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1 Introduction

1.1 Probabilistic scheduling

The paper addresses a simple scheduling problem. There is a batch arrival of agents, each
of whom have a job requiring one unit of time. The planner/manager controls a server
processing one job per unit of time. All agents prefer early service but are heterogeneous
in their ‘type’ —i.e., the number of time periods they can afford to wait for service. If
an agent anticipates a wait longer than this limit, he immediately opts out and leaves
the system. The manager uses a non-price mechanism to schedule the agents; the only
information he can use is the type of each agent.

Fix a deterministic priority ordering o (e.g., alphabetical order) of the agents and,
following this ordering, let them successively choose either to stay in line —and be served
at the best non-assigned date— or to opt out. The Priority mechanism (denoted Prio(o)
throughout the paper) is played in a very simple way: the first agent in the ordering
who is scheduled to be processed at a time period beyond his type opts out first. Once
he does so, all later-to-be-processed jobs (agents) improve their scheduled time by one
period. Then the next agent who, based on the improved schedule, is scheduled to be
processed at a time period beyond his type, opts out, and so on. Hence the ¢-th agent
in line faces a wait of k time periods if £ § 1 jobs before him chose to stay in line and
q ik opted out, and decides to stay or opt out according to his type. Such a deterministic
priority mechanism has good incentive compatibility properties (agents have no interest
to misreport their type) but is unfair.

A simple and natural way to restore fairness is the Random Priority (RP) mechanism:
the planner selects at random and without bias a certain priority ordering o of the agents
(among the n! possible orderings if there are n agents), then priority mechanism Prio(o)
is played as described in the previous paragraph. A first contribution of the present
paper is to provide a recursive algorithm computing the outcome of RP, i.e., the expected
assignment of agents to time slots, called the RP equilibrium assignment in the sequel®.

A second contribution of the paper is to propose another scheduling protocol dubbed
Probabilistic Serial (PS). It resembles Random Priority closely, in particular shares its
properties of incentive compatibility (strategyproofness) and fairness. The advantage of
Probabilistic Serial over Random Priority is twofold: (1) from an efficiency point of view

PS always improves upon RP welfarewise, in the strong sense of the Pareto ranking (no
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agent is worse off and some agents are strictly better off in PS than in RP) and moreover,
it always serves a larger expected number of agents than RP; (2) from a computational
point of view the outcome of PS, i.e., the expected assignment of agents to time slots
(called the PS equilibrium assignment in the sequel), is much easier to compute than that
of RP; moreover the two equilibrium assignments are shown to be close to each other and
even to converge to one another when the number of agents becomes large.

Probabilistic Serial is implemented in the same way as Random Priority: by selecting a
certain priority ordering o of the agents and then playing this priority mechanism Prio(o).
The only difference is that the probability distribution according to which the ordering of
agents is selected is computed by a polynomial algorithm using the agents’ reports about
their type, in contrast with RP selecting this ordering from the uniform distribution.

Thirdly, we show that the improvement of PS over RP is significant but small: if a
gain of a couple of percentage points (in the number of agents served and in the surplus
collected) matters, then the additional effort of implementing PS instead of RP is justified.
Otherwise, we may in effect take each mechanism as a proxy of the other; this is especially

true if many agents are involved.

1.2 Overview of the results and related literature

The model is defined in Section 2, and the Random Priority mechanism is analyzed in
Section 3, where we give a recursive algorithm to compute its expected outcome (Propo-
sition 1). The Probabilistic Serial mechanism is defined in Section 4 in a ‘backward’
fashion: we first define its equilibrium outcome (by means of an easy formula), then we
show that it can be implemented by randomly choosing, and playing, a priority mecha-
nism (Proposition 2). Proposition 3 in Section 5 shows that both mechanisms, RP and
PS, share the very strong incentive compatibility property known as ‘group strategyproof-
ness’. Next, Theorem 1 establishes that the equilibrium outcome of PS is Pareto superior
(or indifferent) to that of RP. Section 6 gathers some concluding comments.

A convergence result (Theorem 2) is reported in Appendix A: when the number of
agents grows large, the difference between the RP and PS assignments vanishes. Extensive
numerical computations are reported in Appendix B. All tedious proofs are gathered in
Appendix C.

We discuss now the literature related to our model. In the mathematical economics
literature, scheduling is a special case of the random assignment problem, where ¢ objects

must be randomly assigned to n agents with heterogeneous preferences over the objects.



The other related stream of literature bears on scheduling and queuing; a good survey
is Lawler et al. (1993). Both streams of literature discuss incentive compatibility and
fairness, but they give different meanings to these terms.

In the latter, the discussion of incentive compatibility typically relies on tolls (Naor,
1968; Dolan, 1979; Suijs, 1996) or nonlinear prices (Mendelson, 1985; Mendelson and
Whang, 1990) whereas cash transfers of any sort are ruled out in our model. An exception,
where incentive compatibility is by means of randomization, is the work of Shenker (1995),
see also Nagle (1987) and Demers, Keshav and Shenker (1990), focusing on the case where
each agent may demand a different number of jobs. Fairness is also dicussed in that work,
and interpreted , as is common in the queuing literature, as requiring that no job takes
all resource capacity at the expense of other jobs.

