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ABSTRACT

We analyze two scheduling problems for a queueing system with a single server and two cus-

tomer classes. Each class has its own renewal arrival process, general service time distribution

and holding cost rate. In the first problem, a setup cos* is incurred when the server switches

from one class to the other, and the objective is to minimize the long run expected average

cost of holding customers and incurring setups. The setup cost is replaced by a setup time in

the second problem, where the objective is to minimize the average holding cost. By assuming

that the queueing system operates under standard heavy traffic conditions, we approximate the

dynamic scheduling problems by diffusion control problems. For both problems, considerable

insight is gained into the nature of the optimal policy, and the computational results show

that the proposed scheduling policy is within several percent of optimal over a broad range of

problem parameters.
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We consider two dynamic scheduling problems for a single server queueing system with two

classes of customers. In both problems, each class possesses its own renewal arrival process,

general service time distribution and holding cost rate, and the server incurs a setup when

switching from one class to the other. In the setup cost problem, a setup cost is incurred and

the objective is to minimize the long run expected average setup and holding cost. In the

setup time problem, a random setup time is incurred when the server switches class, and the

objective is to minimize the long run expected average holding cost. In both problems, the

server has three options at each point in time: serve a customer from the class that is currently

set up, switch to the other class (and immediately begin service in the setup cost problem), or

sit idle.

These scheduling problems have numerous applications, most notably for manufacturing

systems and polling systems in computer communication networks. The setup time problem

is more realistic than the setup cost problem in most situations, but is also n^rre difficult to

analyze. However, the setup cost problem is relevant for some manufacturing systems because,

motivated by just-in-time (JIT) manufacturing, many facilities have internalized their setup

times; that is, they have essentially ehminated their setup times at the expense of incurring

significant material, labor and/or capital costs.

Although many studies have analyzed the performance of polling systems under various

scheduling policies (see Takagi 1986, Boxma and Takagi 1992 and references therein), relatively

few papers have considered the optimal scheduling of polling systems. The seminal paper in

this research area is Hofri and Ross (1987), who analyze a two-class system with setup costs

and times. Let c, and //, denote the holding cost rate and service rate, respectively, for class

i customers. When ci^i = C2H2, they show that a double threshold policy, where the server

serves each class until its queue is exhausted and the length of the other queue achieves a

certain threshold level, minimizes the cost of setups and holding customers, under both the

discounted and average cost criteria. Very little is known about the polling problem when

ciMi ¥" f2M2, aside from the fact that the class with the larger cfi index should be served to

exhaustion.

Several authors have studied the setup time problem in which more than two classes are

present. Structural results for symmetric systems are derived by Liu, Nain and Towsley (1991)

and references therein. Browne and Yechiali (1989) derive quasi-dynamic index policies, which

allow the server to choose the sequence of classes to visit at the beginning of each cycle, that

minimize or maximize the mean cycle length. Boxma, Levy and Westrate (1991) derive an

efficient polling table (a predetermined fixed visit sequence) for minimizing the mean waiting

cost. Bertsimas and Xu (1993) derive lower bounds and construct static policies that perform

close to the bound when all classes have identical c/i indices. Van Oyen and Duenyas (1992)

develop a dynamic scheduling heuristic based on myopic reward rates; Duenyas and Van Oyen

(1993) also construct a dynamic policy for the setup cost problem.

Since the two-class asymmetric problem appears to be analytically intractable, heavy traffic

approximations are employed in an attempt to make further headway. T'lat is, we make the

heavy traffic assumption that the server must be busy the great majority of the time to satisfy

demand. In the setup cost problem, we also need to assume that the setup costs are very large,

roughly two orders of magnitude larger than the holding cost rate. Following in the tradition

of Foschini (1977) and Harrison (1988), we study the diffusion control problem that arises as

a heavy traffic Hmit of a sequence of queueing scheduling problems. These limiting control

problems tend to be more tractable than their queueing counterparts and have led to network

scheduling policies (see, for example, Harrison and Wein 1990 and Wein 1990b) that have a

surprisingly simple form and appear to perform well.
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Using the heavy traffic averaging principle derived in Coffman, Puhalskii and Reiman

(1993), we show in Section 1 that the setup cost problem simplifies rather dramatically in the

limiting heavy traffic regime: the dimension of the state space collapses from three (queue

length of each clciss and the position of the server) to one (total workload). This result also

allows our analysis to naturally decompose onto two different time scales. On the very fast

time scale over which individual queue lengths change, we myopically optimize a control that

specifies the amount of low priority work to serve as a function of the total workload. This state-

dependent control is derived in closed form and offers considerable insight. On the slower time

scale over which the total workload varies, a singular control problem is solved that specifies a

busy/idle pohcy. The solution to this control problem leads to a rather complex equation for

one variable, which represents a threshold level, that can easily be solved numerically.

The setup time problem is addressed in Section 2, and the averaging principle in Coffman,

Puhalskii and Reiman (1994) leads to a limiting control problem that again is one-dimensional,

although here we obtain an explicit diffusion control problem. The control, which represents

the amount of low priority work to serve as a function of the total workload, appears in the drift

term of the diffusion process in a nonlinear fashion, and consequently the optimahty equation

leads to a nonlinear ordinary differential equation (ODE) that cannot be solved explicitly.

However, we use asymptotics to obtain a scheduling policy; the asymptotics also reveal a

substantial qualitative difference between the optimal policies in the setup cost and setup time

cases.

For both problems, we use the value iteration algorithm to obtain "exact" optimal policies

for a variety of test cases, and show in Section 3 that the suboptimality of the proposed policies

is within several percent of optimal over a broad range of problem parameters.

Our presentation of the analysis, and indeed the analysis itself, is rather informal through-

out. For example, we do not prove that the limiting control problems are the heavy traffic

limit of a sequence of queueing scheduling problems. Also, several of our claims regarding the

nature of the limiting control problems and their optimal solutions are not proved. Providing

a rigorous presentation of our results would be extremely demanding, and would take us far

afield from our two main objectives: to obtain fundamental insights into the nature of the

optimal policies and to develop effective scheduling policies for these systems. However, much
of our analysis relies upon observations that have been rigorously proven for simpler systems,

and we have no doubt that our results are essentially correct. We hope that this approach

increases the accessility of the paper without sacrificing the persuasiveness of our arguments.

1 THE SETUP COST PROBLEM

1.1 Problem Description

Customers of class i = 1,2 arrive according to independent renewal processes, where A, and

c^j denote respectively the arrival rate and squared coefficient of variation (variance divided

by the square of the mean) of the interarrival times. Each class has its own general service

time distribution with service rate /Xj and squared coefficient of variation c^j, and we define the

system's traffic intensity by p = Yn=i{^i/f^i)- A cost c, is incurred per unit time for holding

a class i customer in the system. A setup cost K/2 is imposed whenever the server switches

from one class to the other, so that A' is the setup cost per cycle.

The server hcis three scheduling options at each point in time: serve the class that is

currently set up, switch to the other class and initiate service, or sit idle. Since a switchover

is instantaneous and costly, the option of switching to the other class and idling need not be



considered. We assume that the server works in a preemptive-resume fashion, although the

heavy traffic analysis is too crude to capture the effects of the nonpreemptive discipline as an

alternative assumption. Let Qi{t) be the number of class i customers in queue or in service at

time t, and let J{t) denote the number of times the server sets up in the time interval \0,t\.

Then our objective is to find a nonanticipating (with respect to the queue length process)

scheduling policy to minimize

limsup —;E
r-.oo T

rY,c,Q,{t)dt+^^J{T)
Jo ~1 ^

(1.1)

1.2 The Heavy Traffic Normalizations

A precise formulation of the approximating diffusion control problem requires much nota-

tion that would not be subsequently used. In addition, the limiting control problem will not

be explicitly solved; rather, we optimize over a specific form of policy that is introduced in

Subsection 1.4. Hence the heavy traffic control problem will not be precisely formulated, and

a description of the heavy traffic conditions and normalizations will suffice for our purposes.

