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This paper proposes a new method for representing and solving Bayesian decison problems. The representation is called
a valuation-based system and has some similarities to influence diagrams. However, unlike influence diagrams which
emphasize conditional independence among random variables, valuation-based systems emphasize factorizations of joint
probability distributions. Also, whereas influence diagram representation allows only conditional probabilities, valuation-
based system representation allows all probabilities. The solution method is a hybrid of local computational methods for
the computation of marginals of joint probability distributions and the local computational methods for discrete
optimization problems. We briefly compare our representation and solution methods to those of influence diagrams.

he main goal of this paper is to propose a new
method for representing and solving Bayesian
decision problems. We propose a new répresentation
of a decision problem called a valuation-based system.
A graphical depiction of a valuation-based system is
called a valuation network. Valuation networks are
similar in some respects to influence diagrams. Like
influence diagrams, valuation networks are a compact
representation emphasizing qualitative features of
decision problems. Also, like influence diagrams, val-
uation networks allow representation of decision prob-
lems without any preprocessing. However, there are
some differences. Whereas influence diagrams empha-
size conditional independence among random vari-
ables, valuation networks emphasize factorizations of
joint probability distributions. Also, the representa-
tion method of influence diagrams allows only con-
ditional probabilities. While conditional probabilities
are readily available in pure causal models, they are
not always readily available in other graphical models
(see, for example, Darroch, Lauritzen and Speed
1980). The representation method of valuation-based
systems is more general and allows direct representa-
tion of all probability models.
The solution method proposed is a hybrid of local
computational methods for computations of the mar-
ginals of joint probability distributions and local

computational methods for discrete optimization.
Local computational methods for computation of the
marginals of joint probability distributions have been
proposed by, e.g., Pearl (1988), Lauritzen and
Spiegelhalter (1988), Shafer and Shenoy (1988,
1990), Jensen, Lauritzen and Oleson (1990), and
Jensen, Olesen and Anderson (1990). Local compu-
tational methods for discrete optimization are also
called nonserial dynamic programming (Bellman
1957, Bertele and Brioschi 1972). Viewed abstractly
using the framework of valuation-based systems, these
two local computational methods are actually quite
similar. Shenoy and Shafer (1990) and Shenoy (1991b)
show that the same three axioms justify the use of
local computation in both cases.

Valuation-based systems are described in Shenoy
(1989, 1991c). In valuation-based systems, we repre-
sent knowledge by functions called valuations. We
draw inferences from such systems using two oper-
ations called combination and marginalization.
Drawing inferences can be described simply as mar-
ginalizing all variables out of the joint valuation. The
joint valuation is the result of combining all valua-
tions. The framework of valuation-based systems is
powerful enough to also include Dempster-Shafer
theory of belief functions (Shenoy 1991c), Spohn’s
theory of epistemic beliefs (Shenoy 1991a, c),

Subject classifications: Decision analysis, theory: representation, and solution using local computation. Dynamic programming, Markov, finite state:
solution using local computation. Networks/graphs: representation for decision, optimization and probabilistic inference problems.

Area of review: DECISION ANALYSIS, BARGAINING AND NEGOTIATION.

Operations Research
Vol. 40, No. 3, May-June 1992

0030-364X/92/4003-0463%01.25
© 1992 Operations Research Society of America



464 / SHENOY

possibility theory (Dubois and Prade 1990), proposi-
tional logic (Shenoy 1990a), and constraint satisfac-
tion problems (Shenoy and Shafer 1988).

Traditional methods of representing problems in
decision theory are payoff matrices and decision trees.
The payoff matrix representation has its origins in the
work of von Neumann and Morgenstern (1953) on
normal form games and was made popular by Savage
(1950). It is a convenient representation in problems
where there is one decision to be made and one
common uncertainty for all acts. In multistage deci-
sion problems, a payoff matrix representation requires
the enumeration of possible strategies and the com-
putation of the joint distribution of all random vari-
ables. Each of these two tasks can be computationally
intractable due to combinatorial explosion.

A decision tree is a more flexible and graphic rep-
resentation tool especially for multistage decision
problems. Decision trees have their genesis in the work
of von Neumann and Morgenstern on extensive form
games. One distinct advantage of decision trees is that
an optimal strategy can be identified using dynamic
programming methods without enumerating all pos-
sible strategies (Zermelo 1913, Bellman 1957, Raiffa
and Schlaifer 1961). Raiffa and Schlaifer call the
dynamic programming method for solving decision
trees “averaging-out-and-folding-back.”

Although decision trees are more expressive and
computationally more efficient than payoff matrices,
decision trees have several drawbacks. First, since
decision trees explicitly represent acts and events, the
trees grow too fast in many problems. Thus, an »-
stage decision problem with m choices or events at
each stage has at least m” endpoints.

Second, probabilities of events may not be available
in the form that decision tree methodology requires.
In such cases, it is necessary to compute these proba-
bilities from the available probabilities using the laws
of probability theory. This is a major drawback of
decision trees. There should be a cleaner way of sep-
arating a representation of a problem from its solution.
The former is hard to automate while the latter is
easy. Decision trees mix these two tasks making auto-
mation difficult. The problem of finding marginals
from a factored representation of the joint distribution
has received much attention in the literature on uncer-
tainty in artificial intelligence (e.g., Pearl 1988, Shafer
and Shenoy 1988, 1990, Lauritzen and Spiegelhalter
1988, Jensen, Olesen and Andersen 1990, and Jensen,
Lauritzen and Olesen 1990).

Third, the decision tree representation demands
conditional probability distributions at each random
variable node. This demand often necessitates division

operations (in the preprocessing of probabilities) that
may be unnecessary. The uncessary divisions are com-
pensated for by multiplications that neutralize the
divisions. These unnecessary divisions and multi-
plications make the decision tree solution process
inefficient.

Influence diagrams were initially proposed as an
alternative to decision trees for represent decision
problems (Miller et al. 1976, Howard and Matheson
1984). Subsequently, Olmsted (1983) and Shachter
(1986) devised methods for solving influence diagrams
directly (without having to convert them to decision
trees). In the last decade, influence diagrams have
become popular for representing and solving decision
problems (Oliver and Smith 1990).

Influence diagrams do not share some of the draw-
backs of decision trees mentioned above. First, since
acts and events are not graphically depicted, influence
diagrams do not grow as fast as decision trees. Second,
users can input conditional probabilities directly in
the form they are available without having to compute
the posteriors. The computation of the posteriors is
part of the process of solving influence diagrams
(Olmsted 1983, Shachter 1986, Tatman 1986, Ezawa
1986, Tatman and Shachter 1990). The process of
solving influence diagrams involves arc reversals and
node removals. Although the process of solving influ-
ence diagrams is more complex than the process of
solving decision trees, the process can easily be auto-
mated (Shachter 1988).

The representation method of influence diagrams
allows only conditional probabilities. While condi-
tional probabilities are readily available in pure causal
models, they are not always available in other graph-
ical models (see, e.g., Darroch, Lauritzen and Speed
1980, Wermuth and Lauritzen 1983, Edwards and
Kreiner 1983, Kiiveri, Speed and Carlin 1984). In
such cases, the probabilities have to be preprocessed
before they can be represented in influence diagrams.
The representation method of valuation-based sys-
tems is more general—all probability models can be
represented directly without any preprocessing.

The arc reversal operation in influence diagrams
involves unnecessary divisions. As in decision trees,
these unnecessary operations are the result of influ-
ence diagram representation requirements that allow
only conditional probabilities. The solution method
for valuation-based systems described in this paper
involves minimal division. If there is only one joint
utility function (in unfactored form), then our method
involves no divisions. This assumption of one joint
utility function is similar to the assumption in influ-
ence diagrams that there is only one value node (see,



e.g., Shachter 1986). Also, if we have a factorization
of the joint probability distributions into conditionals
and the ordering of the variables is consistent in some
sense with the information constraints, then again,
our method involves no divisions. Finally, if the com-
bination of valuations is associative, as, for example,
it is if the joint utility function factors multiplicatively,
then again no divisions are necessary. In general, if we
want to take computational advantage of an additive
factorization of the joint utility function, then divi-
sions may be necessary.

An outline of this paper is as follows. In Section 1,
we give a complete statement, decision tree represen-
tation, and decision tree solution of the oil wildcatter’s
problem (Raiffa 1968). We use the oil wildcatter’s
problem to illustrate all definitions in the paper. In
Section 2, we describe valuation-based systems specif-
ically designed for the representation and solution of
Bayesian decision problems. In Section 3, we define
combination and marginalization operations used for
solving valuation-based systems. In Section 4, we
describe the semantics of a valuation-based system
representation, and the conditions under which such
a representation is well defined. In Section 5, we
describe a fusion algorithm for solving valuation-
based systems using local computation. In Section 6,
we compare valuation-based systems to influence dia-
grams. In Section 7, we make some concluding
remarks. Finally, Section 8 contains a proof of the
main theorem in the paper.

