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We consider the Monte Carlo problem of generating points
uniformly distributed within an arbitrary bounded (measurable)
region. A class of Markovian methods are considered that gen-
erate points asymptotically uniformly distributed within the
region. Computational experience suggests the methods are
potentially superior to conventional rejection techniques for
large dimensional regions.
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Efficient Monte Carlo Procedures for Generating

Points Uniformly Distributed Over Bounded Regions

1. INTRODUCTION

We consider the folleing problem. Given a bounded k-
dimensional surface S C R" where k < n, how can we efficiently
generate a pseudo-random point (Xl' X2,...,Xn) € S uniformly
distributed over S. That is, we require that the probability
X ¢ AC S be given by V(A)/V(S) where V is the k-dimensional
content of (Jordan) measurable sets in S. The problem is
actually quite general in that the seemingly broader problem
of generating points X distributed over a region S according
to a probability density function f over S is in fact equiva-
lent. To see this, merely generate points Y uniformly distri-
buted within the region under the graph of f over S and
project Y onto S yielding X. X may be shown to have the

desired properties.

Such a procedure is of interest for several reasons. As
noted above, the procedure could be used in generating multi-
variate random deviates with arbitrary density functions. Effi-
cient transformational procedures are currently limited to the
multivariate normal and a few other specialized distributions
(Rubinstein [16 ], Schmeiser [17]). Another potential appli-
cation is in generating large numbers of feasible solutions
to mathematical programs uniformly distributed within or on
the boundary of the feasible region. These may serve as

random starting points for heuristic optimum
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seeking procedures (Dixon and Szego [4]) or may serve by them-
selves as stochastic probes yielding statistical information
on the value of the optimal objective function (Patel and

Smith [12], de Haan [3]).

2. BACKGROUND

Conventional approaches to generating uniformly distributed
points over bounded regions S are limited to transformational,
rejection, and composition techniques. We shall consider each in
turn together with their relative merits.

Transformation techniques directly capitalize on the fact
that extremely efficient pseudo-random number generators are widely
available for producing sequences of real numbers drawn from the
interval [0, 1] that have the statistical properties of being in-
dependent and identically distributed over their range (Hammersley

and Handscomb [8]). A set of k such numbers X = (Xl’ X2"'°X )

k
regarded as a point in Rk yields a pseudo-random point uniformly
distributed within the standard k-dimensional hypercube, H. A

transformation technique then maps X via a smooth deterministic

function T onto S. A necessary and sufficient condition that T(x)
be uniformly distributed over S is that the Jacobian of T be
constant over all x € H and in fact equal to V(S)*. This is an
extremely efficient technique when T is easily computed. Unfortu-
nately, T is simple and known only for a limited class of regions

S. For example, for

*Generating a uniform distribution on the unit hypersphere by scaling
a multivariate normal vector of independent components can be viewed
as a composition map of a transformation of points in a unit cube
to normals followed by a cross-section transformation. However the
resulting transformation T being nonsquare has no determinant in
this case.



3
paralleletopes T is linear, for hyperspheres T is a simple closed
form trigonometric function, and for simplices T is a weighted
linear combination of the extreme points of S (Patel and Smith [13],
Rubinstein [15 ]). Unfortunately, the latter idea does not
generalize to polytopes. We could of course partition any bounded
polytope into a finite union of simplices and use transformational

techniques on the simplices (an example of a composition technique

[Schmeiser " 17 ]]). Although conceptually sound, the number of
simplices and the difficulty of identifying them makes the procedure
computationally intractable for even moderately large dimensional
problems. Hsuan [9] suggests this method for polygons where the
dimensionality is low enough for the procedure to be efficient.

Rejection technigues (Hammersley and Handscomb [8] , Rubinstein(lt

rely on the simple principle that if a point is uniformly distri-

buted within a region D enclosing a region S, then it is condi-
tionally uniformly distributed within S given it lies in S.

