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Abstract. In this study, an adaptive Bayesian decision model is developed to determine
the optimal replacement age for the systems maintained according to a general age replace-
ment policy. It is assumed that when a failure occurs, it is either critical with probability
p or non-critical with probability 1− p, independently. A maintenance policy is considered
where the non-critical failures are corrected with minimal repair and the system is replaced
either at the first critical failure or at age τ whichever occurs first. The aim is to find the
optimal value of τ which minimizes the expected cost per unit time. Two adaptive Bayesian
procedures which utilize different levels of information are proposed for sequentially updat-
ing the optimal replacement times. Posterior density/mass functions of the related variables
are derived when the time to failure for the system can be expressed as a Weibull random
variable. Some simulation results are also presented for illustration purposes.

1. Introduction and Preliminaries

For systems which are subject to random failures, effective maintenance policies are needed

to avoid high system costs and/or low reliability. Age replacement and block replacement

are two main policies employed for the maintenance of non-repairable systems and their

properties are well studied. For repairable systems, several repair actions have been discussed

in the literature, among which minimal and imperfect repair have received the most attention.

In this paper we consider a system which can be minimally repaired. The concept of minimal

repair was first introduced in the celebrated paper of Barlow and Hunter [1] and was followed

by many others including Park [10], Cleroux, Dubuc and Tilquin [5], Nakagawa and Kowada

[9] and Block, Borges and Savits [3]. A recent review of several replacement policies with

minimal repair can be found in Beichelt [2]. Under minimal repair, it is assumed that the

repair action returns the system to an operational state but the system characteristics are the

same as they were just before the failure. Minimal repair is an appropriate model for complex

systems such as computers, airplanes and large motors, where system failures may occur

due to component failures and the system can be made operational by replacing the failed

component with a new one. Most of the existing studies regarding minimal repair employ
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a classical approach which assumes that the parameters of the failure time distribution

are known in advance and the aim is to find the optimal values of the decision variables.

The standard approach is to minimize the long run average cost function obtained by the

renewal reward theorem. Availability of precise data about the failure structure of the system

which allows reliable prediction of the failure parameters is therefore a crucial issue for the

classical approach. However, if the system under consideration is relatively new so that

sufficient information has not accumulated yet to estimate the system parameters with a

high confidence, it is more appropriate to consider a policy that adapts itself to the observed

data in the course of maintenance actions.

In this study, we propose an adaptive Bayesian approach which incorporates the informa-

tion provided by the observed performance of the system into the decision process for the

future maintenance activities. The parameters of the system failure time distribution are

assumed random and in the course of the system operation, the observed data is used for

updating the posterior distribution of these parameters. The system considered is subject to

random failures which are classified as critical (Type 2) or non-critical (Type 1). A failure

can be critical with probability 0 ≤ p ≤ 1, independent of the other failures. A Bayesian

analysis for a system which is a special case (p = 0) of the one studied in this paper can

be found in Mazzuchi and Soyer [8], [7]. This type of classification for the failures may

be appropriate if for instance it is based on the estimated repair cost. In a more general

setting, the cost of minimal repair may also depend on the age at failure, in which case the

probability of a critical failure is described by p(t). Although, for certain p(t) functions, the

results of the present paper can be extended with minor modifications, the analysis with

an arbitrary function becomes intractable. An extension when p is random is discussed in

Section 4. The following control policy is considered:

Control Policy: A critical failure is corrected by a replacement, whereas a non-critical

failure is corrected by minimal repair. In addition, the system is replaced at age τ .

A replacement brings the system to a good as new state and a minimal repair brings to a

good as old state. The cost for a minimal repair is cm, for a planned replacement at τ is cp and

for corrective replacement at critical failures is cr. It is assumed that cr > cp > cm. According

to the control policy, each replacement starts a renewal epoch, and hence a cycle is defined as

the time between two consecutive system replacements. The adaptive Bayes policy proposed

in this paper considers the problem in a finite horizon and the exact cost per unit time within

a cycle is minimized with respect to the replacement age τ . Let Y be the time until a critical

failure occurs. Then the cycle length L can be written as L = min(Y, τ). Let Nt be the

number of non-critical failures in the interval (0, Y ∧ t], t > 0, where a∧b = min (a, b). Then,

