
TRANSPORTATION SCIENCE
Vol. 38, No. 4, November 2004, pp. 399–419
issn 0041-1655 �eissn 1526-5447 �04 �3804 �0399

informs ®

doi 10.1287/trsc.1030.0073
©2004 INFORMS

The Dynamic Assignment Problem

Michael Z. Spivey, Warren B. Powell
Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544

{mzspivey@alumni.princeton.edu, powell@princeton.edu}

There has been considerable recent interest in the dynamic vehicle routing problem, but the complexities of
this problem class have generally restricted research to myopic models. In this paper, we address the simpler

dynamic assignment problem, where a resource (container, vehicle, or driver) can serve only one task at a time.
We propose a very general class of dynamic assignment models, and propose an adaptive, nonmyopic algorithm
that involves iteratively solving sequences of assignment problems no larger than what would be required of a
myopic model. We consider problems where the attribute space of future resources and tasks is small enough
to be enumerated, and propose a hierarchical aggregation strategy for problems where the attribute spaces are
too large to be enumerated. Finally, we use the formulation to also test the value of advance information, which
offers a more realistic estimate over studies that use purely myopic models.

Key words : dynamic vehicle routing; dynamic assignment; approximate dynamic programming
History : Received: June 2001; revisions received: June 2002, March 2003; accepted: May 2003.

The problem of dynamically assigning resources
to tasks over time arises in a number of applica-
tions in transportation. In the field of freight trans-
portation, truckload motor carriers, railroads, and
shipping companies all have to manage fleets of con-
tainers (trucks, boxcars, and intermodal containers)
that move one load at a time, with orders arriving
continuously over time. In the passenger arena, taxi
companies and companies that manage fleets of busi-
ness jets have to assign vehicles (taxicabs or jets) to
move customers from one location to the next. It
is common to assume that the arrival of customer
demands is random (e.g., known only through a prob-
ability distribution) over time, but it may also be the
case that the vehicles become available in a random
way. Finally, each assignment of a resource to a task
generates a contribution to profits, which may also be
random.
We refer to the problem of dynamically assigning

resources to tasks as a dynamic assignment problem. In
general, it may be possible to assign a resource to a
sequence of two or more tasks at the same time, but
we focus on problems where we assign a resource
to one task at a time. We assume that resources
and tasks are each characterized by a set of possibly
unique attributes, where the contribution generated
by an assignment will depend on the attributes of the
resource and task. Resources do not have to be used
and tasks do not all have to be covered, although
there can be a cost for holding either one.
The dynamic assignment problem is a fundamen-

tal problem in routing and scheduling. It is a special
case of the dynamic vehicle routing problem, without

the complexities of in-vehicle consolidation. For this
reason, it provides a natural framework for modeling
the dynamic information processes and comparing
myopic models with those that exploit distributional
information about the future. It is common practice,
for example, to model dynamic vehicle routing prob-
lems using myopic models, which ignore any fore-
casts of the future based on currently available data.
These problems are themselves quite difficult because
it is necessary to solve vehicle routing problems very
quickly to respond to new information. (The static
versions of these problems are already difficult.) In
our problem, a static instance of an assignment prob-
lem is easy, allowing us to focus on the challenge of
modeling the informational dynamics more carefully,
and to study policies that consider the impact of deci-
sions now on the future.
The dynamic assignment problem offers consider-

able richness relative to its static cousin. To gain an
appreciation of the problem class, consider the follow-
ing application drawn from the trucking industry in
Powell (1996). Drivers call in over time asking to be
assigned to loads. Customers call in over time asking
for loads to be moved by drivers (one driver pulls
one load). Both drivers and loads have characteris-
tics that determine the contribution from assigning
the driver to a load (for example, the current loca-
tion of the driver and the point at which the load
should be picked up). If we assign a driver to a load,
the driver may refuse the assignment, which is only
learned after the assignment is made (at which point
a new assignment would have to be made). Finally,
the contribution from assigning a driver to a load