The procedure is then to enclose S by a region D for which a

transformation technique is known. Using the transformation

T to generate a point T(X) in D, T(X) is accepted if it also
lies in S and is otherwise rejected. Each point so accepted
will then be uniformly distributed within S. Typical choices
for D include a rectangular paralleletope, a hyperphere, and

a simplex. For example, if the region S were a bounded poly-
tope, finding D as a paralletope would involve ascertaining
maximal feasible ranges on the coordinate variables. Select-
ing D as a simplex or sphere would require solving a linear or
quadratic program respectively. Depending on the complexity
of S, one or more of these options may be computationally
infeasible. A more serious problem of rejection techniques is
that the number of trial points in D that must be generated to
get a point in S grows explosively in the dimension of the

regqion S. For example, when S is a hypercube and the enclosing



region D is a circumscribed hypersphere, the expected number of points
that must be generated within D to get one within S grows from 1.5

for dimension k = 2 to 1030 for Xk = 100. The n-dimensional content

n/2

of an n-dimensional sphere of radius r is 2™ 1 (nl‘(n/Z))_l (Kendell

[10]1). Hence the content of the sphere enclosing an n-dimensional un

n/2 (ar(n/2))"L

cube is given by 2(n7/4)

‘72 will consider 1n the next section a class of proce-
dures that recursively generates a sequence of points all
within the region S. These points have the property that when
the initial point is uniformlv distributed within S then all
are. Moreover, the last point generated is asymptotically
independent of the first point as the sequence grows in length.
In short, if we generate a long sequence of points and randomly
mix their order, the resulting sequence of points has the

statistical properties of being independent and identically

distributed points uniformly distributed over S.

3. SYMMETRIC MIXING ALGORITHMS AND THEIR ASYMPTOTIC PROPERTIES

We define here a class of randomized algorithms that have

the property of (strong) reversibility. That is, the prob-

ability density of moving from point X o point y in a region S

is equal to the probability density of going from v to x. That is,
were the algorithms run backwards in time, their orobabilistic proper-
ties would remain unaltered and it would be impossible to

distinguish which endpoint of the generated path was the origin.

This property will be shown to imply a uniform stationary
distribution over the points so generated. With a stronger as-

sumption requiring that all subreqions be eventually visited,
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it will further be concluded that a uniform distribution over the
region is asynptoticalhyapproaéhed regardless of the starting point.
The class of algorithms to be considered is subsumed by the
following general mixing algorithm. The character of a particular
algorithm is imparted through a choice of the direction set D as

described below.

Mixing Algorithm

1) Choose a starting point X0 e S and set i = 0.
2) Generate a random direction d uniformly distributed

over a direction set D glfk Find the line set L =

sn {x | x= X, +Ad,\a real scalar} and generate a
random point Xi+l uniformly distributed over L.
3) If i = N, stop. Otherwise, set i = 1 + 1 and return
to 2.
Boneh and Golan [13] first proposed such an algorithm with D
a hypersphere for the purpose of identifying non-redundant constraints
in nonlinear programs. They also conjectured but did not prove that
the points generated were uniformly distributed. Smith [13] later
but independently proposed the same algorithm and demonstrated its
asymptotic uniformity,

A symmetric mixing algorithm is a mixing algorithm that is rever-

sible in the sense described above. For S an open set in Rn, every
mixing algorithm is symmetric since the probability of traveling from
x to a neighborhood of y is by construction the same as traveling from
y to a neighborhood of x. Before cataloging the assumptions we will
later need to impose on the class of symmetric mixing algorithms con-
sidered, we will first note that the points generated by a general

mixing algorithm XO' Xl’ Xz,...constitute a continuous state Markov

Chain for k > 0 and a discrete state Markov Chain for k = 0. More-

over, the chain is homogeneous. Let P(A|x) = P(X e AlX; = x)

i+l



for measurable A S S be the one step transition probability.

We will later impose one or bo:h of the following regularity
conditions on P(Alx) ang, by implication, on the class of mix-

ing algorithms and regions considered. Roughly speaking, the conditior
require the algorithm to distribute points in a continuous

fashion over the entire region S.

Assumption: (a) There exists a measurable function
f(y|x) on S x S such that

P(A|x) = f(y|x)dy for all

A
measurable A C S.

(b) flylx) > 0 for all x, y € S.

Note that for the class of symmetric mixing algorithms that
satisfy Assumption a), theAtransition
probability density function f is symmetric, i.e., f(y|x)=f(x|y)
for all x, vy € S. Roughly speaking, the probability of going
from x to y is the same as that of going from y to x since they
share the same line direction and the successor point is chosen
uniformly along the shared line segment.
Lemma l: Under Assumption a), the uniform distribution over
S is a stationary initial distribution for the Markov Chain
induced by a symmetric mixing algorithm, i.e., A(A) =

P(A|x) A(dx) where A(A) = V(A)/V(S) with A measurable

S
and V representing k-dimensional content over S.