Nτ corresponds to the number of non-critical failures in a replacement cycle. Suppose f , F

and λ denote the density, distribution and the hazard rate function of the system lifetime. If
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the system is observed over (0, x0] and all the failures in the system are repaired minimally,

then the joint density of the times of the first n failures is given as (see Beichelt[2])

(1.1) f (x1, x2, . . . , xn) =

{
λ (x1) λ (x2) · · ·λ (xn−1) f (xn) if x1 < x2 < . . . < xn < x0

0 otherwise

Under the control policy given above, the distribution function G of Y is given as G (t) =

1−
(
F (t)

)p
and for k = 0, 1, 2, . . . , the conditional distribution of Nt given Y is

(1.2) P {Nt = k | Y = t} = P {Nt = k | Y ≥ t} = e−ξ(t) (ξ (t))k

k!

where ξ (t) = qΛ (t) = q
∫ t

λ(u)du. Given Y = t, Nt is a non-homogeneous Poisson Process

(NHPP) with cumulative intensity ξ(t). These results are utilized to derive the expected

cost function and the posterior densities.

The paper is organized as follows: In Section 2, the adaptive Bayesian approach is in-

troduced and a one-step Bayesian analysis is discussed. In Section 3, the adaptive method

which uses the number of non-critical failures is introduced. In Section 4, the use of failure

times and the cycle lengths for updating purposes is discussed. Numerical results and com-

parison of the two methods are also included in this section. Concluding remarks and future

extensions are stated in Section 5.

2. Bayesian Approach

Consider the system introduced in the previous section. In the Bayesian analysis pre-

sented below, Y is assumed to have a Weibull distribution with scale parameter α and shape

parameter β > 1 which indicates an increasing failure rate function (IFR). For t, α, β > 0,

the density and the hazard rate functions of Y are given as

f (t | α, β) = αβtβ−1e−αtβ ; λ (t | α, β) = αβtβ−1(2.3)

According to the control policy, the maintenance cost per unit time, C (τ) , in a cycle is

(2.4) C (τ) =
cmNY + cr

Y
I (Y < τ) +

cmNτ + cp

τ
I (Y ≥ τ)

where I (·) is the indicator function. The conditional expectation of C(τ) for given α and β

is found as:
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Proposition 1: The expected maintenance cost per unit time in a cycle is given as

E (C (τ) | α, β) = cmqpα2β

∫ τ

0

t2β−2e−pαtβdt + crpαβ

∫ τ

0

tβ−2e−pαtβdt

+
cmqατβ + cp

τ
e−pατβ

(2.5)

In many practical situations, partial information about the main characteristics of the failure

process, α and β, may be available from the past data or the experience. We assume that

according to such information, α can be characterized as a continuous random variable with

a gamma distribution with parameters a > 0 and b > 0, and β is a discrete random variable

which takes n different values, βj > 1, j = 1, 2, . . . , n, with probabilities Pj. Furthermore, it

is assumed that α and β are independent random variables. The unconditional expectation

of the cycle cost per unit time is given below which follows from (2.5).

Proposition 2: The expected total maintenance per unit time in a cycle is given as

(2.6) Eα,β [C (τ)] =
n∑

l=1

Pl · Cl

where

Cl = (a + 1) abacmqpβl

∫ τ

0

t2βl−2

(b + ptβl)a+2dt + abacrpβl

∫ τ

0

tβl−2

(b + ptβl)a+1dt

+ abacmq
τβl−1

(b + pτβl)a+1 +
cp

τ

(
b

b + pτβl

)a

2.1. One-step Bayesian Analysis: The optimal replacement age τ ∗, for the first replace-

ment cycle can be found by minimizing (2.6) with respect to τ , which does not yield a closed

form solution and requires numerical methods, for which the first order condition can easily

be found. If the scale parameter β is either known or can be estimated precisely, the cost

function is simplified significantly. For β = βo fixed, (2.6) is minimized at

(2.7) τ ∗ =

[
bcp

a [q (βo − 1) cm + pβo (cr − cp)]− pcp

]1/βo

,

which can be used as a simple one-step procedure if a good estimate βo of β is available.

