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Abstract

We study discrete infinite horizon optimization problems without the common
assumption of a unique optimum. A method based on solution set convergence is
employed for finding optimal initial decisions by solving finite horizon problems.
This method is applicable to general discrete decision models which satisfy a weak
reachability condition. The algorithm, together with a stopping rule, is applied

to solve capacity expansion problems, and computational results are reported.
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In sequential decision problems with indefinite horizons, the length of an appropriate plan-
ning horizon is an important issue. Data far in the future is difficult to forecast accurately,
and yet myopia must be avoided. Recently, progress has been made in proving the existence
of, and then discovering, forecast and solution horizons. These are horizons long enough to
guarantee that the optimal initial decision or decision sequence found is optimal over any
longer horizon (including the infinite horizon). The decision maker may implement this deci-
sion or sequence with confidence, and then uncover subsequent decisions in a rolling horizon
fashion.

Solution horizon procedures typically consist of solving finite horizon problems, increasing

the horizon until some stopping criterion is satisfied. Two questions then arise:
1. (Solution Horizon Existence) Is there a horizon long enough to guarantee optimality?

2. (Solution Horizon Discovery) How long a horizon is needed to know that optimality is

guaranteed?

Nearly all solution horizon existence and discovery results have required a unique optimal
initial decision (see Bean and Smith 1984; Hopp, Bean, and Smith 1987; Bes and Sethi 1988).
However, Ryan and Bean [1987] show that in discrete decision problems, such a .equirement
may be difficult to meet. Moreover, discrete decisions arise in many problems, including
production planning, capacity expansion and equipment replacement.

Recently, Schochetman and Smith [1987] began to attack problems with multiple optima
by studying the convergence of sets of finite horizon optimal solutions. They showed that
if these sets converge as the horizon is lengthened, then a solution horizon may be found
by making appropriate selections from the sets. In this paper we force set convergence by a

suitable construction of the finite horizon sets. Rather than merely finding optimal solutions,



our algorithm finds the sets of solutions optimal to their own state. Similar ideas appear in
Bean and Smith [1986] and Chand and Morton [1986]. We provide a simple structural con-
dition under which these sets converge. Further, we derive an easily implemented selection,
or tie-breaking rule, for selecting one solution from each finite horizon set. The sequence of
selected solutions converges to an infinite horizon optimal strategy.

These constructions lead to a straightforward tie-breaking algorithm for choosing one of
potentially many optimal strategies. Our stopping rule, while not requiring uniqueness, may
still fail when there is more than one optimal initial decision. However, as illustrated by
an example, even when the algorithm fails to stop, the optimal strategies can be recognized
readily by examining the finite horizon sets. When applied to regeneration point problems,
the algorithm generalizes the forward algorithms of Shapiro and Wagner [1967] and Bean
and Smith [1984].

Section 1 is a mathematical statement of the problem and assumptions. In Section 2 we
review concepts of set convergence and apply them to discrete infinite horizon optimization.
The construction of finite horizon solution sets, conditions under which they converge, and
the algorithm and stopping rule appear in Section 3. In Section 4 we apply the algorithm
to capacity expansion problems and discuss the results of computational tests. Finally,

Section 5 contains conclusions.

1 Problem Definition and Assumptions

We model the infinite horizon sequential decision problem as in Bean and Smith [1986] with
an infinite directed decision network (A, A, C) where A is the set of nodes or decision points,
A is the set of arcs or decisions, and C : A — R is a cost function.

We impose three structural assumptions on (V,.A). First, we require that there be a



unique root node with in-degree one. Second, we assume that all node out-degrees are non-
zero and uniformly bounded. Finally, we assume that the cumulative in-degrees of all nodes
are finite, where the cumulative in-degree of a node is the sum of its in-degree and all in-
degrees of nodes from which there is a directed path to that node. From these assumptions
we can number the nodes M = {0,1,2,...} such that (i,5) € A only if 7 < j (Skilton 1985,
p. 230). Hence the node numbers can serve as a surrogate for time. Moreover, it follows
that there is a directed path from the root node 0 to each node : which can be continued
over the infinite horizon.

