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Abstract

We consider the problem of locating a line or a line segment in three-
dimensional space, such that the sum of distances from the linear facility
to a given set of points is minimized. An example is planning the drilling
of a mine shaft, with access to ore deposits through horizontal tunnels
connecting the deposits and the shaft. Various models of the problem are
developed and analyzed, and efficient solution methods are given.

1 Introduction

The problem of locating a line in two-dimensional space was considered early
by Wesolowsky [15] and further developed by Morris and Norback [10, 11, 12].
Schöbel’s recent dissertation [14] describes what has been done in the area of
locating lines in the plane and hyperplanes in IRn up till now. In computational
geometry line and hyperplane location problems are also of interest [7]. For the
location of line segments only a few special cases have been discussed [6, 1, 13].
Here we consider a new problem: the location of a line (or a line segment) in three-
dimensional space. A practical setting for this problem is found in mining. An
area contains deposits of some mineral in various locations underground. Instead
of digging down separately to each deposit, it may be cheaper to construct a
main shaft and reach the deposits by tunnels. One setting may prescribe that
the shaft be vertical and the tunnels horizontal, for construction purposes. In
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another setting the shaft may be angled and the tunnels perpendicular to the
shaft. In both cases we want to locate the shaft so as to minimize the annual
transportation costs of moving the mineral through the tunnels (and up the
shaft). A third case may take into account the heavy cost of digging the shaft
by including the length of the shaft as a decision variable; here the deep-lying
deposits are reached by straight line tunnels from the bottom of the shaft.

2 Notation

We first introduce some necessary notation from location theory. The classical
location problem is the so-called Weber or Fermat-Toricelli-Problem in which a
set of existing facilities A = {A1, . . . , AM} in the plane is given. The objective is
to locate a point X such that the sum of distances from the existing facilities to
the point X is minimized, i.e.

min
∑

m=1,...,M

wmd(Am, X).

The parameters wm ≥ 0 are weights assigned to the existing facilities. The
function d(Am, X) calculates the distance between any two points Am and X in
IR2. For an overview about location theory we refer to the textbooks by Love,
Morris, and Wesolowsky [8] or Francis, McGinnis, and White [4].
In the classification scheme of [5] the Weber problem with Euclidean distance is
classified as 1/IR2/ · /l2/

∑
meaning that we want to locate one point (1) in the

plane IR2 with no special assumptions (·), using the Euclidean norm l2 to measure
the distance from the existing facilities to the new point and minimizing the sum
(
∑

) of distances as objective function. This problem has a lot of generalizations.
One of them is to locate not a point, but a line l. Then the objective function
can be written as

min
∑

m=1,...,M

wmd(Am, l),

where the distance between a point A and a line is given by

d(A, l) = min
X∈l

d(A, X). (1)

The classification of this problem is given by 1l/IR2/ · /d/
∑

, where 1l indicates
that we want to locate one line instead of one point. Analogously, one can
formulate the problem of locating a line segment s with fixed length. While line
location problems can be solved efficiently for lp norm distances, very little is
known about the location of line segments. For a recent overview of line and line
segment location problems, see [14, 9].
In this paper we extend line location problems in the plane to IR3. Given a set
of existing facilities in IR3,

A = {A1, A2, . . . , AM}, M = {1, 2, . . . ,M}
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with Am = (am1, am2, am3) ∈ IR3, we look for a straight line l ⊂ IR3. As distance
measure we mainly deal with the p-norms, 1 ≤ p ≤ ∞.
Consequently the three-dimensional line location problem 1l/IR3/·/ ∑

/lp is given
as follows. Find a line l such that we minimize

f(l) =
∑

m∈M
wmlp(Am, l).

In the mining example mentioned above the existing facilities represent the de-
posits and the line l models the mining shaft. The objective is to minimize the
costs of the tunnel system which we assume to be related to the length of the
tunnels. The length of a tunnel from a deposit A to the shaft l is given by d(A, l)
where d is mainly dependent on the properties of the tunnel system.
Apart from defining the distance between a point and a line as in (1), the mining
example motivates also the following model. We assume that the paths connect-
ing the line to an existing facility A (the tunnel from the deposit A to the shaft
in the mining example) have to be horizontal. Therefore, the three-dimensional
distance lp simplifies to the two-dimensional distance lp in the horizontal plane
through A.
The remainder of the paper is organized as follows. We start with locating a
vertical line in the next section and discuss the case of a vertical line segment
in Section 4. In Section 5 we deal with arbitrary lines, but assuming horizontal
paths. In Section 6 we forget about both restrictions and present results for
locating an arbitrary line in IR3.