Proof: For a symmetric mixing algorithm, f(y|x) = f(x|y)

and therefore



f P(A|x) A(dx) = jf(y|X) A(dy) A(dx) =
S S A

f f f(x|y) A(dx) Al(dy) = /P(S
A s A

= JQ A(dy) = A(A). The interchange of order of integration

v) A(dy)

is justified by Fubinis's Theorem since £(y|x) > 0 and the
double integral is finite. .

Lemma 1 states that if the starting point X . were chosen uni-

0
formly from S, then X, would remain uniformly distributed

over S for all i > 0.

Lemma 2: Let XO’ Xyr Xgrowes be the Markov Chain induced by
a symmetric mixing algorithm. Under Assumption a), b), the
chain is indecomposable, i.e., there are no two disjoint

closed* sets Al’ A2 C s.

Proof: Suppose A1 and’A2 are closed and Alf] A2 = ¢. Set

A=S - (AU 2. Since Ay, A, A form a partition of §,

A(Al) + A(Az) + k(i) = 1, and hence one of them has strictly

positive measure, say Al' Since A2 is non-empty, choose x ¢ A2.

Then P (Al;x) = ﬁf(y!x) dy > 0 since £ > 0. Hence
1 -
P (A21x) < 1. Contradiction. Suppose now A(A) > 0. By the

same argqument, P(A. |x) < 1 for x ¢ A2 and we get a contradic-

2x
tion. The result follows. .

*
A non-empty set A is closed if it is almost surely not possi-

ble to leave it, i.e., P (A]x) = 1 for all x e A.



Theorem 1l: Let XO’ Xl’ Xz, ... be the Markov Chain induced
by a symmetric mixing algorithm. Under Assumption a), b), the
uniform distribution A is the unique stationary distribution

over S, and moreover, the Markov Chain Xn' X .. with

1 %pr
;] W
initial distribution A is ergodic, i.e., lim = I X, (X)) = x(a)
m ._n A1
m-+o 1=0
1 for x e A
for measurahle A C S whgre XA(X) = 0 for x ¢ A )

Proof: From Lemma 2, we have that XO’ Xl’ X2, eee 1s inde-
composable and from Lemma 1 that X is a stationary initial
distribution. It follows (see Proposition 7.11, p. 134 and
Theorem 7.16, p. 136, in Breiman [ 2]*) immediately that A\
is the unique stationary distribution and that the process
with A as its initial distribution is stationary and in fact
ergodic. .

Theorem 1 states that the sequence of points generated
by a symmetric mixing algorithm satisfying Assumption a), b)
will visit each subregion of S in the limit a fraction of time
equal to that region's fractional content, That is, the points
XO, Xl' X ... considered as an ensemble will be uniformly

7’

distributed in the long run throughout the region S. Put
another way, a Chi-square frequency test would be unable to
statistically distinguish the points XO' Xl’ X2, ... generated
by the symmetric mixing algorithm from those generated by

transformational or rejection techniques; i.e., their

*
We refer throughout to Breiman [ 2 ] even though his results are

stated and proven for measurable S C Rl. The extension to RD
is only notational since the ordering properties of Rl are not
necessary to any of the results we use here.



observed long run frequencies of occurrence would be in agree-
ment with an independent and identically distributed uniform

model for X X X

O' l’ 2’ e o o L]
Theorem 2: Under Assumption a), b), the Markov Chain
XO’ Xl’ X2, ... induced by a symmetric mixing algorithm is

strongly mixing, i.e., lim P(X_ e A]XO = x) = A(A) for all

m->c

starting points x € S and for all measurable sets A,g_s.