The approximating control problem is the limit of a sequence of scheduling problems in-

dexed by the heavy traffic scaling parameter n, where n —> oo. Since a heavy traffic limit

theorem will not be proved here, we avoid unnecessary notation by considering a single large

integer n satisfying y/n{l — p) = c, where c is positive and of moderate size (that is, 0(1)); this

standard heavy traffic condition requires the server to be busy the great majority of the time

over the long run. As we will see later, the scheduling policy that arises out of our heavy traffic

analysis is independent of the system parameter n. Let V, be the unfinished workload process

for class i; Vi{t) is the amount of time a continuously busy server requires to clear all of the class

i customers who are present in the system at time t. The normalized, or scaled, queue length

process is defined by Zj(i) = Qt{nt)/y/n- similarly, W,(t) = V't(ni)/v^ denotes the normalized

workload process. We approximate these normalized processes by the appropriate, and yet to

be defined, fimiting processes. Although Vi{t) is not directly observable by the scheduler at

time i, the normalized workload process is more convenient to employ than the normalised

queue length process in the approximating heavy traffic control problem. However, we use the

linear identity Zj = HiW^ to translate the solution of the approximating control problem into a

scheduling policy that is expressed in terms of the original queue length process (Qi, Q2)- This

linear identity is justified by extant heavy traffic limit theorems for many queueing systems.

In addition to speeding up time by a factor of n and reducing the queue lengths by a

factor of y/n, we also need to rescale the cost parameters C; and A'. The crux of problem

(1.1) is the tradeoff between setup costs and holding costs, and hence to obtain a nontrivial

solution to the approximating control problem, these two costs need to be of the same order

of magnitude. Since only the ratio of these two costs matters, without loss of generality we

leave the holding cost rates ci and C2 unsealed at 0(1), and only scale the setup cost K. The

following thought experiment allows us to conclude that the setup cost K needs to be divided

by n in the approximating control problem. The heavy traffic condition implies that there

are 0(^/n) customers in the original queueing system, and hence 0(1) scaled customers in the

heavy traffic system. The holding cost rate is eff'ectively multiplied by n because of the time

scaUng, so holding costs are incurred in the limiting control problem at the rate of 0{n^'^) per

unit time. Since 0{y/n) customers are in the system, the server switches class every 0{\/n)

unsealed time units, on average, implying that setup costs are incurred at the rate of 0{^)
per unit time in the heavy traffic time scale. Since holding costs are incurred at rate 0{n^''^)



and setup costs are incurred at rate 0{y/n), the setup cost K must be 0{n) for these cost rates

to be of the same order, and to get an 0(1) Hmiting setup cost, we must divide the setup cost

K by the heavy traffic scahng parameter n. Consequently, let k = K/n denote the normalized

setup cost. Thus, heavy traffic conditions for the setup cost problem imply that the traffic

intensity should be near one and the setup cost should be large. A canonical example is to set

n = 100 and set c, ci,C2 and k all equal to one, so that p = 0.9 and the setup cost A' = 100.

1.3 A Preliminary Heavy Traffic Result

The starting point for the setup cost problem is a recent heavy traffic result due to Coffman,

Puhalskii and Reiman (1993), which will be referred to hereafter as the CPR result. We present

an informal statement of a special case of this heavy traffic limit theorem that will suffice for

our purposes. As in problem (1.1), consider a queueing system with a single server and two

customer classes. The CPR result is derived under a specific queue discipline: the server serves

each class to exhaustion, and then switches class. The work conserving nature of the disciphne

implies that the total workload process W = Wi + W2 is identical to the corresponding process

under the FCFS policy. It follows from the heavy traffic umit theorem of Iglehart and Whitt

(1970) that this process is well approximated under heavy traffic conditions by RBM(— c, cr^),

which is a reflected Brownian motion (see Harrison 1985 for a definition) on [0,oc) with drift

— c and variance

It turns out to be impossible to obtain a limit process for (M^i, W2) in the usual sense, because

in the heavy traffic limit, the two-dimensional process moves back and forth along the cross

diagonal at an infinite rate, the direction being determined by which of the two queues is

being served; see Figure 1. The CPR result provides an averaging principle that implies the

following: given the normahzed total workload W , the two-dimensional workload (H^i,W^2)

can be treated as if it is uniformly distributed along the constant workload line from (0, W)
to (ly, 0). That is, the two-dimensional distribution is {UW, (1 — U)W), where U is a uniform

[0, 1] random variable that is independent of W

.

This averaging principle is due to a time scale decomposition. On the time scale giving rise

to reflected Brownian motion for the total workload, the two-dimensional workload process

moves (asymptotically) infinitely quickly. If we slow time down so that the two-dimensional

workload moves at a flnite and positive rate, the total workload stays fixed, and the movement

of the two-dimensional workload is deterministic. Although this result has been proved only

under the exhaustive policy, we assume that it holds more generally. This has far-reaching

implications for the heavy traffic analysis of our control problem. In particular, it allows us to

collapse the state space of the control problem from three dimensions (the number of customers

of each class in the system and the location of the server) to one dimension (the total workload).

1.4 The Form of the Optimal Policy

The traditional heavy traffic approach to scheduling problems is to precisely formulate the

queueing system scheduling problem, find the limiting control problem that approximates the

scheduling problem \ni(lor heavy traffic conditions, and solve the latter problem. The approach

taken here is slightly different: we first argue that the optimal policy should be of a specific

form in the heavy traffic limit, and then optimize the approximating system over this class of

policies.
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Figure 1: The heavy traffic averaging principle of Coffman, Puhalskii and Reiman (CPR).

Without loss of generahty, we assume that ci/xi > c^fJ-j and sometimes refer to classes 1 and

2 as the high and low priority classes, respectively. Existing results (Hofri and Ross for Poisson

arrivals and exponential service times, and Duenyas and Van Oyen for Poisson arrivals and

general service times) as well as intuition suggest that class 1 should be served to exhaustion.

(It is possible to construct examples where this pohcy is not optimal. Our contention is that

it is asymptotically optimal in heavy traffic.) When the server is set up for class 1, the only

other decision is to specify whether the server should idle or switch to class 2 when no class 1

customers are present. Since we work with the normalized workload process (1^1,^2), the only

reasonable form of the optimal policy is to switch when W^jit) > W2 for some scaled threshold

level ^2.

Since switching is instantaneous, Wi{t) = and W2{t) = .r at the moment of switching,

where x must be greater than or equal to the threshold W2- Because preemption is allowed,

the server should never idle at class 2 when class 2 customers are present. The CPR result

implies that the total workload W = Wi + W2 remains constant in the heavy traffic time scale

while the server is serving class 2 customers. Hence, our decision can be expressed as the

amount u(x) by which the server depletes class 2's original work. That is, class 2 is served

until Wi{t) = u(.r) and V^^IO = .r- u{x). The control u(x) must be between zero and x, where

u = X is the exhaustive policy. Figure 2 contains a picture with u{x) = .r/3 for a particular

value of X. Since a different amount u can be chosen for each value of the total workload x,

the control u{x) can generate any possible switching curve in the nonnegative orthant, and so

is without loss of generality.

Finally, since the server should never idle at station 2 when W2{t) > 0, if u{x) < x then



W^

Figure 2: The control u{x) = x/3 for a fixed value of x.

the server immediately switches back to class 1 when Wi{t) = u(x) and W2{t) = x - u(x).

However, if u(x) = x and hence class 2 is served exhaustively, then the server must decide

whether to idle or switch back to class 1. Once again, the obvious form of the optimal policy

in this case is to idle until Wi{t) is greater than or equal to wi. Notice that if the threshold

levels wi and ^2 were both zero, then infinite setup costs would be incurred.

In summary, the controls are the function u{x), which specifies the amount of class 2's work

to serve, and the threshold levels wi and W2, which dictate the server's busy/idle policy. The

form of the optimal policy in heavy traffic is: serve class 1 until Wi{t) = arid W2{t) > u'2,'

switch to class 2. If W2{t) = x at the moment of switching, then serve class 2 until Wi{t) =
u(x) and W2{t) = x — u{x). If u{x) < x, then switch to class 1; if u{x) = x, then do not switch

until Wi{t) > vui.

1.5 An Overview of the Analysis

The analysis hinges on the following crucial observation: since setups are instantaneous,

the total workload process is only affected by the server's busy/idle policy, not by how often

the server switches class. Hence, the control u{x) only influences the total workload indirectly

via the idling. However, u{x) does affect the rate at which holding costs and setup costs are

incurred when the total workload is x. Therefore, a two-step procedure is employed to find the

optimal policy {u{x),wi,W2) within the specified form. In the first step, the control u{x) is

chosen to minimize the cost rate for each state .r; this minimization is performed independently

for each state x. In the second step, we attempt to find the optimal threshold levels u)\ and

U'2, and L.Mice the optimal total workload process. Our heavy traffic analysis will show that

the optimal total workload process is a RBM(— c, o"'^) on [u;,oo), where w is a parameter that

is chosen to minimize the total expected cost. Hence, the Brownian model is too crude to

distinguish between the two thresholds wi and W2, and so we set both «'i and »'2 equal to the

derived value of (/'.