1. THE OIL WILDCATTER’S PROBLEM

The oil wildcatter’s problem is reproduced with minor
modifications from Raiffa. An oil wildcatter must
decide either to drill (d) or not drill (~d). He is
uncertain whether the hole is dry (dr), wet (we) or
soaking (so0). Table I gives his monetary payoffs and
his subjective probabilities of the various states. The
cost of drilling is $70,000. The net return associated
with the d-we pair is $50,000, which is interpreted as
a return of $120,000 less the $70,000 cost of drilling.
Similarly, the $200,000 associated with the d-so pair

Table I
The Payoff Matrix for the Oil Wildcatter’s Problem

State and Act
Wildcatter’s

Profit, $ Drill Not Drill Probability

() (d) (~d) of State

Dry (dr) —70,000 0 0.500
Wet (we) 50,000 0 0.300
Soaking (so) 200,000 0 0.200
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Table 11
Probabilities of Seismic Test Results Conditional
on the Amount of Oil

Seismic Test Results (R)

Amount of No Open Closed
Qil (0) Structure Structure Structure
PRR|0O) (ns) (os) (cs)

Dry (dr) 0.600 0.300 0.100
Wet (we) 0.300 0.400 0.300
Soaking (s0) 0.100 0.400 0.500

is a net return (a return of $270,000 less the $70,000
cost of drilling).

At a cost of $10,000, the wildcatter could take
seismic soundings which will help determine the geo-
logical structure at the site. The soundings will disclose
whether the terrain below has no structure (ns)—
(that’s bad), or an open structure (os) (that’s so-so), or
a closed structure (cs) (that’s really hopeful). The
experts have provided us with Table II which shows
the probabilities of seismic test results conditional on
the amount of oil.

2208 5o

0375 .090

S0

© 0417 100

Figure 1. The preprocessing of probabilities in the oil
wildcatter’s problem.

Figures 1 and 2 show a decision tree representation
and solution of this problem. Note that even before
the decision tree can be specified completely the con-
ditional probabilities in the tree have to be computed
from those specified in the problem, as in Figure 1. In
Figure 1, the probability tree on the left is used to
compute the joint probabilities, and the probability
tree on the right is used to compute the marginals for
test results and the conditional probabilities of the
amount of oil given test results. As we will see later,
all computations in the probability tree on the right
are unnecessary.

Figure 2 shows the solution of the oil wildcatter’s
problem. The optimal strategy is to do a seismic test,
not drill if the seismic test reveals no structure, and
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Figure 2. A decision tree representation and solution
of the oil wildcatter’s problem.

drill if the seismic test reveals either open or closed
structure. The expected profit associated with this
strategy is $22,500.

2. VALUATION-BASED SYSTEM
REPRESENTATION

A valuation-based system representation of decision
problems uses decision varibles, random variables,
frames, payoff valuations, potentials, and precedence
constraints. We will discuss each of these in detail. A
graphical representation of these objects is called a
valuation network. Figure 3 shows a valuation network
for the oil wildcatter’s problem.

2.1. Variables, Frames and Configurations

A decision node is represented as a variable. The
possible values of a decision variable represent the
acts available at that point. We use the symbol 7, for
the set of possible values of decision variable D. We
assume that the decision-maker has to pick one and
only one of the elements of 7}, as their decision. We
call 75, the frame for D. Decision variables are repre-
sented in a valuation network by rectangular nodes.
In the oil wildcatter’s problem, there are two deci-
sion nodes D and 7. The frame for D has two acts:
drill (d), and not drill (~d). The frame for T also has

two elements: do a seismic test (¢), and not do a
seismic test (~¢).

If R is a random variable, we use the symbol 7% to
denote its possible values. We assume that one and
only one of the elements of 7% can be the true value
of R. We call 7% the frame for R. Random variables
are denoted in valuation networks by circular nodes.

In the oil wildcatter’s problem, there are two ran-
dom variables: amount of oil (O) and seismic test
results (R). The frame for O has three elements: dry
(dr), wet (we), and soaking (s0). The frame for R has
four elements: no result (nr), no structure (#ns), open
structure (os), and closed structure (cs).

Let 25 denote the set of all decision variables, let
%% denote the set of all random variables, and let
Z = 2 U 2% denote the set of all variables. In this
paper, we are concerned only with the case where 27
is finite. We also assume that all the variables in 2
have finite frames. We use upper-case Roman alpha-
bets to denote variables.

We often deal with nonempty subsets of variables
in 2. Given a nonempty subset % of 2, let 7}, denote
the Cartesian product of 7y for X in A, i.e., 7; =
x{7x | X € h}. We can think of 7;, as the set of possible
values of the joint variable 4. Accordingly, we call %7,
the frame for h. Also, we refer to elements of 7 as
configurations of h. We use this terminology even
when # consists of a single variable, say X. Thus, we
refer to elements of 7y as configurations of X. We use
lower case, boldface letters, such as x and y, to denote
configurations. Also, if x is a configuration of g, yis a
configuration of 4, and g N & = &, then (x, y) denotes
a configuration of g U A.

It is convenient to extend this terminology to the
case where the set of variables / is empty. We adopt
the convention that the frame for the empty set &
consists of a single configuration, and we use the
symbol 4 to name that configuration; 75 = {¢}. To

T
Seismic |
Test?

Figure 3. A valuation network for the oil wildcatter’s
problem.



be consistent with this notation, we adopt the conven-
tion that if x is a configuration for g, then (x, 4) = x.

2.2. Valuations

Suppose that 7 C 2 A payoff valuation = for h is a
function from %;, to R, where R denotes the set of real
numbers. The values of payoff valuations are conse-
quences, for example, utilities, profit, and cost. If 4 =
dUr, wheredC 2pand rC 2%, X EZy, and y € 75,
then =(x, y) denotes a partial payoff to the decision
maker if the decision maker chooses configuration x
and the true configuration of ris y. The exact meaning
of a payoff valuation is given in Section 4. If = is a
payoff valuation for 4 and X € A, then we say that
w bears on X.

In a valuation network, a payoff valuation is repre-
sented by a diamond-shaped node. To permit the
identification of all valuations that bear on a variable,
we draw undirected edges between the payoff valua-
tion node and all the variable nodes it bears on. In
the oil wildcatter’s problem, there are two payoff
valuations 7 and «, as shown in Figure 3. Table III
shows the details of these valuations.

Suppose that # C 2 such that A N 2% # &. A
potential p for h is a function from % to the unit
interval [0, 1]. The values of potentials are probabili-
ties. The exact meaning of a potential is given in
Section 4.

In a valuation network, a potential is represented
by a triangular node. Again, to permit the identifica-
tion of valuations that bear on a variable, we draw
undirected edges between a potential node and all the
variables nodes it bears on.

Suppose that # C 2, R is a random variable in A,
and p is a potential for 4. If all the values of p represent
conditional probabilities for R given configurations of
the variables in 4 — {R}, then we call p a conditional
potential for R given h — {R}. In this case, p satisfies

Y {ole, r)|r € Zx} = 1 for all ¢ € #)—). (1
Table II1
Payoff Valuations in the Oil Wildcatter’s Problem
W{D,O) ™ %‘ﬂ K
d dr -70,000 t -10,000
d we 50,000 ~t 0
d so 200,000
~d dr 0
~d we 0
~d so 0
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Table IV
Potentials in the Oil Wildcatter’s Problem
Yo o V' (1,R0) I
dr 0.500 t ns dr 0.600
we 0.300 t ns we 0.300
SO 0.200 t ns so 0.100
t os dr 0.300
t os we 0.400
t os so 0.400
t ¢s dr 0.100
t cs we 0.300
t cs so 0.500
~t nr dr 1.000
~t nr we 1.000
~t nr so 1.000

2 Only nonzero probability values of x are shown.

In a valuation network, a conditional potential p
for R given i — {R} is represented by making the edge
between the potential node p and the variable node R
directed (pointed toward R). In the oil wildcatter’s
problem, there are two potentials p and u, as shown
in Figure 3. Table I'V shows the details of these poten-
tials. Note that y is a conditional potential for R given
{T, O}, and p is a conditional potential for O given &.

In a valuation network, both variables and valua-
tions are represented by nodes. To help the reader
keep these objects separate, we use upper case Roman
alphabets to label variables and lower case Greek
alphabets to label valuations.

Let #, denote the set of subsets of 2° for which
payoff valuations exist in the valuation-based system.
For simplicity of exposition, we assume that each
decision variable in 2% is included in some element
of #, i.e.,

U7 2 2. (2)

Let #; denote the set of subsets of 2 for which
potentials exist. We assume that each random variable
is included in some element of #%, i.e.,

U #k 2 Z&. (3)

& = #p U #. From (2) and (3), it is clear that
U # = % Using the language of graph theory, the
set # is called a hypergraph on 2, and each of its
elements is called a hyperedge. We call #, the payoff
hypergraph and #; the potential hypergraph.

2.3. Precedence Constraints

Besides acts, events, probabilities and payoffs, an
important ingredient of problems in decision analysis
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is information constraints. Some decisions have to be
made before the observation of some uncertain events,
and some decisions can be postponed until some
events are observed. In the oil wildcatter’s problem,
for example, the amount of oil is revealed only after
the ground is drilled or perhaps it is never revealed,
the decision whether to drill or not may be postponed
until the seismic test result is revealed.

If a decision-maker expects to be informed of the
true value of random variable R before they make a
decision D, then we represent this situation by the
binary relation R — D (read as R precedes D). On the
other hand, if a random variable R is only revealed
after a decision D is made or perhaps never revealed,
then we represent this situation by the binary relation
D — R. It is possible that in some problems, we may
have precedence constraints between two decision
nodes or between two random variable nodes. For
example, if random variable R, is only revealed after
random variable R, is revealed, we represent this by
the relation R, — R,.

