or the spot force of

mortality—for our mortality surface model (8) going forward (we denote t0 as the current time):

Proposition 4.1. The spot force of mortality (hazard) for the model (8), µt(0, x), with C, H , and

J as specified in the previous section (Equation (12)), and f(z) = k + c× exp(r × z), is:

µt(0, x) = µt0(t− t0, x− t+ t0)+

∫ t

t0

α(t−s, x− t+s) ds+(k+c exp(rx))×Z(2)
t , t ≥ t0, (13)
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where Z(2)
t is the second component of Zt with dynamics evolving according to:

dZt = HZt dt+ J dWt =

{[
−2b −b2

1 0

]
× Zt

}
dt+

[
1− ab
a

]
dWt, t ≥ t0. (14)

The more familiar hazard formulation of the model reveals various characteristics that are not
obvious from the forward model (1) with volatility given in (12). First, while the forward model
is stationary/time-homogeneous, this is not the case for the spot model (13)/(14) as time trends
are ingrained by the current surface µt0(·, ·). Second, while the underlying forward model is itself
Markovian, this is again not the case in (13)/(14): The evolution of mortality depends on the two-
dimensional Markov process (Zt), although it is driven by the single source of randomness (Wt).
More precisely, µt(0, x) is (only) a function of its second component Z(2)

t , which changes with
“shocks” dWt via the parameter a. This contemporaneous impact of a random shock on mortality
is also present in conventional models such as Lee-Carter. In contrast to conventional models, the
local behavior of (Wt) also has a persistent impact on the evolution of mortality rates via the other
component Z(1)

t —which appears as the drift term of Z(2)
t in the dynamics of (Zt). This persistent

impact is exactly what generates variability in the long run. However, it is important to emphasize
that this structure emanates from the data. In particular, our analyses show that both uncertainty
channels reflected in the dynamics (14) are relevant to modeling the evolution of mortality risk.

To illustrate the dynamics, in Panel (a) of Figure 5 we plot the historical paths (t ≤ t0) of
the processes (Z

(1)
t ) and (Z

(2)
t ) as well as the underlying Brownian motion (Wt) (random walk)

based on our estimation process, and in Panels (b) and (c) we show two simulated future paths
(t ≥ t0). The first component mostly traces the underlying random walk, whereas (Wt) affects the
second component that directly determines the hazard in two ways: A shock dWt translates into a
shock dZ(2)

t on mortality as governed by the parameter a, and via changing its drift term Z
(1)
t . In

particular, via the second channel, large changes in (Wt) have lasting impact on the path of (Z
(2)
t ).

4.2 Gaussian Hazard Model

The forward model takes the current mortality surface {µt0(τ, x)} as an input and models its dy-
namics, so that µt0 enters the dynamics of the spot model (13)—similarly to how the current yield
curve enters the Hull and White (1990) interest rate model. This is a feature in that it allows
the model to reflect nuances in the original surface. However, it can also be a drawback as the
model is less user-friendly with regards to the necessary ingredients—one requires {µt0(τ, x)} to
use it—and as the model is less transparent. In contrast, authors in the actuarial and financial
engineering literatures have proposed stochastic versions of classical mortality laws that present
transparent models for pricing or hedging mortality-contingent exposures (Milevsky and Promis-
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Figure 5: Showing path of the processes Wt, Z
(1)
t , and Z

(2)
t . Panel (a) is based on the MLE

parameters (w\ self-consistency) in conjunction with Equations (10) and Proposition 4.1. Future
path of Wt are simulated and then Z(1)

t and Z(2)
t are obtained via Proposition 4.1. Given our data,

t0 = 2016.

low, 2001; Dahl and Møller, 2006; Tappe and Weber, 2014, among many others). Yet, as indicated
above, those mortality models rely on familiar processes from financial engineering for modeling
the stochastic component. As a consequence, they are not suitable for capturing the large and
increasing uncertainty in long-term mortality forecasts.

We can proceed analogously. The most parsimonious approach is to approximate the age pat-
tern in the deterministic component [µt0(t− t0, x− t + t0) +

∫ t
t0
α(t0 − s, x− t0 + s) ds] in (13)

by the Gompertz-Makeham form ξ × (k + c exp(rx)). The mortality model then takes the simple
form:

µt(0, x) = (k + c exp(rx))× Z̃(2)
t , t ≥ t0, Z̃t0 = (Z

(1)
t0 , ξ). (15)

However, the deterministic component ingrains the baseline future trend of mortality, which is not
captured by this model in concert with dynamics (14). A straightforward way is to include the
trend via a drift term d in Z(2)

t0 , the component that directly governs µt(0, x):

dZ̃t =

{[
−2b −b2

1 d

]
× Z̃t

}
dt+

[
1− ab
a

]
dWt ≡ H̃Z̃t dt+J dWt, Z̃t0 = (Z

(1)
t0 , ξ), t ≥ t0.

(16)
The model (15)/(16) performs well. We use the same parameters from our forward model but

calibrate the deterministic trend d and the initial state ξ to match (average) cohort life expectancy
for 70-year-old U.S. females at t0 = 2016 and as projected in 20 years (t0 + 20), resulting in
ξ = 1, 675.01 and d = −0.0078. Again, Figure 4 presents resulting box-whisker plots for future
life expectancies for the two age/term combinations (labeled “Gaussian”) and Panel (b) of Figure
1 presents resulting 95% prediction intervals for

◦
e70 (t), t ≥ t0 (blue dotted line).

In Figure 4(b), the resulting realizations range very similar to the forward/surface model for
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70-year olds. Moreover, the prediction intervals in Figure 1(b) are similar to Panel (a) though
slightly tighter, which may be an artifact of our calibration procedure—since we did not consider
adjustments in the dynamics parameters a and b that may interact with our choices for ξ and d. The
box-whisker plot for 50-year olds in Figure 4(a) is also broadly similar to the surface model—and
certainly show more variation than Lee-Carter. However, the results are a little offset, which is
due to our reliance on 70-year olds’ life expectancies in the calibration process. If we chose life
expectancies for 50-year olds for calibration, we would have alignment here but at the same time
an offset for the 70-year olds. This demonstrates the tradeoff between simplicity of the hazard
model (15)/(16) and the forward model that allows for distinctive trends via the initial surface µt0 .

Thus, the resulting Gaussian Gompertz model (15)/(16) captures the dynamics; with its six
parameters ({a, b, d} for dynamics, {k, c, r} for the cross-sectional pattern of mortality) plus the
initial states (Z̃t0) it is parsimonious and transparent; and as an affine model it is highly tractable.
We refer to Online Appendix C.1 for derivations of survival probabilities and other quantities.

However, since Z̃t follows a Gaussian law, negative realizations for µt(0, x)—or, equivalently,
survival probabilities exceeding unity—are possible. The extent to which this happens primarily
depends on the trend parameter d. For d = 0 as in the dynamics (14), negative outcomes are
exceedingly rare so that they can be ignored (< 3× 10−7 over the next 70 years). However, when
calibrating d to match future life expectancies as above, while survival probabilities above one are
still rare (< 1×10−4 across all experiments), they do occur with large numbers of simulated paths.

4.3 Gamma Hazard Model

This section introduces a version of the model that performs very similarly but can rule out nega-
tive hazard rates. Accomplishing this in the class of continuous-time affine models that preserve
tractability proves delicate, which according to Gourieroux et al. (2006) is “likely due to a lack of
flexibility of these models [...] due to the continuous-time assumption.” However, it is relatively
straightforward to specify a non-negative discrete-time analogue of our Gaussian model.