In the mathematical economics literature on random assignment, on the other hand,
fairness means, at least, that users with identical demands should be treated equally
(ex ante), and sometimes is interpreted as the stronger requirement of envy-freeness (no
agent prefers —ex ante— the assignment of another agent to his own). The main find-
ing is the impossibility of meeting simultaneously fairness, incentive compatibility and
efficiency: Hylland and Zeckhauser (1979), Gale (1981), Zhou (1990), Bogomolnaia and
Moulin (1999b). But in the particular context of scheduling with opting out, these three
requirements are compatible, and in fact their combination characterize Probabilistic Se-
rial: Bogomolnaia and Moulin (1999a)?, briefly discussed at the end of Section 6. Finally,
Friedman (1994) assumes that individual preferences are dichotomous (namely flat up
to a certain ‘deadline’) and discusses a mechanism similar to, but different from, our
Probabilistic Serial.

2 The model

The set Bof agents is fixed throughout, 1= H,2,...,ng. Each agent i is endowed with
a von Neumann—Morgenstern utility function u;, u; 2 R", over the n possible periods or
dates at which he could be served. If agent ¢ receives service at date k, his utility is w;(k):
in this case, we say below that he consumes date k, or that he is assigned date k. We

always assume that preferences are monotonic, namely:

ui(k) _ui(k+1), forallk=1,...,n §1. (1)

2l ote that these 10 papers were ingpired by the presantwark.



Moreover, the zero of the utility function is interpreted as the utility for the outside option.

We say that agent ¢ is of type k if

Here k varies from zero (if u;(1) - 0) to n (if u;(n) > 0). The type tells us how long the
agent is willing to wait before exercising his outside option. In the strategic analysis we
assume that, faced with the choice between opting out and consuming the k-th date, he
opts out whenever indifferent (u;(k) = 0). This altruistic tiebreaking rule will simplify
the strategic analysis without any real loss of generality.

We denote by U the set of utility functions (the subset of R"™ defined by (1)) and by U,
k=1,...,n, the subset of utility functions of type k (defined by (2)). To a profile of utility
functions U 2 U*, we associate a profile of types T'= ( K, ..., B,) which keeps track of the
type of every agent. Thus ( K )o<k<n is the partition of Bdefinedbyi2 & () w; 2U.
Because our two mechanisms, Random Priority and Probabilistic Serial, use only the
profile of types to compute the (random) assignment of dates to agents, we often omit
the underlying profile of von Neumann—-Morgenstern utility functions; however the latter
are key to the strategic and welfare analysis, and the primitive constituents of our model.

We denote by A the set of (random) assignments over the n dates and the outside
option. An element z 2 A is written as a nonnegative n-vector z = (z1, ..., z,) such that

w2k F; 1. The outside option is deliberately omitted from this notation; its probability
s1 i 5z

An BRassignment (z;)1<i<, specifies a random assignment to each agent. It will be
convenient to write such an assignment in matrix form, Z = [z;], where the entry z;, is
the probability that agent ¢ consumes date k: the row index ¢ runs over Band the column
index k over K =H,...,ng.

The planner/manager can choose at random the order in which agents are offered
service. Hence Z is feasible if and only if it is a convex combination of deterministic
priority assignments. In order to make this statement precise, we introduce some notation.

Let S denote the set of sequences & = (iy, . . . ,iq) of g distinct elements in B for some
g, 0 - g - n (with the convention that the empty sequence corresponds to ¢ = 0). Let
S be the subset of S comprising the sequences of length exactly n: thus S is identified
with the set of priority orderings of I To each & 2 S we associate the following truncated

permutation matrix Ps:

Ps = [zik), zee=1ifk=1,...,q and i = iy; 2z = 0 for all other 7, k .



The matrix P is the deterministic assignment resulting from serving the agents in @, in
that order, and ignoring the others.

To each 0 2 S we associate the Priority mechanism Prio(o) : following the ordering
o , the agents are successively offered the best non-assigned date, and choose either to
stay in line for service or to opt out. If o : (o(1),...,0(n)), agent o(q) is offered date k
if exactly k j 1 agents among o(1),...,0(q i 1) accepted the offer.

Given a profile of types T" and a priority ordering o 2 S, we denote by & the (possibly
shorter) sequence in S of the agents successively served in equilibrium, when the priority
ordering is 0. That is, an agent of type k accepts any date not later than k& and refuses

any later date. We call & the equilibrium sequence associated with the ordering o. For

instance consider (b, &, &, &) = (g, 1,39, g, 2,6Q), then

(3,2,6) ,
(6,5,2)

Q
I

o =(3,2,5,4,1,6)
o =(4,6,1,3,5,2)

Q
I

D
D

Given the profile T' and an ordering ¢ 2 S, we denote by Prio(o,T) = Ps the

truncated permutation matrix resulting from the corresponding equilibrium sequence.

Definition 1 An assignment matriz Z is feasible at the profile of types T if and only if Z
is a convex combination of the matrices Prio(o,T), 0 2S. We let F be the set of feasible

assignment matrices.

Remark: Clearly, and assignment matrix Z 2 Fis substochastic:

X X
zi o 0forall i,k ; zir -1 and zi -1 forall i k. (3)

i€T k=1
This follows straightforwardly from the fact that each matrix P; is substochastic. Con-
versely, these inequalities are not sufficient to characterize = Baiou and Balinski (1998),

Theorem 4, offer a conjecture about a characterization of the related set of convex com-

binations of the matrices P5, @ 2'S (independently of agents’ types).

3 The RP mechanism and equilibrium assignment

As mentioned in the introduction, the description of the RP mechanism is very simple,

but that of its equilibrium assignment is not.



Definition 2 The Random Priority mechanism selects at random and without bias a
priority ordering of N, namely and element o in S. Then the agents play the priority
mechanism Prio(c). The equilibrium?® assignment corresponding to the profile of types T
is denoted RP(T ):
1 X
RP(T)=—  Prio(o,T) .