399

Spivey and Powell: The Dynamic Assignment Problem
400 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

may be estimated in advance. However, new infor-
mation may arrive at the time that the assignment is
made, and even more information may arrive after
the assignment is completed (for example, we may
only collect information on tolls after the driver com-
pletes the assignment).
This example illustrates three classes of informa-

tion processes: (1) the arrival of drivers and loads
to the system, (2) the information on whether a
driver-to-load assignment is feasible, and (3) the
contribution from the assignment. We have to make
decisions now about assignments before we know
about the availability of future resources and tasks,
and possibly before we know about the contribution
of an assignment or whether the assignment will be
acceptable. Standard engineering practice has been to
solve assignment problems myopically, using only the
information available at the time the decision is made.
However, not only is this process suboptimal, it is
not even as good as that of an experienced dispatcher
who will routinely hold a driver for a better load later
in the day despite an acceptable assignment now.
The static assignment problem is one of the foun-

dational problems in the field of operations research
and has been studied and reported on extensively
over the last 50 years (Dantzig 1963, Murty 1992).
Many algorithms have been proposed for the assign-
ment problem, including shortest augmenting path
methods (see, for example, Balinski and Gomory
1964, Tomizawa 1972, Jonker and Volegnant 1987),
variants of the primal simplex method (Barr et al.
1977, Hung 1983), relaxation methods (Bertsekas
1981, 1988), and signature methods (Goldfarb 1985;
Balinski 1985, 1986). Variations of the static assign-
ment problem, such as the bottleneck assignment
problem (Gross 1959) and the stable assignment prob-
lem (Gale and Shapley 1962, Wilson 1977) have also
received attention. Important properties of the static
assignment problem have also been studied (see, for
example, Shapley 1962).
Very little attention has been paid to explicitly

extending the classical static assignment problem into
a dynamic setting. For instance, the texts on networks
by Murty (1992) and Ahuja et al. (1992) did not men-
tion the assignment problem in a dynamic context.
By contrast, there are many applications of dynamic
assignment problems in industry, which are typically
solved as sequences of static assignment problems.
In the research literature, the closest problem class
that has received a considerable amount of atten-
tion arises in machine scheduling. Pinedo (1995) pro-
vided a thorough summary of myopic policies for
scheduling machines over time. There is a growing
literature on the analysis of such algorithms, which
are typically characterized as “online” algorithms (see
Shmoys et al. 1995, Hall et al. 1997, Hoogeveen and

Vestjens 2000), but all these algorithms are basically
myopic models.
The literature on the dynamic vehicle routing prob-

lem can be divided into two broad problem classes:
the so-called full truckload problem and the dynamic
version of the general vehicle routing problem with
multiple stops (in-vehicle consolidation). Psaraftis (1988)
and Psaraftis (1995) discussed issues associated with
the dynamic version of the general vehicle routing
problem. Research on this problem class has pri-
marily focused on simulations of algorithms solv-
ing myopic models (Cook and Russell 1978, Regan
et al. 1998, Gendreau et al. 1999). Psaraftis (1980) was
the first to attempt to explicitly solve a determin-
istic, time-dependent version of the vehicle routing
problem using dynamic programming, but the for-
mulation encountered the well-known problems with
dimensionality. Swihart and Papastravrou (1999) and
Secomandi (2001) both considered dynamic program-
ming approximations for the single vehicle problem.
A separate line of research has focused on the sim-

pler full truckload problem, where a vehicle serves
one load at a time. Powell et al. (2000a) provided a
myopic model and algorithm for the dynamic assign-
ment problem, focusing on the problem of rout-
ing a driver through a sequence of more than one
load. Powell (1996) provided a formulation of the
dynamic assignment problem in the context of the
load-matching problem for truckload trucking using
a nonlinear approximation of the value of a resource
in the future. A number of articles have been writ-
ten on dynamic programming approximations for
dynamic fleet management problems (see, for exam-
ple, Godfrey and Powell 2002) but these problems do
not share the discrete 0/1 behavior of the dynamic
assignment problem.
General methods for this problem class can be