Proof: Doob [5 ] has shown that if a stationary initial dis-
tribution exists, then the chain is strongly mixing under the
following conditions: a) the state space S is indecomposable
under P (A[x) , b) the motion is nonperiodic, i.e., S is inde-

composable under the n-step transitions probability P(n)

(A|x)
n=2, 3 ..., and ¢c) for each x € S, P (A[x) is absolutely
continuous with respect to the stationary initial distribution.
In our case, a stationary initial distribution exists by

Lemma 1 and a) follows from Lemma 2. b) follows from the same

argument used in establishing Lemma 2 since f(n)

(l’l-l) (

(v %)

£ z|x) f£(vlz)dz > 0 by induction on n. As for c),

S
P(A.|x) is a bounded indefinite integral of a nonnegative
measurable function f (v|x) and all indefinite integrals of

integrable functions are absolutely continuous with respect

to the defining measure of integration (Theorem I, p. 97,

Halmos[7])JI|
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Theorem 2 implies that the serial correlation between any
two points X and Xk+M goes to zero as the number of iterations
separating them M grows large. This follows since X and KM
are asymptotically independent in the limit as M goes to infinity.
It follows that shuffling (randomly permuting) the indices in a
large number of generated points X

Xl,...,X to produce X

0’ M (0)'

X(l)""’X(M) will induce the same uncorrelated effect for any
pair of distinct points X(k) and X(k')' That is, the shuffled
sequence X(O)’ X(l)""’X(M) will not only exhibit frequencies in
accordance with a uniform model, but will also exhibit a lack

of serial correlation in agreement with an independent model.

In short, the statistical properties of X( X

0yt FyrererF
will for large M approximate those of M i.i.d. uniform random
deviates. An implication of this is that all statistics that
are invariant under permutations of the data used in their
calculation (e.g., a minimum or an average) may be based
directly on the original sequence XO’ Xl”"’XM but will none-
theless have the statistical properties suggested by an i.i.d.
uniform model for Xo, Xl""’XM' A very important issue in
all this is of course how large M must be. We will explore
this issue in the last section of the paper.

We will now consider specific algorithms corresponding
to different choices of the direction set D all of which are

symmetric algorithms that moreover satisfy Assumption a), b)

for a large class of regions S.
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A Random Directions Algorithm (Boneh and Golan ([13], Smith [18]):

Set D= {d ¢ R" | |ld|] = 1}. Then selecting d uniformly
over the unit sphere D is the operational equivalent of
selecting a random direction. Such a d is easily computed by
any of a number of techniques. Perhaps the simplest is to generate
n independent normally distributed random deviates

N = (N, Ny,euo N ) and set d = N/[[N|| (see e.g., Knuth [11],
p. 116).

Establishing the most general class of regions S for which
Assumption a), b) holds for this algorithm is a difficult task
that we will not attempt here. However, Assumption a), b) is
established in the next section for all open regions S & R
In particular, S is assumed to be of full dimension n. Argu-
ments for lower dimensional surfaces are not difficult if S is
specialized further. For example, for S the surface of a n-
dimensional polytope, it can be argued directly that P (A]x)
can be written as an integral of a positive probability density
function over S. However we lose symmetry unless the algorithm
is altered to stall at the current point favoring movement in
directions that meet facets less orthogonally. Such a random
"bouncing" over the facets of S will by Theorems 1 and 2 be
asymptotically uniformly distributed over S. The implied search
procedure may have merit for ill structured but small dimensional

mathematical programs.
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A Coordinate Directions Algorithm (Telgen [19]):

Set D= {d e R": 4 = + ei for some i =1, 2,...,n}, where
e§ = 1 for j = i and 0 otherwise}. Although this algorithm was
independently suggested by several people (including this author)
it was Telgen [19] who first noted the algorithms considerable
computational advantage over the Random Directions Algorithm
on a per iteration basis. The difference is particularly compel-
ling in the important case where S = {x: Ax < b}. As noted by
Telgen [19], the full sparsity of A may be exploited in every
iteration in determining the end points of the line segment L.
On the other hand, the number of iterations necessary to converge
to the uniform distribution may offset this advantage, although
preliminary computational experience suggests the converse.

Establishing Assumption a), b) for this algorithm is compli-

cated by the fact that P(A|x) is typically not absolutely con-
tinuous with respect to the uniform distribution over S. The prob-
ability mass is concentrated along the coordinate axes which are
of zero Lebesque measure for open regions S, However, if the
infimum of all line set lengths over open S is positive, then
every open subregion may be reached in a finite number of itera-
tions MO.(le can then be arguedthat the M,-step transition prob-
ability P 0 (A|x) satisfies Assumption a), b). It follows that the
sequence of points XO, XMO, XZMO"" is asymptotically uniform
over such regions S. Actually, a stronger claim may be made

if we approximate S by a rectangular mesh oriented along a

rectangular coordinate system. Such an approximation has no
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practical restriction since computer accuracy is finite. The
coordinate directions algorithm now generates a finite state

