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Abstract

Multiplicity of solutions is typical to systems where the individual’s tendency to
act in a certain way increases when more of the other individuals in the population
act in this way. We provide a detailed analysis of a queueing model in which two
priority levels can be purchased. In particular, we compute all of the Nash equilibrium
strategies (pure and mixed) of the threshold type.

OR/MS classification: Queues: Priority. Games/group decisions: Noncooperative.

1 Introduction

A rational customer who needs the service of a facility has several decisions to take. He
chooses the time to arrive, decides whether to join a queue (or balk), whether to purchase
priority, and after staying for a while in line he may decide to leave (i.e., renege) it and give
up service. In a system with parallel lines the customer may sometimes choose which line to
join.

These decisions depend on the customer’s cost and benefit parameters and on the in-
formation he possesses at the time each decision is taken. It is often the case that the
customer’s self-optimizing decisions also depend on the actions of the other customers in the
population, actions which at the time of decision are not known to him. This puts the ques-
tion of customers’ behavior in a game theoretical framework, rather than in an optimization

framework.

For individuals whose objective is to reduce the amount of time they spend in congested
systems, a naturally good policy is to try and act differently from others. For example, avoid
rush-hour traffic, avoid popular restaurants, etc. In these cases, the individual’s tendency
to select an action decreases with the tendency of the others in the population to choose it.
We refer to this behavior as avoid the crowd (ATC). In the opposite case, named follow the

crowd (FTC), individuals try to imitate others. This behavior is prevalent under numerous
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circumstances and for various reasons (see for example, [23], [5], [6] and [27]), but as we will
see, this is sometimes the case when avoiding congestion and reducing waiting time are the

main objectives.

As a vehicle to convey the concept of FTC and the consequences stemming from it, we
analyze a model that has been treated by Adiri and Yechiali [1], in which customers choose
between priority levels. We characterize threshold type Nash equilibrium strategies, namely
strategies in which one purchases priority if and only if upon arrival the queue size is larger
than some threshold value. The main reason for the interest in Nash equilibrium strategies
is the desire to predict and control customers’ behavior. Therefore, we will give a special
attention to the existence of multiple solutions which, as we argue in the next section, is
typical for the cases in which FTC prevails. We will show that multiplicity of equilibria is a

common phenomenon in a class of models including the one considered in this paper.

Weissman [27] obtained a similar result while modeling the demand for priority in elec-
tricity supply. In this model, the total supply is a random variable. In the case of a shortage,
the supply is first distributed to a group of high priority customers and whatever is left is
distributed among the others. Weissman showed that for this model the demand curve for
priority may have segments with a positive slope and consequently there may be multiple
equilibrium solutions. This phenomenon is related to our concept of FTC since it refers to
cases where the more customers buy priority, the higher is the price one is ready to pay for
it. Another model of this type is analyzed by Viswanathan and Tse [26]. There, uniqueness

of the supply probabilities under pure equilibrium strategies is proved.

The next section contains our framework. In particular, the concepts of ATC and FTC
are defined in an environment where it is natural to consider threshold strategies. The
rest of the paper deals with the specific model. In Section 3 we present the model of a
queueing system with two priority levels. We forbid balking at this stage, and defer the
minor changes necessary when balking is allowed to Section 6. In Section 4 we present
necessary and sufficient conditions for a given threshold to define a Nash equilibrium. In
Section 5 we comment on the number of pure and mixed equilibrium strategies and their
structure. In Section 6 we discuss the model with optional balking. We also present in this
section a (pathological) example where there exists a pure Nash equilibrium which is not of
the threshold type. In an appendix we describe a computational procedure for the expected
waiting time of a customer who joins the low priority queue when its length is equal to the
threshold, n. These values are necessary for computing Nash equilibria. Our algorithm is

faster than the one described in [1].