~nl
g€S

We will refer to the above matrix as the RP assignment at T'.

L

Let M, = k. denote the set of agents of type at least ¢q. As long as the RP
k>q

mechanism is assigning the dates 1 to g, all agents in M, behave in exactly the same

way. Consider then the assignment of date g. The probability that an agent in BrM,
consumes it is zero, whereas all agents in M, have an equal probability to consume it.
Denoting m, the cardinality of M ,, the latter probability equals (,/m, where 3, is the
probability that date q is assigned at all. Therefore the RP assignment at 7" is Z% = [2;]
where for all k£, 1 -k - n:

m @)
=0 ifi2M,

Computing the RP assignment boils down to computing the sequence (G )r>1. It is useful

to introduce the ‘threshold’ quantity? q. associated with a profile of types T
¢e is the largest quantity ¢ such that g - m, . (5)

Observation 1 3, = 1 whenever ¢ - q.. Conversely, whenever g > q., we have 3, <1 .

Moreover the sequence (3,),>1 is nonincreasing.

Proof: For the first assertion, after the first ¢ § 1 dates are assigned, some agents in M,
are still not served (because ¢ - ¢¢ =) m,; > ¢ i 1), hence the claim by induction.
The second assertion is because with positive probability the first m, agents drawn by

RP are precisely those in M ,; they all accept to consume date k with £ - ¢ § 1; since

3T he aonogpt of strategic ecpi ibrium wsed here is that of a dominant strategy; Tor an agantof pe
g, itis adoninant stralegy o aaptay dake Kk K - g ad relise ay other ae- A lematiely, we
may desaribe aur equ ibrium as the unigue strag e ibrium ofthe game_ W e anit the utnimpartat
deta b, ad refbrte interssted reedar to Cips andil aulin (999), whare the strategc disassian is mae
detabd.

4Inthesigtly d@attaatextofCigs andll aulin € 999), itis the exdatt"quantity, in theeconamic
meaning of the word; itis ako the quantity Torwhidh the tpe aune atssss the diagoal.



q>q =) m, -q il,all agents in M, are served in this case before date ¢ is offered

and there is no one left to consume that date.

Unfortunately, it is not possible to give a simple formula for 3,. Our first result provides

a recursive algorithm.

Proposition 1 Given a profile of types T' = (K, ..., L) with corresponding cardinalities
(no, ..., ny,) we denote by Q the largest integer q such that W, is nonempty, and assume
Q > 1 (the case Q = 0 is trivial). Then the probability 3, that the q-th date be assigned

s given by:

By=  ags forallq,1 - q - Q; By=01ifq>Q (6)

where the double sequence (aq,)o<qr<g 1S computed by the initial conditions:
aoo =1; ap, =0 forl -r -@Q,
and the recursive formulas:

Loafr - mgy,
A 1, A 1A !
my X r+7 myg i(r+j)

Qq,r = .
Nq j=0 J Ng 1J

Qg—1,r—1+j ; (7)

2. 4fr > mgiq,

Qgr = Qg—1,r—14ng - (8)

Proof. See Appendix C. The formulas are not intuitive. The quantity a,, is the probability
that among the ¢ first periods, ¢ jr of them are assigned to agents of type 1 to ¢, and r
or less to agents of type ¢ + 1 to Q. (Note that the set of type 0 agents plays no role in

the computations.)

The main interest of the proposition is to allow numerical computations and to prove
the convergence result in Appendix A. We give several examples in the next section and

Appendix B.



4 The PS mechanism and equilibrium assignment

As mentioned in the introduction, the description of the PS equilibrium assignment is very
simple, but that of the mechanism to implement it requires to run a polynomial algorithm.
An intuitive definition of the PS assignment is by the following algorithm: think of each
date as a mass one probability; allocate the dates sequentially starting from the best
dates with equal share to all interested agents. Therefore agent ¢ of type q (i 2 K,) gets a
1/m,, probabilistic share on date k for £ = 1,...,q. He will accumulate the probabilistic
shares of all the dates, starting from the best one, until one of two things happen: he has
accumulated a probability one of service; or he has accumulated the shares of all dates he
prefers to opting out (i.e., dates 1, 2, ... , k if he is of type k). Formally, for all ¢ _ 1, for
alli 2 K 8

1 X
Zik = — if -1,
™My 1 mp
X1 1
ZZkZO if 1 - —
1 M
X' X' X
= Zik = 1 1 — if — <1< —.
mp mp mp

1 1

P
The key to the above formula is the critical integer, if any, at which the sum  1/my,

- 1. With

passes 1. We define ¢* to be the largest integer such that ¢ - n and
mp

1
the convention 1/0 = 1, we see that ¢* cannot exceed @) (the largest ¢ such that K, is

X

1
nonempty). We set e =1 j —,so that 0 - e < 1.
mp
1

Definition 3 Given a profile of types T = (b, ..., L), define the sequence (7,), as

8

=1 for 1 -q-q",
B’yq*+1:€¢llq*+1

- 7% =0 for ¢ +2-q -n.

Interpret v, as the probability that, in the PS assignment, the q-th date be assigned °.
Then the PS assignment ZF5 = [2;] is defined by:

e = 2 fi2M,
M 9)
=0 ifi2M,

S ote that the Istpartof the Tomula disgpears ifd™=n.



Given the similar formula (4) defining the assignment Z%F, comparing the two assign-
ments amounts to comparing the vectors ((,) and (v,), namely the probabilities that the
g-th date be assigned by the two mechanisms.