Discretizing our Gaussian hazard model (15)/(16) (Euler-Maruyama method), we obtain:

Z̃t+1 = (H̃ + I) Z̃t + J εt+1 = (H̃ + I) Z̃t − θ J + J γt+1, t ≥ t0, Z̃t0 = (Z
(1)
t0 , ξ), (17)

where I is the identity matrix, εt are i.i.d. standard Normal, and γt = εt + θ are i.i.d. θ-shifted
Normal with parameter θ. Following ideas from Gourieroux and Jasiak (2006) for positively valued
time series, we simply replace the assumption on γt by an i.i.d. Gamma distribution with shape
parameter θ2 and scale parameter 1/θ. As a consequence, the first two moments of γt—and, thus,
those of Z̃t+1|Z̃t—remain the same in the Gamma Gompertz model (15)/(17) as in the original
Gaussian model. However, since now the distribution of the innovations has positive support, it is
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Initial age & policy term (30, 35) (40, 25) (50, 15)
Gaussian hazard 1.64% / 54.72% 1.43% / 35.69% 1.24% / 18.83%
Gamma hazard 1.63% / 53.96% 1.42% / 34.73% 1.23% / 17.60%
Lee-Carter 1.19% / 12.87% 1.17% / 11.60% 1.14% / 9.14%
Dahl-Møller 1.02% / 0.63% 1.02% / 0.59% 1.02% / 0.79%

Table 3: Showing the value/increase of a Guaranteed Annuity Option. Value as a markup on the
initial investment for an at-the-money guaranteed rate for different age and policy term combina-
tions under various mortality models. Increase as compared to using deterministic mortality rates
(interest rate risk only).

immediate from (17) that given a set of parameters, starting values, and forecasting horizon, the
process (Z̃

(2)
t )—and thus the hazard rate—will remain positive. We refer to Online Appendix C.2

for details, including closed-form approximations for survival probabilities.
Given the similarities, the results generated by the Gamma Gompertz model are very close to

those from the Gaussian version. The choice of θ has a modest effect on the outcomes in the range
we considered (see C.2). If θ is large, the distribution of γt approximates a Normal but at the same
time there is a larger drag on (Z̃t) in (17), so that negative rates may be possible for longer fore-
casting horizons. A smaller θ rules out negative rates but the distribution becomes more dissimilar,
which primarily affects near-term forecasts. We choose θ = 1, which ascertains positivity across
all our calculations—with the forecasting horizon being the terminal age—and generates very sim-
ilar results to our other model versions. To illustrate, Figure 4 presents resulting box-whisker plots
for future life expectancies for the two age/term combinations (labeled “Gamma”) and Panel (b)
of Figure 1 presents resulting 95% prediction intervals for

◦
e70 (t), t ≥ t0 (green dotdashed line).

Thus, our Gamma Gompertz model (15)/(17) captures the dynamics; it is parsimonious (seven
parameters), transparent, tractable, and positive. Other non-negative versions, for instance in the
class of compound autoregressive processes (CaR, Gourieroux et al., 2006, e.g.), are also possible.

5 Application 1: Valuation of Guaranteed Annuity Options

Valuation and risk management of life-contingent insurance products—particularly ones with op-
tional, non-linear features—is a key application of stochastic mortality models. As an illustrative
example, we consider the valuation of Guaranteed Annuity Options (GAOs) in insurance savings
policies (pure endowment). Within a GAO, when the policy expires the policyholder, if alive, can
choose between either a lump-sum payment or a life annuity based on a guaranteed rate. In Zhu
and Bauer (2011), we emphasize the advantages of factor or affine mortality models in this context,
since future survival probabilities and, thus, annuity present values can be derived in closed form.

Our focus is on showcasing results for our mortality models with long-term risk, especially in
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comparison to other, conventional mortality models. Therefore, in addition to showing results for
our Gaussian and Gamma Gompertz hazard models and the Lee-Carter model, we also include
results for the affine mortality model from Dahl and Møller (2006). Similarly to other papers
on valuing and hedging mortality-contingent liabilities, they propose a stochastic extension of the
Gompertz-Makeham model with mortality improvements evolving according to a Cox–Ingersoll–Ross
process. In particular, their model features mean reversion. Since we use their parameters, we re-
port results as a markup on the initial investment. More precisely, we determine the at-the-money
guaranteed rate based on information at t0 and then determine the markup for having the option to
annuitize at poilcy expiration. Furthermore, we report the percentage increase of this markup due
to stochastic mortality, i.e., we calculate the value increase relative to a situation with interest rate
risk only. For the interest rate, we assume a one-factor Vasicek model, and estimate the relevant
parameters based on U.S. data from January 2009 to December 2019.

Table 3 shows GAO values for different age and policy term combinations. There are two key
observations. First, for the mean-reverting mortality model (“Dahl-Møller”), the value increases
for these long-term guarantees due to stochastic mortality are relatively modest (< 1%). In con-
trast, the value increases originating from stochastic mortality are more substantial for Lee-Carter
(around 10%) and very substantial for our models (20%-50%). Second, the impact of stochastic
mortality is smaller in the longer run (greater policy terms) for the mean-reverting model and rela-
tively flat for the Lee-Carter model. In contrast, our models capture the long-run risk in mortality
projections, so that the relevance of mortality is more pronounced for longer guarantees.

6 Application 2: Longevity Risk Transfer Market and Longevity
Derivatives

The global financial exposure to longevity risk in pension and insurance liabilities is massive,
with estimates ranging from USD 60 to 80 trillion (Michaelson and Mulholland, 2014). Since
insurers and reinsurers do not have the capacity to fully absorb this risk, a natural approach is
to tap diversification opportunities of financial markets and since the mid-2000s a longevity risk
transfer market has started to form. However, in relation to the potential size, the volume of
longevity-linked securities coming to market “has been disappointingly low” (Blake et al., 2019,
p. 1).

Michaelson and Mulholland (2014, p. 4) point to experienced financial institutions and en-
gineers for developing adequate solutions. They argue for “out-of-the-money” hedges featuring
option-like payouts based on customized indices that reflect the hedger’s exposure in present value
terms, particularly so-called (call) spread options. Using the present value of an annuity cash flow

https://fred.stlouisfed.org
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(AP,EP ) = (101%, 105%)× Et0 [ax(t0 + T )] (AP,EP ) = (103%, 107%)× Et0 [ax(t0 + T )]
value (P1, P2) value (P1, P2)

Gaussian hazard 0.0597 (31.47%, 1.62%) 0.0132 (8.91%, 0.16%)
Gamma hazard 0.0553 (33.97%, 0.34%) 0.0070 (7.30%, 0.00%)
Lee-Carter 0.0258 (24.40%, 0.02%) 0.0010 (1.56%, 0.00%)
Dahl-Møller 0.0003 (1.61%, 0.00%) 0 (0.00%, 0.00%)

Table 4: Showing spread option values based on four stochastic mortality models, relative increase
to the deterministic mortality case, and trigger (P1) and exhaustion (P2) probabilities. Expiration
T = 15, and age x = 70.

for an x-year old with a fixed interest rate r = 3%, ax(t), as the underlying index, a spread option
expiring in T years has payoff max(0,min(ax(t0 +T )−AP,EP −AP )), where AP is the attach-
ment point and EP the exhaustion point. By only protecting the exposure above the attachment
point, the hedger keeps some “skin in the game” reducing potential informational frictions (Biffis
and Blake, 2014); and the exhaustion point limits the investor’s exposure. As a second application
of our models, similar to the previous section, we present values for longevity spread options on
70-year-old U.S. females expiring in T = 15 years (based on 50,000 simulated paths). Again, we
compare them to results from conventional models. We also record trigger (P1) and exhaustion
(P2) probabilities.