2 The framework

Our setting concerns arrivals of customers to a queueing system characterized by a single
non-negative integer-valued state variable (typically, a queue length). Each arriving customer
observes the state and chooses between two actions, A; and As. The customer’s objective is
to minimize his expected costs. An arriving customer’s decision typically depends on actions
taken by the other (past or future) arrivals, actions that are unknown to him. A customer’s
strategy is a function s(L) : IN — [0, 1]. Its interpretation is that when the observed state is L,
the customer chooses A; with probability s(L) and A, with the complementary probability,
1 —s(L).

We consider strategies in which customers choose A; if and only if the system’s state
is less than a given constant called a threshold. However, it is often possible to construct
instances where, for example, if everyone in the population has a threshold 4 then a deviant
whose threshold is 5 has a smaller expected wait, while if everyone in the population adopts
a threshold of 5 then deviating to a threshold of 4 reduces the expected wait. (This is the
case with the upper function in Figure 1, as will be explained later.) In such cases we may
conclude that no strategy of the threshold type defines an equilibrium. Consequently, we
extend the definition of a threshold strategy as follows:

A threshold strategy with threshold v =n +p, n € IN, p € [0,1), has

1 L=0,...,n—1
s(Ly=<¢ p L=n
0 L=n+1,n+2,..
In other words, under a strategy with threshold x, a customer always selects A; if the state
is at most n — 1, always selects A, if the state is at least n 4 1, and randomizes between the
two with probability p when the state is n. If x is an integer (p = 0), the strategy is pure.

Otherwise, it is mized.

We are interested in models in which the optimal response of an individual who assumes
that the others follow the strategy defined by x is of the threshold type: For some integer
k(zx), if the state is in {0, ..., k(z) — 1} choose A;. Otherwise, choose Ay. This is the case in
the model described in the next section as we prove in the next section. The discontinuity
jumps of k(x) correspond to threshold strategies x where the individual is indifferent between
two consecutive thresholds. A threshold x defines a Nash equilibrium if either k(x) =z or z
is between k(z—) and k(xz+) (it is convenient to view both cases as solutions to the equation
k(x) = x, that is, as fixed points of k(z)). In both cases, if all customers adopt threshold

strategy x then this is also an optimal strategy for each of them and none has an incentive
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Figure 1: Equilibrium under ATC

to deviate from this strategy. In the case of a mixed strategy with threshold z, then given
that the others adopt this z, the individual is indifferent between the two thresholds k(z—)
and k(z+).

When the individual’s tendency to choose A; increases with z, k(x) is monotone non-
decreasing. We refer to this type of individual strategy as follow the crowd, or in short,
FTC. It means that the higher is the threshold adopted by others, the higher is the optimal
threshold for a given customer. When the individual’s tendency to choose A; decreases with
x, k() is monotone non-increasing. We refer to this type of individual strategy as avoid the
crowd, or in short, ATC. It means that the higher is the threshold adopted by others, the

lower is the optimal threshold for a given customer.

There are important differences between the two cases. In ATC case there is a single fixed
point. It may describe a pure strategy or a mixed one. Figure 1 depicts two non-increasing
step functions. In one, the equilibrium strategy, obtained at x;, is pure, in the other, the
strategy, obtained at s, is mixed. The FTC case is more involved. It may have multiple
equilibria, of both pure and mixed type. It can be seen from Figure 2 that there may be

numerous fixed points.
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Figure 2: Equilibrium under FTC
3 Queues with priorities

The fundamental model involving customers’ decisions in queues with priorities is that of
Adiri and Yechiali [1].*> They made the following assumptions: Two queues are formed
in front of a single server, one line for high priority customers and one for low priority
customers. A high priority customer who finds upon arrival a low priority customer being
served, commences service immediately. The preempted customer resumes service only when
no high priority customer is present.* The arrival process is Poisson with rate A per unit
of time. Upon arrival, each customer decides whether to purchase high priority, and if so
he pays for it an amount #. Without loss of generality, we assume that low priority comes
for free. Customers cannot change priority levels while waiting. The arrivals decide on their
priorities after observing the length of the two queues. The cost of waiting is assumed,
without loss of generality, to be one per unit of time. The customers’ service times are
independent and exponential with mean 1/ regardless of the priority level. Let p = \/pu,
and to ensure stability assume that p < 1. Finally, let B be the expected length of a busy
period, i.e., B=1/(u— A).