For ¢ not larger than the threshold quantity g. (see (5)), the g-th date is consumed
for sure in both assignments: 3, = 7, = 1. This was shown for 3, in Observation 1. As
for ~,, it results from g. - ¢*, which itself follows from the implication:

” I S T

for g such that ¢ - q.: — - -— ) -1.
My Mg, Qe L M

Beyond ¢., the probabilities 3, and 7, may or may not coincide, as demonstrated by two
examples illustrating Definitions 2 and 3. In the examples, we describe the profile simply

by listing the cardinality n4,...,ng of the subsets §,..., k.

Example 1: (ny,ns,n3) = (1,2,2)

We have five agents, and the threshold quantity is ¢. = 2 (because ms = 4 and mg = 2).

13
In RP, the probabilities of allocating the three dates are: 3, = 1, B, = 1, 33 = 5

Turning to PS, here ¢* = 3 (because 1/5 4+ 1/4 + 1/2 < 1), therefore y; = 75 = 73 = 1.
Hence the RP and PS assignments:

0 1 0 1
20 0 00
1 1 1 1
5 4 0 5 4 0
RP PS

Z"=B1 7 0 and Z7=81 10
1 1 13 11 1
5 4 30 5 4 2
1 1 13 11 1
5 4 30 5 4 2

Example 2: (ny,n2,n3,n4) = (1,1,1,1)

There are four agents, and g, = 2 (because my = 3 and m3 = 2). The probability that

3 1
RP assigns the four dates are”™: 31 = 1, 3y = 1, B3 = T By = o1 As for PS, ¢* = 2

5
(because 1/4+1/3 - 1<1/44+1/341/2),and y1 =7y =1, v3 = 5 and 74 = 0. Hence

81ndesd, the third dale is notassiged ifs () dtherte Isttwoagaisin inearethaein k | whidh
hes praoebiity 24 ; @) orthe " 1stand third agarits in ire are thoe in &, and the sscond theaein i

| vhich hes prcbebility 215 _H enceatolal of % -

“Farinstance, the Tourth date is assigned anlly ifthe priarity adering is by inaeesing type: prdoa L,

24 =

10



the resulting RP and PS assignments:

0 1 0 1
2000 2000
1 1 1 1
1300 15200
ZRP@??:& g and Zpsa‘ll? g
i3 8 i3 10
50§ 50 1 0

Table 1 in Appendix B provides ten more profiles, where the number of agents goes
up to 36, for which the vectors (3,) and (v,) are explicitely computed.

We turn to the definition of the PS mechanism: this amounts to describe PS as a
convex combination of deterministic priority assignments (see Definition 1). Given a
profile of types and the corresponding PS assignment Z©°, we must show the existence
of a probability distribution 7 over S such that, when an order ¢ is drawn in S according
to m, and Prio(c) is played, the resulting assignment is ZF. With our matrix notation,

this reads:
7P = n,aps. (10)

Proposition 2 Given a profile of types T = (&, ..., L) there exists a probability distri-
bution m over S (computed by a polynomial algorithm) such that (10) holds. (Moreover
each sequence T is of length ¢* or ¢* +1.)

Proof. See Appendix C. The proof is very similar to the standard problem of representing
a bistochastic matrix as a convex combination of permutation matrices (Birkhoff-von
Neumann theorem?®). In fact our proof consists simply of providing a bistochastic ‘cover’

of the PS matrix, and then invoking the Birkhoff-von Neumann theorem.

For Example 1, a probability distribution 7 satisfying Proposition 2 obtains as follows:
(1) draw the first agent in line (among the five agents) with uniform probability; (2a) if
the type 1 agent is drawn first, go on as in RP; (2b) if a type 2 agent is drawn first, draw
both type 3 agents (in random order, with equal chance on both orders); (2c¢) if a type 3
agent is drawn first, draw one type 2 agent (with equal proba on both agents), then draw

the other type 3 agent.

8\ elH«onn tobe sohebkin polynamial time;apolynomial albgorittm Brtumingany Eesibkesolution
1o a nearpragram into aaonvex anbination ofthe extirame pants ofthe feesibe regan may be oud
iNnB azaraaetal- (990 )-
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For example 2, we can choose 7 as indicated below, where we write the (unique) agent

of type i as ¢ and omit all agents who decline (i.e., we report @ instead of o):

priority ordering | probability | priority ordering | probability
1 3 4 1/8 3 2 4 1/6
1 4 3 1/8 4 2 3 1/6
2 3 4 1/8 3 4 1/12
2 4 3 1/8 4 3 1/12

With respect to implementation, the main difference between RP and PS is that the
former uses the uniform distribution over all priority orderings, whereas the latter chooses
a distribution only after eliciting the type of every agent. Thus the PS mechanism requires
to process more information than RP, and to compute a polynomial algorithm. We ask
now if the PS mechanism could be open to strategic manipulation: what if an agent finds
it profitable to misreport his type? Fortunately, such manipulations do not pose any more
problem to the PS mechanism than they do to the RP mechanism as we shall see in the

next section.

5 Incentive compatibility and welfare comparison

5.1 Incentive compatibility properties

To each profile of types T = (h,..., L), the RP mechanism and the PS mechanism
associate a (probabilistic) assignment Z 2 F (given respectively by (4) and (9)). This
defines two mechanisms: 7'! 7 and we now show that they both are strategyproof: it is
never profitable for any agent to misreport his type in the hope of receiving an assignment
improving his utility.