The results in Table 4 directly track those of the previous section: Values and trigger/exhaustion
probabilities are substantially greater under our models with long-term risk. The mean-reverting
model (“Dahl-Møller”) shows very limited risk, but the values under our models also drastically
exceed those under Lee-Carter—the benchmark model in industry and policy.

Blake et al. (2019) emphasize the role of models for the development of the longevity risk
transfer market, and particularly point out that conventional models fail to “capture long-term
changes in the trend in mortality rates” (page 34). In this paper, we present empirically-derived
stochastic mortality models with long-term risk. Potentially these models can help jump-start the
longevity risk transfer market by helping bridge the gap between the demand and supply side of
longevity risk protection.
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Online Appendix to
“Modeling the Risk in Mortality Projections”

This Online Appendix collects technical material and supplemental analyses. A provides the
proofs for the propositions in the main text. B details the non-parametric and factor statistical
mortality forecasting approaches. C presents derivations related to our hazard rate models as well
as additional details. D discusses relevant extensions of our models. E demonstrates that prediction
intervals based on Lee-Carter are too narrow. And F shows analyses presented in the main text for
various alternative data sets/sources.

A Proofs

Proof. Proof of Proposition 2.1 Taking a mild solution to the dynamics (2) (Da Prato and Zabczyk,
2014), simple evaluation yields:

Fl(tj, tj+1, (τ, x))

=

∫ τ+l

τ

µtj+1
(v, x) dv −

∫ τ+l+tj+1−tj

τ+tj+1−tj
µtj(v, x− tj+1 + tj) dv

=

∫ τ+l

τ

µtj(v + tj+1 − tj, x− tj+1 + tj) +

∫ tj+1

tj

α(v + tj+1 − s, x− tj+1 + s) ds

+

∫ tj+1

tj

σ(v + tj+1 − s, x− tj+1 + s) dWs dv −
∫ τ+l+tj+1−tj

τ+tj+1−tj
µtj(v, x− tj+1 + tj) dv

=

∫ tj+1

tj

∫ τ+l

τ

α(v + tj+1 − s, x− tj+1 + s) dv ds

+

∫ tj+1

tj

∫ τ+l

τ

σ(v + tj+1 − s, x− tj+1 + s) dv dWs

d
=

∫ tj+1−tj

0

∫ τ+l

τ

α(v + tj+1 − tj − s, x− (tj+1 − tj) + s) dv ds

+

∫ tj+1−tj

0

∫ τ+l

τ

σ(v + tj+1 − tj − s, x− (tj+1 − tj) + s) dv dWs,

so that Fl(tj, tj+1) is independent for different j (due to the Lévy property of Brownian motion),
Gaussian (since α and σ are deterministic functions), and clearly i.i.d. if tj+1 − tj = ∆.

�

Proof. Proof of Proposition 3.1
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Proceeding similarly as in the proof of Prop. 2.1 above,

F j(τ, x) =

∫ tj+1

tj

∫ 1

0

α(v + τ + tj+1 − s, x− tj+1 + s) dv ds

+

∫ tj+1

tj

∫ 1

0

σ(v + τ + tj+1 − s, x− tj+1 + s) dv dWs.

Therefore, with Equation (6), by a simple application of Itō’s product formula, F j(τ, x) is Normal
distributed with expected value:

E
[
F j(τ, x)

]
=

∫ tj+1

tj

∫ 1

0

σ(v+τ+tj+1−s, x−tj+1+s)

∫ v+τ+tj+1−s

0

σ′(u, x−tj+1+s) du dv ds

and covariance structure:

Cov
[
F j(τ1, x1), F

k(τ2, x2)
]

= δjk ×∫ tj+1

tj

∫ 1

0

σ(v + τ1 + tj+1 − s, x1 − tj+1 + s) dv

∫ 1

0

σ′(v + τ2 + tj+1 − s, x2 − tj+1 + s) dv ds,

in which δjk equals 1 if j = k and 0 otherwise. The covariance matrix Σ(τi,xi),(τj ,xj) is then
immediately obtained by changing variables in the integrals.

For the expected value, note that tj+1 = tj + 1 and:

σ(v + τ + tj+1 − s, x− tj+1 + s)

∫ v+τ+tj+1−s

0

σ′(u, x− tj+1 + s) du

=
1

2

∂

∂v

(∫ v+τ+tj+1−s

0

σ(u, x− tj+1 + s) du

∫ v+τ+tj+1−s

0

σ′(u, x− tj+1 + s) du

)
,

so that:

E
[
F j(τ, x)

]
=

∫ tj+1

tj

∫ 1

0

σ(v + τ + tj+1 − s, x− tj+1 + s)

∫ v+τ+tj+1−s

0

σ′(u, x− tj+1 + s) du dv ds

=
1

2

(∫ tj+1

tj

(∫ 1+τ+tj+1−s

0

σ(u, x− tj+1 + s) du

∫ 1+τ+tj+1−s

0

σ′(u, x− tj+1 + s) du

)
−
(∫ τ+tj+1−s

0

σ(u, x− tj+1 + s) du

∫ τ+tj+1−s

0

σ′(u, x− tj+1 + s) du

)
ds

)
=

1

2

(∫ 1

0

(∫ 2+τ−s

0

σ(u, x− 1 + s) du

∫ 2+τ−s

0

σ′(u, x− 1 + s) du

)
−
(∫ 1+τ−s

0

σ(u, x− 1 + s) du

∫ 1+τ−s

0

σ′(u, x− 1 + s) du

)
ds

)
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=

∫ 1

0

1

2

(∫ 2+τ−s

1+τ−s
σ(u, x− 1 + s) du

∫ 2+τ−s

1+τ−s
σ′(u, x− 1 + s) du

)
+

(∫ 2+τ−s

1+τ−s
σ(u, x− 1 + s) du

∫ 1+τ−s

0

σ′(u, x− 1 + s) du

)
ds,

where the last step follows from writing the integrals in the first term as
∫ 2+τ−s
0

=
∫ 1+τ−s
0

+
∫ 2+τ−s
1+τ−s .

�

Proof. Proof of Proposition 4.1
Inserting τ = 0 in Equation (8) immediately yields (13). Further define Yt = Zt exp{−H t} =∫ t

0
exp{−H s}J dWs. Apply Itō’s formula on Zt = exp{H t}Yt, we obtain:

dZt = H exp{H t}Yt dt+ exp{H t} dYt
= H exp{H t}Yt︸ ︷︷ ︸

Zt

dt+ exp{H t} exp{−H t}J dWt

= H Zt dt+ J dWt.

The dynamics for Zt can therefore be expressed with our choices forH and J .

�

B Non-parametric and Factor Mortality Forecasting Models

Algorithm B.1. Non-parametric mortality forecasting:

For i = 1, 2, . . . , I:

• Starting from the mortality forecast at time tN = T , {τp(i)x (T )} = {τpx(T )}.