30ther models in which customer select priorities are discussed in [4, 8, 12, 14, 20, 22, 25].
4Similar results to the ones described here hold in the the case without preemption, known as the head-
of-the-line priority discipline. These results can be obtained after straightforward modifications.



Denote by (i,7), i,7 > 0, a typical state of the system where ¢ (j) is the number of
high (low) priority customers present in the system. An arrival observing a given state has
to decide whether to purchase priority or not in order to minimize his expected total cost.
Suppose that each arrival has his own policy which tells him for each possible state (i, j)
whether to purchase priority or not. The optimal action of a customer depends on the state
of the system and the policies adopted by future arrivals. Thus, the solution concept to be

adopted here is that of a Nash equilibrium.

Adiry and Yechiali [1] proved that if for some strategy adopted by everybody, it is optimal
for an individual to purchase priority when he faces state (i, 7), then his unique optimal action
when facing state (r,j) for r > i, is to purchase priority. It follows that for a system that
initializes with state (0, 0), the state space is 1-dimensional in the sense that the only possible
states are (0,7), j =0,...,n and (i,n), i = 1,2,..., . Therefore, we can map the state space
into a single dimension: Let ¢ be the total number of customers in the system. If i < n then
the state is (0,4), and if ¢ > n then the state is (i — n,n).

The mixed threshold strategy n+p with 0 < p < 1, can also prescribe a Nash equilibrium.
In this case a customer facing state (0,n — 1) is indifferent between purchasing priority and
not doing so. The next state then is (0,n) or (1,n—1). However, in both states it is optimal
for a future arrival to purchase priority. Specifically, if in state (0,n — 1) is was optimal
to purchase priority, this is certainly (and uniquely) the case in state (0,n) as one more
customer is being overtaken. Likewise, using the argument given above, if in state (0,n — 1)
it is optimal to purchase priority, then the same (and uniquely) is the case in state (1,n—1).

Therefore, the relevant state information is still the total number of customers in the system.

We conclude that the model belongs to the framework of the previous section in the sense
that when the queue length is the state variable, threshold strategies can be defined and
that they prescribe optimal response for an individual when everybody else uses a common
threshold strategy. In the next theorem we prove that the model leads to FTC, the case in

which multiple Nash equilibria are common.

Proposition 3.1 Suppose that the customers in the population, except for a given individual,
adopt a common threshold x. Then, k(x), the (integer) optimal threshold for this individual,

s non-decreasing in x.

Proof. Tag a customer and let x be a possible threshold value used by all others. Adiri and
Yechiali show that it is optimal for the tagged customer to purchase priority if and only if

the number of customers in the system is larger than k(x).



For the tagged customer there are two types of gain from buying priority. The first is in
overtaking the low priority customers who are at the system at the time of his arrival. The
second is in avoiding being overtaken by future high priority customers who arrive while he
is still in the system. Since in the model considered here, an arrival sees the queue lengths
upon arrival, the first type of gain depends only on how many low priority customers he
finds upon arrival and is not a function of the threshold used by others. The second type
of gain depends also on the behavior of future customers. Now, let 1 < z5 and assume
that n, the number of customers in the system is larger than k(zs). The second type of
gain associated with purchasing priority is larger when the other customers use x; as their
threshold strategy, as compared to xs. Hence, since under the given queue size, n > k(z5),
it is optimal to purchase priority when x5 is used by all others, it is certainly optimal to do

so under xy. In particular, k(z1) < k(z2). O

4 Conditions for equilibrium

Suppose the threshold = is adopted by the customers. Note that in this case the maximum
possible length of the low priority queue is [z] (the lowest integer that is greater than or
equal to x). We are interested in the (future) expected waiting time (queueing plus service)
of a customer at the [z]-th position of the low priority queue while the high priority queue
is empty. We denote this value by E(z). Clearly, E(x) is defined only for x > 0. This
section concerns necessary and sufficient conditions on E(x) to warrant that = corresponds

to a Nash equilibrium. In the Appendix we show how to compute E(x) for any given .