In fact, we show a stronger property: these mechanisms are both group strategyproof,
namely a joint deviation by any coalition of agents either leaves the utilities of all agents in
the coalition unchanged, or strictly decreases the utility of at least one of them. The group
strategyproofness property is one of the strongest incentive compatibility requirements:
its well known informational and normative implications are discussed, e.g., by Barbera
(1995), Moulin (1996).

To formally define the property ‘group strategyproofness’, we fix a mechanism f.
Consider an arbitrary nonempty subset J of Band two profiles U*,t = 0 or 1, in U that
may differ along the J-coordinates: for all i 2 BN/ : v = u}. We denote by T" the profile

12



of types corresponding the the utility profile U? and by 2! the assignment resulting from
f. The GSP property requires the following:

if Ffor all i 2 Ju) @& _ u) ®’gthen Fforalli 2 Ju) & =u) &’g. (11

Proposition 3 The RP assignment and the PS assignment both define a group strate-

gyproof mechanism.
Proof: See Appendix C.

This result states the incentive compatibility of our two mechanism, viewed as ‘revelation
mechanisms’: that is, the manager asks each agent to report his type and enforces the

equilibrium assignment at the reported profile.

5.2 Welfare comparison of the RP and PS mechanisms

With two or three agents, the RP and PS assignments coincide. This fact is easily checked
from Definition 3 and by computing directly the RP assignment. For problems involving
four agents or more, these assignments may be different as illustrated by Examples 1
and 2 in the previous section. Note first that the expected number of zgents served is
higher in thePPS assignment: in the first example,  f, = 2.87 < (Yo = 3;in
the second, G, = 279 < ¢Ja = 2.83 . Moreover, in Example 1, an agent
in K strictly prefers his PS assignment to his RP assignment (because he gets a higher
proba of consuming period 3, ceteris paribus); on the other hand, agents in & and &
are indifferent between RP and PS. The situation is similar in Example 2: the first two
agents are indifferent whereas the last two strictly prefer PS to RP (e.g., the proba that
the type 4 agent consumes date 4 in RP is ‘transfered’ in PS to his consumption of date
3 —as 3/8+1/24=5/12). These observations generalize.

Theorem 1 Given is a profile of types T = (W, ..., B,) with threshold quantity q..

1. For every agent, the probability that he be served at all (that he does not opt out) is

not smaller in the PS than in the RP assignment.
2. In both assignments, the expected number of agents served is between q. and 2q,°:

ge - ¢ - ¢ -2q. . (12)

W e note then the ypperbaund and ° instatement2 ebowe is GGt T hatis, Trany g, there exdists
apro k oftpes where gis the thieshod quantityad ¢ =d' S is arbitrarily dose 102, Gee proof).
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3. The PS assignment is Pareto superior to the RP assignment, or they are welfare

equivalent:
foralli2 1 u; @75 _uy &EF

4. Every agent of type at most q. gets the same assignment in RP and PS:

foralli2 IFM 4 44, 2P = ZBFP

5. Assume ¢* _ q.+ 1. Then an agent of type at least q. + 1 with strictly monotonic

preferences, strictly prefers his PS assignment to his RP assignment.
Proof. See Appendix C.

Theorem 1 demonstrates the unambiguous welfare advantage of the PS mechanism over
the RP one (statement 3). Moreover, it says that the agents with high types strictly prefer
PS to RP, whereas the agents with low types are indifferent (statements 4 and 5). Finally,
we learn that PS (in expectation) serves any agent more often (statement 1), but does
not serve more than twice the ‘efficient’ (in the economic meaning of the word) number
of agents (statement 2).

The literature on scheduling and queuing regards statement 1 as an argument in favor
of PS: it means that its failure rate is smaller (Mendelsson and Wang (1990), Gelenbe and
Mitrani (1980), Lawler et al. (1993)). However, in another interpretation of our model
inspired by the tragedy of the commons (the joint exploitation of a decreasing returns
technology), one important normative goal is to reduce the level of production (see Cres
and Moulin (1999) and references therein); in that context, statements 1 and 2 argue in
favor of RP over PS.

In Appendix B, we explain numerically the gap between RP and PS (quantitywise and
welfarewise) and we show it is small (we conjecture in never exceeds 8.33 % quantitywise,
and is usually a couple of percentage points on both dimensions). On top of that we
establish in Appendix A a result of asymptotic equivalence of the two mechanisms when

the number of agents, n, tends toward 1 .

6 Concluding comments

1. An important feature of our two mechanims RP and PS is that they only use

the ordinal information on types in the computation of the final outcome. This
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makes for very simple mechanisms and allows the very strong incentive compatibility
property described in Proposition 3; on the other hand, it rules out the possibility to
take advantage of cardinal information. For instance, if an agent has dichotomous
preferences such as u;(k) = 1 for k& = 1,2,3,4 and u;(k) = §l otherwise, it is
inefficient to serve him with positive probability in date 1 if there is at least one
other agent with strictly monotonic preferences. Yet the RP and PS mechanisms

cannot use such information.

2. A more general perspective on our model comes from the mechanism design ap-
proach. A general mechanism elicits from the agents the profile of utility functions
U, then determines the random assignment Z under the feasibility constraint de-
scribed in Definition 1. Bogomolnaia and Moulin (1999a) apply this viewpoint to
our model, and restrict attention to the class of random assignment mechanisms that
only elicit such ordinal information. They offer a concept of efficiency adapted to
this informational structure (called ‘ordinal efficiency’) and they characterize PS by
the combination of its properties of efficiency, fairness, and incentive compatibility.