• For t = 1, 2, . . . , y, sample F = (F (τ, x)) (with replacement) from {F 1, F 2, . . . ,FN}, and

for each x set:

1p
(i)
x (T + t) = exp{−F (0, x)} × 2p

(i)
x−1(T + t− 1)

1p
(i)
x−1(T + t− 1)

, (18)

2p
(i)
x (T + t) = 1p

(i)
x (T + t)× exp{−F (1, x)} × 3p

(i)
x−1(T + t− 1)

2p
(i)
x−1(T + t− 1)

,

. . . . . .

τp
(i)
x (T + t) = τ−1p

(i)
x (T + t)× exp{−F (τ − 1, x)} × τ+1p

(i)
x−1(T + t− 1)

τp
(i)
x−1(T + t− 1)

,

. . . . . .
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Under the assumptions of Proposition 2.1, the vectors {F 1, F 2, . . . ,FN} are i.i.d. so we can
generate I y-year-ahead forecasts by simply sampling with replacement (non-parametric boot-
strap), as outlined in Algorithm B.1. We note that in this algorithm, we do not directly rely on the
assumption of a Gaussian evolution in Equation (2). In particular, the algorithm is a simple way of
producing mortality forecasts as long as the i.i.d. assumption (roughly) holds in the data. We can
also exploit Gaussianity to obtain parametric bootstrap forecasts. More precisely, we can calcu-
late the sample mean F̄ · and covariance matrix Σ̂ of {F 1, F 2, . . . ,FN}, so that we can simulate
the random vector F in Algorithm B.1 by sampling from the corresponding multivariate Normal
distribution.

We rely on an analogous approach for the statistical factor forecasting model. As the key
modification, in the second step in Algorithm B.1, we do not sample F via bootstrapping, but
rather rely on Equation (4) in the main text. More precisely, we simulate univariate standard
Normal variables εν , ν = 1, . . . , D, to generate F in each step.

C Analyses of Hazard Models

C.1 Gaussian Gompertz Model

According to Equation (16), (Z̃t) follows a two-dimensional Ornstein–Uhlenbeck process. There-
fore, we have:

Z̃t+τ = exp{H̃τ} · Z̃t +

∫ t+τ

t

exp{H̃(t+ τ − s)} · J dWs.

That is, with known Z̃t, Z̃t+τ follows a multivariate Normal distribution with E(Z̃t+τ ) = exp{H̃τ}Z̃t
and Cov(Z̃t+τ ) =

∫ t+τ
t

exp{H̃(t+ τ − s)}JJ ′ exp{H̃(t+ τ − s)}′ ds.
Furthermore, (Z̃t) is an affine process (Duffie et al., 2000, 2003), so that we obtain for the

survival probabilities (Biffis, 2005):

T−tpx+t(t) = E
[
exp

{
−
∫ T

t

µs(0, x+ s)ds

}]
= E

[
exp

{
−
∫ T

t

(k + c exp(r(x+ s))) Z̃(2)
s ds

}]
= exp

{
A(t, T, x) +B(t, T, x) Z̃t

}
.

where A = A(·, T, x) and B = (B(1), B(2))′ = B(·, T, x) satisfy the following Riccati ordinary
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differential equations:

At = −1

2
(1− ab)2(B(1))2 − a(1− ab)B(1)B(2) − 1

2
a2(B(2))2, (19)

B
(1)
t = 2bB(1) −B(2), (20)

B
(2)
t = (k + c exp(r(x+ t))) + b2B(1) − dB(2), (21)

with terminal constraints:
A(T, T, x) = 0, B(T, T, x) = 0.

C.2 Gamma Gompertz Model

Iterations of Z̃t.

An iterative application of (17) immediately results in:

Z̃t+τ = (H̃ + I) Z̃t+τ−1 − θ J + J γt+τ

= · · ·

=
τ∑
j=1

(H̃ + I)τ−j J γt+j − θ
τ∑
j=1

(H̃ + I)τ−j J + (H̃ + I)τ Z̃t.

Since the expressions of hazard rate only depend on Z̃(2)
t , we specifically consider:

Z̃
(2)
t+τ =

τ∑
j=1

((H̃ + I)τ−jJ)(2) γt+j − θ
τ∑
j=1

((H̃ + I)τ−jJ)(2) + ((H̃ + I)τ )(2) Z̃t. (22)

Distribution of Z̃(2)
t+τ .

Since each γt+j is i.i.d. Gamma distributed∼ Γ(θ2, 1/θ), we immediately have ((H̃+I)τ−jJ)(2) γt+j ∼
Γ(θ2, ((H̃ + I)τ−jJ)(2)/θ). With different j, the scale parameter (((H̃ + I)τ−jJ)(2)/θ) varies,
so the summation as in the first term on the right-hand side of (22) cannot be simply obtained as
another Gamma distributed random variable.

That said, this topic has been covered in the existing literature. For example, Theorem 1
in Moschopoulos (1985) provides the exact density function of the summation of independent
Gamma random variables. Alternatively, the summation itself can also be approximated as a
Gamma random variable based on the Welch-Satterthwaite equation, when we view the Gamma
distribution as a scaled chi-square distribution (Box, 1954). In particular, with component shapes
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ki and scales θi, the shape and scale of the summation can be expressed as:

ksum =
(
∑

i θiki)
2∑

i θ
2
i ki

, (23)

and
θsum =

∑
i θiki
ksum

. (24)

We rely on the approximation in our calculations, and we verified via simulation analyses that it is
quite accurate in our applications (the approximation error is negligible).

Closed-form expression of τpx(t).

For one-year survival probabilities, we have px(t) = exp(−(k + c exp(rx)) × Z̃(2)
t ). Therefore,

the τ -year realized survival probability is:

τ−1∏
i=0

px+i(t+ i) = exp

(
τ−1∑
i=0

−(k + c exp(r(x+ i)))× Z̃(2)
t+i

)
.

Plugging in Equation (22) and rearranging terms, we obtain:

τ−1∏
i=0

px+i(t+ i) = exp

{
−

τ−1∑
i=0

(k + c exp(r(x+ i)))

[
((H̃ + I)i)(2)Z̃t − θ

i∑
j=1

((H̃ + I)i−jJ)(2)

]

−
τ−1∑
i=0

(k + c exp(r(x+ i)))

(
i∑

j=1

((H̃ + I)i−jJ)(2) γt+j

)
︸ ︷︷ ︸

γsum

 . (25)

The random variable γsum can be rewritten as:

γsum =
τ−1∑
i=1

γt+i ×

(
τ−i∑
j=1

(k + c exp(r(x+ j)))× ((H̃ + I)j−1J)(2)

)
.

Since each term within the summation follows a Gamma distribution, that is:

γt+i×

τ−i∑
j=1

(k + c exp(r(x+ j)))× ((H̃ + I)j−1J)(2)

 ∼ Γ( θ2︸︷︷︸
ki

,

τ−i∑
j=1

(k + c exp(r(x+ j)))× ((H̃ + I)j−1J)(2)/θ︸ ︷︷ ︸
θi

),

their summation, γsum, can once again be approximately Gamma via (23) and (24). For simplicity,
we refer to its shape and scale parameters as ksum and θsum.
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From (25), we can then calculate the expectation of the realized survival probability, τpx(t):

τpx(t) = exp

{
−

τ−1∑
i=0

(k + c exp(r(x+ i)))

[
((H̃ + I)i)(2)Z̃t − θ

i∑
j=1

((H̃ + I)i−jJ)(2)

]}
×E [exp(−γsum)] .