divided between discrete dynamic programming and
multistage linear programming. Traditional backward
discrete dynamic programming approaches focus on
calculating the value function explicitly. One can
determine the optimal action at each stage by cal-
culating the value function for all possible states at
all possible times recursively (Puterman 1994). For
our problem the number of states increases exponen-
tially with the number of resources and tasks, mak-
ing traditional applications of dynamic programming
intractable. Forward dynamic programming methods
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998,
Bertsekas et al. 1997) help mitigate the state-space
problem by using simulation and Monte Carlo sam-
pling, rather than by explicitly calculating the value
function for all possible states in a backwards man-
ner. However, these are general methods, and they do
not take advantage of special problem structure such
as the network structure of the dynamic assignment

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 401

problem. The action space of a dynamic assignment
problem is also too large for forward dynamic pro-
gramming methods to handle, and the challenge of
estimating the value function for a large number of
states remains.
Another algorithmic strategy is based on multistage

linear programs. These techniques can be divided
between scenario methods that explicitly enumer-
ate the space of possible outcomes: those based on
Bender’s decomposition, and those that use other
classes of approximations for the recourse function.
Scenario methods (see Kall and Wallace 1994, Infanger
1994, Birge and Louveaux 1997) require enumerating
a set of outcomes and explicitly solving a large-scale
program. Aside from the challenge of enumerat-
ing the space of potential scenarios, this approach
destroys the natural integrality of the dynamic assign-
ment problem. Lageweg et al. (1988), Louveaux and
van der Vlerk (1993), and Laporte and Louveaux
(1993) addressed the problem of solving integer
stochastic programs, but these would be difficult to
implement in an online, dynamic fashion. Tech-
niques that use Monte Carlo sampling (Higle and Sen
1991, Chen and Powell 1999) also destroy the prob-
lem’s natural integrality. Methods based on Bender’s
decomposition (Van Slyke and Wets 1969, Birge 1985,
Cheung and Powell 2000) seem more attractive, but
they completely lose the inherent network structure
of our problem class.
The original contributions of this paper are as fol-

lows. First, we provide a mathematical model of a
general class of dynamic assignment problems, with
an explicit representation of the exogenous informa-
tion process. We introduce, apparently for the first
time in the routing and scheduling literature, an
explicit model of lagged information processes that
captures the behavior of knowing about the arrival of
a resource or task before the arrival actually occurs.
Second, we introduce a family of adaptive learn-
ing algorithms that provide nonmyopic behavior, yet
require only solving sequences of assignment prob-
lems no larger than would be required with a myopic
algorithm. We provide variations for problems where
the number of different types of resources and tasks
is small and easy to enumerate, as well as a hierarchi-
cal aggregation strategy for handling large attribute
spaces. We show that these algorithms can outper-
form myopic models. Third, we study experimentally
the effect of advance information, and compare adap-
tive models to myopic models under varying degrees
of advance information. These experiments show that
the adaptive models will outperform myopic models
with some advance information, but with sufficient
advance information the myopic model actually out-
performs an adaptive model.

In §1 we define our notation and formulate the
problem. In §2 we establish some properties of the
static and dynamic assignment problems that are used
in developing our algorithm. We present our solu-
tion strategy in two stages. First, §3 presents the basic
strategy of approximating the future with different
types of linear approximations. In this formulation,
we assume that there is a fixed set of resources and
tasks (which is not too large), where we assume that
we can easily enumerate all the resources and tasks
that might arrive in the future. This model is equiv-
alent to a problem where the set of attributes of
resources and tasks is small enough that it can be
enumerated. In the second stage, §4 describes a hier-
archical aggregation strategy for handling problems
with very large, or infinite, attribute spaces. Section
5 compares the adaptive approximations presented in
this paper to a myopic approximation under varying
levels of advance information. Finally, §6 draws some
conclusions and suggests areas for further research.
The dynamic assignment problem offers tremen-

dous richness, creating the challenge of balancing
completeness with simplicity. The central ideas of the
problem are covered in §1.1 (the basic model), and
§3 (the algorithm and experimental results). We sug-
gest that the reader might wish to initially read only
these sections. Section 1.2, which provides general-
izations of the basic model, and §2, which describes
mathematical properties of assignment problems, are
optional and can be read independently depending
on the reader’s background. Section 4 will be of inter-
est to the algorithmically oriented reader looking to
generalize the adaptive learning logic to more realis-
tic situations. By contrast, §5 reports on experiments
to quantify the value of advance information which
requires only a reading of §1.