However, since τ ∗ is based on the prior information about α and β, changes in the perception

of these quantities in the course of maintenance actions will not be utilized in the decision

process. It is therefore desirable to modify the model parameters by using the accumulated

information. We propose an adaptive Bayesian decision model which incorporates such data

in the next section.
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2.2. Adaptive Bayesian Decision Model. Consider a system which is subject to failures

and which is maintained according to the control policy discussed above. Let D denote

the information obtained during a replacement cycle. In our study D will refer to the

number of non-critical failures or to the system failure and replacement times. For cycle

i, i = 1, 2, ..., let τi be the time of the ith preventive replacement, and P (i) be the i’th

posterior marginal probability mass function (p.m.f.), where 0i = correspond to the prior

distributions. Also denote by f (i) (α, β) and f (i) (α | β) the i’th posterior joint density of

α, β and posterior conditional density of α given β respectively. The i’th posterior density

or the mass function is computed from the (i− 1)’st posterior density or mass function by

the Bayes rule after data, D(i), has been collected during the i’th replacement cycle. More

explicitly, for i = 1, 2, 3, . . . ; and, j = 1, 2, . . . , n we have

f (i) (α, βj) ≡ f
(
α, βj | D(i)

)
(2.8)

P
(i)
j ≡ P

(
β = βj | D(i)

)
(2.9)

f (i) (α | βj) ≡ f
(
α | β = βj,D

(i)
)

(2.10)

The Maintenance Cost Per Unit Time in the s’th replacement cycle is defined as

Φ
(
τ | f (s−1)

)
= Φ(s) (τ) = Eα,β

[
C (τ) | f (s−1)

]
(2.11)

where the expectation is taken with respect to (s− 1)st posterior joint density function of

α and β. The adaptive Bayesian decision model computes the optimal replacement age, τ ∗1
by minimizing (2.6) and the first system replacement takes place either at the time of the

first critical failure or at time τ ∗1 , whichever occurs first. During the first cycle, the data

D(1) is observed and the first posterior joint density function, f (1), of α and β is computed,

from which the optimal replacement age, τ ∗2 is found by minimizing Φ(2) for the second

replacement cycle and the process continues the same way. In the following sections two

data types will be considered for the implementation of the proposed adaptive procedure.

3. Count Data on Number of Minimal Repairs

In this section, D corresponds to the number of minimal repairs/non-critical failures ob-

served in a cycle and D(i) is equivalent to Nτi
for the i’th cycle. For j = 1, 2, . . . , n, let ki

denote the number of non-critical failures observed in i’th cycle, set κ0 = k0 ≡ 0, b
(0)
j ≡ b

and define κi =
∑i

j=1 kj and b
(i)
j = b

(i−1)
j + τ

βj

i . Further notation and definitions introduced

below will be needed in the sequel.
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Definition: For j = 1, 2, . . . , n; i = κs, κs + 1, . . . , s = 1, 2, 3, . . ., and l = k1, k1 + 1, k1 +

2, . . ., let R
(0)
0j = 1, R

(0)
lj = 0 and define

r(s) (a, i, j) =
Γ (a + i)

Γ (a) i!

(
b
(s−1)
j

b
(s)
j

)a(
1−

b
(s−1)
j

b
(s)
j

)i

[1 + (p− 1)I(i 6= ks)](3.12)

I(s) (i, j) =
∑∞

m=ks

r(s) (a + i, m, j)(3.13)

R
(1)
lj =

r(1) (a, l, j)∑∞
i=k1

r(1) (a, i, j)
(3.14)

R
(s)
lj =

∑l−ks

i=κs−1
R

(s−1)
ij r(s) (a + i, l − i, j)∑∞

u=κs

∑u−ks

i=κs−1
R

(s−1)
ij r(s) (a + i, u− i, j)

(3.15)

For τ > 0 and k = 0, 1, 2, . . ., the probability mass function of the number of non-critical

failures in a cycle is given by:

(3.16) P{Nτ = k | α, β} = qk

(
ατβ

)k
k!

e−ατβ

+ qkp
∑∞

i=k+1

(
ατβ

)i
i!

e−ατβ

.