In the oil wildcatter’s problem, we have the prece-
dence constraints 7 — R, R — D, D — O. The seismic
test result (R) is only revealed after we make the
decision to do a seismic test or not (7°). The decision
to drill or not to drill (D) is only made after observing
the test results (R). Finally, the amount of oil (O) is
only revealed if we make the decision to drill (D).
Obviously, these are not the only constraints. In the
oil wildcatter’s problem we also have, for example,
T — O. But such constraints can be deduced, and
there is no reason to include all such constraints in
the representation. On the other hand, the problem
can incorrectly be overconstrained, permitting no
solution. For example, if 7— R and R — T, then this
will preclude a solution. Therefore, we do not permit
such precedence constraints.

What restrictions do we need to impose on the
precedence relation —? We require four conditions.
First, we require that the transitive closure of —,
denoted by >, is a partial order on #. We call this
first condition the partial order condition. Second, we
require that this partial order > is such that for any
D € 23 and any R € 2%, either D > R or R > D.
We call this second condition the perfect recall
condition. (This terminology is borrowed from Kuhn
(1953). In the influence diagram literature, this con-
dition is called the “no-forgetting assumption” (How-
ard and Matheson 1984).) Third, if R is a random
variable such that there exists a conditional potential
for R given & — R, and if D is a decision variable in
h, then we require that D > R. Fourth, if D is a
decision variable and there exists a potential for / such

that D € A, then we require that D > R for some
random variable R € 4. We call the third and fourth
conditions consistency conditions.

Before we explain the reasons for these three con-
ditions, let us explain the terms transitive closure and
partial ordering. The transitive closure of — is defined
as:

i. X> Y whenever X — Y, and
ii. X > Y whenever there exists a Z € 2 such that
X>Zand Z>Y.

A binary relation > is a partial order on 2 if it satisfies
the following two properties:

i. (Irreflexive): X > X for no X € &
ii. (Transitive): X> Yand Y > Z imply X > Z.

The reason for the partial order requirement is
obvious. The reason for the perfect recall condition is
as follows. Given the meaning of the precedence rela-
tion —, for any decision variable D and any random
variable R, either R is known when decision D has to
be made, or not. This translates to either R > D or
D > R. Finally, the consistency conditions are dictated
by the meaning of potentials. If the conditional prob-
ability distribution of random variable R depends on
the act chosen by the decision maker at node D, then
it must be the case that D > R.

In summary, a valuation-based system representa-
tion of a decision problem consists of a finite set of
decision variables 2%, a finite set of random variables
2%, a finite frame %% for each variable X in 25 U 2%,
a finite collection of payoff valuations {=r, ..., 7.},
a finite collection of potentials {p,, ..., p,}, and a
precedence relation — on 2% U 2%. Thus, a valuation-
based system (VBS) can be denoted formally by the
6-tuple

{%5 %2, {%{}XG%& fﬂ'l, ..

"Wm}’ {pl,-”:pn}_)}

representing decision variables, random variables,
frames, payoff valuations, potentials, and the prece-
dence relation, respectively.

3. COMBINATION AND MARGINALIZATION

In this section, we define two operations called com-
bination and marginalization. We use these operations
to solve valuation-based systems. Precise definitions
require extensive notation that will test the patience
of the reader. For relief, we use the oil wildcatter’s
problem to illustrate all definitions. First, we start with
some notation we need to define combination and
marginalization.



3.1. Projection of Configurations

Projection of configurations simply means dropping
extra coordinates; if (w, x, y, z) is a configuration
of {W, X, Y, Z}, for example, then the projection of
(w, x, y, z) to {W, X} is simply (w, x), which is a
configuration of { W, X}.

If g and A are sets of variables, # C g, and x is a
configuration of g, then let x!* denote the projection
of x to &. The projection x!" is always a configuration
of h. If h = g and x is a configuration of g, then
x"=x.1If h=@, then xV' = @,

3.2. Combination

The definition of combination depends on the type of
valuations being combined. Suppose that / and g are
subsets of 2, =; is a payoff valuation for 4, and =, is a
payoff valuation of g. Then the combination of =; and
w;, denoted by 7; ® =}, is a payoff valuation for 4 U g
defined as

(7 ® m;)(x) = 7(x*") + 7,(x'*) 4)

for all x € Z,,.

Suppose that # and g are subsets of 2] =, is a payoff
valuation of 4, and p; is a potential for g. Then the
combination of w; and p;, denoted by 7; ® p;, is a
payoff valuation for 4 U g defined as

(1 ® p)(x) = mi(x!")p;(x*) 6]

for all x € #j,u,. And the combination of p; and ;,
denoted by p; ® =;, is a payoff valuation for &/ U g
defined as

p@mi=m;® p,. (6)

Suppose that # and g are subsets of 2 p; is a
potential for 4, and p; is a potential for g. Then the
combination of p; and p;, denoted by p; ® p;, is a
potential for 4 U g defined as

(pi ® p))(X) = pi(x*")p;(x %) (7

for all X € Zj,.

First, note that the combination of two payoff val-
uations is a payoff valuation, the combination of two
potentials is a potential, and the combination of a
payoff valuation and a potential is a payoff valuation.
This is consistent with the units of the values of the
valuations because values of potentials are probabili-
ties, which are dimensionless quantities.

Second, note that a combination of two payoff
valuations consists of pointwise addition. This
assumes that the joint payoff function factors addi-
tively as in the oil wildcatter’s problem. (If it factored
multiplicatively, we would have defined this combi-
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nation as pointwise multiplication.) Combination of
two potentials consists of pointwise multiplication.
Probability theory mandates this. Finally, combina-
tion of a payoff valuation and a potential consists of
pointwise multiplication. This is one of the operations
in computing expected payoffs. (The other operation,
summation, is part of the definition of marginalization
given below.)

Third, note that combination is commutative. Also,
the combination for payoff valuations is associative.
Thus, if {r,, ..., m} is a set of payoff valuations,
we write ®{r,, ..., 7} to mean the combination
of valuations in {mr,, ..., m} in some sequence.
Similarly, the combination of potentials is associative,
and if {p,, ..., p«} is a set of potentials, we write
®fp; ..., pr} to mean the combination of potentials
in {p;, ..., px} in some sequence. In general, the
combination for a mixture of payoff valuations and
potentials is not associative, e.g., (p ® )® 7, #
01 ®(m; ® 7). In such cases, what sequence should we
use? We define combination such that the payoff
valuations are combined before combining the poten-
tials. Formally, suppose that =, ..., m are payoff
valuations, and p;, ..., p; are potentials. Then let
®fmi, ..oy Tk, p1s .. .5 p;} denote ®fmry, ..., m})®
(®{p1, . . ., p;}). Finally, note that if we have only one
payoff valuation and several potentials, then combi-
nation is associative. We can assume that we have
only one payoff valuation by combining all payoff
valuations before we combine the potentials.

Tables V and VI illustrate the combination oper-
ation using valuations from the oil wildcatter’s
problem.

3.3. Vacuous Potentials

Suppose that p is a potential for g. We say that p is
vacuous if p(r) = 1 for all r € 7,. It follows from the
definition of combination, that if u is a potential for
g and p is a vacuous potential for g, then p @ u = u.

3.4. Marginalization

Suppose that / and g are subsets of variables, and g is
a subset of 4. Marginalization is an operation when
we reduce a valuation for / to a valuation for g by
eliminating variables in # — g. Unlike combination,
the definition of marginalization does not depend on
the type of valuation being marginalized. But the
definition of marginalization depends on the type of
variables being eliminated. If the variable being elim-
inated is random, marginalization is achieved by sum-
ming the valuation over the frame of the eliminated
variable. In this case, the valuation being marginalized
may be either a payoff valuation or a potential. If the «
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Table V
Combination of Payoff Valuations = and «,
and Potentials p and u

Y (1.0,0) o K T ®«k
t d dr —70,000 —10,000 —80,000
t d we 50,000 —10,000 40,000
t d so 200,000 —10,000 190,000
t ~d dr 0 —10,000 —10,000
t ~d we 0 —10,000 —10,000
t ~d so 0 —10,000 —10,000
~t d dr —70,000 0 -70,000
~t d we 50,000 0 50,000
~t d so 200,000 0 200,000
~t ~d dr 0 0 0
~t ~d we 0 0 0
~t ~d so 0 0 0
Y \1.R.0) p I p®u
t ns dr 0.500 0.600 0.300
t ns we 0.300 0.300 0.090
t ns so 0.200 0.100 0.020
t os dr 0.500 0.300 0.150
t os we 0.300 0.400 0.120
t o0s SO 0.200 0.400 0.080
t ¢cs dr 0.500 0.100 0.050
t cs we 0.300 0.300 0.090
t cs so 0.200 0.500 0.100
~t nr dr 0.500 1.000 0.500
~t nr we 0.300 1.000 0.300
~t nr so 0.200 1.000 0.200

variable being eliminated is a decision variable, mar-
ginalization is achieved by maximization (or minim-
ization depending on the nature of the values of the
payoff valuations) over the frame of the eliminated
variable. In this case, the valuation being marginalized
must be a payoff valuation. A formal definition of
marginalization is as follows.