Proposition 4.1 The integer threshold n > 1 specifies a Nash equilibrium if and only if
1 1
—4+0-B<EMn)<—+86
I 1

The threshold n = 0 specifies a Nash equilibrium if and only if 6 +1/pu < B.

Proof. Assume that the entire population uses the integer threshold n > 1. In order for
n to describe an optimal strategy for an individual given that all follow this strategy, two
conditions are necessary: First, if upon arrival he sees state (0,n — 1) his optimal action is
not to buy priority, so that

E(n)gl—i-@ :
J

Second, if he sees state (0,7), his optimal action is to buy priority, so that

1
B—i—E(n)E;-l—@ .



Moreover, these conditions are also sufficient: If it is optimal to buy priority at state (0,n),
it is also optimal to do so in states (i,n) for ¢ > 1. Likewise, if it is optimal not to buy
priority at (0,n — 1), it is also optimal not to do so at (0,7) when j < n — 2. Finally, the
fact that n = 0 prescribes Nash equilibrium if and only if 6 + 1/u < B is straightforward. O

Under an equilibrium strategy with threshold x = n +p, 0 < p < 1, an individual who
sees state (0,n) may, with a positive probability, buy priority or he may choose not to buy
it. This means that such an individual is indifferent between the two options of purchasing

priority or not:

Proposition 4.2 The threshold x = n +p, 0 < p < 1 specifies a Nash equilibrium if and
only if
E(x)=0+—

Recall that F(z) = B for all 0 < < 1. Indeed, for a customer in the low priority queue
the exact value of  is unimportant as long as it is in (0, 1]. Combining this observation with

the second part of Proposition 4.1 we have the following corollary:
Corollary 4.3 If 6 +1/u = B then all of the values 0 < x < 1 define Nash equilibria.

Remark 4.4 The strategy n + p, when 0 < p < 1 can be looked at as a mixing of the two
pure strategies n and n 4+ 1. Mixing among more than two pure strategies cannot lead to
Nash equilibrium. It requires that an individual be indifferent between buying priority and
not buying when he observes two different low priority queue sizes. However, this cannot
be the case since the cost associated with buying priority is independent of the low priority

queue length, while that associated with joining that queue increases with its length.

Figure 3 illustrates the function E(x). It represents the actual function computed with
A =08 and ¢ = 1 so that B = 5. There are several observations which can be made.
First, the function is continuous from the left and it has discontinuity points at the integers.
Second, for 0 < x < 1 it is equal to B, since the customer in question is the first in the low
priority queue and until his departure all of the arrivals will join the high priority queue.
Third, for a fixed value of [z], E(x) is monotone decreasing in x. This is the case since
when x increases customers are less likely to purchase priority, thereby reducing the future
waiting time of the customer currently in position [z] of the low priority queue. Fourth,
the size of the jump E(n+) — E(n) is exactly of size B. This is the case since E(n+) equals
the expected length of a busy period B (the time it takes him to reach position n from

8
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Figure 3: The function E(x) for A/pu = 0.8



position n + 1) plus the expected waiting time from position n in a system where customers
almost surely purchase priority when the low priority queue size is n, i.e., F(n). Finally,
the decrease in the function between consecutive integers, F(n+) — E(n + 1), is less than or

equal to B — 1/u. This is the case since
1 1

E(n+)—E(n+1) < E(n+)—FE(n)——=B——

1 I
where the inequality here follows from the forthcoming Proposition 5.1 and the equality is

our fourth observation here.