1. Problem Formulation
We model the dynamic assignment problem using the
language of Markov decision processes. Because deci-
sions are made at a particular time based on the cur-
rent information available and with an eye toward the
future, we feel the Markov decision process paradigm
is the appropriate one. However, because the algo-
rithms we propose are approximate, we do not have
to assume that the exogenous information processes
are actually Markovian.
We assume that we are modeling our problem in

discrete time over the time instants � = �0�1� � � � � T �
and that there are finite numbers of possible resources
and tasks available. Define
� set of all resource indices that might possibly enter
the system;

� set of all task indices that might possibly enter the
system.

Spivey and Powell: The Dynamic Assignment Problem
402 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

We assume that the indices in the sets � and � are
distinct, meaning that � ∩� = �. This allows us to
form a single set of indices � =�∪�, where the ele-
ment i ∈� uniquely identifies whether it is a resource
or a task.
In sharp contrast to the static assignment problem,

the dynamic assignment problem offers a rich set of
variations based purely on the types of information
that arrive and the possibility of advance information.
In addition, there are two ways of representing new
information: (1) the vector form and (2) the set form.
We start with the vector form, which provides for a
more classical representation of information as ran-
dom variables.
We introduce the dynamic assignment problem as a

sequence of models with increasingly general exoge-
nous information processes. Section 1.1 describes the
most basic model with random arrivals of resources
and tasks, then §1.2 describes a series of variations
that differ purely in the types of exogenous informa-
tion arriving to the system.

1.1. A Basic Dynamic Assignment Problem
We divide our description of the basic dynamic
assignment problem between descriptions of the
exogenous information process (§1.1.1), the decision
process (§1.1.2), system dynamics (§1.1.3), and the
objective function (§1.1.4).

1.1.1. The Exogenous Information Process. Our
basic assignment problem considers only the dynamic
arrival of resources and tasks. The resource and task
processes are independent of each other. Let

R̂tr =


1 if resource r ∈� becomes known in

period t;

0 otherwise;

R̂t = �R̂tr �r∈�

L̂tl =
{
1 if task l ∈� becomes known in period t;

0 otherwise;

L̂t = �̂Ltl�l∈� �
We let the assignment contributions be given by

ctrl = the contribution from assigning resource r
to task l at time t;

= f c�r� l� t��

f c�r� l� t� is a deterministic function of r , l, and t.
In this simple model, the exogenous information

arriving in time period t is given by

Wt = �R̂t� L̂t�� (1)

Following standard convention, we let � be a sample
realization of �Wt�t∈� . We assume that � represents

the set of elementary outcomes. If � is the �-algebra
on � and � is a probability measure on �, then
���� ��� is a probability space. We let �t be the
�-algebra generated by �W0�W1� � � � �Wt�, where the
sequence of increasing sub-�-algebras �t forms a fil-
tration. We assume that our information process satis-
fies

∑
t∈� R̂tr ���≤ 1 and

∑
t∈� L̂tr ���≤ 1 almost surely

(a.s.), which is to say that every resource and task can
become known at most once, and not every resource
and task will become known in every outcome.
To describe the state of our system, we define

Rtr =


1 if resource r ∈� is known and available

to be assigned in time period t;

0 otherwise;

Ltl =


1 if task l ∈� is known and available to be

assigned in time t;

0 otherwise.

We let Rt , Lt be the corresponding vectors of these
quantities. The state of our system is given by St =
�Rt�Lt�.
The use of vector notation is not the only, nor nec-

essarily the most natural, way to model the problem.
The vectors R̂t , Rt , L̂t , and Lt imply enumerating the
entire sets � and �. A more natural representation is
to use sets. Let

�̂t = �r � R̂tr = 1�
�t = �r �Rtr = 1��

�̂ and �t are defined analogously. The state of the
system would then be given by �t = ��t��t�.