3 Locating a vertical line

In a mining application a natural restriction is that the main shaft must be dug
vertically to lower the digging costs and the costs of operating the elevator in the
shaft. Thus it is of interest to consider the special case of locating a vertical line.
A vertical line l is completely described by only one point β on it. Without
restriction let β = (β1, β2, 0) ∈ IR3, i.e.

lβ = {X = (x1, x2, x3) ∈ IR3 : x1 = β1, x2 = β2}.

To calculate the distance from a point A to lβ we use the following lemma.

Lemma 1 Suppose l is a vertical line and let A ∈ IR3. Then all shortest paths
(with respect to lp, p ≥ 1) from A to l lie completely in the horizontal plane
through A.

Proof: Let X = (β1, β2, λ) be any point on the vertical line lβ. Then

lp(A, X) = (|a1 − β1|p + |a2 − β2|p + |a3 − λ|p)
1
p
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is minimized for λ = a3.
QED

Using Lemma 1 we can specify the distance d between a point A = (a1, a2, a3)
and a vertical line l as

d(A, l) = lp((a1, a2), (β1, β2)). (2)

and our problem can be restated as

min
β2∈IR2

∑
m∈M

wmlp(A
2
m, β2)

where A2
m denotes the projection of Am onto the horizontal plane and β2 =

(β1, β2). This means, the three-dimensional line location problem with variables
β1 and β2 reduces to the location of a point β2 = (β1, β2) in the plane. This is
the classical Weber problem which can be solved efficiently for all lp distances,
see e.g. [8]. We summarize the result of this section in the following lemma.

Lemma 2 Locating a vertical line in IR3 with distance measure lp is equivalent
to a Weber problem with distance measure lp in the plane.

Note that using lp norms here is essential; Lemma 1 and Lemma 2 cannot be
generalized to all distances d derived from norms.

4 Locating a vertical line segment

In most applications the costs for building the new linear facility may not be
neglected, such that the line cannot be assumed to be infinite as in the previ-
ous section. In our approach we do not fix the length of the line segment, but
we introduce additional costs for establishing the facility. Assuming that these
costs are proportional to the length of the line segment s we derive the following
objective function,

f(s) =
∑

m∈M
wmd(Am, s) + v length(s)

where v ≥ 0 is a weight or cost per unit length.
We define a vertical line segment s(β1,β2,h1,h2) by its starting point (β1, β2, h1) and
its endpoint (β1, β2, h2). Without loss of generality let us assume that h2 ≥ h1,
such that length(s(β1,β2,h1,h2)) = h2 − h1. In the mining example, the special
case h1 = 0 corresponds to the shaft extending from the ground surface down
to the depth h2. Using Lemma 1, the p-norm distance from an existing facility
A = (a1, a2, a3) to the line segment s = s(β1,β2,h1,h2) is then given by
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d(A, s) =


lp ((a1, a2, a3), (β1, β2, h1)) if a3 < h1

lp ((a1, a2), (β1, β2)) if h1 ≤ a3 ≤ h2

lp ((a1, a2, a3), (β1, β2, h2)) if a3 > h2.

Using the definition of lp we rewrite d(A, s) as

d(A, s) = (|a1 − β1|p + |a2 − β2|p + (max{h1 − a3, 0, a3 − h2})p)
1
p (3)

= ‖(a1 − β1, a2 − β2, max{h1 − a3, 0, a3 − h2})‖p.

Note that for h2 < h1 we have d(A, s(β1,β2,h1,h2)) ≥ d(A, s(β1,β2,h1,h1)). This is
needed to get rid of the restriction h2 ≥ h1 later on.

Lemma 3 d(A, sX) is a convex function of X = (β1, β2, h1, h2) ∈ IR4.

Proof: Let X, Y ∈ IR4, and Z = λX + (1 − λ)Y , λ ∈ [0, 1]. For 1 ≤ p < ∞ we
then get

d(A, sZ) = (|a1 − (λx1 + (1− λ)y1)|p + |a2 − (λx2 + (1− λ)y2)|p

+ (max{(λx3 + (1− λ)y3)− a3, 0, a3 − (λx4 + (1− λ)y4)})p)
1
p

= (|λ(a1 − x1) + (1− λ)(a1 − y1)|p + |λ(a2 − x2) + (1− λ)(a2 − y2)|p

+ (max{λ(x3 − a3) + (1− λ)(y3 − a3), 0,

λ(a3 − x4) + (1− λ)(a3 − y4)})p)
1
p

≤ (|λ(a1 − x1) + (1− λ)(a1 − y1)|p + |λ(a2 − x2) + (1− λ)(a2 − y2)|p

+ (max{λ(x3 − a3), 0, λ(a3 − x4)}
+ max{(1− λ)(y3 − a3), 0, (1− λ)(a3 − y4)})p)

1
p

≤ (|λ(a1 − x1)|p + |λ(a2 − x2)|p + (max{λ(x3 − a3), 0, λ(a3 − x4)})p)
1
p

+ (|(1− λ)(a1 − y1)|p + |(1− λ)(a2 − y2)|p

+(max{(1− λ)(y3 − a3), 0, (1− λ)(a3 − y4)})p)
1
p

by the triangle inequality of norms

= λd(A, sX) + (1− λ)d(A, sY ).