A path through the network, (o,%;,...), where iy = 0, represents a feasible strategy
7 = (m1,7m,...) in which the n' decision 7, = (in,in+1). Let II, be the set of decisions
available after n — 1 decisions have been made. We assume the decisions in II,, are indexed
by a subset of {0,1,...,M}, where M is uniform over n. Associated with each node ¢ is a
time T;, called a decision epoch, such that ¢ < j if and only if T; < T;. We assume T; — o0
as ¢ — oo.

Denote the set of feasible strategies (or paths) by I C x32,II,. We define a metric on

n=1
Xp21{0,1,..., M} as follows: for =, # € x3,{0,1,...,M},
plr,#) = Y- Bl
n=1

where 8 < H1+—1 Under this metric, the closeness of strategies is measured by agreement
in early decisions. This metric induces a topology on II which is identical to the product
topology; therefore II is a compact metric space (see Bean and Smith 1986).

Let ix(r) denote the k*® node visited by strategy =, where io(r) = 0. The cost of 7 is
given by

fo = 3 Clin(),ina(1)).

n=0



We assume that f, is uniformly convergent over = € II. The problem we wish to solve is:

f = min fr.

The minimum exists since II is compact and f, is a uniformly convergent sequence of contin-
uous functions and therefore continuous over = € II. A strategy 7 is termed infinite horizon
optimal if it minimizes f,. We will also refer to these as optimal strategies. An optimal
initial decision is an initial decision for some optimal strategy. Let II* and II} denote sets of
optimal strategies and optimal initial decisions, respectively.

The solution horizon approach involves solving finite horizon problems. We define the
T'-horizon cost of 7 as

(T2 3 Clinlm),ine(r).

{r|Tin(m<T}

We also define the following finite horizon sets of strategies:
II*(T) = {r € U|r € argmin f,(T)}

I'I(z) = {wln € arg min Z CUn(”)JnH(”))}

{rli=ix(r) for some k} nck
TI(T) = {r|r € [(in(r)), n such that T;,_, ) < T < Tin(m }-

The set II*(T) is the set of T—horizon optimal strategies, while H(z) is the set of strategies
optimal to node i. The set II(T) is the set of strategies optimal to their own node at or just
beyond time T. We will refer to this as the set of T'—horizon efficient strategies. In a discrete
time capacity expansion or production planning problem, these are the strategies optimal to
their own capacity or inventory level at time T, respectively. Note that I1*(T) C II(T). A
subscript of k on any set of strategies will denote the corresponding set of k't decisions.

A solution horizon is a time, T, such that for T > T, II3(T) = {=}}, for some ﬁxgd

7 € II}. A general solution horizon is a time, T, such that for T > T, I1;(T) € II;. Most
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algorithms in the literature have required the existence of solution horizons. In this paper,
we provide an algorithm that selects an optimal initial decision from II in the presence of a

general solution horizon.

2 Set Convergence in Discrete Infinite Horizon Opti-
mization

Previous authors (Bean and Smith 1984, Schochetman and Smith) have found solution hori-
zons by showing that if II* = {x*}, then an arbitrary choice 7*(T) € II*(T') converges to 7*
as T — oo. If optimal strategies are not unique, a natural extension is to seek convergence of
the sets II*(T') to the set II*. We have found such convergence to be rare, and have studied
instead the convergence of II(T) to II*. To lay a foundation for this development, we first
review and apply some concepts of set convergence for closed subsets of a compact metric

space.

Definition: Let II(T) C II. We say that II(T) is a T—horizon set if membership in

II(T) is determined by decisions made at or before time T (inclusive).