5 Multiple Nash equilibria

We have seen, in Proposition 3.1, that we are in an FTC situation and multiplicity of
equilibrium threshold strategies is possible. In this section, we determine an upper bound

on the number of such equilibria and demonstrate that it is achieved when @ is large.

Proposition 5.1 Forn > 1,

E(n+1)— E(n) >

==

Hence, the number of pure threshold Nash equilibria is at most |1/(1 — p)|.> Also,

lim [E(n + 1) — E(n)] = .

n—oo M

Hence, there may ezist as many as |1/(1 — p)| pure Nash equilibria.

Proof. The proof will be based on comparison between two sample paths, one which initializes
with state (0,n) and one with (0,7 + 1) but are otherwise subject to the same (random)
events, and where the threshold strategies n and n + 1 are applied, respectively. Also, a

subscript n (resp., n + 1) corresponds to the former (resp., the latter) system.

Specifically, consider a system which initializes with (0,n) and uses the pure threshold
strategy n. Call the last low priority customer in this system at time zero, customer C,,.
Notice that when customer C), clears the system, customer C), .1, is at the head of the queue
and at least a service period is ahead of him. In particular, E(n + 1) — E(n) > i The
upper bound on the number of pure Nash equilibrium threshold strategies is now immediate
by Proposition 4.1 and the fact that B = 1/(u(1 — p)).

5|z denotes the largest integer which is smaller than or equal to .

10



Next we prove the second part of the proposition. Let t1,%5,... be ii.d. exponential
random variables with mean 1/\ representing inter-arrival times and let sq, so,... be i.i.d.
exponential random variables with mean 1/u representing service requirements. Let 7, =
S tmy,n=1,2,...and let 0,, = X" | Sm. Also, let T;, be the service completion time of
C,. Of course, T,, > o, and 0,,/n — 1/ = e, where e,, — 0 with probability one. Let A, be
the number of customers who arrive during the time interval [0, 7,,]. Then,

T, _ Ta, 1
A, = A, AT

where v, — 0 with probability one. Let M, be the number of customers served during the

time interval [0, 7},] (a period during which the server was never idle). Then,

Tn _UMn 1

MM, = ; +&n,
where &, — 0 with probability one. Hence,
1 1
M,— A, > T, —
N [1/u+§n 1/A+vn]

1 1

= n(l = p)(1+0n),

for some §,, — 0 with probability one. In particular, let L, be the number of customers in
the system at time T),. Then, since L, =n— (M, — A,,), we get that L, < n[p(1+4,) — d0,].
Of course, C),11 will conclude service later than C', by exactly his service requirement unless
high priority customer(s) arrive during the period in which he is in service. Let b,, be the

number of customers arriving during the service period of C,, and let r € (p,1). Then,

P(Tn+1 > Tn -+ SMn+1) = P bn+l + Ln >n+ 1)
b1 >n(l—r)or L, > nr)
bot1 > n(l —r)) + P(L, > nr)

b1 = (1l = 7)) + P(|0n] = (r = p)/(1 = p))

INIA A
U v

I

since b, has a distribution which is not a function of n and §,, — 0 in probability. Hence,
T,+1 — T, converges in law to spz, 11, which has an exponential distribution with mean 1/pu.
Since T},11 — T, > 0 is dominated by a busy period, we obtain, by the dominant convergence
theorem, that E(T, 1 —T,) — 1/p. ¢ Finally, by Proposition 4.1 if § is large enough, there
may exist as many as |1/(1 — p)| pure Nash equilibria. O

6The thoerem says that in series of nonnegative random variables which are bounded by an integrable
random variable, convergence in law implies convergence in expected value. See e.g, [7], p.289.

11
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Figure 4: Equilibrium in queues with priorities

Figure 4 illustrates the function E(x). A value of x = n defines a pure equilibrium
strategy if E(n)isin [0+ (1/u)— B,0+(1/u)]. A value x = n+p, 0 < p < 1 defines a mixed
equilibrium strategy if E(z) equals 8 + (1/u). In Figure 4 there are three pure equilibrium
threshold strategies at x = 3,4, 5, and two mixed equilibrium threshold strategies, one with
3 <z < 4 and the other with 4 < z < 5.