1.1.2. The Decision Process. We represent the
decisions we have made by:

xtrl =


1 if resource r is assigned to task l at

time t;

0 otherwise;

xt = �xtrl�r∈�� l∈��
xLtl =

∑
r∈�
xtrl

=


1 if any resource is assigned to task l at

time t;

0 otherwise;

xRtr =
∑
l∈�
xtrl

=


1 if resource r is assigned to any task at

time t;

0 otherwise.

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 403

If we are using set notation, we would define the sets
�R
t and �L

t as the sets of resources and tasks that are
served at time t.
The function that returns a decision can be repre-

sented as
X�t a member of a family of functions �X

���∈� that
returns a decision vector xt at time t.
We refer to a particular function X� as a policy, and
let the set � represent our family of policies.
We can write our decision function as taking the

general form

X�t = argmax
x

C�t �x � St�� (2)

X�t is an �t-measurable function providing an assign-
ment at time t from a given policy �. Our goal is
to find a computationally tractable function X� that
provides optimal or near-optimal results. Equation (2)
must be solved subject to∑

l∈�
xtrl ≤ Rtr∑

r∈�
xtrl ≤ Ltl�

We define the feasible set �t�St� as this set of actions
available at time t. The constraints have the structure
of an assignment problem.
The specific class of assignment problem depends

on the structure of C� . The contribution function
C�t �xt � St� effectively determines our policy. The qual-
ity of the overall solution depends on how C� is
formed. The simplest contribution function considers
only what is known, while more sophisticated policies
incorporate information that reflects distributional
information about the future. Section 3 describes
different strategies that balance current costs and
rewards against the future.

1.1.3. System Dynamics. The dynamics of our
system are given by

Rt+1 =Rt − xRt + R̂t+1 (3)

Lt+1 = Lt − xLt + L̂t+1� (4)

We assume, of course, that our decision function
returns decisions xt =X�t that satisfy the flow conser-
vation equations ∑

l∈�
xtrl ≤Rtr (5)

∑
r∈�
xtrl ≤ Ltl� (6)

It is clear from Equations (3) and (4) that the random
variables Rt and Lt , and of course St , are defined for
a given policy �. We could write our state variable as
S�t to express this dependence, but we suppress the
reference to the policy � for notational simplicity.

1.1.4. Objective Function. The cost of an assign-
ment is given by

Ct�xt�=
∑
r∈�t

∑
l∈�t
ctrlxtrl� (7)

For a state St and a policy �, define, for each t,

F �t �St�= E
{ T∑
t′= t
Ct′�X

�
t′ � x

∣∣∣∣St}�
We note the difference between the cost function C�

used to choose xt , and the cost function Ct�xt� used to
evaluate our decision at time t. Our global optimiza-
tion problem can now be formally stated as

F ∗
t �St�= sup

�

F �t �St��

The solution to our dynamic assignment problem can
be found by solving

F ∗
0 �S0�= sup

�

F �0 �S0�� (8)

Section 3 poses the problem of finding the best pol-
icy by presenting several classes of cost approxima-
tions C� . We next present a series of generalizations
of our basic assignment problem.

1.2. Variants of the Exogenous Information
Process

The basic dynamic assignment problem provides a
foundation for several important variations which
reflect more general exogenous information processes.
Below, we present some of the most important
generalizations.

1.2.1. Modeling Resource and Task Attributes.
In our simplest model, the costs �ctrl� effectively
become known as soon as the resources and tasks
become known. It is often convenient in practice to
assume that each resource and task is associated with
a vector of attributes that we might define

ar = vector of attributes associated with resource
r , where we assume that ar ∈	;

bl = vector of attributes associated with task l,
where bl ∈
.

When these attribute vectors are defined explicitly, we
obtain our assignment cost from the function

C�t� a� b� = the cost of assigning a resource with
attribute a to a task with attribute
b at time t.