Suppose that 4 is a subset of 2 containing random
variable R, and « is a valuation for 4. The marginal
of a for h — {R}, denoted by o'"~**D_is a valuation for
h — {R} defined as

=Ry = ¥ {alc, 1) | ¥ € Zi} ®)

forall ¢ € 7z

Suppose that /4 is a subset of 2 containing decision
variable D, and « is a payoff valuation for A. The
marginal of o for h — {D}, denoted by a'"~'*, is a
valuation for 4 — {D}) defined as

al1P0(c) = MAX{a(c, d) | d € 75} ©)

for all ¢ € #Z)—ip)-

Some observations: If « is a payoff valuation, then
(8) corresponds to the second operation in “averaging
out” a random variable. (The first operation is
included in the combination operation.) On the other
hand, if « is a potential, then (8) simply represents the
familiar marginalization operation in probability
theory. Table VI shows an example of marginalizing
a random variable.

Condition 9 assumes that the nature of the values
of a payoff valuation is such that the decision-maker’s
objective is to maximize it. This is true if the payoff
values represent utility, profits, probability of success,
etc. On the other hand, in some problems, the
decision-maker may wish to minimize the payoff
values, when they represent disutility, cost, probability
of failure, etc. In this case, we need to substitute MIN
for MAX in (9). Condition 9 corresponds to “folding-
back.” Table VII shows an example of marginalizing
a decision variable.

We now state three lemmas regarding the margin-
alization operation. Lemma 1 states that in
marginalizing two decision variables out of a valua-
tion, the order in which the variables are eliminated
does not affect the final result. Lemma 2 states a
similar result for marginalizing two random variables
out of a valuation. Lemma 3 states that in marginal-
izing a decision variable and a random variable out of
a valuation, the order in which the two variables are
eliminated may make a difference.

Lemma 1. Suppose that h is a subset of  containing
decision variables D, and D,, and « is a payoff val-
uation for h. Then

(authl}))l(h_‘Dl’Dz,)(c) - (al(h-‘lDz’))l(h—‘DpDz})(c)
for all ¢ € #),—p, p,y.

Proof. The proof follows trivially from the definition
of marginalization.

Lemma 2. Suppose that h is a subset of & containing
random variables R, and R,. and « is a valuation for
h. Then

(a 1(h—!R|})1(h—lR1,Rz))(c) = (al(h*FRz))) l(h—¢R1,Rzl)(c)

Jorall ¢ € #—r, ry-

Proof. The proof follows trivially from the definition
of marginalization.

Lemma 3. Suppose that h is a subset of & containing
decision variable D and random variable R, and o is
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Table VI
Computation of (7 ® k) ® p ® u and (7 ® «) ® p & u)H"RD
Y \1,R,D.0) T« p®u (T®K)Bp®pu ((r ® k) ® p ® p)i!TRD
t ns d dr —80,000 0.300 —24,000 —16,600
t ns d we 40,000 0.090 3,600
t ns d so 190,000 0.020 3,800
t ns ~d dr —10,000 0.300 —3,000 —4,100
t ns ~d we —10,000 0.090 —900
t ns ~d so —10,000 0.020 —-200
t os d dr —80,000 0.150 —12,000 8,000
t os d we 40,000 0.120 4,800
t os d so 190,000 0.080 15,200
t os ~d dr —10,000 0.150 —1,500 -3,500
t os ~d we —10,000 0.120 -1,200
t os ~d so —10,000 0.080 —800
t ¢s d dr —80,000 0.050 —4,000 18,600
t s d we 40,000 0.090 3,600
t ¢s d so 190,000 0.100 19,000
t ¢s ~d dr —10,000 0.050 -500 —2,400
t ¢cs ~d we —10,000 0.090 —-900
t cs ~d so —10,000 0.100 —1,000
~t nr d dr —70,000 0.500 —35,000 20,000
~t nr d we 50,000 0.300 15,000
~t nr d so 200,000 0.200 40,000
~t nr ~d dr 0 0.500 0 0
~t nr ~d we 0 0.300 0
~t nr ~d so 0 0.200 0
Table VII
Computation of 7478 W, 7171 712 and ¥,
Y \1,,D) THTRD) THUTA V) 77 2 (#) Vr(4)
t ns d —16,600 —4,100 ~d 22,500 22,500 t
t ns ~d —4,100
t os d 8,000 8,000 d
t os ~d -3,500
t s d 18,600 18,600 d
t cs ~d —2,400
~t nr d 20,000 20,000 d 20,000
~t nr ~d 0

41 denotes the joint valuation (7 ® ) ® p ® u.

a payoff valuation of h. Then
(@MDY U=IRDD () 5 o lh=IRD)L-IRDY(c)
Sforall c € #j—ir.p).

Proof. The proof follows trivially from the definition
of marginalization.

It is clear from Lemma 3, that in marginalizing
more than one variable, the order of elimination of

the variables may make a difference. As we will see
shortly, we need to marginalize all variables out of the
joint valuation. What sequence should we use? This
is where the precedence constraints come into play.
We define marginalization such that variable Y is
marginalized before X wherlever X > Y.

Suppose % and g are nonempty subsets of 27 such
that g is a proper subset of 4, « is a valuation for 4,
and > is a partial order on 2’ satisfying the perfect
recall condition. The marginal of « for g with respect
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to the partial order >, denoted by «'%, is a valuation
for g defined as

al® = (@M HD)-IXXD) Y= X XD, (10)

where h — g ={X,, ..., Xi}, and X, X, ... X is a
sequence of variables in 4 — g such that with respect
to the partial order >, X, is a minimal element of
h — g, X, is a minimal element of &/ — g — {X}}, etc.

The marginalization sequence X, X . .. X; may not
be unique because > is only a partial order. But, since
> satisfies the perfect recall condition, it is clear from
Lemmas 1 and 2, that the definition of «'¢ in (10) is
well defined.

3.5. Solution for a Variable

As we will see shortly, the main objective in solving a
decision problem is computing an optimal strategy.
Computing an optimal strategy is a matter of book-
keeping. Each time we eliminate a decision variable
from a payoff valuation using maximization, we store
a table of optimal values of the decision variables
where the maximums are achieved. We can think of
this table as a function. We call this function “a
solution” for the decision variable. Formally, we
define a solution as follows.

Suppose /4 is a subset of variables such that decision
variable D € h, and = is payoff valuation for 4. A
function ¥p: #),_p) — #p is called a solution for D
(with respect to «) if

= P(c) = w(c, ¥p(c)) (11)

for all ¢ € #)—ip;.

Table VII shows the solution for D with respect to
(r ® K)® p ® p)'TRP! and the solution for T with
respect to ((r ® ¥)® p ® u)!™ in the oil wildcatter’s
problem.

3.6. Strategy

The main task in a decision problem is to compute
an optimal strategy. What constitutes a strategy?
Intuitively, a strategy is a choice of an act for each
decision variable D as a function of configurations of
random variables R such that R > D. Let Pr(D) =
{R € 2z | R > D}. We call Pr(D) the predecessors of
D. Thus, a strategy o is a collection of functions
{€p)pesy, Where Ep: Woip) — Pb.

Suppose that ¢ = {£p}pes;, IS a strategy, and y is a
configuration of 2%. Then ¢ and y together determine
a unique configuration of 2%. Let a,, denote this
unique configuration of 5. By definition

allPl = g,(y¥ ) for all D € 25.

In the next section, we will formally define the
decision problem. Before we can do this, we will have
to explain the semantics of a VBS representation.

4. WELL DEFINED VBS REPRESENTATIONS
AND SEMANTICS

In this section, we describe when a VBS representation
of a decision problem is well defined. We also describe
the semantics of a well defined VBS representation.
Suppose that

A‘_" {%7%{, [%{}XGZ’F, {7"1: oo 77TM}, {pla' . 9pl1}7__)}

is a VBS representation of a decision problem. How
can we tell if A is well defined? And, assuming that A
is well defined, what does A mean? We will answer
these two related questions in terms of a canonical
decision problem.

4.1. Canonical Decision Problem

A canonical decision problem Ac consists of a single
decision variable D with a finite frame %5, a single
random variable R with a finite frame %%, a
single payoff valuation = for {D, R}, a single condi-
tional potential p for R given {D}, and a precedence
relation — defined by D — R. Figure 4 shows a
valuation network and a decision tree representation
of the canonical decision problem.

The meaning of the canonical decision problem is
as follows. The elements of %, are acts, and the
elements of 7% are states of nature. The conditional
potential p is a family of probability distributions for
R, one for each act d € #5. In other words, the
probability distribution of random variable R is con-
ditioned on the act d chosen by the decision maker.
The probability p(d, r) can be interpreted as the con-
ditional probability of R = r given that D = d. Using

pd;,ry)

n(d;, 1y)

P n(dy, Tm)

pdy, 1) "y 1)

7(dns Tm)

Py, Tm)

Figure 4. A VBS and a decision tree representation of
the canonical decision problem.



our marginalization notation, (1) for a conditional
potential can be written as

pHP! is the vacuous potential for D, i.e., p''Pi(d) = 1
foralld e 7p. (12)

The payoff valuation = is a conditional payoff func-
tion—if the decision maker chooses act d and the state
of nature r prevails, then the payoff to the decision
maker is w(d, r). The precedence relation — states
that the true state of nature is revealed to the decision
maker only after the decision maker has chosen an
act.

Solving a canonical decision problem using the
criterion of maximizing expected payoff is easy. The
expected payoff associated with act d is

2 {(r ® p)d, 1) |1 € 7z} = (v ® p)!P)(d).