With γsum Gamma distributed, the random variable exp(−γsum) follows a so-called negative log-
Gamma distribution, with expected value:

E[exp(−γsum)] =
1

(1 + θsum)ksum
.

Therefore, we obtain (approximate) survival probabilities in closed-form:

τpx(t) =
1

(1 + θsum)ksum
× exp

−
τ−1∑
i=0

(k + c exp(r(x+ i)))

((H̃ + I)i)(2)Z̃t − θ
i∑

j=1

((H̃ + I)i−jJ)(2)

 .

(26)

Relying on the survival probabilities expressed in (26), we can then determine life expectancies
and annuity present values.

Impact of θ.

To illustrate the impact of the choice of θ, Figure A.1 provides box-whisker plots of future life
expectancies for 70-year-old U.S. females

◦
e70 (t0 + τ) for τ = 1 (left-hand panel) and τ = 10

(right-hand panel) for different choices of θ in the Gamma Gompertz model. As indicated in the
main text, if θ is larger, the resulting Gamma distribution is more similar to a Normal distribution,
so that the Gamma Gompertz model performs very similarly to the Gaussian model, even for
the short time horizon τ = 1. For longer time horizons, due to the aggregation of the annual
innovations, the results are very similar even for the smaller choice of θ. As indicated in the
main text, we choose θ = 1, which performs well and avoids negative mortality across all our
calculations.

D Model Extensions

D.1 Extension to Multi-Factor Forward Mortality Models

In the main text, we limit our consideration to models with a single source of randomness. This
section briefly describes that we can follow a similar procedure for devising multi-factor mortality
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(a)
◦
e70 (t0 + 1) (b)

◦
e70 (t0 + 10)

Figure A.1: Showing realizations of expected future life-time for age-70 in 1 year (left panel) and
age-70 in 10 years (right panel), t0 = 2016. Left-to-right: Lee-Carter predictions; one-factor model
(9); mortality-surface model (w\ self-consistency); Gaussian Gompertz-hazard model; Gamma
Gompertz-hazard model with θ = 1.33, θ = 1.0, and θ = 0.5.

surface models. The foundation is the following proposition, which is similar to a result in Angelini
and Herzel (2005) for interest rate modeling:

Proposition D.1. Let σ(τ, x) = (σ1(τ, x), . . . , σD(τ, x)) , where each function σi(τ, x) is of the

form:

σi(τ, x) = Ci(x+ τ)× exp {Hi τ} × Ji, (27)

Ci(·) ∈ R1×mi , Hi ∈ Rmi×mi , Ji = Rmi×1, mi ∈ N, i = {1, 2, . . . , D}. Then σ(τ, x) is also

of the form as in Equation (7), i.e. the model allows for a Gaussian finite-dimensional realization,

where C(x) = [C1(x), . . . ,CD(x)] ,H = diag {H1, . . . ,HD} , and J = diag {J1, . . . ,JD}.

Proof. Proof.
Stacking the σi’s in a vector of dimension D, we obtain:

[σ1(τ, x), . . . , σD(τ, x)]

= [C1(x+ τ)× exp {H1 τ} × J1, . . . ,CD(x+ τ)× exp {HD τ} × JD]

= [C1(x+ τ), . . . ,CD(x+ τ)]︸ ︷︷ ︸
C(x+τ)

×


exp{H1 τ} 0 · · · 0

0 exp{H2 τ} 0
... . . . ...
0 0 · · · exp{HD τ}

×

J1 0 · · · 0
0 J2 0
... . . . ...
0 0 · · · JD


︸ ︷︷ ︸

J

= C(x+ τ)× exp {diag {H1, . . . ,HD} τ}︸ ︷︷ ︸
exp{Hτ}

×J .
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�

By relying on this representation, similarly to Equation (10), we can express F via:

F j(τ, x) = E[F (τ, x)] +
D∑
i=1

∫ τ+1

τ

Ci(x+ ν) exp{Hi ν} dν
∫ tj+1

tj

exp{Hi (tj+1 − s)}Ji dW (i)
s

≈ E[F (τ, x)] +
D∑
i=1

∫ τ+1

τ

Ci(x+ ν) exp{Hi (ν + 1)} dν Ji (W (i)
tj+1
−W (i)

tj ),

where (W
(i)
tj+1
−W (i)

tj ), i = {1, 2, . . . , D}, are standard Normal and correspond to the ith component
of the driving Brownian motion—in direct analogy to the factor model (4) in the main text. Hence,
Proposition D.1 allows us to proceed analogously to a single-factor model, particularly separately
for each independent factor.

D.2 Model with Catastrophe Component

Our focus in this paper is on longevity risk, although it is possible to extend the model to incor-
porate shocks originating from global pandemics and/or mortality catastrophes. Following Bauer
and Kramer (2016), we can generalize the Gompertz model for the hazard ((15)/(16) in the main
text) by adding a mean-reverting jump process describing such extremal scenarios:

µt(0, x) = (k + c exp(rx))× Z̃(2)
t + Γt, (28)

where
dΓt = −κΓt dt+ dJt

and (Jt) is a compound Poisson process with positive jump size distribution. Importantly, the
extended model (28) remains in the class of exponentially-affine processes (Duffie et al., 2000),
so tractability of the model will be preserved: For the calculation of survival probabilities, it is
sufficient to solve simple ordinary differential equations, similarly to Part C.1 above.

Other extensions are also possible. For instance, while in the paper we treat sample data with
different genders and from different countries separately in the principal component analysis, an
alternative approach could be the use of common principal component, with which we could deal
with multiple populations in one single analysis.
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Figure A.2: Showing results for ARIMA time series models fit to cohort life expectancies for
70-year old U.S. females as forecast based on the Lee-Carter model (1974-2016). Left-hand side:
Autocorrelation (ACF) and partial autocorrelation function (PACF) of the time series. Right-hand
side: Counts how many of 10,000 simulated AR(1) paths are outside of the prediction intervals
from Figure 1.

E Analyses of Lee-Carter Prediction Intervals

To demonstrate that the Lee-Carter prediction intervals for cohort life expectancy are too narrow

from a historical perspective, we carry out two separate analyses.
For the first, we proceed similarly to Lee and Carter (1992, p. 667) and fit univariate autoregres-

sive moving average (ARIMA) models to our time series of cohort life expectancies for seventy-
year old females illustrated in Figure 1 in the main text (1974-2016). We then use the resulting
time series models to simulate 10,000 cohort life expectancy trajectories for the subsequent twenty
years, and record—in each year—how many paths are outside the Lee-Carter prediction intervals
(the red-dashed curves in Figure 1).

For selecting suitable ARIMA(p,q) models, we rely on the Box-Jenkins methodology. Figure
A.2(a) shows plots of the autocorrelation function (ACF) and the partial autocorrelation function
(PACF). The ACF is exponentially decaying to zero, pointing to an AR process (q = 0). The PACF
exhibits a spike at lag 1 but none beyond, suggesting p = 1. Thus, we fit an AR(1) process. The
red curve in Panel (b) of Figure A.2 then records how many out of the 10,000 simulated paths are
outside of the Lee-Carter prediction intervals each year over the next twenty years.