More precisely, they show that:

(a) PS is the only such mechanism that satisfy the combination of (i) ordinal
efficiency, (i) strategyproofness and (iii) equal treatment of equals (two agents

sending identical reports receive the same random assignment);

(b) it is also the only such assignment that satisfy the combination of (i) ordinal
efficiency and (7i) envy-freeness (no agent prefers the random assignment of

another agent to his own).
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a2l 2=, D:
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Q is the lagsst naeEmpty tpe ad ny is the number ofegaits of ype g- ThusQ - Nn= nyad

0
n, > 0. Toadd enpty ecoamiest, weassumeQ _ 1 . Foraypar©Q )2\ 2, aeande rea
pro BEdftpesT OO =y ;215 Dorallgl - g - Q , thraugh:

T q©
m(nﬁ) = nt Q?]_
n®R> = N i B

where bbe denatss the highestinteger smaller then arequal o X- Farirstanae, @ke , ~ 1, theunifam
dasity oer |l ;1 | I'tgererates the distibution Tncdicn + =1 j x- Fan=Q + 1 )kk2\ , te
unifom pro EofgpessT = (K::: ;K dotars.
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Imit)s is as Tolbns:

ifdlnl QD =c=1; then>x=1;
it Em = “
@0y 1 Q

T he proofis inA ppadixC.

Inthecsec=1 ,P iperty (4)says that the threshold quentity 2 is @incsDecual 1) when
nis bie-Sinewe knovtattheP S adR P assigments adndde torall agents of ype atmost @, this
esteblishes tharasymptotic equinvalbene ataxe Ge T heaamn 2 ora predse statemantb).
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=c< 1; tenxisde nedbyct@e)=>¢:
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2 3
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here and below, 1o igten the nolation.-
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N ofagats \aries betneen 4 and 25 @l baunds impased for camputaticnal tractzbi kity)- Fareedh valle
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& p iq s the prabebi ity thatexactly q dates are evenually assiged.- Clearly equiaks the prdosbi ity
that at bsst q dates at bsstare assiged, so equatian @) ollons._

SEp2: T hree simpke cees W e mustproe thatthe prdoebi kities a4y are gven by the recursive formules
@ad @)-Casider sttte cee r> g. Famul (D gves Oy inductia) a4, =1 , a5 desired.-

I extaxsider @ sudh thatny =10 - T hen equation () reecs: agr = &g;1 i1 - INdeed, all binamial
rumbess in the Tomulb are egual ! sinee e iy \valle ] an tEeis zero. 0 N the otherhend &g, Is
the prdoathatq j rofthe q 1stdates be assiged 1o agaits of tpes | 1O g- Since there are no agat
afFtype gand sine agats of ypes strictly smaller then gcamnotaasume the grth date, the prdosbi ity
ofthis esatis the same a5 the prdosbiity thatanmagtheqijl  stdates, i fi=@il)i @il )]oe
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k_ 1, then a4 is the praoebiity thet, after asssigmattofthe g 1stdages, g j My i Kbe essiged
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Forallj suhthatl - j - minfing;qi 19, EtA () be the subset of A o such tteteectly j dates
are assiged o agrits of ype g, ad Etag, ) be its prdosbi ity W e shovnonz

A ! il A ) ! A ( _)!
m r+ Jj Mg i @+ j )
@)= i : - iLril+]j - ((§))
% Ny J Ny iJ St i+
T his establishes Tomula () in view ofF tho ats:
mMirfe:di 1y
Sgr — a:];r(i) ad ﬁ> qi r:) a]il;ri1+j=09:
i=

(e Atlereccilbns filan gil < ril + j adStp 2 ) In aderoesteblish (5), we note thatA ()
is asubset of A ;1 .1 + j » &0 We aampute the conditianal prdoebi ity oF A -G IVeN A gt i+ -
Casiderassguen® inAg;i i+ j - W ith respect o the assigmattofte 1stq ! daes, agents
in M g are ecuinala Tt @ram a prdoebi istic pdntofvien): they alll acoptany date cRered. Tomake the
“rnal algumatintitive, in the aasidered adaring, we puta baran tgp ofeach agatwho ends up being
served. T hus auradenng is IN A g;: e+ j 1Fand any if, upan reeding the ardering fran Eft to ndit
w o the gth bar; there are g § r j j bars underwhidh ae sess an egaitin IFM - T he key paritis
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thatthis is indepencenttof tre reltine adkeringofagas in M g uncerte remaining r+ j Or Es)ars.
Il eldng this ardering predss, i e., distinguishing agats in Iy fran agas inM -1, Is eactly whatwe
need to dedue - fram ag;1 3 -

I ote that, oran aderingin A o-(), there are (p o te gith bar) eactly j bars undernahidhis an
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with agaits of ype g, ad there are, Torthe  1stbar;, n, sudh agaits autofthe mg of type gand mare,
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ae ssdged O the o N ons, etc). T he emaining setofindiass, nemelyB = NNn¢ A;  Ay)is
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date |1 2 3 4 5 6

1 1A 0 0 0 0 0
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L etus novassume < n, sottatB is naempty (FM =1 = 1, then = n by de nitian of ).

W edistinguish tno Gasss forde ningP anB .