Thus, we conclude that d(A, sZ) is a convex function in Z ∈ IR4, if p ≥ 1. For
p = ∞ the proof can be done analogously.

QED

The extension of Lemma 3 to arbitrary norms is not straightforward, since
‖(a, b, z1)‖ ≤ ‖(a, b, z2)‖ if |z1| ≤ |z2| is not necessarily true for arbitrary norms.
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Lemma 4 The objective function,

f(β1, β2, h1, h2) =
M∑

m=1

wmd(Am, sβ1,β2,h1,h2) + v|h2 − h1|

is a convex function of (β1, β2, h1, h2).

Proof: Using Lemma 3 and keeping in mind that the weights wm are nonnegative,
it follows that f is the sum of M+1 convex functions and hence, f is itself convex.

QED

Lemma 4 implies that it is easy to solve the unconstrained problem to obtain
the minisum solution (β∗1 , β

∗
2 , h

∗
1, h

∗
2), e.g., by a gradient descent approach. For

h2 < h1 the solution can be improved by setting h′1 := h1 and h′2 := h1. Thus,
the constraint h2 ≥ h1 will be satisfied in any optimal solution, and therefore it
does not need to be included explicitly.
Once a local minimum is obtained, the convexity of f guarantees that it is a
global solution. In the following we give a more efficient solution approach which
utilizes a well-known technique for locating a point facility in the plane. For the
mine-shaft example, the origin of the segment s coincides with ground level, and
may arbitrarily be set to h1 = 0.

Algorithm 1 (for locating a vertical line segment with p-norm distances)

Step 1. Choose initial solution (β0
1 , β

0
2 , h

0
1, h

0
2) and set counter g = 0.

Step 2. Holding h1 = hg
1 and h2 = hg

2 fixed, perform Weiszfeld iterations (see
[8]) until a stopping criterion is reached. Denote the current solution by
Xg := (βg+1

1 , βg+1
2 , hg

1, h
g
2).

Step 3. Holding β1 = βg+1
1 and β2 = βg+1

2 fixed, optimize for h1 and h2

until a stopping criterion is reached. Denote the current solution by
Xg+1 := (βg+1

1 , βg+1
2 , hg+1

1 , hg+1
2 ).

Step 4. If f(sXg)− f(sXg+1) < δ, STOP;
else set g=g+1 and return to Step 2.

In steps 2 and 3, the algorithm iteratively examines subspaces (β1, β2) and (h1, h2).
The stopping criterion in each subspace may take the form of a δ-accuracy as in
step 4. Alternatively, the number of iterations (descent moves) in each subspace
may be fixed in a manner to improve the overall computational efficiency of the
algorithm.
In step 3, if h1 is fixed at 0, a simple one-dimensional search will find the optimal
value of h2. Otherwise, the objective function f in step 3 is given by

f(h1, h2) =
∑

m∈M
wm (cm + max{h1 − am3, 0, am3 − h2}p)

1
p + v|h2 − h1|,
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where cm is only dependent on βg+1
1 and βg+1

2 and therefore constant in this
context. Defining

M1(h1) = {m ∈M : am3 < h1}
M2(h2) = {m ∈M : am3 > h2}

we can reformulate f as

f(h1, h2) =
∑

m∈M1(h1)

wm (cm + (h1 − am3)
p)

1
p − vh1

+
∑

m∈M2(h2)

wm (cm + (am3 − h2)
p)

1
p + vh2

= f1(h1) + f2(h2),

where we require h2 ≥ h1. To minimize f1 (or f2, respectively), one can determine
the partial derivative in each layer whereM1 (M2) changes and solve numerically
to zero. Thus, f1 and f2 can be minimized separately leading to minimizers h∗1
and h∗2. We have to distinguish two cases:

Case 1: h∗1 ≤ h∗2. Then the solution is feasible and therefore minimizes f .

Case 2: h∗1 > h∗2. Then any minimizer of f satisfies h1 = h2, i.e. the line segment
degenerates to a point (βg+1

1 , βg+1
2 , h1) which can be found by minimizing

the one-dimensional function∑
m∈M

wm (cm + |h1 − am3|p)
1
p .

Lemma 5 Let p ∈ [1, 2]. Algorithm 1 converges uniformly to the optimal solution
as δ → 0.