The maximum expected payoff (associated with an
optimal act, say d¥) is

MAX{(r ® p)!'?'(d) | d € 7}
= ((r ® p)!'?)1%(#) = (1 ® p)!(¥).
Finally, act d* is optimal if and only if
(r ® p)HPU(d*) = (7 ® ) ().
Consider the decision problem

A__'{%D’%;{%(}XE%’ {ﬂ'la' . ’TWIL{pl" . ,,p”}’-—)}_

We will explain the meaning of A by reducing it to
an equivalent canonical decision problem A, =
{{D}, {RY, {#b, Z&}, {r}, {p}, —}. To define Ac, we
need to define #p, #p, w, and p. Define %5 such that
for each distinct strategy o of A, there is a correspond-
ing act d, in 7. Define %% such that for each distinct
configuration y of 2% in A, there is a corresponding
configuration r, in Zx.

Before we define payoff valuation = for {D, R}, we
need some notation. Consider the joint payoff valua-
tion 7, ® ... ® 7, in A. By (2), the domain of this
valuation includes all of %5. Typically, the domain of
this valuation will also include some (or all) random
variables. Let p denote the subset of random variables
included in the domain of the joint payoff valuation,
ie., p € 2 such that -, ® ... ® 7, is a payoff
valuation for 75 U p. Define payoff valuation = for
{D, R} such that

m(d,, ry) = (1 ® ... ® 1) (a,y, Y¥) (13)

for all strategy o of A, and for all configurations y €
¥, Remember that a,, is the unique configuration
of 2% determined by ¢ and y.
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Consider the joint potential p; ® ... ® p,. By (3),
this potential includes all random variables in its
domain. Let g denote the subset of decision variables
included in the domain of the joint potential, i.e.,
q C© 25 such that p; ® ... ® p, is a potential for
q U Z&. Note that g could be empty. Define potential
p for {D, R} such that

p(ds, 1) = (01 ® ... ® py)(alh, y) (14)

for all strategy o, and for all configurations y € %7z,;
Ac, as defined above in (13) and (14), is a canonical
decision problem only if p, defined in (14), is a con-
ditional potential satisfying condition (1). This moti-
vates the following definition: A is a well defined VBS
representation of a decision problem if and only if

2o ®@...®p)X, V) |y EZ2) =1 (15)

for every x € %,, or equivalently, if and only if
(01 ®...® p,)'is the vacuous potential for g. We are
assuming, of course, that (1) for conditional potentials,
(2) for the payoff hypergraph %5, (3) for the potential
hypergraph #%, and the four conditions for the pre-
cedence relation —, are true.

In summary, a VBS representation A of a decision
problem is well defined if: 1) for conditional poten-
tials, 2) for the payoff hypergraph, 3) for the potential
hypergraph, the four conditions for the precedence
relation, and (15) for the potentials, are all satisfied.
Furthermore, in a well defined VBS representa-
tion A of a decision problem, the payoff valuations
{mi, ..., mm} represent the factors of a joint payoff
function 7, and the potentials {p;, ..., p.} represent
the factors of a family of probability distributions p.

It is easy to verify that the VBS representation of
the oil wildcatter’s problem described in Section 2 is
well defined. Note that the domain of the joint poten-
tial p ® u (shown in Table V) is {T, R, O}. Since T is
the only decision variable in this set, because 7 has
no predecessors, and the frame for 7" has two config-
urations, there are exactly two distinct strategy com-
ponents ¢7. Thus, p ® u represents a family of two
distinct joint distributions for {R, O}, one conditioned
on the decision to perform a seismic test (£(4) = ¢)
and another conditioned on the decision to not per-
form a seismic test (£(#) = ~1).

4.2. The Decision Problem
Suppose that

A= {%9%% {%}XE&% {Wla .. ~>7TWI}> {plao .. ,pn};_)}

is a well defined decision problem. Let Ac = {{D},
{R}, {#b, &}, {7}, {p}, —} represent an equivalent
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canonical decision problem. In the canonical deci-
sion problem Ac, the two computations that are of
interest are the computation of the maximum
expected value (v ® p)'?(#), and the computation
of an optimal act d,- such that (= ® p)!Pi(d,~) =
(7 ® p)?(#). Since we know the mapping between A
and Ac, we can now formally define the questions
posed in a decision problem A. There are two com-
putations of interest.

First, we would like to compute the maximum
expected value of the payoffs. The maximum expected
payoffis given by (® (7, ..., Tm, p1, « - ., pu})2(®).

Second, we would like to compute an optimal
strategy o* that gives the maximum expected value
(®(71, .oy Ty P1, - -+ 5 pu})Y2(®). A strategy o* of A
is optimal if
(7r®p)“D’(dd*) =(®(7l'1 se v sTmyPlye sy pn})lg(.%
where =, p, and D refer to the equivalent canonical
decision problem Ac.

The computation of an optimal strategy in the oil
wildcatter’s problem is shown in Table VII. The max-
imum expected value is $22,500. An optimal strategy
can be constructed from the information in ¥, and
¥, as follows. From ¥, it can be seen that the oil
wildcatter should do the seismic test (¢). From ¥, it
can be seen that if the test result is #s, then the optimal
decision is not to drill (~d). However, if the test result
is either os or cs, then the optimal decision is to drill
(d). Note that the solution of VBS involves no divi-
sions. Thus, the computation of the conditional dis-
tribution of O given R (during the preprocessing of
probabilities) in the decision tree methodology is
unnecessary.

5. A FUSION ALGORITHM FOR SOLVING VBS
USING LOCAL COMPUTATION

In this section, we describe a method for solving VBS
using local computation. The solution for the oil
wildcatter’s problem shown in Tables V, VI, and VII
involves combination on the space 7. While this is
possible for small problems, it is computationally not
feasible for problems with many variables. Given the
structure of the oil wildcatter’s problem, it is not
possible to avoid the combination operation on the
space of all four variables, 7, R, D, and O. However,
in some problems, it may be possible to avoid such
global computations.

The basic idea of the method is to successively delete
all variables from the VBS. The sequence in which
variables are deleted must respect the precedence con-

straints in the sense that if X > Y, then Y must be
deleted from X. Since > is only a partial order, a
problem may allow several deletion sequences. Any
allowable deletion sequence may be used. All allowa-
ble deletion sequences lead to the same answers. How-
ever, different deletion sequences may involve
different computational costs. We will comment on
good deletion sequences at the end of this section.

When we delete a variable, we have to do a “fusion”
operation on valuations that bear on the variable.
Before we describe the fusion operation, we need to
define a division operation for potentials.

Division. Suppose that « is a potential for g, and 2 C
g. Then we define /o', called o divided by oV, to
be a potential for g defined as

(/o)1) = a(r)/at(r'") (16)

for all r € 7;. If a(x) = a**(r¥") = 0, then we consider
(a/a¥)(r) = 0. In all other respects, the right-hand side
of (16) should be interpreted as the usual division of
two real numbers. Since a'(r*") = « (r) for all r € 7,
a/a'" is a well defined potential. If « is a potential for
g such that o' is a vacuous potential for 4, then
a/a'" = . For example, if « is a conditional potential
for R given g — {R}, then it follows from the definition
of a conditional potential that «¥¢~*®Y ig a vacuous
potential. Thus, if « is a conditional potential for R
given g — {R}, then o/l R = o,

Fusion. The fusion operation depends on the type of
variable being eliminated and the nature of valuations
that bear on the variable. Consider a set of valuations
consisting of j payoff valuations =, ..., m; and k
potentials p;, ..., px. Suppose that =; is a payoff
valuation of 4;, and p; is a potential for g;. Let
Fusy{mi, ..., 7, p1, ..., px} denote the collection of
valuations after fusing the valuations in the set
{wi, ..., ™, p1, ..., px} With respect to variable X.

Case 1. Suppose that D is a decision variable, and
none of the potentials bear on D. Then Fusp{r,, ...,

T, P15+« -, P} 18 & collection of valuations defined as
FUSD{Wl, ey Ty Ply o v vy pk}
= {Wl(h_{D‘} U{W,ID $ hi}U{pla ceey pk}} (17)

where = = ®{x;| D € h;}, and h = U{h;| D € h;}.

In this case, after fusion, the set of valuations is
changed as follows. All payoff valuations that bear on
D are combined, and the resulting payoff valuation is
marginalized such that D is eliminated from its
domain. The payoff valuations that do not bear on D,
and all potentials, remain unchanged.



Case 2. Suppose that R is a random variable, and
none of the j payoff valuations bear on R. In this case,

Fusg{mi, ..., 7, p1, ..., p} is defined as
FUSR{7l'1, ey Ty Pry o v vy Pk}
= {Wla LI 7rj} U{pl I R e gf}U{pl(g—[RD}’ (18)

where p = ®{p;| R € g}, and g = U{g;| R € &}

In this case, after fusion, the set of valuations is
changed as follows. The payoff valuations remain
unchanged (since they do not bear on R). The poten-
tials that do not bear on R remain unchanged. The
potentials that bear on R are combined and the result-
ing potential is marginalized such that R is eliminated
from its domain.

Case 3. Suppose that R is a random variable, and
all j payoff valuations bear on R. In this case,

Fusg{mi, ..., m, p1, ..., pi} is defined as
Fusg{mi, ..., 7, p1y ...y i}
= {(r ® p) N U {p; | R €& g}, 19)
where
7=Q{m|RE W} =®m, ...,

p =®pi| R € g}, h =Ulh| R E hi},
and
g=Ulg|R E g}.

In this case, after fusion, the set of valuations is
changed as follows. All payoff valuations and those
potentials that depend on R are combined, and the
resulting payoff valuation is marginalized such that R
is eliminated from its domain. The potentials that do
not bear on R remain unchanged.