It becomes clear from the figure, that the sequence of equilibrium strategies alternates
between pure and mixed strategies. The exception is when 6 is such that F(n) =6+ (1/u).
In such a case consecutive pure equilibrium thresholds exist. As we have already mentioned,
the size of the jump F(n+) — E(n) is exactly B, while the decrease in the function between
consecutive integers, F(n+) — E(n + 1), is less than B. It comes out therefore that if the
equilibrium condition for a mixed strategy at x is satisfied, then both |z| and [x] are pure
equilibria. In particular, both the smallest and the largest = values that correspond to
equilibrium strategies are integers. Moreover, the set of pure equilibria thresholds consists
of a set of consecutive integers. These results conform with, and are stronger than, our

observations in Section 2 derived from Figure 2.
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6 Balking and non-threshold equilibria

Suppose that customers value the service by R and that upon arrival they have the option
of balking, that is, of not joining at all.” Let m = [(R —6)u]. Then, the high priority queue
will never be longer than m since an arrival who sees m high priority customers will not
purchase priority because in this case his cost (m+1)/u+ 6 exceeds R. If m > 1 then under
a Nash equilibrium strategy such an arrival will balk. If m = 0, then customers will always

join the low priority queue as long as its length is smaller than | Ry].

Let B,, be the expected length of a busy period for an M/M/1/m queue, namely a
memoryless queue with a buffer of length m. Note that this number includes the one in
service. It is easy to prove that for any p > 0, B,, = (X7, p')/p. 8 The analysis for the
case with balking follows almost verbatim the analysis for the case without balking. The

only difference is that now B,, replaces B.

Corollary 4.3 (with B, replacing B) has interesting implications. Alperstein [2] proved
that in a multi-priority system, a profit maximizer operator will assign a toll such that the
thresholds chosen by the customers will be equal to one for all but the highest priority
level.?  Alperstein [2] computed then a set of profit maximizing tolls. However, for two
priority levels, for example, these tolls are such that the difference between the high and
the low priority tolls are exactly B,, — 1/u. Therefore, from Corollary 4.3, not only z = 1
specifies an equilibrium (as desired) but also every 0 < z < 1 does so. In order to guarantee
that the solution at x = 1 be unique the toll difference must be increased by some small

amount.

We next present an example in which there exists an equilibrium strategy that is not
of the threshold type. The example was constructed so that in several cases the arrival is
indifferent among options. Any deviation from the given data leads to a unique equilibrium
of the threshold type.

Example 6.1 Let § =3, A = p =1, and R = 5. Consider the following strategy: At states
(0,0) and (1, 1) join the low priority queue, at states (0,1) and (0,2) join the high priority

"A low priority customer who sees many high priority customers who joined after his arrival may wish to
renege, i.e., leave the system without being served. Following [1], we exclude such a possibility.

8Proof: The case m = 1 is trivial. Then, an inductive argument coupled with the recursive relationship
A+ p)B,, =14+ AN(By—1 + By) complete the proof.

9 Alperstein [2] also proved that revenue increases with the number of priority levels. Therefore, when the
number of priority levels is not restricted revenue maximization leads to a LIFO regime. She also showed
that in this case customers surplus is zero. Therefore, this regime also maximizes social welfare. This gives
an alternative proof to a result of Hassin [13].

13



queue. Otherwise, balk. If this strategy is adopted by all the customers and if the the initial
state is (0,0) then only five states will be observed. These are the states (0,0), (0, 1), (0,2),
(1,1) and (1,2). To prove that the suggested strategy is a Nash equilibrium, we will show
that it prescribes for an individual an optimal action for each of these states, given that all

the others follow this strategy:

1. State (0,0). If a customer joins the low priority queue his total expected cost is 1/p +
A/ p? = 2. The first term is his service time. For the second term, note that \/u is
the expected number of high priority customers that will arrive (and join the queue)
while he is in service. (Note that there is at most one high priority customer in the
system, hence our customer will only have to wait for those who arrive during his own
service.) Each of them causes a delay of expected value of 1/u. Since 2 is smaller
than the service value (R = 5) and smaller than the cost associated with high priority

purchasing (6 + (1/p) = 3+ 1 = 4), joining the low priority is optimal.