Proof: Referring to [2], we may show that each Weiszfeld iteration in step 2
results in an improvement of the objective function. Each completion of step 3
is a descent move in the corresponding subspace. Thus, we may conclude in a
similar fashion as in [2] that the series converges to a unique attraction point,
and due to the convexity of the objective function, this coincides with the global
optimum.

QED

In the unlikely event that an iterate coincides with a singular point of the iteration
functions, a hyperbolic approximation of the distance may be used (see [8]). If
p > 2, the descent property of the iterates in step 2 is no longer guaranteed ([2]).
However, computational results in [3] indicate that a step-size adjustment factor
will remedy this problem when it occurs.

7



For the special case p = 1 we show that an exact optimal solution can be found
in linear time. Replacing p by 1 in (3), the objective function f can be separated
into the following two functions f1 and f2.

f(β1, β2, h1, h2) =
∑

m∈M

wm(|am1 − β1|+ |am2 − β2|

+ max{h1 − am3, 0, am3 − h2}) + v|h2 − h1|
= f1(β1, β2) + f2(h1, h2).

Both functions f1 and f2 can be minimized separately. The problem of minimizing
f1 is a Weber problem in the plane with rectangular metric, where the set of
existing facilities is given by A2 = {A2

m : m ∈ M}. As a consequence, the
optimal parameters β∗1 , β

∗
2 are independent of the cost v for establishing the line

segment in this case, and f1 can be minimized in linear time.
To minimize f2 we can proceed along the lines of step 3 of Algorithm 1. We
assume that the existing facilities are sorted according to their third coordinates,
i.e. a13 ≤ a23 ≤ . . . ≤ aM3. Defining

x+ =

{
x if x ≥ 0
0 otherwise

,

we can rewrite f2 as

f2(h1, h2) =
∑

m∈M
wm

(
(h1 − am3)

+ + (am3 − h2)
+

)
+ v|h2 − h1|

=
∑

m∈M
wm(h1 − am3)

+ − vh1 +
∑

m∈M
wm(am3 − h2)

+ + vh2

= f21(h1) + f22(h2),

where we require that h2 ≥ h1 holds. Looking at the slopes of the piecewise linear
functions f21 and f22, it turns out that the respective optimal solutions h∗1 and
h∗2 are given by the following expressions.
Let i1 be such that

∑i1
m=1 wm ≥ v and

∑i1−1
m=1 wm < v. If the first inequality holds

strictly, then h∗1 = ai13 is the unique solution for h1. Otherwise all values in the
interval [ai13, ai1+1,3] are optimal.
Analogously, for finding the best value h∗2, let i2 be such that

∑M
m=i2

wm ≥ v and∑M
m=i2+1 wm < v; now either h∗2 = ai23 is the unique optimum or the interval

[ai2−1,3, ai23] is the set of optimizers.
We distinguish two cases:

Case 1: h∗1 ≤ h∗2. Then the solution is feasible and therefore minimizes f2.

Case 2: h∗1 > h∗2. Then any minimizer of f2 satisfies h1 = h2 yielding the median
problem min

∑
m∈M wm|h1 − am3|, which can be solved in linear time.

The above results are summarized as follows.

8



Lemma 6 The location of a vertical line segment with respect to the l1 norm
can be solved in linear time, if the existing facilities are sorted (according to their
third coordinates).

5 Arbitrary line with horizontal paths

Given two parameters α, β ∈ IR3, we define an arbitrary line lα,β by

lα,β = {X ∈ IR3 : X = λα + β, λ ∈ IR}. (4)

Throughout this section, we assume that the paths connecting an existing facility
with the line have to be horizontal, i.e. we can calculate the distance from l to
A = (a1, a2, a3) as the (two-dimensional) distance between A and the closest
point P = (p1, p2, p3) on the line l with p3 = a3. The classification of problems
of these kind is given by 1l/IR3/ · /lp,horizontal/

∑
.

If all existing facilities lie in the same horizontal plane, and we assume horizontal
paths, the three-dimensional line location problem reduces to a two-dimensional
line location problem in the plane and can therefore be solved efficiently for
all distances derived from norms (see, e.g., [14]). In the following we therefore
exclude this trivial case and assume that not all existing facilities lie in the same
horizontal plane. Then, due to the assumption of horizontal paths, no horizontal
line can be optimal. Therefore we let

α = (α1, α2, 1) and β = (β1, β2, 0).

Then the point P on l with p3 = a3 is given by

P = (α1a3 + β1, α2a3 + β2, a3).

For the distance from A = (a1, a2, a3) to the line we consequently get:

d(A, lα,β) = lp((a1, a2, a3), (p1, p2, p3))

= lp((a1, a2), (α1a3 + β1, α2a3 + β2)). (5)

Lemma 7 d(A, lα,β) is a convex function of (α1, β1, α2, β2).