The proofs of the following results on the posterior probability density/mass functions are

done by induction and can be found in Dayanik and Gürler [6]. For s = 1, 2, . . ., the

unconditional probability mass function of Nτs is given as

Pα,β {Nτs = ks} = qks
∑n

j=1
P

(s−1)
j

∑∞

l=κs−1

R
(s−1)
lj I(s) (l, j)

and for and j = 1, 2 . . . , n the s’th posterior marginal probability mass function of β is

(3.17) P
(s)
j =

P
(s−1)
j

∑∞
l=κs−1

R
(s−1)
lj I(s) (l, j)∑n

i=1 P
(s−1)
i

∑∞
l=κs−1

R
(s−1)
li I(s) (l, i)

.

Let γ (α | a, b) correspond to the gamma density function with shape parameter a and scale

parameter b. Then, for s = 1, 2, 3, . . ., the s’th posterior conditional probability density

function of α given β is

(3.18) f (s) (α | βj) =
∑∞

l=κs

R
(s)
lj γ

(
α | a + l, b

(s)
j

)
Note that since R

(s)
lj > 0 and

∑∞
l=κs

R
(s)
lj = 1, f (s) (α | βj) is in the form of a mixture of

gamma densities, where the mixing weights R
(s)
lj ’s are updated at each cycle in accordance

with the observed data.

Objective function: For l = κs, κs + 1, . . . , s = 1, 2, . . . and j = 1, 2, . . . , n, define

f
(s)
l (α, βj) = P

(s)
j R

(s)
lj γ

(
α | a + l, b

(s)
j

)
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Recall that Φ(s) (τ) is the maintenance cost per unit time in the s’th cycle and let Φ
(s)
l (τ) =

Φ
(
τ | f (s)

l

)
. Then the maintenance cost per unit time in the s-th replacement cycle is given

by

(3.19) Φ(s) (τ) =
∑∞

l=κs−1

Φ
(s−1)
l (τ)

Special Cases of p: The special cases p = 0, 1 are interesting since they correspond to

the age replacement with minimal repair, and the classical age replacement policies respec-

tively. For p = 0, we have

Proposition 3: For j = 1, 2, . . . , n and s = 1, 2, 3, . . .,

(3.20) P
(s)
j =

P
(s−1)
j r(s) (a + κs−1, ks, j)∑n

l=1 P
(s−1)
l r(s) (a + κs−1, ks, l)

and

f (s) (α | βj) = γ
(
α | a + κs, b

(s)
j

)
(3.21)

Pα,β {Nτs = ks} =
∑n

j=1
P

(s−1)
j r(s) (a + κs−1, ks, j)(3.22)

For the case p = 1, the number of minimal repairs is always zero and the adaptive policy

should be modified to describe D differently. In this case the procedure can be based on the

times of system replacements in the previous cycles as discussed in Section 4.

3.1. Experimental Results. In this section, simulation results are presented for the pro-

posed model, where the simulation of replacement cycles is based on the sample paths of a

NHPP and a Bernoulli Process (see e.g. Çınlar[4]). A Weibull distribution with α = 3 and

β = 2.6 is used for the failure time, and a gamma distribution with a = 1 and b = 0.25 is

used for the prior density of α. The prior p.m.f of β is obtained by discretizing the Beta

density function with support on (2, 3), and parameters c = d = 1 at n = 50 equally spaced

points on the interval (2, 3) (see Dayanik and Gürler [6] for details). The cost parameters

are taken as cm = 5, cp = 50, and cr = 100.
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Optimal Replacement Age True Optimal Replacement Age 

Figure 3.1. A sample path for count data
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Figure 3.1 displays a sample path of system failures under the proposed policy with p =

0.25 for the first ten replacement cycles. The 1st, 3rd, 4th, 9th and 10th cycles are terminated

with a preventive replacement, and the rest with critical failures. The dark path in Figure

3.1 shows how the optimal replacement age evolves with respect to the number of Type

1 failures. Generally speaking, long replacement ages induce a critical failure and a cost

cr > cp is incurred, whereas shorter replacement ages result in more often than necessary

preventive replacements with a cost of cp. It is seen from the generated example that the

optimal replacement age resolves this trade-off by increasing τ ∗ slightly when no non-critical

failures occur before the system is replaced upon a critical failure. This is the case for

cycles 5, 6 and 8. When the system is replaced upon a critical failure, and has already been

repaired minimally several times before the critical failure, τ ∗ for the next cycle decreases

slightly which happens in Cycle 7. Finally, if the system is kept in operation with several

minimal repairs until it is preventively replaced, the replacement age for the next cycle does

not change much. Cycles 4, 9 and 10 are the examples. Also, observe that the optimal

replacement times become stable and close to 0.7247 which is the optimal replacement time

if the failure time has a Weibull distribution with parameters α = 3 and β = 2.6.
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Figure 3.2. p = 0.25, (a) Marginal posterior density of α, (b) Marginal

posterior probability mass function of β. For clarity of exposition the mass

functions of β at 50 points are displayed as connected lines.