Markov Chain of points X X ... where the number of

OI Xll 2!
states N is the number of rectangular parallelepipeds in

the mesh. The corresponding transition probability matrix

(

Pij) is symmetric, irreducible, and aperiodic. It follows

that (Pij) is doubly stochastic, and hence (Ross [l4]) that

1um p®, = X for all i, 5 =1, 2,...,N.
1] N
m-o

A Vertex Reaching Algorithm:

To keep the discussion simple, suppose P is ann-dimen-
sional simple polytope with vertices Vl, VZ""’Vr 30 that
each vertex has exactly n neighboring vertices. Let
S = {Vl, VZ,...,Vr} and think of P transformed

so that the direction set D = {dl, d dn} can be con-

greees
structed of directions that point to the n adjacent vertices
regardless of the vertex Vi we are currently at. Then the

dimension k of S is zero and k-dimensional content reduces to

the cardinality of subsets of S. Hence X(Vi) = % for all i

and clearly f(x, y) = 1 for all x, y € S. From Theorem3 1 and 2, the
procedure of starting at any vertex of P and randomly moving

along edges to adjacent vertices in an unbiased way will
asymptotically "lose" one among the vertices of P. Since the
vertices visited are in the long run probabilistically equi-

valent to i.i.d. uniform choices from S, the distribution of

the number of vertices visited until a distinquished vertex
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is visited (say the optimum vertex in a concave minimization
protlem) approximately follows a geometric distribution. 1In
particular, the expected number of vertices visited before
success is the number of vertices r. Such an analysis is not
performed to recommend such a search procedure, but rather to
illustrate how Theorems 1 and 2 can aid in the probabilistic
analysis of the general class of randomized algorithms we are

considering.

4, CONVERGENCE RATES FOR THE RANDOM DIRECTIONS ALGORITHM

The practical merit of the symmetric mixing algorithms
will of course be dependent on their rate of convergence to
the uniform distribution. We have explicitly calculated upper
bounds on the rate of convergence to uniform for the random
directions algorithm and the results are reported in this
section. The formula for the bound gives considerable insight
on what problem characteristics are important in determining
convergence rate. However the bound is of computational
interest only for low dimensional problems. It can over-
estimate the number of iterations required to achieve uniformity

by several orders of magnitude as we shall see below.

Theorem 3: Let XO, Xl' XZ' ... be the Markov Chain gjenerated

by the Random Directions Algorithm over an open region S C R,
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Then for any measurable set A C S, ]P(Xm € A]xo = x) -

m-1
A@a)| < (1 - ;;%:T) where ¥ is the ratio of the n-dimensional
content of S to the n-dimensional content of the smallest sphere

containing S.

Proof: From Case (b), p. 197 in Doob [6] |[P(X € A| X X)

0

- A@ < (1 - ch)(C))m-l where ¢ is a finite measure on a o-field

m

over S and C is a measurable set in S for which ¢(C) > 0 and

£(y|x) > 8§ > 0 for all x, y € C where f(y|x) is the density of

the absolutely continuous component of P with respect to ¢. 1In
our case ¢ is n-dimensional content V. To obtain the strongest
bound we set C equal to S. Our task then is to show f(y|x) exists
and hence that P is itself absolutely continuous and to find § > 0.

f(y|x) = lim P(A|x)
V(A)>0 V(A)

an n-dimensional cube of content 2" oriented along the ray from
n-1
2%

) L .
x to y. For & small,P(A[x)= ( Sn 367 Y))) (faT§7§>where r(x, y) is

the distance from x to y, d(x, y) is the diameter of S along the

if this limit exists for y € A. Take A as

ray from x to y, and Sn(x) is the surface area of an n-

dimensional sphere of radius x. Hence f(y|/x) = lim P(A|x) /0 =
L+0

2/Sn(r(x, y))d(x, y) exists. Moreover, r(x, y) < d and

d(x, y) < d where 4 = max d(x,y). Hence (vl x) > & = 2/dSn(d)
X,YES

for all x, y € S. Since S_(d) = n2"v_(d/2)/d where V, (x) is
the volume of an n-dimensional sphere of radius x (Kendall [10],
p. 35), we get & = 1/n2""'v_(d/2). But V_(4/2) is the volume
of a circumscribed sphere around S and hence the result follows

since ¢(C) = V(S). -
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As a numerical illustration of Theorem 3, consider the
case of S as a disk in R°. Then IP(Xme:A ]XO = x) - A(A) | <
(3/4)m-l.The convergence as in all cases is exponentially fast.
For example, we will be within 1% of a uniform distribution
over S after 17 iterations of the random directions algorithm
regardless of starting point. Clearly, some starting points
XO are more conducive to rapid convergence than others, and
for this as well as other reasons, 17 iterations is only an
upper bound on the required number.