Cael :Mg =; amely =0 ).W esstforallg !l -g-,oralli2 L, alkd+1 - k-n:

L ilq : : Xy . . X
Pik=—— . (,withtenoationpyg= — .Inteiqoy Tri 2 I, wehae p.=q, haxe
nich My
> : :
pik=! -Chaktatthesumis! intekobmmsd+! - k- n:
1
0 1
X X L jlg 1 @ X pcf\
Pik= g— = nNi Ny =13
i2n o= nidk nid o=

where the st o eqpatias oy fran the de nitian ofpig and Mgy =0 -

Cee?2 - M =1 6 ;-H erevedooed@rattly the atties incomnd™ | versiscoumrs o 2;::2:;n GF
ay)-Castiuct isttteeriesofcobmng™ L zforallg,l - g - o, oralli 2 pigs: =1 C ipy) . 0
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whare 1 is adjusted tomake this cobmn sum ! -

X X X
1 = VS P 1
ol 21y i2M =
ﬂC}
=1 gl ikl 2Mep =12O i d i 2Mg i Dt 2 Mg
ol

e anitthe deta k of the straightforvard amputatian). 0 bsene thatby de nitian of cf,

+pqcz>1=) 1>2I'nqc1H
Mep- 1

=2
thaeke( < 1=n{clf3-n;qr:1 - 1 and the de niticn ofthe @+ 1 )aoblmn is ampEte. | ovwe
_ i [ o 1
ce re e cbmrs g+ 2 on. Ifd™+ | = n, there is nothing 1o do ad indeed the matrix P is dably

stodestic alieedy, because T =1 A ssumenovn _ '+ 2 and de re:

frallgl - q- . oralli2 kallk o+ 2 - K- nipe=¢ i)tk

nidhil =
Chedk istttettei+ovsums ol ,foralli 2 I'M g -
R X
Pic* Picer1 + Pik=Hgt T ikt € 17 TH)=1:
1 o2

ad tevari cation thatforall k,

. . 1 ilg L
I extthede niianoft yiels ( § 1) =
SRR
g+ 2 - k- n,te kobmnsums 10! is novstragitiommard -

S¥Ep 3:A ppbingB idORS tterem _A ob,byskﬁ‘esﬁcmanixislteme(ﬁ(mbirﬂﬁmcfpelmula-
o matriass, hene there is a prdosbi ity distribution s an S such thatc P = Yw,Py N Ofe thatthe

%25
P matrixiszaoinA; adinA; @Eaptirted™+ | cblmn);hene, Torany pemutatian % sudh that

Yw, > 0, the matix P, is abozeroin these tho subsets of N ; in othervwads, we have:

tralk! - k- TIWE=i D i2Mi

ralkk 7+ 2 - k-n - ¥ ®=i D 12Mg=:
T his implies ataxe thatin the equi ibrium assigmeataonespading o the priaity adering?: , the™ 1st
g agts debuyad the stn j i1 dedined. Inpartiaular; ¥ = G 52225 i) @ 52z siges i1 )-
I asowerPy =¢ @yx)wharet is the (inear) aator aneeling the B -entries in a (@va) matrix ad
kaing all other entries intact. W e then gt PS5 =¢ @)zx Yy, 8 @%)zx Y, P and the proofof
Prpaitan 2 iscampEe intecaeQ - n. = =
SEp3:Theasen< Q -.Casiderapro Eoftypes (B ;:::; hDwithn< Q _D istinguish tnoGses._ IT
d< n,tenteravpro E( ;:::; h;i M o) @atis, the setofegas M , inteinitial pro kequek
the sstof agaits ofF ype n in the new pro E) yieks predsely the same P S assigmeatt o every agait
(e the o pro ks garerate the same sets of agaits of spe!l o g+ 1).B utin thessoad pro E,
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we &an gpply the eboe argument because the number oF pes is not rger that of egants, and we are
hame.

If, n the otterhad, 7= n, ten anagumatitgveninStEp 2 shons et | =21 = L = 3,
M = 1Tad thematrix? S is unifom sothe desired statement holos.

P roofofP ripasitiaon 3

T he praofis very simple, as can be deded an a aapk ofexanpks, sownwe anly sketdh it T he proofis
idertical or theRP and PS sodal ddice £ndlias, provided ve set @, 10 be the prabebi ity that the
gfth date be assiged, With @ g =~ ar® =" ; respectively. L etU £, T t and z* be a5 the premises of the
gap strategyproof property and Etg be the smalkst ype atvhidn T! and 7! di®ar:
BR=K; ork=0;::50i0l ; {6 K:

T his implies M. = M{. ork=10;:::;q, hence all agaits in M o hawe, in Z4, the same prdocbi ity
Pik = ®,=my oFcosuming date I il areoer, if®q 1 =0 @hidh implies tat®,. =0 forallk _ o+ 1)
tenZ =Z andwe are hane.T hus we assume fiom novan @1 > 0 D istinguish tho Gases.-

Ifthere is an agati in KNk, this agent, in T, is of ype at Bsstg+ |, henein Z he aasumes
date g+ 1 with pasitive prdocbi ity ® o 1 =M 1 svheress inZ his aansumptian reducess odates ! ;111508
thisimplies U} & > U, & (e U @+ 1)> 0 )adwe aedae.