Schochetman and Smith introduce set convergence in infinite horizon optimization, using
the Hausdorff metric for closed and hence compact sets. As this metric is built up from the
strategy metric, p, set convergence is closely related to individual strategy convergence. To
establish and then exploit convergence of a sequence of finite horizon closed sets {II(T,)} to

the optimal set II*, we will use the following results for the discrete case.

R1. Set convergence means that subsequential limits are limits. Define liminf II(T},) to be
the set of all # € II such that there exists 7 € II(T,) for all n such that 7" — .

Define limsup II(T;,) to be the set of all 7 € II such that there exists a subsequence



{T:} of {T,} and 7* € I1(T%) such that 7* — . Then liminf II(T,) C limsup II(T,).
Schochetman and Smith show that II(T,) — II* in the Hausdorff metric if and only if
limsup II(T,,) = liminf I[1(T},) = II*.

R2. Set convergence is equivalent to early decision agreement. II(T,) — II* if and only if,

for any L, there exists N, such that if n > Ny, then

1. for any 7 € IT*, there exists 7" € II(T,) such that 7} =m, 1 <k < L, and

2. for any 7" € II(T,,), there exists = € II* such that 7, =7}, 1 < k < L.

In particular, if II(T,,) — II* and 7, = =} for all # € II*, 1 < k < L, then there exists

Np such that if n > N, then 7} = 73,1 < k < L, for all 7 € II(Ty,).

R3. Set convergence implies convergence of nearest-point selections. Let p be a point for
which there is a unique 7 € II* minimizing p(p, 7). Then p is called a uniqueness point
for II*. Let s,(II') be a strategy minimizing p(p, ) over = € II'. The function s,(-) is
called a nearest-point selection. From Schochetman and Smith, II(T,) — II* implies

sp(II(T,)) — s,(11°).

In the following, we show that the finite horizon and infinite horizon sets of strategies
involved in solving an infinite horizon problem are necessarily closed. Next we define a
unique lexicographic order for strategies and show that it is identical to the one obtained
by ordering according to distance from the point § = 0, measured by p. These results,
together with the continuity of p, imply that 8 is a uniqueness point for II* and interpret
s¢(+) as a simple tie-breaking rule, analogous to one used for resolving degeneracy in linear

programming.

Lemma 1 The sets I1* and II(T), where II(T) is any T—horizon set, are closed.
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Proof: II* is closed since f, is continuous in 7 and II is compact. For II(T), note that
there are a finite number of partial strategies up to time T. If II(T) is finite then it
is closed. Suppose that II(T) is infinite and that r is a cluster point of II(T'). Let
{x"}, be such that 7" € II(T) for all n and 7™ — 7 in p. Then {7"}32, is Cauchy,
which implies that for some N, {r", n > N} are in agreement with one another and

with 7 up to time T. Therefore = € II(T'). Thus II(T) contains all its cluster points,
and II(T') is closed. u

Definition: Let a = (a;,4,,...) and b = (b, by,...). We say that a < b (a is lexico-
graphically smaller than b) if and only if a # b and, if ng is the smallest n such that ap, # by,
then a,, < by, .

A strategy 7 is the lexico minimum of II' if # < 7 for all® € II', 7 # 7.

Lemma 2 For any closed set II' € II, s4(I') is the lezico minimum element of II' and

therefore is unique.

Proof: We will show that:

1. p(6,7) attains its minimum on 7 € IT,

2. p(8,7") < p(6,7?) if and only if 7! < =2

(1) and (2) imply that p(f, ) attains its minimum at the unique lexico minimum point

of IT'.
1. Follows immediately from the continuity of p and compactness of II.
2. Suppose 7! < #2. Then for some ny we have
! = 72 for n < ng and T, < T2,
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By assumption, 7} — 72 > —M for n > n,. Then

o(0,7%) - p(0,7) = 3" Fr(x? — 1)

n=ng

no+1 1
Afﬂ_ﬂ > 0 since § < T

2 pr -
Hence,
7! <72 = p(8,7') < p(8,7%).