Case 4. Suppose that R is a random variable, there is
a payoff valuation that bears on R, and there is a
payoff valuation that does not bear on R. In this case,

Fusg{mi, ..., m, p1, ..., pr} is defined as
Fusg {mi, ..., ™, p1, .., P&}
= {m:| R h}U{[r ®(p/p "= IRD)|rup-RD}
Ulpi | REgiJUlpte R0, (20)
where

m=Q®fm: | R E hi}, p = ®{p:| R € g},
h= U{h,IRE l’l,’},
and

gUlg| R E g}.
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In this case, after fusion, the set of valuations is
changed as follows. The payoff valuations that do not
bear on R, and the potentials that do not bear on R,
remain unchanged. A new potential, p'¢~%) is cre-
ated. Finally, we combine all potentials that bear on
R, divide the resulting potential by the new potential
that was created, combine the resulting potential with
the payoff valuations that bear on R, and marginalize
the resulting payoff valuation such that R is eliminated
from its domain.

In Markov decision processes, it is often the case
that the new potential created in Case 4 is vacuous. If
p¥&~ 18D s a vacuous potential for g — {R}, then (20)
can be simplified as

Fusg{mi, ..., T, o1y oo v s P1)
= {m| R & I} U {(x ® p)l oIt}
U {pi| R & g, (21)
where
=@ {m|RE M}, p=®{p;|RE g},
h=U{h|RE h},
and

g=Ulg|RE g}

We are now ready to state the main theorem.

Theorem 1. Suppose that
A= {%)9 %?s {%(}XEQ"’

{7['1, L] 7l',7,}, {pls ce ey pn}a __)}

is a well defined decision problem. Suppose that
X\ X, ... Xi is a sequence of variables in & =
2 U 2% such that with respect to the partial order >,
X, is a minimal element of 2, X, is a minimal
element of & — {X\}, etc. Then {(®{m\, ..., Tm,
Pis v pa)P} = Fusyd. .. Fusy, {Fusx,{mi, ..., Tm,
Prseees an~

Let us illustrate the statement of Theorem 1 for the
oil wildcatter’s problem. In this problem, we have
payoff valuation « for {7}, payoff valuation = for
{D, O}, potential p for {O}, and potential u for
{T, R, O}. Also, as per the precedence constraints,
T> R > D> O. First, it is easy to see that after fusing
with respect to O (using (20)), the set of valuations is

f, (r ® (0 ® w)/(p ® wHTFHUTELL (p @ p)UTRIY,

Second, after fusing with respect to D (using (17)), the
set of valuations is

{k, (r ® ((p ® w)/(p @ wWHFNHUTE (p @ u)UTAI},
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Third, after fusing with respect to R (using (21))
since (p ® w)!'"! is a vacuous valuation), the set of
valuations is

fe, (7 ®(p @)/ (p® ! TR (p® ) TR 1T,
Note that the second payoff valuation
( ® (b ® W/lp ® WU @ (p @ )17

simplifies to
((m ® (p ® W)U = (7 @ p @ )M,

Finally, after fusing with respect to 7 (using (17)), the
set of valuation reduces to the singleton set

{(k® (7 ® p ® u)l1")i2}.
As per Theorem 1,
(k@M ®p®u?=(xk®(r®p® u)e

In the oil wildcatter’s example, notice that the di-
vision in the first fusion operation is neutralized by
the multiplication in the third fusion operation. A
natural question that arises is: Can the division in (20)
always be avoided? One way to avoid the division in
(20) is to avoid circumstances where (20) applies. One
way to avoid the circumstance where (20) applies is
to make sure we have only one payoff valuation. If
there is only one payoff valuation in the valuation-
based system, then whenever we fuse valuations with
respect to a random variable, either Case 2 or 3 will
apply, never Case 4. If we have more than one payoff
valuation, then we can always combine these to get
one valuation before we start the fusion algorithm. Of
course, this means that we will be unable to take
advantage of a factorization of the joint utility func-
tion. In the oil wildcatter’s problem, if we combine «
and 7 before we start the fusion algorithm, then the
computations in the fusion algorithm are exactly the
same as the computations in solving the problem
globally (as was done in Section 4).

Another way to avoid divisions is to have a factori-
zation of the joint probability distributions such that
the added potential is always vacuous. (In this case,
we can always use (21) instead of (20) and avoid
divisions.) The added potential is always vacuous if
we have only a conditional potential for each random
variable such that the variables on which the proba-
bilities are conditioned always precede the random
variable. This typically happens in Markov decision
problems. An example of such a problem follows.

5.1. A Finite Markov Decision Problem

Consider a valuation-based system as shown in
Figure 5. There are three random variables, R, R,

Figure 5. A finite Markov decision problem.

and R;, and two decision variables, D,, and D,. The
information constraints are as follows. The decision
maker first chooses an act from 75, then from 77,
When the decision maker has to choose an act from
frame #5,, she knows only the true value of all random
variables in the set {R;|j < i}. The probability distri-
bution of R, only depends on R;—, and D,—,. Thus, we
are given a conditional potential p, for R, given &
representing the prior probability of R;, a conditional
potential p, for R, given {R,, D,}, and a conditional
potential p; for R; given {R,, D,}. Finally, the joint
payoff function factorizes additively into three factors
m for {R,, D\}, w, for {R,, D>}, and =3 for {R3}.

Figure 6 shows the solution of the Markov decision
problem using the fusion algorithm. The first valua-
tion network in the figure shows the result after dele-
tion of random varible R; and the resulting fusion.
Note that since p; is a conditional potential for R;
given R, and D,, by definition of a conditional poten-
tial, p!*®>P2 is a vacuous potential. Therefore, (21)
applies. The second valuation network shows the re-
sult after deletion of decision node D, and the result-
ing fusion using (17). Step 3 is similar to Step 1, and
Step 4 is similar to Step 2. Finally, Step 5 is similar to
Step 1. Note that the fusion method for solving this
problem involves no divisions.

In general, if we wish to take advantage of an
additive factorization of the joint payoff valuation,
and if we have arbitrary potentials, then divisions may
be inescapable. The following example demonstrates
this.

Consider a valuation-based system as shown in
Figure 7 with two random variables, R, and R, and
one decision variable D. We are given one potential p
for {R;, R,} representing the joint probability distri-
bution for {R,, R,}. The joint payoff valuation factors
additively into two payoff valuations, =, for {R,}, and
m, for {D, R,}. The precedence constraints are: R, —
D — R,. Figure 7 shows the details of the valuations
and the valuation network representation. A global
solution of this problem involves computing

() ® 75) ® p)URePhlIR) 12
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Figure 6. The fusion algorithm for the VBS in
- Figure 5.

which, of course, involves no divisions. If we, however,
apply the fusion algorithm to the set of valuations
{1, w2, p}, then after deletion of all three variables,
the valuation in the resulting singleton set is

([ ® [12 ® (p/pHRN]HRI] ® pliRi})i2,

Note that since combination is not associative, the
division in this computation is unavoidable, i.e.,

(I, ® 72 ® (o/p“]I1R1] @ pHiR) 12
# (m; @ [y @ p]HRH2,

The fusion operations in (17), (18), (19), and (21),
say with respect to X, can simply be redescribed as

B ak} = {al(h-—{X}} U {ailX e hi}5 (22)

where @« = ® {o; | X € A} and h = U{h | X € h}. In
words, after fusion the set of valuations is changed as
follows. All valuations that bear on X are.combined,
and the resulting valuation is marginalized such that

FUSX{Oél, e
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X is eliminated from its domain. The valuations that
do not bear on X remain unchanged.

The fusion operation in (20) is the only one that
involves division and is designed especially to take
care of the nonassociativity of the combination oper-
ation (see the proof of Theorem 1 in Section 8). One
implication is that if the combination is associative,
then the fusion operation can be simplified as in (22)
and no divisions are necessary (see Shenoy 1990b for
a proof of this assertion). The combination operation
is associative if, for example, the utility function
in a decision problem factorizes multiplicatively.
In this case, for computational purposes, it is not
necessary to distinguish between payoff valuations
and potentials.

5.2. Deletion Sequences

Since > is only a partial order, in general, we may
have many sequences of variables that satisfy the
condition stated in Theorem 1. (We call such se-
quences deletion sequences.) If so, which deletion
sequence should one use? First, note that all dele-
tion sequences lead to the same final result. This is
implied in the statement of the theorem. Second,
different deletion sequences may involve different
computational efforts. For example, consider the VBS
shown in Figure 8. In this example, deletion sequence
R,>R,D involves less computational effort than
R, R,D as the former involves combinations on the
frame of only two variables, whereas the latter involves
combinations on the frame of all three variables.
Finding an optimal deletion sequence is a secondary
optimization problem that has been shown to be
NP-complete (Arnborg, Corneil and Proskurowski
1987). However, there are several heuristics for finding
good deletion sequences (Kong 1986, Mellouli 1987,
Zhang 1988).

15
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d o~ (100)
n 100 ~d r 0
~T} 0 ~d -y 0

Figure 7. A decision problem requiring divisions in
the fusion algorithm.
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Figure 8. A VBS with two deletion sequences, R,R,D
and R,R,D.

One such heuristic is called one-step-look-ahead
(Kong). This heuristic tells us which variable to delete
next from among those that qualify. As per this heu-
ristic, the variable that should be deleted next is one
that leads to combination over the smallest frame. For
example, in the VBS of Figure 8, two variables qualify
for the first deletion, R, and R,. This heuristic would
pick R, over R, because deletion of R, involves com-
bination over the frame of {D, R,, R.}, whereas dele-
tion of R, only involves combination over the frame
of {R,, R,}. Thus, this heuristic would choose deletion
sequence RoR, D.