Proof: Consider any X = (x1, . . . , x4), Y = (y1, . . . , y4) ∈ IR4, and let
Z = λX + (1− λ)Y , λ ∈ [0, 1]. Let ‖ · ‖ denote any lp norm. Then

d(A, lZ) = d2 ((a1, a2), (z1a3 + z2, z3a3 + z4))

= ‖ (a1 − (z1a3 + z2), a2 − (z3a3 + z4)) ‖
= ‖ (a1 − ((λx1 + (1− λ)y1)a3 + λx2 + (1− λ)y2) ,

a2 − ((λx3 + (1− λ)y3)a3 + λx4 + (1− λ)y4)) ‖

9



= ‖ (λ(a1 − x1a3 − x2) + (1− λ)(a1 − y1a3 − y2),

λ(a2 − x3a3 − x4) + (1− λ)(a2 − y3a3 − y4)) ‖
≤ ‖ (λ(a1 − x1a3 − x2), λ(a2 − x3a3 − x4)) ‖+

‖ ((1− λ)(a1 − y1a3 − y2), (1− λ)(a2 − y3a3 − y4)) ‖
by the triangle inequality for norms

= λ‖ (a1 − x1a3 − x2, a2 − x3a3 − x4) ‖+

(1− λ)‖ (a1 − y1a3 − y2, a2 − y3a3 − y4) ‖
= λd2 ((a1, a2), (x1a3 + x2, x3a3 + x4)) +

(1− λ)d2 ((a1, a2), (y1a3 + y2, y3a3 + y4))

We conclude that d(A, lα,β) is a convex function of (α1, β1, α2, β2) as required.
QED

Lemma 8 The objective function

f(α, β) =
M∑

m=1

wmd(Am, lα,β)

is a convex function of α1, β1, α2, β2.

Proof: Since wm ≥ 0 we can use Lemma 7 to conclude that f is the sum of M
convex functions and hence f itself is convex.

QED

Note that Lemma 7 and Lemma 8 do not only hold for lp distances, 1 ≤ p ≤ ∞
but for all distances d derived from norms.
As mentioned before, the minimization of a convex function is relatively simple,
since a local minimum is also global. Although the problem may therefore be
solved by a standard approach, some special cases will be studied in more detail
in the following. First, we consider the case where the line is required to pass
through a specified point. Then we discuss two special distance measures for this
problem, namely l1 and l2.

5.1 Fixed starting point of the line

In this section we suppose that we are looking for a line passing through one spec-
ified point β = (β1, β2, 0), i.e. the parameter β in formula (4) can be fixed. With
the general assumptions of Section 5 our problem reduces to the two-dimensional
problem of calculating α1 and α2. Using Equation 5 we reformulate the distance
between an existing facility A and a line lα,β as follows.
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d(A, lα,β) = lp((a1, a2), (α1a3 + β1, α2a3 + β2))

= ‖(α1a3 + β1 − a1, α2a3 + β2 − a2)‖

= |a3|‖(α1 +
β1 − a1

a3

, α2 +
β2 − a2

a3

‖

= |a3|‖(α1 − a′1, α2 − a′2)‖,

where

a′1 =
a1 − β1

a3

and

a′2 =
a2 − β2

a3

Defining α2 = (α1, α2), A′
m = (a′m1, a

′
m2) and weights w′

m = |am3|wm the objective
function can be rewritten as

f(lα,β) =
∑

m∈M
w′

mlp(α
2, A′

m).

Since this is a classical Weber problem in the plane we have proven the next
lemma.

Lemma 9 Locating a line in IR3 with fixed origin (β1, β2, 0), horizontal paths
and distance measure lp is equivalent to a Weber problem with distance measure
lp in the plane.

Note that this approach works not only for d = lp but also for all distances d
derived from norms.

5.2 Horizontal paths with rectangular distance

Now let us assume that the distance from a point A ∈ IR3 to the line l is measured
by the two-dimensional rectangular distance l1 in the horizontal plane passing
through A. Using Equation 5 we obtain the following minimization problem.

min
α1,β1,α2,β2

∑
m∈M

wml1((am1, am2), (α1am3 + β1, α2am3 + β2))

Using the definition of the l1-distance, the problem can be separated into the
following two subproblems.

(Pk) min
αk,βk

∑
m∈M

wm(|amk − βk − am3αk|) k = 1, 2
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Both problems can be solved in linear time by linear programming. For an exact
formulation of the linear programs describing (Pk) see [16]. In the following we
mention a geometric interpretation of the subproblems (Pk):
Since the vertical distance between a point Z = (z1, z2) in the plane and a non-
vertical line with slope s and intercept b is given by

dver(ls,b, Z) = |z2 − b− sz1|,

both problems (Pk) can be interpreted as line location problems in the plane
with vertical distance dver where the existing facilities for subproblem (Pk) are
determined by

Ak
m = (am3, amk) for all m ∈M, k = 1, 2.