Now suppose n! £ x2. Either 7! = x2 or 7! = 7%, If 7! = 72 then p(4,7!) =
p(8,7%). Suppose 7! > 7%, Then by the same argument as above, p(6,7!) >
p(8,7?). Hence

A7 = p(0,7") > p(6,7%). u

Lemmas 1 and 2 imply that we can apply result R3 whenever any sequence of T, —horizon

sets, {II(T,), n € N}, converges to II*. To summarize, we have:

Theorem 3 If {II(T,)} is some collection of T,—horizon sets, then the lezico minimum

element of II(T,,) converges to the lezico minimum element of II* whenever II(T,) — II*.
Proof: Follows from result R3 and Lemma 2. »

Assuming II(T,) — II*, Theorem 3 suggests the following algorithm:

Solve increasing length finite horizon problems, identifying for each T, the lexico

minimum element of II(T,).

The sequence of strategies thus generated converges to the lexico minimum infinite horizon

optimal strategy.



3 A Tie-Breaking Algorithm

Having seen that a tie-breaking algorithm can follow from set convergence, we now establish
conditions for set convergence to occur. Various concepts of reachability (McKenzie 1976)
have been used to identify solution horizons in the presence of a unique optimum (Lasserre
1986, Bean and Smith 1986). We show that a reachability condition guarantees the con-
vergence of the efficient sets II(T) to II* even in the absence of a unique optimum. This
convergence leads to a tie-breaking algorithm for identifying solution horizons. Further,
reachability sometimes can be determined simply from the problem structure.

Let g() be the minimum cost from the root node to node 7 and g¢'(¢) be the minimum
cost from 7 through the infinite horizon. Let g(]¢) be the cost of a minimum cost path from
the root node over the infinite horizon which passes through node i. By the principle of
optimality, g(|¢) = g(7) + ¢'(3).

As in Bean and Smith [1986], define weak reachability as follows:

Definition: A sequence of nodes {i,}, i, — 00, is weakly reachable if, for all € > 0,

there ezists an N, such that for all n > N, there is a j(n), an iy, and a path from ¢}, to
i, at cost ¢, with

9(ltn) < g(lin) + ¢,
where ¥(n) 1 @ node for some optimal strategy, ¥n) — 00, and ¢, — 0.

Bean and Smith show that g(i,) — f as n — oo if and only if {i,} is weakly reachable.
Let i(7,T) be the node for = at its first decision epoch greater than or equal to T. Thus
i(r,T) represents the head of the decision arc for 7 that ends at or just after time T'. Let

{T.} be any sequence of finite horizons such that T, — oo.

Theorem 4 If all sequences {ix} C N, i — 0o, are weakly reachable then 1(T,) — II*.
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Proof: We will show that
1. limsup II(T,,) C IT*,
2. II* C liminf [I(T5,).

(1) and (2) imply that limsup II(T,) = liminf [1(T,). The result then follows from

result R1 in Section 2.

1. Suppose 7 € limsupII(T,). Then there exists {Tx} C {T,} and 7* € II(T}) such
that 7% — 7. Let 44 = i(7,T}). Then iy — oo and g(ix) = frx(T). From the

uniform convergence of f,x, we have

fr“(Tk) — fvr-
But
(i) = f
since {7} is weakly reachable. Hence f, = f, and 7 € II*.

2. Suppose € II*. By the principle of optimality, 7 is optimal to each node it
traverses. Thus 7 € II(i,) for each n where i, = i(r,T,). Hence, = € 1I(T,,) for

all n and 7 € liminf 11(T},). ®

Lemma 5 If g(i) < g(j) whenever T; < T;, then all sequences {i,} C N, i, — oo, are

weakly reachable.