In Figure 3.2 marginal posterior density/mass functions of α and β are displayed. A faster

stabilization is observed with the β p.m.f. and the density of α gets more concentrated

about the true value 3 as the process continues. The impact of p is investigated by simulated

samples with p = 0.25, 0.50, 0.75. We observed that as p increases, the convergence becomes

slower. This can be explained by the fact that if very few non-critical failures occur in a

cycle, it takes more time to learn about the characteristics of the failure process.
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4. Failure Time Data

In this section an adaptive approach is introduced which utilizes the failure times and the

length of the replacement cycles as well as the number of minimal repairs. More precisely,

for the s’th cycle we have the following data

D(s) ≡
{

Nτs , X
(s)
1 , X

(s)
2 , . . . , X

(s)
Nτs

, Y (s)
}
≡
(
Nτs , X̃

(s), Y (s)
)

where X
(s)
i denote the time of the i’the failure in the s’th cycle. A replacement takes place

either after a critical failure or at age τ . In the first case the system is replaced upon a critical

failure before the system age reaches τ and Nτs = ks ≥ 0 non-critical failures occur before

a critical one. System fails at 0 < x
(s)
1 < x

(s)
2 < . . . < x

(s)
ks+1 < τs and Y (s) = x

(s)
ks+1. In the

second case, the system is replaced at age τ before a critical failure occurs and Nτs = ks ≥ 0.

The system fails at 0 < x
(s)
1 < x

(s)
2 < . . . < x

(s)
ks

< τs and Y (s) = τs. In order to write

the overall likelihood function, let us define Σs as the total number of system failures (both

Type-1 and Type-2) in the s’th replacement cycle and

(4.23) π
(s)
j =


[∏Σs

i=1 x
(s)
i

]βj−1

if Σs > 0

1, if Σs = 0

Also let b
(s)
j = b

(s−1)
j +

(
Y (s)

)βj . Then the joint density function of
(
Nτs , X̃

(s), Y (s)
)

is given

as

(4.24) h(s)
(
τs, x̃

(s), y(s) | α, βj

)
= qkspΣs−ks (αβj)

Σs π
(s)
j e

−α
“
b
(s)
j −b

(s−1)
j

”

Writing a0 = a, a(s) = a(s−1) + Σs, we have by the Bayes theorem

(4.25) f (s) (α, βj) =
h(s)

(
τs, x̃

(s), y(s) | α, βj

)
f (s−1) (α, βj)

h
(s)
α,β (τs, x̃(s), y(s))

with

(4.26) f (0) (α, βj) = P
(0)
j γ (α | a, b) ≡ P

(0)
j γ

(
α | a(0), b

(0)
j

)
Also, for j = 1, 2, . . . , n, and s = 1, 2, 3, . . . it holds that

(4.27) P
(s)
j =

π
(s)
j βΣs

j

“
b
(s−1)
j

”a(s−1)

“
b
(s)
j

”a(s)

∑n
l=1 π

(s)
l βΣs

l

“
b
(s−1)
l

”a(s−1)

“
b
(s)
l

”a(s) P
(s−1)
l

P
(s−1)
j
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and

(4.28) f (s) (α | βj) = γ
(
α | a(s), b

(s)
j

)
, α > 0

The adaptive procedure of Section 2.2 can now be implemented by using these new ex-

pressions for the posterior distributions.