The result of both problems (Pk) is a non-vertical line l∗k in the plane with inter-
cept β∗k and slope α∗k, yielding the optimal solution for the parameters α1, α2, β1,
and β2 for the three-dimensional line l∗ = lα∗,β∗ . We remark that l∗1 is the pro-
jection of l∗ into the xz-plane while l∗2 is the projection of l∗ into the yz-plane.

Lemma 10 Locating a line in IR3 with horizontal paths with respect to the l1
norm is equivalent to two planar line location problems with vertical distance and
can therefore be solved in linear time.

5.3 Horizontal paths with Euclidean distance

Using the Euclidean norm to calculate the distance from a point A ∈ IR3 to
the line l within the horizontal plane through A, the objective function can be
rewritten as

f(lα,β) =
∑

m∈M
wm

√
(β1 + α1am3 − am1)2 + (β2 + α2am3 − am2)2

The derivatives are given by

∂f

∂βi

=
∑

m∈M

wm(βi + αiam3 − ami)√
(β1 + α1am3 − am1)2 + (β2 + α2am3 − am2)2

, i = 1, 2,

∂f

∂αi

=
∑

m∈M

wmam3(βi + αiam3 − ami)√
(β1 + α1am3 − am1)2 + (β2 + α2am3 − am2)2

, i = 1, 2.

Setting the derivatives equal to zero and rearranging the terms leads to the mod-
ified Weiszfeld algorithm given below. The main idea is to iterate separately on
β and α, using updated values each time. Convergence of the sequence of iter-
ates to the optimal solution is readily shown. As in Algorithm 1 a hyperbolic
approximation may be used, if necessary.
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Algorithm 2 (for locating a line with horizontal Euclidean distance)

Step 1. Choose initial solution (β0
1 , β

0
2 , α

0
1, α

0
2), and set counter g = 0.

Step 2a. Compute cm =
√

(βg
1 + αg

1am3 − am1)2 + (βg
2 + αg

2am3 − am2)2,
m ∈M.

Step 2b. Iterate on β as follows:

βg+1
i =

∑
m∈M wm(ami − αg

i am3)/cm∑
m∈M wm/cm

, i = 1, 2,

Step 3a. Compute c′m =
√

(βg+1
1 + αg

1am3 − am1)2 + (βg+1
2 + αg

2am3 − am2)2,
m ∈M.

Step 3b. Iterate on α as follows:

αg+1
i =

∑
m∈M wmam3(ami − βg+1

i )/c′m∑
m∈M wma2

m3/c
′
m

, i = 1, 2.

Step 4. If f(lgα,β)− f(lg+1
α,β ) < δ, STOP;

else set g = g + 1 and return to step 2a.

6 Locating an arbitrary line with shortest dis-

tances

In this section we relax the condition that the paths between the facilities and the
line must be horizontal, and instead use formula (1) to determine the distance
from a point to a line.

6.1 Euclidean distance

For the Euclidean distance l2 the classification of the problem is given by 1l/IR3/ ·
/l2/

∑
. With decision variables α = (α1, α2, α3) (assuming without loss of gen-

erality that α2
1 + α2

2 + α2
3 = 1) and β = (β1, β2, 0) the line is given by lα,β =

{x ∈ IR3 : x = λα + β, λ ∈ IR}. For any given point Am = (am1, am2, am3) ∈ IR3

the closest point on the line is found as the one with λ being the inner product
λ∗m = 〈α, Am − β〉, i.e., we get the following formula for calculating the distance
between Am ∈ IR3 and l = lα,β, if α is normed to 1.

d(Am, l) =
√

(am1 − α1λ∗m − β1)2 + (am2 − α2λ∗m − β2)2 + (am3 − α3λ∗m)2

13



=
√
〈Am − β, Am − β〉 − 〈Am − β, α〉〈Am − β, α〉

The objective function is given by

f(lα,β) =
∑

m∈M
wm

√
〈Am − β, Am − β〉 − 〈Am − β, α〉〈Am − β, α〉.

For the problem in the plane it has been shown by several authors (the earliest
proof is in [15]) that with Euclidean distance there always exists an optimal line
passing through two of the existing facilities. In [7] this statement was sharpened:
For the Euclidean distance, all optimal lines pass through two of the existing
facilities. Generalizations of this incidence property to other distances than the
Euclidean can be found in [14]. With this background one might suspect that such
an incidence property is also true for locating a line in three-dimensional space.
But in the following counterexample no optimal line passes through two existing
facilities, so the two-dimensional incidence property cannot be generalized.
Assume M = 8 existing facilities as the vertices of a cuboid, given by the following
coordinates.