Proof: Choose any {i,} C N, i, — o0, and any ¢ > 0. Let {iz} be {i,(r)} for some
7 € I1*. Let
j(n) = max{jiTy < T},

11



and
T = Timar:
Then ¢, = C(}()s13(m)4+1) — 0 as n — oo since f < co. By the uniform convergence
of fr over = € I, there exists N, such that |¢'(i,)| < €/2 and |¢’(?;)| < €/2. Then for
n > N,,
9(lin) = g(liy) = g(in) — 9(in) + ¢'(in) = ¢'(i7) <€,

since

by hypothesis and
g'(in) = g'(i2) < 1g'(in) ] + 19 (50) | < &

Hence g([in) < g(li7) + € n
Theorem 6 If g(i) < g(j) whenever T; < T, then II(T,) — II*.

Efficient set convergence, therefore, follows from a simple structural property: that the
minimum cost to a node is monotonic in the time to reach that node. In general, this property
will only hold for a restricted class of problems where the decision network has been pruned
sufficiently. For example, in the next section, we show that it holds in a general model
of capacity expansion. However, in general weak reachability must be established directly
(see Bean and Smith [1986] for several applications where weak reachability holds). In the
meantime, either this result or Theorem 4, together with Theorem 3, yields the following

corollary. Let #(T,) and 7* be the lexico minimum elements of I1(T;,) and II*, respectively.

Corollary 7 If either of the conditions of Theorem 4 or Theorem 6 are satisfied, then

7(Tn) — =*.
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We can now present an algorithm for the case when efficient sets converge to the optimal
set. Let I1(T) be the set I1(T) with, for any node n, ties between strategies optimal up to n

broken by choosing the lexico minimum. Note that #(T) is its lexico minimum.
Tie-Breaking Algorithm
1. Let {T,}32, be any sequence of finite horizons with T, — co. Set n « 1.
2. Solve the T, —horizon problem to obtain I1(T},).

3. Iffor each n(T,) € fI(Tn) andforall1 < k < L, m(T,) = 7x(T,), then stop. Otherwise,

set n «— n + 1 and go to step 2.

Theorem 8 Suppose the condition of Theorem 4 or 6 is satisfied. Then

(i) If each strategy in I1* has the same first L decisions, {x},73,...,7}}, then the algorithm
will stop in finite time.
(ii) If the Algorithm stops at T,, then 7} = 7(T,), 1 < k < L, where n* is the lezico

mintmum of II*.
Proof:

(i) By hypothesis, II(T;,) — II*. Then, from result R2 in Section 2, we have 7} = j,
1 < k < L, for each 7" € 1I(T,) and each 7 € II*. Thus, since =(T,) € [I(T,) C

I(T,) and #(T,) € [I(T,), we have m(T,) = #x(T,) = 7}, 1 <k < L.

(i1) For simplicity, we present the proof for L = 1. By the principle of optimality,
7* C II(T,). Let n* be the node for 7* at or just beyond time T,. Then #;(Ty)
and 7} both initiate paths that are optimal to n*. By the definition of (T,),

#1(Tn) < 7}. Now suppose 71(T,) < 7. Then a new strategy, #, could be formed
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by following #(T,) to n* and continuing with 7* beyond n*. Then 7 € II* and