Using this function, the cost of an assignment would
be computed using ctrl =C�t� ar� bl�, and the total cost
of an assignment is still given by Equation (7).

Spivey and Powell: The Dynamic Assignment Problem
404 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

We next need to model the information process that
contains the attributes of resources and tasks. For this
purpose, we define

Âtr = the attributes of resource r entering the system
at time t;

Ât = �Âtr �r∈��

B̂tl = the attributes of task l entering the system at
time t;

B̂t = �B̂tl�l∈� �

The exogenous information process would now be
written

Wt = �R̂t� Ât� L̂t� B̂t�� (9)

To describe the state of our system, we define

Atr = the attributes of resource r at time t;
Btl = the attributes of task l at time t.

Our system state vector is now

St = �Rt�At�Lt�Bt��
The dynamics of Rt and Lt are still given by
Equations (3) and (4). The dynamics of At and Bt are
given by

At+1� r =
{
Ât+1� r if R̂t+1� r = 1�
Ar� t otherwise�

(10)

Bt+1� l =
{
B̂t+1� l if L̂t+1� l = 1�
Bl� t otherwise.

(11)

Equations (10) and (11) assume that information on
the attributes of a resource arrives at the same time
as information about the resource itself. This is a
reasonable model for most academic studies but
represents a simplification of what happens in prac-
tice. We could allow updates of the attributes of a
resource or task at any time after it initially becomes
“known.” This model would require replacing R̂t+1� r
and L̂t+1� l in Equations (10) and (11) with Rt+1� r and
Lt+1� l, respectively. If the attributes of a resource or
task become known when the resource or task first
becomes known, and are never updated again, then
this model is effectively equivalent to the model given
in §1.1.
We note in passing that our exogenous information

process is, by definition, independent of the state of
the system. In principle, this means that we may be
receiving information on the status of a resource or
task after it has already been assigned and removed
from the system. While this seems awkward in princi-
ple, it does not represent a problem in practice, since
new information about a resource or task after it has
been assigned and removed would simply be ignored.

1.2.2. Lagged Information Processes. A common
dimension of dynamic assignment problems is that
we may know about a resource or task before we can
act on it. Using our driver assignment problem, a cus-
tomer may call in an order to be handled several days
in the future. Alternatively, a driver may notify the
company that he will be available for assignment later
in the day. We refer to these as “lagged information
processes.”
The problem of time lags arises widely in the yield

management area where customers make reserva-
tions before they show up for a flight, but the issue
is largely overlooked in the routing and schedul-
ing community. The issue has been addressed in
the dynamic programming literature by Bander and
White (1999), who posed the problem in the context
of delayed state observations. (In our setting informa-
tion is known in advance, whereas with delayed state
observations the information about the state is known
later.)
Let

"r = the time at which we know about resource r
(similarly, this would be the time at which
we know about the attribute vector ar);

"ar = the time at which the resource first becomes
actionable�

Actionability refers to the time at which we can actu-
ally assign a resource to a task, and then remove it
from the system. We would similarly define "l and
"al as the knowable and actionable times of task l.
We note that the actionable time can be simply an
attribute of a resource or a task, but it is special in
that it determines when we can act on a resource or
task.
This notation allows us to define the arrival process

of resources and tasks using

R̂t�rt′ =


1 if resource r ∈� becomes known in

period t, and is actionable at time t′;

0 otherwise�

R̂tt′ = �R̂t�rt′�r∈��
R̂t = �R̂tt′�t′≥t�

L̂t�lt′ =


1 if task l∈� becomes known in period t,

and is actionable at time t′;

0 otherwise;

L̂tt′ = �̂Lt�lt′�l∈��
L̂t = �̂Ltt′�t′≥t �

In this case, R̂t and L̂t become families of vectors.
With this interpretation, we can still let our exogenous
information process be represented by Wt = �R̂t� L̂t�.

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 405

If we view the actionable time as an attribute, then
we may use the representation given in §1.2.1.
Our resource and task state vectors become

Rt�rt′ =


1 if resource r ∈� is known and first

available to be assigned in period
t, and is actionable at time t′;

0 otherwise;

Lt� lt′ =


1 if task l∈� is known and first available

to be assigned in period t, and is
actionable at time t′;

0 otherwise.