4.1. Extension to Random p. In the foregoing discussions, it is assumed that the prob-

ability of a non-critical failure p is known. We illustrate below that this assumption can

be relaxed somewhat. Suppose p is a beta random variable independent of α and β, with

parameters u > 0 and v > 0. Also, let u(0) = u, v(0) = v, u(s) = u(s−1) + Σs − ks and

v(s) = v(s−1) + ks refer to the updated parameters. Then the expressions derived in the

previous sections remain valid provided that they are interpreted as conditional probabilities

or expectations given p. For j = 1, . . . , n and s = 1, 2, . . ., the s’th posterior joint probability

density function of α, β and p is

(4.29) f (s) (α, βj, p) = P
(s)
j γ

(
α | a(s), b

(s)
j

)
ζ
(
p | u(s), v(s)

)
, α > 0, 0 < p < 1

where

(4.30) P
(s)
j =

βΣs
j π

(s)
j

“
b
(s−1)
j

”a(s−1)

“
b
(s)
j

”a(s)

∑n
j=1 βΣs

j π
(s)
j

“
b
(s−1)
j

”a(s−1)

“
b
(s−1)
j

”a(s−1) P
(s−1)
j

P
(s−1)
j

The expected cycle cost function is given below, the evaluation of which requires numerical

integration methods.

Eα,β,p [C (τ)] =

∫ 1

0

ζ
(
p | u(s), v(s)

)∑n

l=1
Pl ·

[
(a + 1) abacmqpβl

∫ τ

0

t2βl−2

(b + ptβl)a+2dt

+ abacrpβl

∫ τ

0

tβl−2

(b + ptβl)a+1dt + abacmq
τβl−1

(b + pτβl)a+1 +
cp

τ

(
b

b + pτβl

)a]
dp

4.2. Experimental Results. Figure 4.1 illustrates a sample path of system failures when

the failure time data is used to update the system replacement age with the numerical set-up

of previous section.

In general a system performance similar to the count data case is observed in the first

ten cycles. However, the availability of failure time data led to a faster convergence to the

true replacement age as expected. Sensitivity to p is investigated for p = 0.25, 0.50, 0.75. It

is observed that in comparison to the count data case, the replacement ages are generally

closer to the true one and the replacement policy is less sensitive to p values. This agrees

with intuition since the number of non-critical failures is the essential information for the
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Figure 4.1. A sample path for failure time data.

count data and it directly depends on p, whereas the availability of the failure time data

reduces the relative significance of p.

Impact of the Data Types: The two different data types discussed so far have obvious

advantages and disadvantages in terms of the cost of data collection and processing, which

we do not further discuss here. However their impact on the performance of the policy is of

interest and to investigate this, the convergence rates of the optimal replacement age and

the optimal maintenance cost to their true values are compared in the first ten cycles by a

small simulation study. The distributions and parameters described in Section 3.1 are used

with three values of minimal repair cost, set as cm = 5, 20, 40. The percentage deviations

of the optimal replacement age and the optimal maintenance cost from their true values

are considered as performance measures and their average over 1000 simulation runs are

used for comparisons. Figure 4.2 displays the case cm = 5, p = 0.25, where relatively large
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Figure 4.2. cm = 5, (a) Deviation of replacement age from the true one, (b)

Deviation of the optimal cost from the true one.
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number of minimal repairs are observed and the count data seems to perform slightly better.

The difference in terms of the cost function seems quite insensitive to the difference in the

replacement ages. Note also that the convergence of both the optimal replacement age and

the optimal maintenance costs get slower as cm increases for both data types. The average

number of observed non-critical failures per cycle were 6.55, 1.66, and 0.82, for cm = 5, 20, 40

respectively. It is also observed that the count data yields a better performance as cm gets

smaller relative to cp, and the opposite is observed as cm gets closer to cp.

5. Conclusion

In this paper a generalized age replacement policy for repairable systems is studied from

a Bayesian perspective. The independent system failures are classified as critical and non-

critical with a certain fixed probability. The system is replaced at a critical failure or at time

τ , whichever occurs first and the non-critical failures are minimally repaired. An adaptive

Bayesian approach is introduced which adjusts the optimal replacement time τ based on

the accumulated data. Two data types, the number of non-critical failures and the failure

times together with lengths of the replacement cycles are used for updating purposes. The

Weibull distribution is assumed for the system lifetime. Although the choice of parameters

for this distribution provides a flexible family, it would be of interest to see the impact of

other distributions.

The Bayesian framework presented in this study can in principal be applied to other

maintenance settings. In particular, it can be considered to include a generalized block re-

placement policy (see Policy 8 of Beichelt), which is not studied here since block replacement

policies are more suitable for multicomponent systems.
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