7 < m*. This contradicts the definition of 7*. =

Though uniqueness of the optimal initial decisions is sufficient for the algorithm to stop,
it is not necessary. The next subsection gives an example in which the algorithm stops in
the presence of infinitely many optimal strategies. Further, the minimal solution horizon
may be shorter than that discovered by the Algorithm. We can distinguish between two
types of horizons. A forecast horizon for the first L decisions is a finite horizon at which
the algorithm’s stopping rule is satisfied. It is called a forecast horizon since data beyond
that time are irrelevant to the optimality of the first L decisions. A solution horizon for L
is a time T such that if TV > T, then #x(T") = 7, 1 < k < L, for some 7* € II*. From
Theorem 8, the existence of a forecast horizon follows from uniqueness of the first L optimal
decisions. From Corollary 7, a solution horizon exists regardless of uniqueness. For long
enough T, the first L optimal decisions of #(T') agree with those of 7*. However, in practice
the solution horizon may be discovered in retrospect, once a forecast horizon has been found.
The minimal solution horizon for L is no longer than the corresponding forecast horizon.
Due to the lexico minimum selection rule, whether it is shorter depends on the (arbitrary)
assignment of indices to decisions. If leading optimal decisions have low indices, the solution
horizon is likely to be relatively short; if they have high indices, the two horizons will be the
same. Similarly, the extraction of II(T) from II(T) also depends on the indices assigned to
decisions. The minimal forecast horizon might be identified by testing the stopping rule for
every possible numbering of initial decisions in each iteration. We did not implement this

enhancement in our computations.
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3.1 Regeneration Point Problems

The tie-breaking algorithm is simplified when applied to regeneration point problems. Recall
that a decision epoch, T, is a regeneration point if the feasible decisions and costs beyond
T are independent of the sequence of decisions up to time T. A problem formulation has
regeneration point structure, or is a regeneration point problem, if the decision epochs for
all strategies are regeneration points. Then the decision network may be aggregated so
that there is at most one node for each point in time. Further, without loss of optimality,
the network may be pruned so that g(i) < g(j) for T; < T;. Examples include the dis-
counted knapsack problem of Shapiro and Wagner and production planning problems with
the Wagner-Whitin property.

Assume that the maximum time between any two nodes on the same path is bounded
by 7. Then I(T) = Upigir.r4- II"(T"). Also, letting 7*(T)) be the lexico minimum strategy
in II*(T), it follows that (T) = {x*(T"),T’ € [T,T +]}. The tie-breaking algorithm stops
when (77(T"),75(T"),...,7}(T")) is the same for each T € [T, T + r]. This stopping rule
is similar to that of Bean and Smith [1984], but will be satisfied more often due to the
tie-breaking scheme.

Shapiro and Wagner showed that the infinite horizon discounted knapsack problem is
solved by following a “turnpike” of least average cost decisions. If there is more than one
such decision, then II* is the (infinite) set of all possible sequences of them. However, in
the knapsack problem, one can show that II*(T) — II* (Ryan 1988). Then by Result R3 in
Section 2, #*(T) — =*, therefore }(T) = =} for all T sufficiently large, where 7*(T) and
7* are the lexico minimum T—horizon and infinite horizon optimal solutions, respectively.
Then 7}(T") = #}(T) for all T sufficiently large and T € [T, T + 7]. Hence, for T sufficiently

large, all solutions in [1(T)) have the same initial decision, so that the tie-breaking algorithm’s
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stopping rule is satisfied for L = 1. In fact, the tie-breaking algorithm is a generalization of

the Shapiro-Wagner algorithm.

4 Application to Capacity Expansion

We now apply the convergence results and algorithm to a general capacity expansion model.
Asin Bean and Smith [1985], suppose we are given a continuous demand function D(t), which
may be satisfied by any of a finite set of replicable facilities, indexed by 7 = 1,...,n. Facility
¢ incurs a fixed installation cost F; and provides X; units of capacity. No undercapacity is
allowed and costs are discounted. The case when D(t) = dt is equivalent to the discounted
knapsack problem.