As in previous heavy traffic scheduling work (see Harrison 1988 and Wein 19y0a, for ex-

ample), the analysis naturally decomposes onto two time scales. On the very fast time scale,

where individual ([ueues can change instantaneously fast, we myopically optimize over ii{x).

Tiicn. on the slower time scale over which the total workload varies, a singular control problem



is solved to find the threshold, or reflecting barrier, w that specifies the busy/idle policy.

1.6 The Optimal u{x)

The control u{x) is chosen to minimize the cost rate that is incurred when the normalized

total workload process is x. Under the policy characterized by u(x), class 2's work is depleted

by the amount u{x) if the total workload when the server arrives to class 2 is x. The CPR
result implies that, for our purposes, it is as if Wi is uniformly distributed between and u{x),

and W2 is uniformly distributed between x - u(i) and x. Since Zj — ^jV^j, the holding cost

rate when in state x is

V" rrn/i "(^)
,

f2x-u{x)
2^ C^|I^E\VV^\ = Cl/Xl— h C2M2 I

'

Au(x)
, ,= C2M2-r + —-—

, (1-3)

where

A = ci/xi -C2/X2 (1-4)

To find the setup cost rate when in state ;c, we need to find the cycle length. For a fixed

total unfinished workload .r, the two-dimensional workload process (^1^1,^2) moves back and

forth deterministically at an asymptotically infinite rate along the line segment from (0, x) to

((/(.r),x - u(x)); hence, the cycle length is deterministic.

We determine the deterministic cycle length, and hence the setup cost rate, as a function

of the normalized workload by slowing down the time scale. If the server finds x units of work

in class 2 upon arrival, then this work will be depleted at rate \ — p^- The server works until

'W\[t) = u{x) and W2{t) = x - u(x), which occurs after u(x)/(l - P2) time units. As we will

see later, the normalized total workload process W never spends any time below max(it;i, «;2),

and so we need not include any unnecessary inserted idle time into the cycle length calculation.

Therefore, it takes u(x)/{l - p\ ) time units to deplete class 1 and complete the cycle, resulting

in a cycle of length u(.r)/(l - P2) + u(x)/(l — p\). Since the holding costs are estimated using

a heavy traffic approximation and the scheduling problem essentially trades off the setup and

holding costs, a more accurate analysis results if we assume that p = 1 in our cycle length

expression, which simplifies the cycle length to u{x)/pip2. Because two setups are incurred in

each cycle, the setup cost rate when in state x is pip2K/u{x).

Now we find the optimal u{x) by solving;

mm C2P2-r + —-— + , , . (1-5)
u(x)e[o,x] 2 u(x)

If we define

2piP2K,

then straightforward calculus leads to

t/'(.r) = min(x, u;) . (!•")

Hence, w is the largest value of the total workload for which class 2 is served exhaustively.

Notice that w = 00 when A = 0, and so the optimal control in the balanced case is u*(.r) = .c

for all .r, which corresponds to exhaustive service for class 2.



1.7 The Optimal Threshold Level

In this subsection, we analyze the normalized total workload process under the form of the

proposed policy, using the control u*{x) in (1.7). This analysis shows that the total workload

process W is a RBM(— c, a^) on [w,oo), where w is a parameter that will be optimized over.

In the balanced case, the control u*{x) implies that the form of the optimal policy is to

switch from class 1 to class 2 when Wi{t) = and W2{t) > W2, and switch from class 2 to

class 1 when W2{t) = and Wi{t) > u;i. Let us begin by assuming that wi < W2- When the

two-dimensional workload process hits the point (x, 0), where x 6 [wi, W2), then the server will

switch to class 1 and the process instantaneously moves to the point (0,z). Since x < W2, the

server will not immediately switch back to class 2. Rather, the server serves newly arriving

class 1 customers or sits idle until class 2's workload reaches W2- In the heavy traffic limit, time

is sped up by a factor of n and the two-dimensional workload process instantaneously moves

from the point (0,x) to the point (0,^2)- Consequently, the total workload process never

spends any time below the value of u;2. A similar argument when wi > u'2 implies that the

total workload process is a RBM(— c, a^) on [ma.x{wi, W2), 00). Thus, the heavy traffic analysis

is too crude to distinguish between the thresholds w\ and W2, and we follow the convention of

setting them both equal to w; later in this subsection, the cost minimizing value of w will be

derived. Hence, the setup cost problem decomposes in the balanced case, and we can optimize

over a single threshold parameter w independently of u*{x).

For the imbalanced case, the total workload process needs to be investigated under four

different cases, depending upon the relative values of the normalized threshold levels u'i,W2

and id.

Case 1: < wi,W2 < w- The curves for switching from class 2 to class 1 for all four cases

are pictured in Figure 3, where the vertical portion of the switching curve follows from (1.7).

The argument put forth in the balanced case implies that the total workload process in this

case is a RBM(— c, cr^) on [m.a.x{wi,W2),oo). We again set wi and IU2 equcd to the parameter

w, and model the optimal total workload process as a RBM(— c, cr^) on [u',00); in this case,

the parameter w is optimized over the region < w < w.

Case 2: w < wi,W2. The state (u'i,0) is never reached, and hence the parameter wi does

not play a role here. By a similar argument as above, W is a RBM(— c, cr^) on [w2,oo). Thus,

once again, we set wi and W2 equal to a parameter w, let W be an RBM(— c, cr-) on [iti,c»),

and optimize w over the region w > w.

Case 3: < wj < w < 102- The total workload W is an RBM(-c, a^) on [ii'2, 00), and so we

set wi and W2 equal to w and optimize over w > w. Thus, case 3 reduces to case 2.

Case 4: < W2 < w < wi. The parameter wi is not a factor, and W is an RBM(— c, cr-) on

[u,'2,oo). Hence, case 4 reduces to case 1.

In summary, it suffices to restrict our attention to cases 1 and 2; thus, as in the balanced

case, the single threshold parameter w > can be optimized independently of u*{x).

Now we derive the optimal value of the parameter w. Substituting the optimal control

u*{x) from (1.7) into the cost rate function in (1.5) yields the optimal cost rate when the



Case 1. li'i, u'2 < w

2 -^ 1

W9 "

-^ ^•

Case 2. w < wi, W2

W2

U^2
n 2^1

a u'l v^i

Case 3. wi < w <

W2^

W2 t 2 — 1

Wo

wi w W,

Case 4. W2 < w < wi

V2
1



+ ^/2fHP2^ [ e-^^dxj . (1.11)

Setting the derivative of the total expected cost with respect to w equal to zero yields

= c(^l-(aw + l)e''^'"-'^'^)+apip2n(ae°'^{Ei{aw)-Ei{aw))~ -)

+ a^2pi/92A/ie"("'-'^) + C2fi2{aw + l)e"('"-'^)
, (1.12)

or, upon simpUfication,

+ a'^pip.K. (e^'^iEiiaw) - Ei{aw)) - —] , (1.13)
V aw J

where

E^{x) = / —dt, x>0 (1.14)
Jx t

is the exponential integral. It turns out that C{w) is not convex; however, the solution to

(1.13) is well behaved numerically, and yields the global minimum of C(w) for the cases we

consider. We denote this solution by w* and refer to it as the optimal threshold level. Since

CK;e-°"' + piP2^ , (1-15)

it follows that the optimal total expected cost is

Cinj*) = Cw* + P^P^.
(1.16)

w*

In the balanced case where A = 0, the first order condition (1.13) reduces to

— - e'''"Ei{aw) = .5^^^ (1.17)
aw a-pip2K

Moreover,

C"{w) = a^pxP2K (e^^'Eiiaw) + —^ - —) ,
(1.18)

V (aw)- aw J

and the convexity of C{w) follows from the bound e^Ei{x) > l/(x + 1). Replacing e°""Ei{aiu)

by its lower bound 1/(001 + 1) in (1.17) gives a simple approximate expression for the optimal

threshold level:

M 1
,

/l
,
a-pip2K\

""- = a|^-2 + Vi + ^:;]irj
• ^'-''^

1.8 The Proposed Scheduling Policy

The heavy traffic solution is given by the control «*(.r) defined in (1.7), which specifics a

switching curve, and the threshold level w* satisfying (1.13) or (1.17). We use this solution

to propose a scheduling policy in terms of the three-dimensional state of the original problem,

which is the two-dimensional cjueue length process (Qi.Qo), and the server location. Since
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both u*{x) and w* are expressed in terms of the normalized workload W, several steps are

required to translate this heavy traffic solution into a proposed policy. First, we reverse the

heavy traffic scaling to express the quantities «*(.r) and lu* in terms of the unsealed workload

V. Since W{t) = V{nt)/\/n, when the normalized workload W equals x, then the original

workload V equals y, where y = ^ynx. The control u*{x) requires the server to serve class

2 until Wi = u*{x), or equivalently, until V'l/^/n = u*{y/y/n-). If we substitute A'/n for the

normalized setup cost k in (1.6), then when the total workload V equals y, class 2 is served

until

V] = \/nu

= wninm

By (1.20), class 2 is served exhaustively as long as the total workload V is less than or equal

to

which, not surprisingly, ecjuals ^/nw. Similarly, if we define the unsealed threshold v* = \/nw*,

then substitution of v/s/n. for w, K/n for k,, and 2>/n(l - p)/a^ for a in (1.13) and (1.17)

yields, respectively.