Consider the VBS in Figure 9. This VBS is essen-
tially the same as the VBS of Figure 8 except that the
precedence constraint R, — R, has been added (say
R, is only observed after R, is observed). In this VBS,
the partial order > only allows deletion sequence
R\R,D. 1t is clear from Lemma 2, however, that we
would get the same answer if we had dropped the
constraint R, > R, from the partial order >. One
advantage of dropping this constraint is that we can
solve the problem more efficiently. Let >’ denote the
order obtained from > by dropping pairs of the type
R; > R; and by dropping pairs of the type D; > D;,
where R;, R; are random variables and D;, D; are
decision variables. From Lemmas | and 2, it is clear
that we can substitute >’ for > in the statement of
Theorem 1 and the theorem remains valid.

AN
()
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Figure 9. The solution of this VBS can be found more
efficiently by dropping the pair R, > R,
from the partial order >.

6. COMPARISON WITH INFLUENCE DIAGRAMS

In this section, we briefly compare our VBS represen-
tation and solution of decision problems with the
influence diagram representation and solution. We
assume that the reader is familiar with the influence
diagram representation and solution methodology
(Olmsted 1983, Howard and Matheson 1984,
Shachter 1986, Tatman 1986, Ezawa 1986, Howard
1990, Tatman and Shachter 1990).

An influence diagram representation of a decision
problem consists of decision nodes, random variable
nodes, subvalue nodes, supervalue nodes, directed
edges, a conditional potential for each random vari-
able node, and a payoff valuation for each subvalue
node. Figure 10 shows an influence diagram represen-
tation of the oil wildcatter’s problem.

In influence diagrams, decision variables are shown
as rectangular nodes, random variables are shown as
circular nodes, and payoff valuations are shown as
diamond-shaped nodes.

In influence diagrams, potentials are not depicted
explicitly. It is implicit that each random variable
node has a conditional potential given its direct pre-
decessors. (Node X is a direct precedessor of node Y
if there is a directed edge (X, Y) in the diagram.) For
example, the influence diagram for the oil wildcatter’s
problem shown in Figure 10 assumes a conditional
potential for O given &, and a conditional potential
for R given {7, O}. One advantage of this representa-
tion is that all conditional independences among ran-
dom variables can easily be read from an influence
diagram (Pearl, Geiger and Verma 1990). VBSs, on
the other hand, emphasize factorizations of the joint
probability distributions. Although factorizations have
not been as well studied as conditional independences,
the two are equivalent. For example, it is well known
from probability theory that random variables X and
Y are independent with respect to joint probability P
if and only if P = Q ® R, where Q is a potential
for {X}, and R is a potential for {Y} (e.g., see Pearl,
p. 83).

Payoff valuations are shown explicitly in influence
diagrams as subvalue nodes. The directed edges that
point to subvalue nodes indicate the domain of the
payoff valuations. The direction of these edges have
no special significance. In the influence diagram for
the oil wildcatter’s problem, there are two subvalue
nodes corresponding to payoff valuations = for {D, O}
and « for {T}. In the influence diagram representation
of the oil wildcatter’s problem, there is a third value
node 7 connected to = and «; 7 represents the combi-
nation m ® « and is called a supervalue node. In
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Figure 10. Aninfluence diagram representation of the
oil wildcatter’s problem.

valuation networks, combination is implicit and is not
shown explicitly.

In influence diagrams, information constraints are
encoded in the form of directed edges pointing to
decision nodes. The semantics of these directed edges
are as follows. For any decision node D and any
random variable node R, the true value of R is known
to the decision maker at the point in time when they
have to choose an act from the frame D if and only if
there is a directed edge in the diagram from R to D.
In the influence diagram representation of the oil
wildcatter’s problem, there are no directed edges
pointing to 7. This implies that nothing is known
when the decision whether to perform a seismic test
or not is made. Also, there are two directed edges
(T, D) and (R, D). This means that at the point in
time when the decision whether to drill or not has to
be made, the oil wildcatter’s knows the decision re-
garding performance of the seismic test and also
knows the test results, but not the amount of oil. The
oil wildcatter does not know the amount of oil (at the
time the decision to drill is made) because there is no
directed edge (O, D) in the diagram.

Given an influence diagram representation, the
translation to a VBS representation is clear. This
means that the fusion algorithm described in Section
5 can be applied also to influence diagrams. On the
other hand, if we have a well defined VBS represen-
tation such that all potentials are conditional poten-
tials, then the translation to an influence diagram
representation is also clear. However, if we have a
VBS representation with potentials that are not con-
ditional potentials, then there is no direct equivalent
influence diagram representation. (By direct, we mean
without any preprocessing.) For example, Figure 11
shows a valuation-based system with two random
variables and one decision variable. The potential p
for {R,, R,} is the joint probability distribution of
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R, and R,. The joint utility function factors multi-
plicatively into two factors, m, for {D, R,} and =,
for {R,, R,}. There is no direct influence diagram
representation of this problem. An influence dia-
gram representation of this problem involves, for ex-
ample, the computation of the marginal of R;, p‘®,
and the computation of the conditional of R, given
{R1}, p/p'®'. Note that these computations are unnec-
essary for an efficient solution of the problem given
by ([m, ® (w2 ® p)F]P)le.

6.1. Solving Influence Diagrams

Here we only compare the arc reversal method for
solving influence diagrams with the fusion algorithm
for solving VBSs. We refer the reader to Olmsted,
(1983), Shachter (1986), Ezawa (1986), Tatman
(1986), and Tatman and Shachter (1990) for details
about the arc reversal method.

Assume that each random variable node has a con-
ditional potential stored at its location, and assume
that each subvalue node has a payoff valuation stored
at its location. These valuations get modified in the
solution process. The process of solving influence
diagrams involves arc reversals and node removals.
Nodes are successively removed until only one value
node remains.

Removal of a random variable node involves aver-
aging the payoff valuations that depend on the random
variable node using the potential stored at the ran-
dom variable node. Compared to VBSs, this operation
corresponds to fusing the valuations that bear on the
random variable node.

Removal of a decision node involves first combining
the payoff valuations that depend on the decision node
and then maximizing the resulting payoff valuation
over the frame of the decision node. The resulting
valuation is stored at a value node. Compared to
VBSs, this operation corresponds to fusing the payoff
valuations that bear on the decision node.

/2

=22

& <

Figure 11. A VBS that has no direct influence dia-
gram representation (left); an equivalent
influence diagram representation after pre-
processing (right).
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Removal of value nodes corresponds to combining
the valuations stored at the value nodes and storing
the result at another value node.

As in VBSs, the sequence of removals of random
variable nodes and decision nodes must respect the
precedence constraints expressed by the directed edges
pointing to decision nodes. Also, a random variable
node can be removed only if it is not a predecessor
for any other random variable nodes in the diagram.
If a random variable node is a predecessor for other
random variable nodes, then these arcs have to be
reversed before the random variable node can be
removed.

In VBSs, the fusion algorithm combines all valua-
tions that contain the variable being marginalized. In
influence diagrams, this condition is achieved by arc
reversals. Arc reversals ensure that all valuations con-
taining the node being removed are combined prior
to removing the node. However, the arc reversal op-
eration also involves unnecessary divisions and mul-
tiplications to ensure that the resulting potentials at
all random variable nodes are conditional potentials.
It is this aspect of the arc reversal operation that makes
the influence diagram solution less computationally
efficient than the solution mcthod of VBSs.

If we disregard the unnecessary divisions and
multiplications, the solution method of influence dia-
grams is as efficient as that of VBSs. The computa-
tional efficiency of the influence diagram solution
method depends on the node removal sequence. The
computational efficiency of the VBS solution method
also depends on the deletion sequence. If the same
sequence is used in both cases, we get approximately
the same computational efficiency. In Section 5, we
described the one-step-look-ahead heuristic due to
Kong for picking the sequence of variables. In the case
of influence diagrams, Olmsted, and Ezawa describe
some heuristics for selecting the sequence of node
removals.

7. CONCLUSIONS

The main objective of this paper is to propose a new
method to represent and solve decision problems. The
VBS representation and solution described here is a
hybrid of valuation-based systems for probability
propagation (Shenoy 1991c) and valuation-based
systems for optimization (Shenoy 1991b).

There are several advantages of the VBS represen-
tation and solution of decision problems. First, like
influence diagrams, a valuation network representa-
tion is compact when compared to decision trees. A
valuation network graphically depicts the qualitative

structure of the decision problem and de-emphasizes
the quantitative details of the problem. However, both
VBSs and influence diagrams are appropriate only for
symmetric decision problems. For asymmetric deci-
sion problems, decision tree representation is more
flexible. '

Second, like influence diagrams, the VBS represen-
tation separates the formulation of the problem from
its solution.

Third, in symmetric decision problems, the solu-
tion procedure of VBSs is more efficient than that
of decision trees. This assumes that the computa-
tional procedure of decision trees includes the pre-
processing of probabilities. The solution procedure of
decision trees includes unnecessary divisions. The un-
necessary divisions take place during preprocessing of
probabilities. ;

Fourth, the VBS representation is more powerful
than influence diagram representation. Whereas influ-
ence diagram representation is only capable of directly
representing conditional potentials, VBS representa-
tion is capable of directly representing arbitrary
potentials.