We can assume without loss of optimality that a new facility is never deployed until all
existing capacity is exhausted. Therefore, restrict II to contain only strategies with this
characteristic. The nodes in the decision network then represent installation epochs. Bean
and Smith further argue that if T; < T; and ¢(¢) > ¢(j) for some pair of nodes ¢ and j, then
¢, resulting from a situation of low capacity at high cost, cannot be an installation epoch
for an optimal strategy. Once all such dominated nodes are pruned from the network, the

condition of Theorem 6 is immediately satisfied. Therefore II(T,) — II* and #(T,) — 7"

4.1 Computational Experience

The Tie-Breaking Algorithm can be implemented as a traditional forward dynamic program-
ming procedure, with little additional bookkeeping. We tested it using telephone capacity ex-
pansion problems from the literature, randomly generated problems, and a specially-designed
example. Dominated nodes were pruned from the network as they were discovered by the

dynamic programming procedure.
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For the four telephone link capacity expansion examples in Bean and Smith [1985], the
algorithm identified forecast horizons for the initial decision that were comparable to those
previously computed. In addition, the first ten optimal decisions were discovered with fore-
cast horizons of approximately 50 years or less. For the exponential demand example of
Smith [1979], the forecast horizon for the first decision was eleven years, and the first nine
decisions were uncovered with a 40-year horizon. Thus, for problems appearing in the liter-
ature, the tie-breaking algorithm performs as well as previous algorithms, but also uncovers
more of the optimal strategy.

To further test the algorithm while simulating real capacity decision problems, we gen-
erated five random sets of nine facilities each. The capacities were generated uniformly
between 0 and 100,000 units of capacity. Facility fixed costs were assigned according to the

Dixon-Clapp relation (Yaged 1975):
F; = KX:'I_’Y’

where 7 is an economy of scale factor, and K is a constant (set to 1 for convenience). For
these randomly generated facilities, the indices assigned to decisions were unrelated to the
relative sizes of the facilities. Thus, a lexico minimum selection is completely a-bitrary. As
noted previously, there is no way to predict whether solution horizons will be strictly shorter
than the corresponding forecast horizons.

To construct the first type of demand function tested, we generated incremental demands
randomly between 10,000 and 50,000 units. Thus the average facility of 50,000 units would
exhaust in one to five years. Each set of facilities was tested twice, giving a total of ten test
problems. The interest rate was set to 10.5 percent, as in the literature, and the economy of
scale factor to 0.5. In all ten problems, the optimal solution (up to the first ten decisions)

was to always install the largest (and eventually least average cost) facility.
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Figure 1 shows forecast horizons in number of decisions implemented for each L, 1 <
L <£10. The best case, worst case, and average over all ten test problems are displayed for
comparison. The L™ set of bars from the bottom gives the horizon length needed to discover
the optimal L' decision. For L = 1, the forecast horizon ranged between 6 and 12.5 years,
with an average of 9 years. In order to normalize over the random facility sizes, we report the
horizons in terms of the average number of installations required to reach them efficiently.
That is, the horizontal axis gives, rather than T, the average number of decisions up to time
T for strategies in II(T). An alternate way of interpreting the graph is that, for example,
on average for L = 5, when eight installations are required to reach a given time horizon
efficiently, the first 5 facilities installed by any lexico minimum efficient strategy are optimal.
Notice that, after a delay of approximately four installations, the forecast horizons increase
with a linear slope of nearly one with the number of decisions uncovered.

In some instances, solution horizons were considerably shorter than the corresponding
forecast horizons. Figure 1 also displays solution horizons for the average case.

In order to judge the algorithm’s performance when the optimal strategy contains a
variety of decisions, we designed a second type of random demand function. We started with
a sine wave with amplitude 50,000 and period 20 years. In an application such as along a
telephone link, incremental demand may be negative as traffic is diverted to other parts of
the network. To this cyclic pattern we added random annual increments of between 0 and
25,000 units. The interest rate was held at 10.5 percent, but the economy of scale factor
changed to 0.3 to provide a wider gap between costs of large and small facilities. Once again,
each facility set was tested with two demand functions for a total of ten test problems. In the
optimal strategies, large facilities alternated with smaller ones in an unpredictable sequence.