= C + e''(
—>(^v^^I^^A^-^i^

+ e-p,p2K (^e'^E,{ev) - EiiOd)) -
^) (1.22)

and

^-e'^'E,{0v) = -^^, (1.2.3)
Bv 0^pip2K

where
. 2(1 -p)

(1.24)

Similar substitutions into (1.19) gives

1/1 /I «w^
,,^,,

„ ^ 2 V 4 C1//1 I

Finally, the predicted optimal average cost for the original scheduling problem is

\/nC{w ) = Cv H . (1-26)
V*

Notice that the quantities in (1.20)-(1.26) are independent of the heavy traffic scaling parameter

n, and are expressed solely in terms of the primitive problem parameters.

Now that the optimal control has been translated into unsealed workloads, we use the

simple heavy traffic relationship PiW^ = Z, between workloads and queue lengths to exp'ess

11



the switching curve and threshold level in terms of queue lengths. The only remaining hurdle is

that the resulting quantities are continuous, whereas the two-dimensional queue length process

resides on a lattice. We naively ignore this difference between our continuous solution and the

discrete state space, which essentially amounts to rounding the threshold level up to the next

highest integer, and rounding the switching curve out to the next largest lattice points. In

addition to being the most natural translation of the continuous solution, it also prevents us

from rounding a threshold level down to zero, where infinite setup costs would be incurred.

In the balanced case, the critical value v in (1.21) equals infinity, which corresponds to

exhaustive service. The proposed policy is: when Qi{t) = and Q2{t) > 112V* , then switch

from class 1 to class 2; when Qiit) = and Q\{t) > tx\v* , then switch from class 2 to class 1.

The parameter v* is the solution to (1.23). This policy is a special case of the double threshold

policy introduced by Hofri and Ross, who prove that the optimal policy is of this form in the

balanced case when arrivals are Poisson.

Q2

M2 1' 2 -^ 1

Ml" Ml" Qi

Figure 4: The proposed scheduling policy when ci/ii > C2^i•2

By (1.20), the proposed policy for the imbalanced case has a particularly simple form, and

is pictured in Figure 4: -when Q\{t) = and Q2{i) > M2^*i then sivitch from class 1 to class

2. When Q\{t) > ^iv or (Q2{t) = and Qi(t) > ij,\v*), then switch from class 2 to class

1. The parameters v and v* are defined in (1.21) and (1.22), respectively. Hence, the server

switches to the high priority class as soon as the queue length of that class grows to the level

Hiv. By (1.4) and (1.21), this critical level increases with the setup cost K and decreases as

the c^ differential between the two classes gets larger. Although one might have expected a

general nonlinear switching curve, the vertical boundary in Figure 4 is obtained. It is worth

noting that the heuristic policy of Duenyas and Van Oyen is also of this general form.

2 THE SETUP TIME PROBLEM

2.1 Problem Description

The only difference between the setup time problem considered in this section and the setup

cost problem is that a random setup time rather than a setup cost is incurred when the server

switches from one class to the other; all relevant notation from the setup cost problem will be

12



retained. By CofFman, Puhalskii and Reiman (1994), the performance of this system in heavy

traffic depends upon the setup time distributions only through tlie mean setup time per cycle,

which we denote by s. The server has three scheduling options at each point in time: serve a

customer from the class that is currently set up, initiate a setup or sit idle. The objective is

to find a preemptive-resume, nonanticipating scheduling policy to minimize

lim sup —E
T—oo T

T 2

(2.1)

2.2 The Approximating Diffusion Control Problem

Unlike, for example, the server vacation times in Kella and Whitt (1990), the setup times are

not rescaled as the heavy traffic limit is approached; that is, we assume that the setup times

are 0(1). The lack of setup costs has eliminated the incentive to insert unnecessary idleness

in heavy traffic; inserted idleness increases the workload, which in turn increases the holding

costs. Hence, the proposed form of the optimal policy is simpler than in the setup cost problem:

serve class 1 to exhaustion and then set up for class 2. If class 2's normalized unfinished

workload W-iit) = x at the setup completion epoch, then serve class 2 until Wi{t) — u{x) and

W2{t) = X — u{x), and immediately switch back to class 1. As in the setup cost problem, the

control {u{x),x > 0} can generate any arbitrary switching curve in the nonnegative orthant.

Since the setup times are 0(1), switchovers occur instantaneously in the heavy traffic limit.

Hence, the two-dimensional normalized unfinished workload process (M^i, VV2) will move at an

asymptotically infinite rate back and forth between (0,.z:) and (u(.r),x — u{x)) when the total

normalized workload W = x, just as in the setup cost problem. We now present a heuristic

argument for the characterization of the normalized total unfinished workload process W. If

setup times are zero and no unnecessary idleness is inserted, recall that the the limiting process

is a RBM on the nonnegative orthant with drift s/n{p - 1) and variance a'- given by (1-2).

When setup times are positive, we claim that the limiting process is a diffusion process on

the nonnegative orthant with variance a^ and a state-dependent drift, which we denote /u(x').

Since the system is heavily congested, setups are incurred relatively rarely and the mean and

variance of the setup times do not appear in the variance term of the limiting diffusion process.

As explained in Harrison and Nguyen (1990), the drift of the stochastic process underlying

a heavy traffic approximation ec}uals the expected growth rate of the normalized workload

netfiow process, which is the arrival rate of work minus the potential (that is, assuming work is

always available) depletion rate of work. With zero setup times, unsealed work arrives at rate

p and is potentially depleted at rate one. With time sped up by a factor of n and workloads

reduced by a factor of \/n, the expected growth rate of the normalized workload netfiow process

is \/n{p — 1). When setup times are positive, the potential depletion rate of work is strictly

less than one and will equal the fraction of time that the server spends doing useful work; that

is, the fraction of time the server actually serves customers, rather than incurring setups. We
claim that the drift when the normalized total workload is x equals

/x(.r) = y^(p-/(.T))
, (2.2)

where /(.r) is the fraction of time that the server spends doing useful work when the normalized

unfinished workload W ecjuals x. Since cycles occur rapidly in heavy traffic, only averages

matter and we can carry out the calculation of f{x) over one cycle. Let us begin the cycle

when all y/nx units of unsealed unfinished work V is of class 2. Class 2 work is depleted at

rate 1 - p2 until V\{t) = ^/nu{x) and V2{t) — \/n(x - u{x)), which takes y/nu{x)/{l - P2) time
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units. Similarly, y^u(:c)/(l - pi) time units are required to serve class 1 customers, thereby

completing the cycle. Hence, if we assume p = 1 (see Section 1 for the rationale behind this

assumption), then the length of the cycle is

\/nu(x) \/n.u(x)
^-^ + ~ -^ + s, (2.3)

P2 Pi

and the fraction of time the server spends doing useful work is

fix) =
\/nu{x) _. \/nu{x)

P2 Pi

Vnu(x) v/nM(x) ^
P2 P\

\/nu(x)

ynu(.r) + spip2
' (2.4)

By (2.2),

fi{x) = v/^(/9-l) + y^(l-/(x))

= -c+v^(l-/(.r)). (2.5)

Since

rn ti w Vnpip2S PIP2S
V"(l - jyx)) = ^ —-— as 71 -> oo

, (2.6)
^/nu{x) + P1P2S u(x)

we have

H{x) = —-—-c. (2.7)
U[X)

In summary, we approximate the normalized total unfinished workload process W by a

(p{x),a'^) diffusion. In the special case of exhaustive service (that is, u{x) = x for all .r),

Coffman, Puhalskii and Reiman (1994) show that the normalized total unfinished workload

process weakly converges to ^his diffusion process as p —> 1. If, in addition, c = (that is,

p = 1), this diffusion process is a Bessel process.