As we did earlier, we can define analogous sets �tt′
and �tt′ . We note that Rt�rt′ = 1 implies that "ar = t′.
We have to handle the case where a resource (or

task) is knowable and actionable at time t, but we do
not act on it, and it is held. In this event, we would
have a resource that is known at time t+1 but action-
able at time t. That is, it is possible for a resource to
be actionable in the past. We can reasonably expect
that this would never be true when a resource or task
first becomes known (that is, it should never be the
case that R̂t+1� rt = 1). However, because resources and
tasks can be held arbitrarily, we have to allow for the
more general case when representing our state vector;
in fact, there is no compelling reason to enforce t′ ≥ t
even in the exogenous information process.
We assume that we can only assign resources to

tasks that are in the sets ��tt′�t′≤t and ��tt′�t′≤t , respec-
tively. However, we can plan assignments of resources
or tasks, or both, that are known but not yet action-
able. Let

xt� rlt′ = the decision, made at time t (using what is
known at time t), to assign resource r to
task l at time t′. Both r and l must be
knowable at time t, and actionable on
or before time t′.

We refer to xt� rlt as an action while xt� rlt′� t′ > t, is a
plan. Later in this paper we will provide conditions
under which it would never be optimal to assign a
resource to a task, both of which are actionable on or
before time t′, at a time later than t′. We impose the
condition that xt� rlt′ = 0 for t′ < t because we cannot
take actions in the past. We express the constraints on
actionability using∑

l∈�
xt� rlt′ ≤

∑
s′≤t′
Rrt� s′ (12)

∑
r∈�
xt� rlt′ ≤

∑
s′≤t′
Llt� s′ � (13)

When t = t′, this constraint means that we can only act
on resources that are actionable now or earlier. How-
ever, it also allows us to plan the assignment of the

same resource at multiple times in the future. While
this does not violate any physical constraints, allow-
ing multiple assignments would probably yield poor
results. For this reason, we add the constraints∑

s′≥t

∑
l∈�
xt� rls′ ≤

∑
s′∈�
Rrt� s′ (14)

∑
s′≥t

∑
r∈�
xt� rls′ ≤

∑
s′∈�
Llt� s′ � (15)

Under the assumption that planned assignments
(where xt� rt′ = 1 for t′ > t) may be replanned in the
next period, the dynamics of the system with lagged
information are given by

Rt+1� rt′ =
Rt�rt′ − x

R
t� rt + R̂t+1� rt′ t′ ≤ t

Rt� rt′ + R̂t+1� rt′ t′ > t

Lt+1� lt′ =
Lt� lt′ − x

L
t� lt + L̂t+1� lt′ t′ ≤ t

Lt� lt′ + L̂t+1� lt′ t′ > t�

where

xLt� lt =
∑
r∈�
xt� rlt

xRt� rt =
∑
l∈�
xt� rlt �

Finally, the one-period cost function given in
Equation (7) must be replaced with

Ct�xt�=
∑
r∈�tt

∑
l∈�tt

ctrlxt� rlt �

This function considers only decisions that are action-
able at time t.

1.2.3. A Model with Cost Uncertainties. In some
applications, the decision to assign a resource or task
may have to be made before the cost of the assign-
ment becomes known. For example, in our trucking
problem we may not know about travel times (which
may be affected by congestion, for instance) or tolls
until after the assignment is complete. Also, the rev-
enue received for serving the task may be something
that depends on the total volume of the account,
which may not be determined until the end of the
accounting period.
There are several models we could reasonably use

to handle cost uncertainties. A simple model assumes
that there is a flow of information updates to the esti-
mate of the cost of an assignment. Let

Ĉtrl = random variable giving the change in the cost
of assigning r to l at time t.