Ifthereis anagati in KNk, thisagent, inT! isofpeatbsstgt |, henceinZ heaosumes date
at+ 1 with pasitive prabsbi ity ® o 1 =M, 1 -B uthis ttue peis g, and Lp operiad qZ adZz adndde:
terefred & > U & hos e ifd @+ 1)is necative. T he anly passibi ity is thus U @+ 1)=10 -

Charly the sboe tho cees exdaustall passibilties. T hey esteblish the desired property 1L exaspt
perhaps in the case where, betneen 7 and 2, same agaits igparta pe d , lger then theiriue type
d,ad are ind@ent 1o the resulling dange of assigmeant becalse their uti ity is zeyo Tor all dates
gbetneend + | ad g , that they aasume with pasitive praoebi ity after misrgparting. In twm, this
implies thateveryare in the deviating acalition T is indi®rattbetneen 72 and Z , which aonclucks the
proof.W e anittre deta k-

P roofof T heoram 1

SEp 1 - I otian and preiminary lemarks. W e wie F, 1 - q - Q , the prdbebiity that date q is
assigned by medienism t, wheret=10 refas ORP andt=1 refrs 1oP S _Similarly, pf, = ® {rmq denotes
1heprcbebillylttatanagarrtinchmsl,meokaleq,aml%}1 is the prdoebi ity thatan agatofFype q

>
is served at all, nemely: g = pL- W e say the sequenee (X ;:::;>¢ ) of real numbers stodnestically

daminates anotherseapenae ¢4 ;2 :2yr DIE
Xt X

X . Yr; fralltgl -t-T: a6
=l =l
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inaessing sequence ofnanegative real rumbers, and §¢ ;211 ;>4 ) stodestically doninates ¢ ;2:25y1 )
ten:
X X
°d . O W,; Traltl -t-T: an

r=l r=l

S¥p 2: P roof of sekement! - T his says that the sequanae @q)su:(hasﬁ(ayobﬂiralsltesaqm

@), and Bllons atance fiam the Hllbing properties:

a-'q orallq; | -q-d7;
hh - &1 frallg; d+1 -q-Q:

St¥p 3: P roof of seement4 _ W eal@kncwltat@ézl tort=(0;l adallg ,! -q- q Ge
disassion after D € nitian 3). T his implies statement4, as well as the ™ 1stineguality in (2).

Stp 4 - P raofof statement2 _Statemant! saysiiy, - g Torallq;l - g - Q -T he total eoected number

R
of agenits served by the medrenism tis: df = nyig, heneed - 4, and the secod inequality in (2)

ol
is proen.
Finally weshonvd - 2@.-L etgbeanyrumber,! - g - ¢f-B ecause the ssquene My is naninaress-
ing, we have
. BT T _
1. __-.F@qu"'l)- a8
Kk

m
kzqk

A ssume stdisodd, =2qi!l -4 ppMng (8) O gyieks q - mg, hence q - G sotat < 2.
add - '+ 1 -2q as desired. )l extsuppoe ftis even, ' =2q j 2 ad gpply (8) O g-l oe that
the Efthad inequality mustbe strict an equality would imply g=1 @y de nitan of P ad =10 .
T haxefore (8)implies:

digtl<mg O g-mqg O g-G D g+l=2qil<2g;

adwe are doe.-
S#p 5 : P roof of seement 3 - Casider an agaiti ofype g: his utiity at the assigmait zt is u; &t =
xa

=t
©)) stodestically dominates @); this gpplies as well 1o their tuncated versias Where K rurs fiam |

Og-H ence tedsired inegalityu; & - u; & Gl )-

SEp 6: Praofofseement5. A sume f® _ @+ | - Casideranagati ofspe & &_ g+ 1 _We
noticed earfier hat .1 < | .Byassumptioan ™ | @+ 1 ,wehaenowvp),; < pg.; -A sSPy=p, r
qQ=1;::1;Q, wededue i, | < Yig. - | avwe canplete the proofby ilvaking the Tollboning \ariant
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oftte Ectat tte ad of Step | : ifat bsst ae oftre ineqLalities (6)is strictad ifthe sequae© is
strictly daaessing, then ineguality (6)is strict.

S#p 7- P roof of te lidness” resullt. Fix gand deoke by © a lce integer. Casider te pro E of
tpes: j g = & j bg = g all otter k are enpty. Chedk G, = g- Il ext, when” goss in nity, te
praosbi ity that a randan adering of 1 starts by qagats in | goss toae- W hen this heppas, the
rumber of agats sened by R P is 2. T harefre, the expected \vale ¢ ° is asbitrarily dose to2g a8~
gons brge.

P roofof P roperty 1 4
Casider istte@ewaec=1 T he funcian + being deaessing, Tarn sut-dentdy big, ae hes
|
mq nMa'_nz@0). .
a~ad Q0 Q o

Cfn;Q)
2 =x2 ;- Ineguality (9) asures s

that there exdists (1 0 )sudh et (;0) _ (1 ;01D = n;q:;f)’ >1_.Thend®® - R _4sa
cén;Q) RD
_X-Hexeimy 1

i i ¢ i
Fixx< 1.Taeassqee ') sudh et iminf

aspuenee, Torallx< 1, Iminf =1 _ Casider ten tte s
nrightarronl.
wherec< 1 .Sineeq - Mg ad @+ 1 - Mg+, aehesmg.: - G - Mg, ts

Y - o3 ;
lj——— - — -1: 0
e T Mo QD
i ¢ dtR> i
Taeasagpene 'R sudhtetimggy 1 0 =x2[0;1[ -0 ne cets straig tiormardly-
o> _ 6D
@) 1 D X
L m_ex>
Asaasgquend®e, % < 1. Qtawise, if> =1, Trall ;0 X qng) _ladx@e) =10, a
atradictian) Il aeoer, ifx< 1 ten T i 0. (nded, Impy 1 Nyee> = i) ad

mq(n;g >

i ncénn)
[ (g™ 1 Mgeo> =1 ) 6 iventhat>e < 1, ae then hes

i 0. Henee, thrauch @)

mcénn)

(qu)
— § 1 .The eultdotars.
mcén;g)
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