2. State (0,1). If the customer buys priority, his expected cost is 1/u + 6 = 4. Thus,
balking is not a best response here. If he joins the low priority queue his expected cost
is twice the corresponding value for state (0,0), that is, 4. Hence, purchasing priority

is an optimal action here (though not the only one).

3. State (0,2). Purchasing priority has an expected cost of 1/ + 6 = 4 < R. Joining the

low priority queue leads to an expected cost of 6. Thus, buying priority is optimal.

4. State (1,1). In this case, one is indifferent among three options: Buying priority leads
to an expected cost of 8 +y = 34+ 2 = 5. Likewise, joining the low priority queue
leads to an expected cost of 3/u + 2)\/u? = 5. Thus, joining the low priority queue is

optimal.

5. State (1,2). Here one is indifferent between balking and buying priority. These two
actions are superior to joining the low priority queue with an expected cost of 4/u +
3N p?=1.

We note that in the above example there are three other possible equilibria. Also, the
example can be extended to equilibria where for some integer k£ the strategy is to join the
low priority queue in states (0,i) ¢ = 0,...,k — 2, buy priority at (0,k — 1), join the low
priority queue at (1,k — 1), and balk at (1, k).

Acknowledgement. The authors thank Y. Ritov for his very helpful comments.
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Appendix

We compute E(z) in O(x?) time for any fixed x, an improvement over the O(z?) algorithm
of [1]. The (future) waiting time of a low priority customer depends on his position in this
queue and also on the number of low priority customers behind him. Thus, following [1], let
H; 1 (z) be the (future) expected waiting time for a low priority customer at position ¢ in his
queue (including the one in service), with k low priority customers behind him and when the
high priority queue is empty. This value is defined when the threshold x is used by all. Of
course, i > 1, k> 0 and i +k < [z]. We will use the H values to compute E(z) = Hpy0(2).

Assume a threshold x = n + p, 0 < p < 1. The maximum possible length of the low

priority queue (including the customer in service) is [x] = n + 1:10

@ - B,

(£) = 1+ ApHin(e) + A1 = p)(B+ Hyps(2) |

() = 14+ AHypp(x) k=0,1,....,n—2,

Hip(z) = 1+ AHippi(2) +pHiqpx(z), i1=2,...,n—1 k=0,1,...,n—i—1,
() = 14+ MHpi1(x) + X1 =p)(B+ Hip—i(2)) + pHi—1p-i(x) , i=2,....n
(z)

= 1+ AXB+Hipiv1(z) +pHio1pipa(z), i=2,....,n+1.

These equations lead to a recursive structure.!* An algorithm directly follows:

Initialization.

If p#0,let Hy,(z) = B;

Let Hyp1(x) = (1+AB)/(1 — A1 —p));
For kK =n — 2 until £ = 0 do:

Hyp(x) =1+ XHy i1 (2).

The recursion.

For ¢ = 2 until + = n do:

Hipnit1(z) = (1+ AB + pHi10-i11(x)) /13

Hini(x) =1+ pH;piv1(x) + pHi—1 n—i(z) + AM(1 —p)B)/(1 — A(1 — p)).
Ifi#n,fork=n—i—1until £ =0 do:

Hip(x) =1+ MH; py1(x) + pH;—1 ().

Ifp#0,let Hyp10(x) = (1+AB+ uH,o(z))/p.

10VWe select the time units so that A\ + pu = 1.
H'When with p = 0 the first and the last equations are not relevant. This doesn’t affect the computational
procedure.
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