As we mentioned earlier, given W{t) = x, the two-dimensional process (^1,^2) behaves

the same with or without setup times; hence the holding cost rate when in state .r is given

by (1.3). Therefore, the approximating diffusion control problem is to choose {u(-i')i-''' ^ 0} ^^

minimize

limsup —E
T—too J-

T
( ^^^^^ ,

Au(X(0)aC2P2X{t) + V^^ dt (2.8)

where X is a {p{x),a'^) diffusion process and u{x) G [0,x] for all x > 0.

The previous literature on heavy traffic approximations of queueing scheduling problems

assumes zero setup times, and the time scale decomposition described in Section 1 leads to a

deterministic pathwise optimization for the optimal queue length process c^d a singular control

problem for the optimal cumulative idleness process. The presence of setup times destroys

this simplifying structure, and (2.8) provides the first example of a scheduling problem for a

queueing system that is approximated in heavy traffic by a drift control problem.

2.3 Analysis of the Diffusion Control Problem: The Balanced Case

Problem (2.8) simplifies considerably when each class has the same cp index. Setting A
equal to zero in (2.8) shows that the problem reduces to choosing u{x) to minimize the mean of
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the stationary distribution of the diffusion process A'. This goal is achieved by minimizing the

drift fi(x) in (2.7), and hence the optimal control is u{x) = x for all x; therefore, the proposed

scheduling policy for the balanced case is to serve each class to exhaustion, and immediately

switch class. The resulting diffusion process is a Bessel process with an additive drift.

The long run average cost of any stationary policy can be obtained from the stationary

distribution (invariant measure) of the diffusion process 'induced' (via the resulting /i(x-)) by

the policy. Fortunately, the subject of stationary distributions of one dimensional diffusions

is old and well understood (c.f. Mandl 1968, or Karhn and Taylor 1981). Given a positive

recurrent diffusion process on the nonnegative half line with drift //,(.r) and variance a^ , the

stationary density satisfies the ordinary differential equation

(j^ d'^Txix) d
, , , , ,,

Y^y- - ^(/'(^)''^-'^)) = °' •" > '^ (--^^

Associated with a reflecting boundary at zero, there is a boundary condition

a^ dTT{x)

~2 Jx~

There is also the normalization condition

= /x(x)7r(x), x-0. (2.10)

oo

7r(.r)dx = 1 . (2.11)

The solution of (2.9)-(2.11) can be obtained using integrating factors. For the Bessel

process with an additive drift, where /x(x) = p\P2s/x — c, it can be shown by a bound involving

Brownian motion that this process is positive recurrent when c > 0. The solution of (2.9)-

(2.11) for this process is the gamma density

where a = 2c/ cr^ is the scale parameter and /i = 2pip2s/c^ is the shape parameter. (It is

straightforward to verify that (2.12) solves (2.9), (2.10), and (2.11). Standard results from

the theory of ordinary differential equations yield that (2.9)-(2.11) have a unique solution.) It

turns out that the Bessel process reaches the origin only if /3 < 1; if /3 > 1 the process will

never reach zero. The solution (2.12) is valid for both of these cases.

Under the exhaustive policy, the expected average cost incurred for the original system is

\/n{c2P2 + A/2)£'[A'(oo)], where A' is a {pip2s/x — c, a") diffusion. Since

rFlXI .1 ^C^ + O 2p,p2S + a^ ,^^„,

7T-

the expected average cost is

C{2pip2S + a'^)

2(1 -p)
(2.14)

where the cost parameter C was defined earlier as (cipi + C2^2)/2.

For the balanced case, we can also introduce setup costs into the setup time problem without

sacrificing tractability. We again let k = K/n denote the normalized setup cost per cycle. As

in the balanced case of the setup cost problem, the proposed policy is a double threshold policy
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characterized by the normahzed threshold level w. We now derive the optimal threshold value

under the general imbalanced case, although this policy is only proposed for the balanced case.

Under the threshold level lo, the diffusion process with drift fi{x) = pip2s/x - c behaves as

before but is not allowed to go below w. The stationary density 7r(x) of the truncated process is

obtained by solving equations analogous to (2.9), (2.10), and (2.11) with the reflecting barrier

at A' — lu. The solution, which yields the stationary density for the normalized workload W,
is

^(^) = ^^?TT^ for x>«;, • (2.15)

where
/•OO

r(/?,a) = / t'^-^e-^dt (2.16)

is the incomplete gamma function. Note that (2.15) reduces to (2.12) when it) = 0.

As in the setup cost problem, setup costs are incurred at the rate p\p2i\./u(x) when W = x.

Therefore, the expected setup cost per unit time is

Jw 1(13 + I, aw) ]

,/3+1^/3-i^-ax r{/3,awj

l(p + l,Qu;) r{p + l,aw)

p,P2aK {aw)l'e-- \

where the last equahty follows from the identity f3T{f3, aw) = T{p + 1, aw) - {aw)^ e~°'^
. The

expected holding cost per unit time is C J^ X7r{x)dx, where

/•OO
CV^"*"^ f^

/ X7:lx)dx — -—

;

/ .c^"*" e~^^dx
Ju_, ^

' T{l5 + l,aw) Ju,

r{(3 + 2,aw)

ar{l3 + I, aw)

a r(p + I, aw)

Hence, the expected total cost rate is

'g -aw

a[^^'^ TH3 + l,aw) r P V FiP + ^aw)^'
^'''''

If we define the constant k = pip2QK/ 13, then it suffices to minimize

{Cw - K)(cvw)^e-""^

r(/? + l,m/;)
(2.20)

Using the fact that ^r(/9 + l,au;) = -ae °'^{aw)^, considerable manipulation leads to the

following first order optimality condition for lu*:

iau,Y>e-" , (, _AU _^.
. (2.21)

r(/i+l,ouO V awj a{K — Cw)

Substituting v/y/ri. for w, K/n for k, and ^lO for a (see (1.24)) into (2.21) gives

= h - ^ + 7T7 W7-' ITTT-, (2-22)
r(^ + 1,^(0 V Ov) eipxpoOK - (3Cv
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Although we have not been able to prove the existence of a unique positive root v* to (2.22),

the numerical solution to this equation was well behaved for our test examples.

In summary, for the balanced case with setup times and setup costs, we propose the fol-

lowing scheduhng policy for the original problem: when Qi{t) = and Q2{t) > H2V* , switch

from class 1 to class 2; when Q2{t) — and Qi(t) > ^i\v* . then switch from class 2 to class 1.

The threshold v* is found by solving (2.22).

2.4 Analysis of the Diffusion Control Problem: The Imbalanced Case

Notice that (2.8) is nonstandard, in the sense that the drift is unbounded at zero and

will be unbounded whenever the control u{x) = 0. Nonetheless, we proceed as if standard

arguments apply (see, for example, Mandl 1968), and write the Hamilton-Jacobi-Bellman

optimality equation for problem (2.8) as

u{x)e[o,x]
[

2 V u{x) J 2
J

Hence, if we can find a constant g, which is referred to as the gain, and a potential (relative

value) function V{x) that solves (2.23), then the control u'(.c) that minimizes the expression

in brackets in (2.23) is optimal and g is the minimal average cost per unit time (independent

of initial state). The resulting potential function V{x) represents the cost incurred under the

optimal policy when the initial state is .r minus the cost incurred under the optimal policy when

the initial state is zero. We assume that V G C^ and, to avoid notational confusion between

the potential function and the unsealed workload process, we employ the first derivative of the

potential function, which is denoted by p{x) = V'{x).