Figure 2 shows the best, average, and worst case forecast horizons for the cyclic demand
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Figure 1: Forecast horizons for the linear demand function, measured by the average number
of decisions implemented by efficient strategies. The best, average, and worst case forecast
horizons are shown as well as solution horizons for the average case.
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Figure 2: Forecast horizons for the cyclic demand function.

function, measured again by efficient facility installations. Though they are less smooth than
for linear demand, they once again increase approximately linearly in the number of optimal
decisions discovered, with a slope slightly more than one. The figure also gives a comparison
of the corresponding solution and forecast horizons for the average case.

The unevenness of the successive forecast horizons can be attributed to the cyclic de-
mand. As the horizon length, T, increased through years of declining demand, the sets
TI(T) typically remained unchanged. Subtracting capacity was not allowed, and there was
no reason to add more. Then, as demand started to increase again, strategies in I1(T)
were re-evaluated. As demand grew rapidly, several successive optimal decisions might be
determined all at once with a small increase in 7.

The longest forecast horizons occurred with a facility set in which the capacities of the
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two largest facilities differed by less than 0.5 percent. Most of the computational effort was
spent resolving ties between these two facilities, leading to solution and forecast horizons of
nearly 50 years for the first decision. Such a situation would be unlikely in practice. For the
other four facility sets, forecast horizons for L = 1 were between 7.5 and 28 years and the
corresponding solution horizons were between 0 and 9 years.

We also tested the algorithm with an example specially constructed to defeat the stopping
rule. In this example D(t) = €%* — 1, a special case of exponential demand as studied by
Smith [1979]. There are two facilities, with X; = 2, F} = 1, X; ~ 0.1052, and F; ~ 0.3314.
The interest rate is set at 0.4. Let 7! = (1,1,1,...) be the strategy of installing facility
1 indefinitely. Let 7% = (2,1,1,1,...) be the strategy of installing facility 2 once, then
facility 1 indefinitely. One can show that both 7! and 72 are both infinite horizon optimal.
Note that decision epochs for 7' and 7 never coincide: decision epochs for 7! occur when
D(t) = X,n for some integer n and those for 72 occur when D(t) = 0 or X; + X;m for some
integer m. We can also show that each strategy is optimal to its own decision epochs and
nonoptimal to the other strategy’s decision epochs. It follows that I;(T) = {1,2} for all
T, and the tie-breaking algorithm’s stopping rule is never satisfied. Details are contained in
Ryan [1988].

However, the algorithm is still informative when applied to this example. The finite
horizon efficient sets quickly settle into a pattern, allowing recognition that both optimal
strategies are at least near-optimal. Moreover, the lexico minimum efficient strategies (un-
derlined) converge to (1,1,...). Efficient sets for selected finite horizons are shown in Table

I. Notice that nonoptimal leading sequences soon disappear from II(T) as T increases.
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T'=1|T=5 |T=10 (T=15 |T=20 |T=25
21 2222221 | 2222221 | 21222221 | 2111221 | 21111122222222221
1 222221 | 222221 |2122221 |211121 |2111112222222221
22 22221 122221 (212221 21111 |211111222222221
2221 2221 21221 1111 21111122222221
221 221 2121 2111222 | 2111112222221
21 21 211 211111222221
1 1 11 21111122221
2111112221
211111221
21111121
2111111
11111

Table 1: Efficient sets, II(T'), for an example where the stopping rule fails.

5 Conclusions

Acknowledgement
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Solution horizon methods for solving infinite horizon problems have been burdened by the
requirement of a unique optimum. As shown by Ryan and Bean, and illustrated by our
example, such an assumption may not be true or easily verified. The tie-breaking algorithm
is an efficient approach for finding solution horizons in the presence of multiple optima.
When the stopping criterion is not met, the nature of the set convergence allows a decision
maker to intelligently select so as to approximate them by solving finite horizon problems.
In future research, we hope to develop bounds on the nearness to optimality of finite horizon

efficient solutions. Such bounds will allow the derivation of near-solution horizons.
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