As is evident, the paths cross the 95% bands far more frequently than predicted. In fact, for
terms beyond 15 years, the majority of the paths is outside of the Lee-Carter prediction intervals.
Figure A.2(b) also shows results for our models with long-term risk. Here, the frequencies are
more stable and more modest (e.g., ≈ 10% of paths for the Surface model across terms), although
they still exceed the 5% confidence level. Of course this result depends on the underlying time
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(a) Prediction interval at t0 − 20 years (1996)
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(b) Prediction interval at t0 − 10 years (2006)

Figure A.3: Showing cohort life expectancies for 70-year old U.S. females based on the Lee-
Carter model until 2016 (blue solid line) and 95% prediction intervals (red dashed lines) based on
past data until 1996 (left-hand side) and until 2006 (right-hand side).

series model, and different choices yield different result. For instance, for a simple exponential
smoothing model with growth (ARIMA(0,1,1)), simulated trajectories are within the prediction
bands based on our models with long-term risk for about 97% of the paths. However, here also (as
within all of our experiments), far more than 5% of paths fall outside of the Lee-Carter prediction
intervals (≈ 10% for ARIMA(0,1,1), which was the lowest figure in our tests).

To present an analysis that does not depend on the (time series) model, we also carry out
backtests. More precisely, we carry out the exact same analyses as for the Lee-Carter intervals in
Figure 1 but calculate prediction intervals based on past historical data until 2006 (10 years before
the end of our series) and 1996 (20 years before the end of our series). Figure A.3 show the results,
where the solid blue line is exactly the same as in Figure 1 before 2016. Strikingly, the historical
paths fall outside the prediction intervals for both periods, and for the 2006 interval for most of the
subsequent years. The paths are within the prediction intervals for the models with long-term risk
proposed in this paper for both time periods. This provides further evidence that the Lee-Carter
prediction intervals for cohort life expectancy are too narrow from a historical perspective.

F Analysis on Alternative Data Sets

In this part, we repeat the analyses from the main text for alternative data sets/sources. In particular,
we use (i) U.K. pensioner life tables (as published by the Institute and Faculty of Actuaries (IFoA)1)
and (ii) mortality forecasts generated based on combinations of gender (male, female), region

1See the website of the Continuous Mortality Investigation (CMI), www.actuaries.org.uk/
learn-and-develop/continuous-mortality-investigation.

www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation
www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation
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(England & Wales, France, Japan, U.S., and West Germany) from the Human Mortality Database,2

and mortality forecasting method (Lee-Carter, CBD, and P-splines). Our findings are generally
analogous to the main text, which is the reason that we only show results for our primary data set
there. Thus, we omit detailed discussions and only highlight notable differences here.

Figures A.4 through A.13 as well as Tables A.1 through A.5 show results from the factor analy-
sis/model of F (cf. Section 3.2). More precisely, the figures show the first and second eigenvectors
for each of the five regions (England & Wales, France, Japan, U.S., and West Germany) with all
gender/forecasting method combinations. The tables show the four greatest eigenvalues (factor
loadings) for each of the same five regions and the same gender/forecasting method combinations.
Once again, we observe that the leading eigenvector explains the vast majority of the variation in
the data, akin to Table 1 in the main text. As is clear, the leading eigenvectors (slope factor) in all
cases exhibit similar shapes to Figure 2 in the main text (and hence the same arguments apply).

Figures A.4 through A.13 also illustrate the second eigenvector. As pointed out in the main
text, the shape for the second factor (eigenvector) u2 is drastically different than that of the leading
factor—but again it is similar/systematic across all considered sets. While we again observe a
mostly increasing pattern as a function of age x in the near future (small τ ), the factor entries
change signs when viewed as a function of τ (for fixed x). Hence, for a young to middle-aged
individual (indexed by x), a random shock may affect mortality in the near term qualitatively
differently than in the long term, implying that the curvature of the individual mortality curves
will change. Again in analogy to yield curve forecasting, we refer to this factor as the curvature

factor.
Tables A.6 through A.13 show maximum likelihood estimation results of our mortality surface

model based on the remaining representative data sets/sources in Table 1, in analogy to Table 2 in
Section 3.3 in the main text. No standard errors are reported for the U.K. pensioner life tables in
Table A.13, where the limited sample size (N = 6) makes it impractical to sample F using the
non-parametric bootstrap. The findings for the different genders/regions/forecasting approaches
under source (ii) in Tables A.6 through A.12 are similar as in the main text: The parameters
capture the patterns in the leading eigenvectors, and we observe similar estimates with and without
the self-consistency constraint across all cases. We find more substantial differences in the point
estimates for the U.K. pensioner data in Table A.13. Potential reasons include changes in the
relevant (insured) population and/or the underlying forecasting method, although it is impossible
to obtain conclusive insights based on the sample size (N = 6).

Figures A.14 through A.21 show prediction intervals of the expected future life-time for age-40

and 70 cohorts one year from the terminal year using different approaches and the same represen-

2Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic
Research (Germany). Available at www.mortality.org or www.humanmortality.de.

www.mortality.org
www.humanmortality.de
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Factor Female Male
Value Weight Value Weight

Lee-Carter
λ1 0.0415 94.84% 0.0504 87.25%
λ2 0.0010 2.20% 0.0033 5.74%
λ3 0.0005 1.18% 0.0019 3.30%
λ4 0.0004 0.91% 0.0010 1.81%

CBD
λ1 0.1410 97.20% 0.5089 96.24%
λ2 0.0038 2.65% 0.0170 3.22%
λ3 0.0002 0.12% 0.0027 0.51%
λ4 0.0000 0.03% 0.0001 0.03%

P-spline
λ1 0.1979 99.32% 0.2009 98.79%
λ2 0.0013 0.63% 0.0021 1.01%
λ3 0.0001 0.03% 0.0003 0.16%
λ4 0.0000 0.02% 0.0001 0.04%

Table A.1: Showing the absolute values and relative weights of the four greatest eigenvalues based
on standard principal component analysis on the England & Wales population (left: female; right:
male) with different forecasting methods (top: Lee-Carter; middle: CBD; bottom: P-spline).

tative data sets, paralleling Figure 4 in the main text and Figure A.1 above. Here the presentation
deviates in a few instances. First, it is difficult to generate random paths of age-specific mortal-
ity rates using the P-spline method. We therefore only show results based on the remaining four
approaches in Figures A.15 and A.18. Similarly, for the U.K. pensioner data (Figure A.21), we
only show three approaches due to no documented underlying model and limited sample size that
renders the non-parametric approach impractical. Aside from these differences in presentation, the
findings parallel the main text: The prediction intervals based on the forward models proposed in
this paper closely resemble each other, and are far wider than the conventional forecasts where
available. The sole exception is the “w\ s.c.” approach for the U.K. pensioner data (Figure A.21),
which is again due to potential changes in population or approach, and/or due to data limitations.
We leave the consideration of a different, potentially richer set of life tables and/or price data for
life-contingent securities (Source (iii) in Sec. 3.1 in the main text) for future research.
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Factor Female Male
Value Weight Value Weight

Lee-Carter
λ1 0.0383 96.03% 0.0763 91.28%
λ2 0.0008 2.09% 0.0033 3.99%
λ3 0.0003 0.77% 0.0016 1.88%
λ4 0.0002 0.55% 0.0011 1.26%