Rewriting (2.23) as

Au{x) pip2sp{x)mm
u(x)€[0,x] t 2 u(x)

we obtain the following first order optimality condition for u{x):

C2H2-r - g - cp(x) + —p'{x) =
, (2.24)

uix) = ^?^i^ . (2.25)

Since greater initial workload implies greater cost, we have p{x) > and the function in

brackets in (2.24) is convex with respect to u{x). Hence, the optimal control is given by

*l \ J /
2/9l/32gp(-r) , ,„.-,„.

u (x) = mm
<^

.r, W V . (2.26)

It is interesting to compare (2.26) with the corresponding solution (1.6)-(1.7) in the setup

cost problem. The solutions are identical except that the normalized setup cost per cycle k. in

(1.6) is replaced by the expected setup time per cycle s multiplied by p{x). Hence, the two

optimal controls will be qualitatively similar if the potential function V{x) is linear, which

will turn out not to be the case. Thus, solutions to the two problems lead to fundamentally

different quahtative behavior.
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We assume that 2pip2sp{x)/A is monotone enough (e.g., p is nondecreasing) and is greater

than x^ as a: —> 0, so that

{X if X < u)
,

r, TT (2-27)

where the normalized threshold level w is unknown at this point and satisfies the fixed point

equation

2piP2Sp(w)

If we substitute (2.27) into (2.23), then the optimahty equation reduces to two ordinary

differential equations (ODE's) for p{x):

—p'{x) + (^IM. _ c\ p{x) = g-Cx for x € [0, w\ (2.29)

and

-—p'{x) - cp{x) + \j2p\p2Asp{x) = g - C2P2-r for x > w . (2.30)

The ODE in (2.29) is linear and possesses an explicit solution (that satisfies the properties

assumed above). Unfortunately, the ODE in (2.30) is nonlinear and does not appear to admit

an analytical solution. Hence, we resort to approximate analytical methods and numerical

methods in the remainder of this section.

It is worth noting the similarity between problem (2.8) and the singular control problem

for multidimensional Brownian motion analyzed by Cox and Karatzas (1985). Their control

problem gives rise to a Bessel process with a controllable additive drift, which leads to a pair of

linear ODE's analogous to (2.29)-(2.30), and hence to an explicit solution. Our problem can

be expressed as a multiplicative, rather than additive, control of a Bessel process with drift,

which leads to the intractable nonlinear ODE in (2.30).

We conclude this subsection with an asymptotic result. Although (2.30) cannot be solved

analytically, first hitting time arguments can be employed to obtain the asymptotic value of

p{x) as .r -^ oo. A derivation in the Appendix shows that the derivative of the potential

function satisfies

p{x) = h o{x) as X —* oo . (2.31)
c

This asymptotic result allows us to see how the control u*(a') behaves as x —
> oo. More

specifically, (2.26) and (2.31) imply that

—1= > \/ as X —» oo . {1.61}
s/x V cA

This result is in direct contrast to the solution (1.6) (1.7) of the setup cost problem, which

implies that

u*{,) -. ^^-^ as x-oo. (2.33)

Equations (2.32)-(2.33) summarize the contrasting (|ualitative behavior between the solutions

to the two problems: u*(x) grows as >/x in the setup time i)rolik'm and is a constant for large

.r in the setup cost problem.
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2.5 An Approximate Analytical Solution

One of our goals is to find a scheduling policy that performs well and is relatively easy to

derive. One possible approach is to derive a policy that is optimal (in heavy traffic) within

a certain class of policies. Perhaps the simplest policy to consider is a single threshold policy

that possesses a single parameter, w: serve class 1 to exhaustion, and theji siuitch to class 2.

Switch from class 2 to class 1 whenever W-iit) = or Wi{t) > u). The optimal policy for the

setup cost problem reduces to the single threshold policy when the parameter w* in (1.13),

and hence i;*, equals zero; see Figure 4. Although it is straightforward to derive the optimal

value of the parameter w in heavy traffic, we do not pursue this here, primarily because our

asymptotic result (2.32) suggests that the policy is not very close to optimal.

Instead, we investigate another simple class of policies, which we refer to as asymptotic

policies; these policies can be constructed by patching together the asymptotic result (2.31)

with the first part of solution (2.27). In particular, we assume that u{x) = x for x less than

or equal to some unknown threshold iD, and u{x)/y/x equals a constant thereafter; hence, we

are assuming that the asymptotic result holds not only for veiy large x, but for all .r > lu.

Continuity at w gives

f X if X < w
,

u{x) = ^^ .^ ^ ^ (2.34)
wx if X > w

This control, and hence the resulting scheduling policy, is characterized by a single parameter,

the threshold level w.

We offer two estimates for w that are of increasing complexity. Both estimates assume that

this parameter satisfies the fixed point equation (2.28), and are based on approximating the

unknown function p{x) in this equation. The simpler estimate for w employs the asymptotic

approximation p{x) = C2P2x/c in (2.31), and sets w equal to the solution to the fixed point

equation .?• = \j2c2P2P\P2S-i' I [c^) , which yields w = 2c2P2Pip2s/{c^)- The corresponding

unsealed threshold level is

^^ '^C2P2P\P2S >

V = ^,rw = ——-
. (2.35)

A(l - p)

As in Section 1, when the unsealed total workload V equals (/, the control u*(.r) recfuires the

server to serve class 2 until the unsealed class 1 workload V\ — ^/nu* [y I s/n) . Substituting

vjs/n for w in (2.34) gives

„..|i) = (
'''';!•

(2^36)
Vv"/ [ \/vy if y > V .

Translating workloads into queue lengths gives the following scheduling policy: serve class 1

to exhaustion and then switch to class 2; serve class 2 until

( p^'Qy(t)+p^'Q2{t) if P^'Ql(t) + P2'Q2{t)<V .

Pi'Qiit) > { (2.37)

[ sJv{pY'Q,it) + p^'Q2{t)) if p^'Q,{t) + p^'Q2{t)>d ,

and then switch back to class 1. This policy implies that class 2 is served to exhaustion as long

as p:{^Qi{t) + P2^Q2{t) < V. When v is defined by (2.35), policy (2.37) will be referred to as

the crude asymptotic policy.

A slightly more refined policy can be derived by assuming that p{x) = ax + h^/x + o{^/x)

as X ^ oo. Substituting this expression into the nonlinear ODE (2.30) and ignoring all o{\/x)
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terms leads to

p(.r) = (-

W

3 Vo[\Jx) as x —» oo . (2.38)

Substituting this expression into the fixed point equation (2.28) yields

If we set z = v/cx, then (2.39) becomes the cubic equation

A^^ - 2C2112P\P2SZ - {2piP2sfl'^^C2P2^ = . (2.40)

Since \/cQ = \/{l — p)v, it follows that the optimal unsealed threshold level v is z'^/{l — p),

where ; solves (2.40). Substituting this quantity into (2.37) yields the refined asymptotic policy.

We could go one step further and analyze the heavy traffic performance of the class of

asymptotic policies defined in (2.34), and then find the optimal threshold level within this

class. Although the expected cost under this class of policies can be evaluated explicitly, the

expression for the first derivative of the cost with respect to w is extremely cumbersome, and

a symbolic mathematics program would be required to obtain the optimal w. We did not

carry out this program because our numerical results (in Section 3) indicate that the refined

asymptotic policy performs extremely well.

Another possible approach to deriving an approximate analytical solution is the following.

Let pi(x) denote the solution to the linear ODE (2.29), and suppose that we could obtain a

solution P2{x) to the nonlinear ODE (2.30). The two solutions are expressed in terms of the

unknown gain g. By (2.27)-(2.28), these two solutions lead to the following system of two

equations and two unknowns, w and g:

/ -\ AiTr Aw^ ,_ ...

Pii^) =
7,

and p2(w) = . (2.41)
2piP2S 2piP2S

Hence, we could derive an approximate solution to the diffusion control problem by finding an

approximate solution to the nonlinear ODE (2.30), and solving (2.41) with the approximate

ODE solution used in place of the unknown function P2{x). We attempted to use perturbation

methods to obtain an approximate solution to (2.30), and also tried to derive a series solution,

but neither approach yielded a sufficiently accurate solution to the nonlinear ODE.

2.6 An Algorithmic Solution

Since problem (2.8) cannot be solved analytically, we pursue a numerical solution. In

particular, the Markov chain approximation technique developed by Kushner (1977) will be

employed. This method systematically discretizes both time and the state space, and approx-

imates a diffusion control problem by a control problem for a finite state Markov chain. Weak
convergence methods have been developed by Kushner and his colleagues to verify that the

controlled Markov chain (and its corresponding optimal cost) approximates arbitrarily closely

the controlled diff"usion process (and its corresponding optimal cost); we refer readers to Kush-

ner and Dupuis (1992) for an up-to-date account of this research area, and will retain most of

their notation for ease of reference.