A1 = (0, 0, 0), A2 = (1, 0, 0), A3 = (1, 1, 0), A4 = (0, 1, 0),

A5 = (0, 0, e), A6 = (1, 0, e), A7 = (1, 1, e), A8 = (0, 1, e),

where e > 0.
Consider the line l1 passing through the points (1

2
, 1

2
, 0) and (1

2
, 1

2
, e). We get that

d(Am, l1) = 1
2

√
2 for all m = 1, . . . , 8, such that

f(l1) = 4
√

2,

independent of e, when all weights are one.
We want to show that for large e the line l1 is better than any line passing
through two of the existing facilities. For the line l2 = lα,β with α = (1, 1, e) and
β = (0, 0, 0), passing through A1 and A7 we get

d(A1, l2) = d(A7, l2) = 0,

d(A2, l2) = d(A4, l2) = d(A6, l2) = d(A8, l2) =

√
1 + e2

2 + e2
,

d(A3, l2) = d(A5, l2) =

√
2e2

2 + e2
,

=⇒ f(l2) =
1√

2 + e2
(4
√

1 + e2 + 2e
√

2).

For e →∞ we get f(l2) → 4 + 2
√

2 > 4
√

2 = f(l1). The vertical and horizontal
lines passing through two of the facilities are even worse, and the lines which are

14



diagonals in one of the faces (as the line through A2 and A7) are also worse than
l2. This means that, for large enough e, the line l1 is better than all lines passing
through two of the existing facilities, so no such line is optimal.

Unfortunately, the objective function of 1l/IR3/ · /l2/
∑

is neither convex nor
concave, so without extensive search we can only expect a local minumum. The
following property for the Euclidean distance is helpful for developing an algo-
rithm.

Lemma 11 Let l = lα,β ⊂ IR3 be a line and A ∈ IR3 be a point. Then the
shortest Euclidean path from A to l is a line segment orthogonal to l, i.e. it lies
in a plane with normal vector α.

This means, if the slope of the line lα,β is already fixed (i.e. the vector α is given)
then the problem reduces to a classical Weber problem in the plane orthogonal
to lα,β. To use the results of Section 3 this problem can further be reduced to
the location of a vertical line with respect to the Euclidean distance (by applying
a rotation, such that l becomes a vertical line). The following heuristic method
makes use of this property.

Algorithm 3 (for locating a line with shortest Euclidean distance)

Step 1. Choose an initial solution l0, g = 0.

Step 2. Find a rotation r which maps lg to a vertical line. Determine
Ar = {r(A) : A ∈ A}.

Step 3. Determine lr by solving the problem with respect to Ar using
the horizontal Euclidean distance by Algorithm 2.

Calculate lg+1 = r−1(lr) by retransforming lr.

Step 4. If f(lg)− f(lg+1) < δ, STOP;
else set g = g + 1 and return to step 2.

For a quicker solution, step 3 in Algorithm 3 may be replaced by

Step 3a. Let lg = lαg ,βg . Fix αg and find the best starting point βg+1 =
(βg+1

1 , βg+1
2 , 0) for the vertical line lg by using Lemma 2.

Step 3b. Fix βg+1 and optimize for αg+1 with respect to the horizontal Euclidean
distance by using Lemma 9. Let lg+1 = lαg+1,βg+1 .

15



6.2 lp distance

If we use a p-norm distance instead of the Euclidean distance, the property of
Lemma 11 is in general not true.
To determine the distance between a point Am and a line l = lα,β we have to
find λ∗m such that Pm = λ∗mα + β is the closest point on the line (by solving a
one-dimensional minimization problem). We get

lp(Am, l) = min
P∈l

lp(Am, P ) = lp(Am, λ∗mα + β).

The objective function

f(lα,β) =
∑

m∈M
wm(

3∑
j=1

|amj − αjλ
∗
m − βj|p)

1
p

is neither convex nor concave, but a local minimum may be found by the following
scheme.

Algorithm 4 (for locating a line with shortest lp distance)

Step 1. Choose an initial solution (α0, β0), compute the λ∗m values and
the objective function value f(l0α0,β0), and set counter g = 0.

Step 2a. Holding αg and the λ∗m values fixed find the best starting point
βg+1 = (βg+1

1 , βg+1
2 , 0) for the line by the classical Weiszfeld algo-

rithm for 1/IR2/ · /lp/
∑

.

Step 2b. Holding βg+1 and the λ∗m values fixed perform Weiszfeld-type
iterations on α until a stopping criterion is reached.

Denote the current solution by (αg+1, βg+1).