It is interesting that the ratio ¥ of the content of S to
an enclosing sphere plays a role here in algorithm effi-
ciency just as in the standard rejection technijue. However,
a large number of iterations to achieve uniformity in the
random directions algorithm case also implies a corresponiingly
large number of uniform points corresnonding to each of the

iterations. However for the rejection technique it is only

the last (feasible) point that is retained.

Of course, the practical merit of the approach rests on

its efficiency for large dimensional problems. The Random
Directions Algorithm was therefore run on a 10 dimensional
hypercube region with initial point randomly chosen according

to a uniform distribution. We chose this regular shape in order
to easily test for uniformity of the iteration points generated.
It should be noted that although a cube is the easiest of all
regions to generate uniform points within by conventional
approaches, the measure of difficulty for the Random Directions

Algorithms is how different the region is from an enclosing
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sphere. The ratio of their corresponding contents in this
case is roughly 250 to 1. This gives a theoretical upper bound
of over five million iterations to get within an € of 1% of
uniformity. We, however, ran the algorithm for only 10,000
iterations., To avoid serial correlation effects we first sampled
every 10th point generated. We then shuffled this smaller popu-
lation of 1000 points so that their order became random. It
should be noted that the points were shuffled but not their
components. We then performed Chi-square frequency and serial
correlation tests ([Knuth [11], p. 35) on this new sequence of
1,000 points. The cells corresponded to 10 equal volume slabs
in the X.l direction for i =1, 2,...,10. These correspond to
10 Chi-square tests in all. It should be noted that the Xi
direction isafavored direction only with respect to the shape of
the region and not the performance of the algorithm which is blind
to coordinate orientations. Hence aspects of multivariate as
opposed to only marginal uniformity are being tested. The results

are reported in Tables 1 and 2.
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1O

Observed Frequency fij of Points in Slab , ga§§ed .
j in Coordinate Direction X, Out of gi:%iséic azlaoimigg
j a Total of 1,000 Points (v =9 d.f.) lgve} gf
i 1 2 3 4 5 6 7 8 9 10 Signifi-
1 88 98 86 82 132 104 102 104 116 88 21.3 No
2 97 122 99 105 94 94 94 99 96 100 6.4 Yes
3 81 84 103 99 107 106 91 117 104 108 11.6 Yes
4 111 112 124 122 110 89 85 83 85 79 27.2 No
5 115 107 98 106 97 93 94 93 92 105 5.5 Yes
6 123 99 91 102 106 99 93 91 92 104 8.6 Yes
7 106 84 106 92 82 96 115 94 108 117 13.5 Yes
8 95 94 110 91 107 74 88 121 114 106 17.8 No
9 94 91 98 103 94 91 116 111 105 97 6.6 Yes
10 116 100 92 99 95 99 115 102 90 92 7.4 Yes
Upper and Lower x2 values for o = 10%, v = 9: (3.3, 16.9)*
Table 1 - Chi-Square Frequency Test Results for 1000
Points Generated in a 10 Dimensional Cube.
2 Passed Sgrial
Coordinate Serial Correlation at
Direction Statistic a = 10% Level
X5 (v =299 d.f.) of Significance
1 107.6 Yes
2 85.6 Yes
3 105.6 Yes
4 111.6 Yes
5 84.4 Yes
6 96.0 Yes
7 125.6 No
8 103.6 Yes
9 82.4 Yes
10 103.6 Yes

Upper and Lower > Values for o = 10%, v = 99: (77.9, 124.3)*

Table 2 - Chi-Square Serial Test Results for 1,000 Points
Generated in a 10 Dimensional Cube.

*

Two tailed Chi-square tests were performed since true distributional
uniformity would have an observable variance component in a depar-
ture from deterministic uniformity.