Let h denote the finite difference interval which dictates how finely both the state space

and time are discretized. One can consider a sequence of controlled Markov chains indexed by
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the interval k, and as the value of h becomes smaller the resulting discrete time, finite state

Markov chain described below becomes a better approximation of the controlled diffusion

process. To numerically solve (2.8), we need to confine the one-dimensional diffusion process

A' to a bounded region. Since ,Y resides on the nonnegative halfline, the state space of the

controlled Markov chain will be {0,h,2h, ...,N — h,N}, where A^ is an integer multiple of h.

The approximating Markov chain has nonzero transition probabilities

P\x,x + h) =
a^ + 2hi^.u{x) r
2a2 + 2h P\P2S _

u(x)

and

P'^ix.x-h) =
a' + 2h[^-c)
2C72 + 2/i,pf2l -c

u{x)

(2.42)

(2.43)

on the interior of the state space, and the time intervals, or interpolation intervals, are of length

Ar
a^ + h

PIP2S
>.44)

Two issues need to be addressed to obtain our approximating controlled Markov chain: (i)

for an ergodic cost problem, the interpolation interval At^ needs to be independent of the state

X and control u{x) (see Kushner and Dupuis, page 209), and (ii) the behavior of the Markov

chain at the boundary states .r = and x = N. To deal with the first issue, we define

Q — max a n\
;

—
;

C
x,u(j) I U{x)

Since the smallest nonzero value of u{x) is h, we let

Q^ ^ a' + \iJ\P2S - ch\
,

and define the new nonzero interior transition probabifities

a-+2h('^-cY

(2.45)

.46)

P''(.r,x-/))

and

P^ix^x) = 1 -

and the new interpolation interval

2Q''



(2.50) at the origin, this boundary state must be eliminated. We define the transition proba-

bihty (see page 212 of Kushner and Dupuis)

P''{h,h) = l-P^{h,2h) . (2.51)

We also impose a reflecting boundary at state A'^, and define the transition probability

P''{N -h,N -h) = l- P{N -h,N - 2h) . f2.52)

Although the reflecting barrier at A'^ is artificial in the sense that P{N, N + h) would be positive

if the boundary was chosen to be larger than N, the effect of this approximation should be neg-

ligible if the boundary state A'^ is sufficiently large, and consequently visited sufficiently infre-

quently. In summary, our approximating Markov chain has st?,te space {h, 2h, ..., N—2h, N—h},
interpolation interval defined by (2.50), and nonzero transition probabilities P^{x,y) defined

by (2.51)-(2.52) and

P {x,y) = P {x,y) otherwise . (2.53)

The dynamic programming optimality equation for the controlled Markov chain is given

by (see equation 5.3 on page 204 of Kushner and Dupuis)

y(x) = ^P^.r,y)F(?/) + (c2M2-r-t-^^-g)Ai'' for x = h,2h, ..., N - h . (2.54)

y

We are now in a position to describe the policy improvement algorithm that solves the Markov

chain control problem. First, an initial policy is chosen, and the natural initial policy is the

exhaustive policy u{x) = x for x = h, ..., N — h. In the policy improvement step, we solve

Au(.r),
min \Y,P\-^,y)V{y) + {C2fi2x + ^^)At

i(x)e[0,x]

If the drift pip2s/u*{x) - c is positive then

u*{x) = min< .r,

and if the drift is negative then

u*{x) = min< x,

(2.55)

l2pip2s[V{x + h) -V



3 COMPUTATIONAL STUDY

A numerical experiment is undertaken in this section to investigate the effectiveness of

our proposed poHcies. Three problems are considered: the setup cost problem addressed in

Section 1, the balanced system with setup costs and setup times analyzed in Section 2.3, and

the imbalanced setup time problem. For each problem, we compare the performance of the

optimal policy, a straw policy, and one or more proposed policies. The straw policy for the first

two problems is the patient exhaustive policy: switch out of a class whenever it is exhausted

and at least one customer of the other class is present. The straw policy for the imbalanced

setup time problem is the exhaustive policy: serve each class to exhaustion and then switch

class. These straw policies are studied because they are simple to implement in practice and

are commonly found in the literature. The value iteration algorithm is used to derive optimal

policies and to evaluate the cost of the proposed and straw policies. We report the suboptimality

of the proposed and straw policies, where a

policy's cost - optimal cost ^
policy's suboptmiahty = -.

-^ x 100% . (3.1)
optmial cost

The experiment consists of 120 test cases, including 48 cases of the setup cost problem, 45

cases of the symmetric system with setup costs and times, and 27 cases of the imbalanced setup

time problem. To simplify the computational effort required to obtain the optimal policy, we

assume that all interarrival times, service times and setup times are exponential. For each

test case, we set the service rates ^i = /X2 = 1 and the arrival rates Ai = A2 = p/2, and let

the holding cost C2 = 1. Hence, each test case is characterized by the holding cost ci of the

high priority class, the setup cost per cycle A' and/or the expected setup time per cycle s, and

the traffic intensity p. This experimental design allows us to isolate the impact of three key

parameters: the difference in cp values between classes, the setup and the traffic intensity.

3.1 The Setup Cost Results

The 48 test cases are generated by considering all combinations of the parameter values

in Table I. Hence, 12 cases are balanced, that is, cipi = C2//21 and 36 cases are imbalanced.

Although our proposed policy, which is described in Subsection 1.8, was derived under heavy

traffic conditions, the policy is tested with traffic intensities as low as 0.5, and with setup costs

as small as one-tenth of the holding cost ci.

Holding Cost Setup Cost Traffic Intensity

ci A' f)

Balanced



Additional notation is required to write down the dynamic programming optimality equa-

tions from which the optimal policy is derived; we occasionally reuse earlier notation that will

not be needed again, which should cause no confusion. Let x^ denote the number of customers

of class k in the system, i be the class that is currently set up, and i"^ be the other class. Let

X = (a;i,a;2), fi
= max(/xi,^2)5 A = Ai + A2 + /i, ei = (1,0), 62 = (0, 1), and V{x,i) denote the

optimal value function. Then the optimality equations are

V(x,i)
1

A J2 ^-t-i'^t + Yl ^^•'^'^^ + ^'^' ') + mm[fi,V{\x - e,]+ + t) + (fi - ^i^)V{x, i)
,

K
2

fiV{x,i), y + M,= F([x - e,c]+ + i') + {fl- fi,c)V{x,i')] (3.2)

The three terms inside the minimum argument represent the three respective options of serving

the class that is currently set up, idhng, and switching and immediately serving the other class.

The state space was truncated in the value iteration algorithm, and larger and larger state

spaces were tested until the results were insensitive to increasing the state space. State spaces

up to 90 by 90 and up to 4000 value iterations were required to achieve three digit accuracy

of the suboptimalities.

Holding



Holding



Holding Cost Setup Cost Traffic Intensity

ci K p

Balanced



We should also point out that the derived values of \v*] and pfapp] from (1.23) and (1.25)

are identical in 10 of the 12 balanced cases (they differ by one in the other two cases), where

\x] is the smallest integer greater than or equal to x. The quantity \v*] ranges from one to

three, and differs from the optimal threshold level by two in one case where K = 200, and by

at most one in the other 11 balanced cases. For the 36 imbalanced cases, ft;*] in (1.22) ranges

from one to four, and \v] in (1.21) averages 8/3 and varies from one to 13.

The patient exhaustive policy, with an average suboptimality of 42.5%, is clearly outper-

formed by the proposed policy. Not surprisingly, its performance degrades significantly as the

holding cost ci and the traffic intensity p increase. Its suboptimality appears to be convex in

the setup cost K. As K initially increases, holding costs play less of a role, and its suboptimal-

ity decreases; however, for very large A', the optimal policy idles much more than the patient

exhaustive policy, particularly when the traffic intensity is low.

3.2 Results for the Balanced System with Setup Costs and Setup Times

Table VI describes the 45 test cases for the balanced (that is, ci = 1) system with setup costs

cind setup times. The proposed pohcy for these test cases is defined at the end of Subsection

2.3; this policy and the patient exhaustive policy, which is the straw policy for these test cases,

coincide when v* in (2.22) satisfies \v*] = 1. The dynamic programming optimality equations

for this problem are

V{x,i) = - ^ CfcXA; + ^ XkVix + ek,i) + min|//,jF(x - e,,i) + (^^ - fI^)V{x,l)
,

(3.3)

U-= l k=zl

fisV{x,i), y + s-'V{x,i') + (m. - ^-^^^(a-,!)}

where fis is defined as max(s~^, /j, 1,^/2) and A = Ai + A2 + p-s-

Setup Cost Setup Time Traffic Intensity

A' s p

Zero



Setup



Holding



Holding Cost Setup Time Traffic Intensity

£i s p

Low 0.3% 15.0% 7.0%

Medium 7.4% 5.4% 7.4%

High 18.3% 5.6% 11.6%

Overall Average Suboptimality = 8.7%

Table XI: Average suboptimalitity of the straw policy: setup time problem.