Step 3. Compute λ∗m, m ∈M for the current solution.
If f(lgα,β)− f(lg+1

α,β ) < δ, STOP;
else set g = g + 1 and return to step 2a.

In step 2a it turns out that the problem to find βg+1
1 and βg+1

2 reduces to a
classical one facility problem in the plane with lp distance where the existing
facilities are given by

A′
m = (am1 − λ∗mα1, am2 − λ∗mα2) ∈ IR2 for all m ∈M.

Note however that a third fixed dimension (with β3 = 0) must be included in the
distance formula. It leads to a constant term within the formulation for lp(Am, l)
which otherwise has no effect on the minimization procedure.
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In step 2b, on the other hand, we optimize for α1, α2, and α3, and get the objective
function ∑

m∈M

wm

λ∗m
(

3∑
j=1

|(amj − βj)λ
∗
m − αj|p)

1
p ,

which is a Weber problem of type 1/IR3/ · /lp/
∑

in IR3.
The Weiszfeld iterations in both parts of step 2 result in a sequence of descent
moves for the fixed values of λ∗m, m ∈ M. By updating the λ∗m values in step 3
for the new line lg+1

α,β , we are replacing distances to the line by shortest distances,
thereby providing a further improvement of the objective function. The iteration
scheme thus converges to a stationary point. A multi-start version of Algorithm
4 with random initial solutions may be used to improve the likelihood of finding
the global optimum.

6.3 Rectangular distance

In the special case of the rectangular distance l1 (the classification of the problem
is given by 1l/IR3/ · /l1/

∑
) we present the following formula for determining the

distance between a point and a line in IR3.

Lemma 12 Let A = (a1, a2, a3) ∈ IR3 and let lα,β ⊂ IR3 be a line defined by the
parameters α, β ∈ IR3. Then

l1(A, lα,β) = min

 ∑
j=1,2,3

∣∣∣∣∣aj −
ai − βi

αi

αj − βj

∣∣∣∣∣ , i = 1, 2, 3


Proof:

l1(A, lα,β) = min
X∈l

l1(A, X)

= min
λ∈IR

l1(A, λα + β)

= min
λ∈IR

(|a1 − λα1 − β1|+ |a2 − λα2 − β2|+ |a3 − λα3 − β3|)

= min
λ∈IR

∑
j=1,2,3

|αj|
∣∣∣∣∣aj − βj

αj

− λ

∣∣∣∣∣
Since this is a weighted median problem there exists i ∈ {1, 2, 3} such that

λ =
ai − βi

αi

is optimal. Defining

Pi =
ai − βi

αi

α + β ∈ IR3, i = 1, 2, 3,
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the distance between A and lα,β is given by

l1(A, lα,β) = min{l1(A, P1), l1(A, P2), l1(A, P3)},

which proves the result. QED

Note that one shortest rectangular path from the point A to the line l in the
three-dimensional space always keeps within one plane (since Pi and A share
the same coordinate i). In particular, if the index i for the optimal λ in the
proof of Lemma 12 is given by i = 3 then the path from A to l stays completely
in the horizontal plane passing through A. Analogously, if i = 1, 2 the path
lies completely in a plane parallel to the yz-plane or parallel to the xz-plane,
respectively. Unfortunately, the choice of the index i for λ is not only dependent
on the parameters of the line (as in the two-dimensional case), but also on the
position of the point A, so the property of Lemma 11 does not hold. To solve
problems of type 1l/IR3/ · /l1/

∑
one may use a local search to find a local

minimum as for the p-norm case, but steps 2a and 2b of Algorithm 4 can be
combined to run in linear time, as the following approach shows.

Algorithm 5 (for locating a line with shortest rectangular distance)

Step 1. Choose an initial solution (α0, β0), compute the λ∗m values and
the objective function value f(l0α0,β0), and set counter g = 0.

Step 2. Holding the λ∗m values fixed optimize for α and β. Denote the
solution by lg+1 = lαg+1,βg+1 .

Step 3. Compute λ∗m, m ∈M for lg+1

If f(lgα,β)− f(lg+1
α,β ) < δ, STOP;

else set g = g + 1 and return to step 2.

The minimization problem of step 2 is given by

min
α,β

∑
m∈M

wm (|am1 − λ∗mα1 − β1|+ |am2 − λ∗mα2 − β2|+ |am3 − λ∗mα3 − β3|) .

It can be separated into three independent subproblems Pk, k = 1, 2, 3, each being
a line location problem in the plane of type 1l/IR2/ · /dver/

∑
, where the existing

facilities in subproblem Pk are given by

A′
m = (λ∗m, amk) for all m ∈M,

the weights are given by the original weights wm, and the optimal solution yields
a line with slope α∗k and intercept β∗k . All three subproblems can be solved in
linear time by linear programming [16].
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