Fifth, the solution method of VBSs involves mini-
mal divisions. In comparison, the influence diagram
solution method involves unnecessary divisions (in
every arc reversal operation). These unnecessary di-
visions are the same as those in the decision tree
solution process. In influence diagrams, these unnec-
essary operations are performed for semantical consid-
erations. The influence diagram solution process has
the property that the diagram resulting from the dele-
tion of a random variable node is again an influence
diagram. This means that the resulting potentials in
the reduced influence diagram are conditional poten-
tials. It is this demand for conditional potentials at
each stage that results in the unnecessary divisions
and multiplications.

Sixth, the semantics of VBSs are different from the
semantics of influence diagrams. Whereas influence
diagrams are based on the semantics of conditional
independence, VBSs are based on the semantics of
factorization.

Seventh, if a decision problem has no random vari-
ables, it reduces to an optimization problem. And, the
solution technique of VBSs reduces to dynamic pro-
gramming (Shenoy 1991b).

Eighth, in cases where a decision problem has no
decision variables, we may be interested in finding
marginals of the joint distribution for each random
variable. In such problems, the solution technique
described in this paper reduces to the technique for
finding marginals (Shenoy 1991¢). This technique also



can revise marginals in light of new observations. We
represent each new observation by a potential and
then use the fusion algorithm to compute the desired
marginals.

7.1. Limitations of VBSs

Like influence diagrams, VBSs are appropriate only if
the decision problem is symmetric or almost symmet-
ric. In asymmetric decision problems, decision tree
representation is more flexible than VBSs and influ-
ence diagrams, and decision tree solutions may be
more efficient than VBSs and influence diagrams. This
is because, like influence diagrams, VBSs make an
asymmetric decision problem symmetric by adding
dummy acts and events, and in the process enlarge
the space of the problem.

In problems with many variables, like the solution
procedure of influence diagrams, the fusion algorithm
is tractable only if the space on which combinations
are performed stay small. The space on which com-
binations are performed depends on the sizes of the
valuations and also on the precedence constraints. We
need strong independence conditions to keep the sizes
of the potentials small. We also need strong assump-
tions on the utility function to decompose it into small
payoff valuations. In the worst case, of course, solving
a decision problem is NP-hard (Cooper 1987).

8. PROOFS

In this section we give a proof for Theorem 1. First
we state and prove a lemma needed to prove
Theorem 1.

Lemma 4. Suppose that
A =2, Zr, (Wx)xez,

{7"1, cee WM}, {pl’ s pn}s _)}

is a well defined decision problem. Suppose that X is
a minimal variable in & = 25 U 2% with respect to
the partial order >, where > is the transitive closure
of —. Then

(®{7I'1, oo s Tms Py ey pn})l(g'—{XD

=®FUSX{7I'|,. e s Tms Plye o ,pn}.

Proof. We prove this result in four mutually exclusive
and exhaustive cases, each corresponding to the defi-
nition of the fusion operation in (17), (18), (19) and
(20), respectively. Suppose that =, is a payoff valuation
for A; and p; is a potential for g;.
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Case 1. Suppose that X is a decision variable. In this
case, there cannot be a potential in the VBS A that
bears on X because if there were one, then, since A is
well defined, by the consistency conditions for the
precedence relation —, X cannot be a minimal vari-
able. This would contradict the hypothesis that X is
minimal. Without loss of generality, assume that =,

., ™ are the only payoff valuations that bear on X.
Letr=7,® ... Qm,leth=h U...Uh, and let
cE Wy_;x;. Then

(® {7!’1, “ e . pn})l(Y—lxi)(c)

= Max{[mi(c", x) +. ..+ m(ct™, x)

s Tms P15 - -

+ mra(e ) + . L+ w(eVim)]
(e .. pu(et)] | x € 74}
=Max{m (¢, x) +. ..+ mdct* x)
(€Y + L+ (V) | X E )
et ... paletn)]
= [Max{m,(c"",x) +. .. + m(c!™ X)) | Xx E Zx}
+ Trpi(e) + .+ w(cti)]
- [pi(e!®). . . pilcton)]
= [w# W () + T (e ) + L L+ (e)]
“[pre). .. pu(ctm)]

=®Fus,\'{7r1, e . ,p,,}(c).

Case 2. Suppose that X is a random variable, and
none of the m payoff valuations bear on X. Without
loss of generality, assume that p,, .. ., pi are the only
potentials that bear on X. Let p = p; ® ... ® py, let
g=gU...Ug,andlet ¢ € Z%_ix;. Then

®fmi, ooy Ty 1y s ) e)

=3 {lm(c") + ... + ma(ct)]

s Tms Py«

- [oi(e®, X) ... pi(eYE) X)pgai(CVierr)
.o ple¥)] | X € P}
=[m(eY) +. . .+ TV [prsr(C1) . . . pa(cien)]
S {(e1(e#,X) . . . pr(c xX) | xE XY
=[mi(c) +. ..+ )] [prri(CEe+)
.. o) ple X (cley]

=®FUSX{7T1,. .

s Tms Plse oo ,pn}(c)-

Case 3. Suppose that X is a random variable, and all
of the m payoff valuations bear on X. Without loss of
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generality, assume that p, ..., p, are the only poten-
tials that bear on X. Let 7 = 7, ® ... ® 7,
leth=hU...Uh,letp=p ®...® p let
g=gU...Ug,and let c € Z%»_ix;. Then

(®{7rl 9. L) pn})l(%_{)(})(c)

=Y {[m(c, x)+. ..+ mulct, x)]

s Tms P1s - -

< [pi(e¥,x) . . . o€, X)prr(ci)
)] | X E 7y
=[2{[m eV, x)+. .. + w(cVm, X)]
i, x) .. L pi(e¥, X)] | X € Zxl]
< [prra(ets+) oL p(cten)]
= [( ® p) DXL gy (cHHhs1) . . o]

=Q® Fusy{x,,.. ., pni(c).

Case 4. Suppose that X is a random variable, and
some payoff valuations bear on X. Without loss
of generality, assume that =, ..., w; are the only
payoff valuations that bear on X, and p,, ..., o«
are the only potentials that bear on X. Let = =
7r1®...®7rj,leth=h1U...Uhj,letp=
0®...®p,letg=gU...Ugandletc € Zo_x).
Then

(®{7l'1 50 ’ pn})l(f?’—lX})(c)

= 2 {[W](CM‘, X) +...+ Wj(clhj, X) + 7rj+|(c1hf“)

« s Tms P15+ -

©s Tms Ply oo«

+. .+ Ta(cV)]
< [or(et®,x) .. pilct®, x)
Cprrr(€) L p(et)] | X € i)
= [T {[mi(c¥, x) +. ..+ m(cW, x) + mj11(cVi+)
+. ..+ m(ct)]
< [oa(e,x) . .. pile®, x)] | x € #x}]
< lokr(cr) L pa(cten)]
=[Blmi(et, x) +. .. + m;(c'h, x)
+ ma(eVim) + L+ w,(ctin]
< [ou(et, x) . . . pr(ct®, X)) /p e M (c18)] | x E74]]
< prai(€t) L pa(ctinp e (ct)]
= [2{lmi(c*, x)+. .. +7,(ct, x)]
loi(e¥, %) . . . pr(ct, X))/t~ (1))

+ [ (@) + . (e tin)]

[lor(e¥,%) . . . pi(et, x))/p* ¥ (e )] | x € 74}]
orar (€451 . pa(cienpls—¥icley]
= [ {[m(ct", x) +. .. +x;(ct, x)]
o1 (€1, %) . . (e, x))/p* (e t)] | x € 75}
+ 3 {[mi(c¥ ) + . L+ T(cim)
(o1 (e',x) . . . pilct®, x))/p s~ (c19)]
| X € Zil ][ (€45+1) . .. pu(cten)ple—XI(cln)]
= [[7!' ® (p/p 1(g—[X])] l((hUg)—{X}(cl(hUg))
+ [ma(e ) + .+ wa(eVm)]
[ {(oi (e, %) . . . pe(c'®, x))/p ™) (c!)] | x E 7]
< [prear(€¥1) .. . pa(ctom)pte=Hi(c )]
= [ ® (p/p e~ HLO-X) (L) 4 [, (c V)
+o (el [orr1 (€454 . . L palctn)p s H (e 1))
=® Fusy{ri,... s Pn§(C).

We have now shown the result for all four mutually
exclusive and exhaustive cases. Therefore the result
follows.

s Tms Pl o

Proof of Theorem 1. By definition, (®{mx;, ..., Tm,
p1, ..., T,})¥?is obtained by sequentially marginaliz-
ing a minimal variable. A proof of this theorem
is obtained by repeatedly applying the result of
Lemma 4. At each step, we delete a minimal variable
and fuse the set of all valuations with respect to
the minimal variable. It is easy to see that after dele-
tion and fusion, the resulting VBS is well defined.
Using Lemma 4, after fusion with respect to X, the
combination of all valuations in the resulting VBS is
equal to (®fmy, ..., Tm, p1, ..., )@ HD. Again,
using Lemma 4, after fusion with respect to X,, the
combination of all valuations in the resulting VBS is
equal to (®f7wy, ..., Tm, p1, ..., pa})EHXD And
so on. When all the variables have been deleted there
will be a single valuation left. Using Lemma 4, this
valuation will be (®{=y, ..., Tm, p1, ..., pa})¥°.
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