CBD
λ1 0.0741 96.81% 0.1538 95.45%
λ2 0.0022 2.85% 0.0050 3.07%
λ3 0.0002 0.28% 0.0023 1.41%
λ4 0.0000 0.05% 0.0001 0.01%

P-spline
λ1 0.1191 99.49% 0.1237 99.18%
λ2 0.0005 0.42% 0.0006 0.48%
λ3 0.0001 0.06% 0.0004 0.30%
λ4 0.0000 0.02% 0.0000 0.03%

Table A.2: Showing the absolute values and relative weights of the four greatest eigenvalues based
on standard principal component analysis on the France population (left: female; right: male) with
different forecasting methods (top: Lee-Carter; middle: CBD; bottom: P-spline).
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Factor Female Male
Value Weight Value Weight

Lee-Carter
λ1 0.0197 92.27% 0.0384 91.31%
λ2 0.0006 2.66% 0.0017 4.08%
λ3 0.0004 1.88% 0.0009 2.18%
λ4 0.0004 1.73% 0.0005 1.23%

CBD
λ1 0.0838 96.30% 0.2988 97.21%
λ2 0.0019 3.38% 0.0079 2.56%
λ3 0.0002 0.25% 0.0005 0.17%
λ4 0.0001 0.06% 0.0002 0.06%

P-spline
λ1 0.0501 98.64% 0.1018 99.16%
λ2 0.0006 1.17% 0.0006 0.62%
λ3 0.0001 0.15% 0.0002 0.16%
λ4 0.0000 0.02% 0.0000 0.04%

Table A.3: Showing the absolute values and relative weights of the four greatest eigenvalues based
on standard principal component analysis on the Japan population (left: female; right: male) with
different forecasting methods (top: Lee-Carter; middle: CBD; bottom: P-spline).
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Factor Female Male
Value Weight Value Weight

Lee-Carter
λ1 0.0241 94.47% 0.0401 90.36%
λ2 0.0009 3.44% 0.0023 5.17%
λ3 0.0002 0.94% 0.0011 2.37%
λ4 0.0001 0.45% 0.0005 1.20%

CBD
λ1 0.0297 98.54% 0.0598 98.23%
λ2 0.0004 1.19% 0.0007 1.15%
λ3 0.0001 0.24% 0.0003 0.56%
λ4 0.0000 0.02% 0.0000 0.05%

P-spline
λ1 0.1481 98.22% 0.0830 97.53%
λ2 0.0023 1.50% 0.0017 1.97%
λ3 0.0003 0.22% 0.0004 0.44%
λ4 0.0001 0.04% 0.0000 0.03%

Table A.4: Showing the absolute values and relative weights of the four greatest eigenvalues based
on standard principal component analysis on the U.S. population (left: female; right: male) with
different forecasting methods (top: Lee-Carter; middle: CBD; bottom: P-spline).
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Factor Female Male
Value Weight Value Weight

Lee-Carter
λ1 0.0237 90.84% 0.0273 80.38%
λ2 0.0010 3.78% 0.0027 7.98%
λ3 0.0005 2.07% 0.0016 4.81%
λ4 0.0004 1.66% 0.0010 2.89%

CBD
λ1 0.0506 98.31% 0.1679 98.43%
λ2 0.0007 1.43% 0.0023 1.35%
λ3 0.0001 0.25% 0.0003 0.20%
λ4 0.0000 0.01% 0.0000 0.02%

P-spline
λ1 0.1088 99.63% 0.0366 99.19%
λ2 0.0002 0.22% 0.0002 0.46%
λ3 0.0002 0.14% 0.0001 0.29%
λ4 0.0000 0.00% 0.0000 0.03%

Table A.5: Showing the absolute values and relative weights of the four greatest eigenvalues
based on standard principal component analysis on the West Germany population (left: female;
right: male) with different forecasting methods (top: Lee-Carter; middle: CBD; bottom: P-spline).
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Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−2.84× 10−6 1.02× 10−8 0.106 18.06 0.0088
(4.54× 10−7) (2.44× 10−9) (0.002) (2.02) (0.0006)

wo\ self-consistency
−2.67× 10−6 1.16× 10−8 0.105 18.23 0.0088
(4.49× 10−7) (1.93× 10−9) (0.001) (2.05) (0.0005)

Table A.6: U.S. female population & CBD approach: Showing maximum likelihood point esti-
mates as well as associated standard deviations for the parameters k, c, r, a, and b. The standard
deviations are obtained based on one hundred bootstrap samples of the F realizations. We consider
both cases of with the self-consistency constraint imposed or without in the estimation.

Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−5.23× 10−6 1.27× 10−8 0.113 5.16 0.0070
(1.60× 10−6) (4.91× 10−9) (0.003) (0.66) (0.0027)

wo\ self-consistency
−1.91× 10−6 1.36× 10−8 0.114 5.41 0.0067
(1.55× 10−6) (5.11× 10−9) (0.003) (0.60) (0.0029)

Table A.7: U.S. female population & P-Spline approach: Showing maximum likelihood point
estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The standard
deviations are obtained based on one hundred bootstrap samples of the F realizations. We consider
both cases of with the self-consistency constraint imposed or without in the estimation.
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Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
7.95× 10−6 1.21× 10−12 0.201 16.88 0.0010

(3.80× 10−6) (1.32× 10−10) (0.027) (1.25) (0.0008)
wo\ self-consistency

6.96× 10−6 1.27× 10−12 0.200 17.11 0.0010
(4.29× 10−6) (1.03× 10−10) (0.028) (1.69) (0.0009)

Table A.8: U.S. male population & Lee-Carter approach: Showing maximum likelihood point
estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The standard
deviations are obtained based on one hundred bootstrap samples of the F realizations. We consider
both cases of with the self-consistency constraint imposed or without in the estimation.

Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−9.16× 10−6 1.04× 10−8 0.115 10.15 0.0067
(2.25× 10−6) (2.74× 10−9) (0.003) (2.27) (0.0010)

wo\ self-consistency
−7.11× 10−6 1.28× 10−8 0.113 10.38 0.0066
(1.42× 10−6) (2.69× 10−9) (0.002) (2.55) (0.0009)

Table A.9: England & Wales female population & CBD approach: Showing maximum likelihood
point estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The
standard deviations are obtained based on one hundred bootstrap samples of the F realizations. We
consider both cases of with the self-consistency constraint imposed or without in the estimation.
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Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−6.24× 10−7 1.13× 10−8 0.110 5.52 0.0133
(9.07× 10−7) (3.21× 10−9) (0.003) (0.83) (0.0008)

wo\ self-consistency
2.44× 10−7 1.00× 10−8 0.112 6.19 0.0133

(5.33× 10−7) (2.67× 10−9) (0.003) (0.46) (0.0008)

Table A.10: West German male population & P-Spline approach: Showing maximum likelihood
point estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The
standard deviations are obtained based on one hundred bootstrap samples of the F realizations. We
consider both cases of with the self-consistency constraint imposed or without in the estimation.

Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−1.04× 10−5 6.31× 10−8 0.091 10.36 0.0116
(2.61× 10−6) (2.36× 10−8) (0.003) (3.03) (0.0004)

wo\ self-consistency
−9.70× 10−6 6.19× 10−8 0.091 10.35 0.0115
(2.57× 10−6) (2.28× 10−8) (0.003) (3.05) (0.0003)

Table A.11: French female population & Lee-Carter approach: Showing maximum likelihood
point estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The
standard deviations are obtained based on one hundred bootstrap samples of the F realizations. We
consider both cases of with the self-consistency constraint imposed or without in the estimation.
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Parameter point estimate (st. dev.)
k c r a b

w\ self-consistency
−4.61× 10−6 2.83× 10−8 0.098 14.09 0.0112
(3.34× 10−6) (3.03× 10−8) (0.009) (1.57) (0.0008)

wo\ self-consistency
−2.55× 10−6 2.48× 10−8 0.099 14.19 0.0112
(3.75× 10−6) (3.09× 10−8) (0.010) (1.59) (0.0008)

Table A.12: Japanese male population & Lee-Carter approach: Showing maximum likelihood
point estimates as well as associated standard deviations for the parameters k, c, r, a, and b. The
standard deviations are obtained based on one hundred bootstrap samples of the F realizations. We
consider both cases of with the self-consistency constraint imposed or without in the estimation.

Parameter point estimate
k c r a b

w\ self-consistency
−4.14× 10−4 1.86× 10−6 0.063 5.39 0.0319

wo\ self-consistency
−1.2× 10−3 1.85× 10−5 0.046 0.55 0.0270

Table A.13: U.K. pensioner: Showing maximum likelihood point estimates for the parameters k,
c, r, a, and b. We consider both cases of with the self-consistency constraint imposed or without in
the estimation.
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Figure A.4: Showing the first eigenvectors (slope factor) that correspond to the mortality forecasts
based on England & Wales population (left: female; right: male). Top panels: Lee-Carter model;
middle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a func-
tion of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.



Online Appendix to “Modeling the Risk in Mortality Projections” 24

-3
100

-2

-1

0

80

10-3

60

1

age

2

60 40

term

3

2040
0

(a) female, Lee-Carter model

-8
100

-6

-4

-2

80

10-3

60

0

age

2

60 40

term

4

2040
0

(b) male, Lee-Carter model

-0.01
100

-0.005

0

80
60

0.005

age

60 40

term

0.01

2040
0

(c) female, CBD model

-0.015
100

-0.01

-0.005

80

0

60

age

0.005

60 40

term

0.01

2040
0

(d) male, CBD model

-6
100

-4

-2

80

10
-3

0

60

age

2

60 40

term

4

2040
0

(e) female, P-spline model

-6
100

-4

-2

80

10-3

0

60

age

2

60 40

term

4

2040
0

(f) male, P-spline model

Figure A.5: Showing the second eigenvectors (curvature factor) that correspond to the mortality
forecasts based on England & Wales population (left: female; right: male). Top panels: Lee-
Carter model; middle panels: CBD model; bottom panels: P-spline model. Each eigenvector
is plotted as a function of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and
x+ τ ∈ {31, . . . , 95}.
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Figure A.6: Showing the first eigenvectors (slope factor) that correspond to the mortality forecasts
based on France population (left: female; right: male). Top panels: Lee-Carter model; middle
panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a function of
age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.7: Showing the second eigenvectors (curvature factor) that correspond to the mortality
forecasts based on France population (left: female; right: male). Top panels: Lee-Carter model;
middle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a func-
tion of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.8: Showing the first eigenvectors (slope factor) that correspond to the mortality forecasts
based on Japan population (left: female; right: male). Top panels: Lee-Carter model; middle
panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a function of
age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.9: Showing the second eigenvectors (curvature factor) that correspond to the mortality
forecasts based on Japan population (left: female; right: male). Top panels: Lee-Carter model;
middle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a func-
tion of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.10: Showing the first eigenvectors (slope factor) that correspond to the mortality forecasts
based on U.S. population (left: female; right: male). Top panels: Lee-Carter model; middle panels:
CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a function of age (x)
and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.11: Showing the second eigenvectors (curvature factor) that correspond to the mortality
forecasts based on U.S. population (left: female; right: male). Top panels: Lee-Carter model; mid-
dle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a function
of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.12: Showing the first eigenvectors (slope factor) that correspond to the mortality forecasts
based on West Germany population (left: female; right: male). Top panels: Lee-Carter model; mid-
dle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted as a function
of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x+ τ ∈ {31, . . . , 95}.
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Figure A.13: Showing the second eigenvectors (curvature factor) that correspond to the mortality
forecasts based on West Germany population (left: female; right: male). Top panels: Lee-Carter
model; middle panels: CBD model; bottom panels: P-spline model. Each eigenvector is plotted
as a function of age (x) and term (τ ), with x ∈ {31, . . . , 95}, τ ∈ {0, . . . , 64}, and x + τ ∈
{31, . . . , 95}.
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Figure A.14: U.S. female population & CBD approach: Showing the prediction intervals of the
expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at year 2017 under
10, 000 simulations. We consider five different approaches as shown by order: The CBD model
with error terms; the non-parametric forecasting approach; the single-factor model; the mortality
surface model without the self-consistency constraint; and the mortality surface model with the
self-consistency constraint.
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Figure A.15: U.S. female population & P-spline approach: Showing the prediction intervals of
the expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at year 2008
under 10, 000 simulations. We consider four different approaches as shown by order: The non-
parametric forecasting approach; the single-factor model; the mortality surface model without the
self-consistency constraint; and the mortality surface model with the self-consistency constraint.
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Figure A.16: U.S. male population & Lee-Carter approach: Showing the prediction intervals of the
expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at year 2017 under
10, 000 simulations. We consider five different approaches as shown by order: The Lee-Carter
model with error terms; the non-parametric forecasting approach; the single-factor model; the
mortality-surface model without the self-consistency constraint; and the mortality surface model
with the self-consistency constraint.
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Figure A.17: England & Wales female population & CBD approach: Showing the prediction
intervals of the expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at
year 2017 under 10, 000 simulations. We consider five different approaches as shown by order: The
CBD model with error terms; the non-parametric forecasting approach; the single-factor model; the
mortality surface model without the self-consistency constraint; and the mortality surface model
with the self-consistency constraint.
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Figure A.18: West German male population & P-spline approach: Showing the prediction intervals
of the expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at year 2008
under 10, 000 simulations. We consider four different approaches as shown by order: The non-
parametric forecasting approach; the single-factor model; the mortality surface model without the
self-consistency constraint; and the mortality surface model with the self-consistency constraint.
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Figure A.19: French female population & Lee-Carter approach: Showing the prediction inter-
vals of the expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at
year 2017 under 10, 000 simulations. We consider five different approaches as shown by order:
The Lee-Carter model with error terms; the non-parametric forecasting approach; the single-factor
model; the mortality-surface model without the self-consistency constraint; and the mortality sur-
face model with the self-consistency constraint.
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Figure A.20: Japanese male population & Lee-Carter approach: Showing the prediction inter-
vals of the expected future life-time for age-40 (left panel) and age-70 (right panel) cohorts at
year 2017 under 10, 000 simulations. We consider five different approaches as shown by order:
The Lee-Carter model with error terms; the non-parametric forecasting approach; the single-factor
model; the mortality-surface model without the self-consistency constraint; and the mortality sur-
face model with the self-consistency constraint.
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Figure A.21: U.K. pensioner: Showing the prediction intervals of the expected future life-time
for age-40 (left panel) and age-70 (right panel) cohorts at year 2006 under 10, 000 simulations.
We consider three different approaches as shown by order: The single-factor model; the mortality
surface model without the self-consistency constraint; and the mortality surface model with the
self-consistency constraint.
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