4 CONCLUDING REMARKS

Using heavy traffic approximations, we analyze a dynamic scheduling problem for a two-

class queue with either setup costs or setup times. As in previous heavy traffic scheduUng

studies, these approximations yield control problems that are more amenable to analysis than

the original queueing control problems. Our analysis yields a simple two-parameter policy

for the setup cost problem, where one parameter is found in closed form and the other is a

solution to a specified equation. Although the diffusion control problem that approximates the

setup time problem in heavy traffic is not explicitly solvable, a scheduling policy is constructed

from an asymptotic result. We derive some fundamental insights into the nature of the optimal

policies for these two analytically intractable problems, and computational results indicate that

our proposed policies are close to optimal over a broad range of parameter values, including

some cases where the heavy traffic conditions are severely violated. An interesting implication

of our analysis is that setup cost and setup time problems lead to fundamentally different

qualitative solutions. Setup times eat into capacity in a nonlinear fashion, and hence setup

costs cannot be used as a surrogate for setup times, as is sometimes done in deterministic

scheduling problems with setu^^ (see, for example, the survey paper by Elmaghraby 1978).

Research is ongoing in two areas. A system with two classes is of hmited practical interest,

and we are currently analyzing the general multiclass problem. Also, a companion paper is in

preparation on the make-to-stock version of the problem; here, the queueing system produces

units in anticipation of customer arrivals, and completed units enter a finished goods inventory,

which in turn services actual customer demand. This problem is a stochastic version of the

classic Economic Lot Scheduling Problem (see Elmaghraby). The make-to-stock problem is

more difficult to analyze than the polling problem because of the nonlinear cost structure and

the lack of a natural boundary at the origin.
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APPENDIX

The goal in this appendix is to show that

f2M2

X—'oo c

which is equivalent to (2.31). Since

p{x) = \\m6-'[V(x + 6) - V{x)]
6—'0

we want to show that
V{X + 8)- V{X) ^ C2/X2

x8 c

Thus we consider the quantity V{x + b) - V[x). We can write

lim lim

V{x + 8)- V[x) = E,^,
L

' {'-'^'^^^^
Au*{X{t))

y dt

(A.l)

(A.2)

(A.3)

where T^ is the first hitting time of x for the {p\p2s/u*{x) — c,a^) diffusion process A', and

the expectation is with respect to the initial state x + d. Combining (A.l) and (A.3) yields

6^0 d j ( C2M2A {t) +
^

g\ dt

To obtain the desired result, we need to first show that

u*[x)
as X —* 00

.!'

and

u \x) ^f 00 as X —> 00

(A.4)

(A.5)

(A.6)

These two asymptotic results will be derived in turn. Throughout this appendix we make the

intuitively reasonable assumption that u{x) is nondecreasing in .r.

We prove (A.5) by contradiction, and hence initially assume that linij^oo x~^u*{x) > 0.

Since u*{x) € [0,x] for all x > 0, it follows that

p{x) < hm E^^s fJo X{t)dt\ - ^-E,+s[TA

The assumed monotonicity of u*{x) yields u* —> >do, so that the drift of A'(^) satisfies

, s P1P2S
m(-i') = —^^ - c -c as X ^ 00

U" X

(A.7:

(A.8)

Take xq large enough so that //(xq) < —
f-

Note that ^(x) < — § for x > .ro- Let A' denote

a (— |,(T^) Brownian motion, and Tj its first passage time. For .r > .ro, it follows that the

integral in (A.7) has the bound

^1+6

Tr

X{t)dt < xE:r+ 6[fj:] + Es
[To __

/ X(i)di
Jo

(A. 9)
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where Tq is the first passage time to zero for a (-§,cr^) Brownian motion.

To evaluate the last term in (A. 9), let

h{6) = Es L
Xit)dt (A.IO)

where ToAh denotes the first hitting time for X to either or b. This function satisfies the

ordinary differential equation (c.f. Karlin and Taylor)

- ^h'{6) + ^h"{6) = -6
,

subject to the boundary conditions h{0) = h{b) = 0, which yields

h{6) =
2a^6 (52 2{a^b + b'^c)il-e'^/'''

+ — +
c2(ec6/<T- _

1)

Therefore,

Since

Es / X{t)dt
Jo

= hm h{8) =
b—oo

2aH 8^
-^^ + —

^x+eyJ-x\Tx
2b_

c

it follows from (A. 7), (A. 9) and (A. 13) that as a: —» oo,

^«^i™.(^)(?-^4' C2M2 + - 1

A\ I2x 2a-
+

(A.ll)

(A.12)

(A.13)

(A.14)

(A.15)

Since p{x)/x'' —
> as x —

> cxj, by (2.26) we have u*{x)/x —> as x —
> oo, which is a

contradiction; hence, (A. 5) has been shown. An immediate consequence of (A. 5) is

, Au*(x)

C2/i2 3,S X —> CX) . (A.16)

We next show (A. 6), again by contradiction. Since we have assumed u*{x) nondecreasing,

assuming that (A. 6) does not hold is equivalent to assuming that il*{x) approaches some finite

constant as x —
> oo, which we denote by u*(oo). For large .r, X{t) behaves as a {ii,a^)

Brownian motion, where fi = pip2s/u*{oo) — c could be of either sign. From (A. 4) and the

fact that pip2s/u*{oo) < p\p2s/u*(x) we obtain

p{x) > hm ——E:,+s

C2P2X - g> hm
*^o 8

Jo
t)dt

fi—'O

(A.17)

(A.18)

where To is the first hitting time for a Brownian motion with drift // and variance a~. Up > 0,

then ii^lTo] = 00, and if /i < 0, then ii^[T()) = -8/p. Hence,

,. / N ^ ,• C2M2-E - ghm p(x) > hm = 00
X—>C» X—'OO /i

(A. 19)
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Equations (A. 19) and (2.26) imply that u*{x) —» oo, which yields the desired contradiction.

Armed with (A. 5) and (A. 6), we can now show (A. 2). Equation (A. 3) can be rewritten as

V{x + 6)-V{x} = E,+s C2^t2X{t)dt + E1+6 fJo
Au*{X(t))

dt gE,+,[T,]. (A.20)

Since (A. 6) implies (A. 8), equations (A. 9) and (A. 14) implies that for .t > .tq,

gE^+s[Tj:] ^ 2g

6x ex

which converges to zero as x -^ oo. Let

u*{z)
ex = sup

By (A. 5), Cj- —> as x —> oo. For x > xq we can write

^x+6 r^ u*ix{t))dt
Jo

< erEii^x+6 r X{t)dt
Jo

<e.
26x 2a^6 6''

(A.21)

where the last inequality follows from (A. 9), (A. 13) and (A. 14). Since e^ —» as x —> oo, it is

clear that

lim lim — -E'x+aX—oo^^O xo

^- Au*(A'(0)
dt .

We are, finally, faced with the first term on the right-hand side of (A.20), which is the only

one that does not vanish. Fix x and let X^^\t) denote a Brownian motion with (constant)

drift n{x) = pip2s/u*{x) - c, and (constant) variance a'. Let T*'' denote the first passage

times for this process. As in (A. 9), the monotonicity of (i*(.r) implies that

(oo),
xEx+,[Tr'] + E

< Ej.^s

n(~)

X^'^\t)dt

rTrj^'X{t)dt <xE,+s[T/'] + Esr(^)i

Mi)

X'-^\t)dt
./o

where A'^*^' is a Brownian motion with drift -c and variance a^. Following the analysis that

led to (A. 13) and (A. 14), we obtain

x6 a'H 6^

Or
/ X{i)dt
Jo

xb o-b b^
<^ + :r-T—

+

M(.r) 2//;^(.r) 2mU-,
(A. 7-}\

Since /x(x) ^ — c as j — oo by (A. 6), we have

lim lim
'1+6 Jo

T,
X{i)di\

xb

which yields

lim lim
X— oo ,5^0

V^-r + b)- V{x) C2M2

xb

by (A.20). This is what we set out to show.
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