As with the other random variables describing exoge-
nous information processes, we assume that Ĉ is

Spivey and Powell: The Dynamic Assignment Problem
406 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

represented by a probability distribution that in prac-
tice would be computed using observations of costs
after the fact. Interestingly, the simple exercise of
computing a distribution to measure the difference
between what we assumed before the fact and what
actually occurred is often overlooked in practice.
The assignment cost, then, would be given by

ctrl = ct−1� rl+ Ĉtrl� (16)

Our information process would then be Wt = �R̂t ,
L̂t� Ĉt�, and our system state would be St = �Rt�Lt� ct�.
It is easiest to represent the information process as

the change in costs. In practice, a real information pro-
cess on costs would appear as a stream of updates to
the cost, if there is a change, or no update, if there is
no change.
We note that this process evolves independently of

whether the resource or task is actually in the system.
This is quite realistic. We may have updates to our
estimate of the cost before an assignment is made, and
we may continue to have updates after the assign-
ment is completed as we receive more information on
the outcome of an assignment.

1.3. Solution Strategy
Given the large state space, we are not going to be
able to solve this using either the classical backward
dynamic techniques (Puterman 1994) or the approx-
imate forward techniques, which depend on discrete
representations of the value function (Bertsekas and
Tsitsiklis 1996, Sutton and Barto 1998). However, we
do feel that approximate dynamic programming can
be effective, as long as we use the right approxima-
tion for the value function. We propose to use a class
of policies of the form

X�t �St�= argmax
xt∈�t

ctxt +E
{
V̂t+1�St+1�xt�� � St

}
�

where �t describes our feasible region, and
V̂t+1�St+1�x�� is an appropriately chosen approxima-
tion of the value of being in state St+1 at time t + 1.
Because V̂t+1�St+1�x�� is, in effect, an approximation
of assignment problems later in time, we under-
take in §2 a study of the properties of assignment
problems. Section 3 then outlines a class of solution
strategies that require iteratively solving sequences
of assignment problems.

2. Some Properties of Assignment
Problems

Our algorithm strategy depends on making decisions
at time t using an approximation of the problem at
time t + 1. At time t, we are often faced with esti-
mating the value of a resource or a task in the future.

Furthermore, when we assign a resource to a task, we
need to estimate the impact of dropping the resource
and the task from the future. In §3 we introduce sev-
eral different types of approximations. In this sec-
tion, we summarize several properties of assignment
problems. In addition, they provide bounds on the
marginal value of resources and tasks in the future.
Section 2.1 summarizes the properties of a single,

static assignment problem. Section 2.2 gives a useful
result on the behavior of assignment problems over
time.

2.1. Properties of the Static Assignment Problem
We first establish some properties for the static assign-
ment problem. By static we mean a problem in
which there is only one assignment problem to be
solved rather than a sequence of assignment prob-
lems over time. Assume a superset of resources �
and a superset of tasks �. Given an ordered pair of
sets � ′ = ��′�� ′� consisting of resources and tasks to
be assigned and contributions crl for assigning each
resource r to each task l, define

C�� ′�=max
x

c ·x

subject to:
∑
l∈�
xrl≤

{
1 ∀r ∈�′�
0 ∀r �∈�′�∑

r∈�
xrl≤

{
1 ∀l∈� ′�
0 ∀l �∈� ′�

xrl∈�0�1� ∀r ∈��∀l∈��

where the assignment vector x is indexed by the ele-
ments of the cross product �×�.
Although technically � ′ is not a set but rather an

ordered pair of sets, we can extend some normal set
operations to � ′ = ��′�� ′�, such as:
Subset: � ′ ⊂� ′′ provided �′ ⊂�′′ and � ′ ⊂� ′′.
Union: If �′′ ⊂ �� then � ′ ∪ �′′ = ��′ ∪ �′′�� ′).

(The same is true for � ′ ∪� ′′.)
Also, given a network � ′ = ��′�� ′�, define

�∗�� ′� = the set of optimal assignments for � ′�

x∗�� ′� = an element of �∗�� ′�;

c∗�r� = the contribution on the arc containing
the flow out of resource r in the
optimal assignment for � ′;

c∗�l� = the contribution on the arc containing
the flow into task l in the optimal
assignment for � ′;

l∗�r� = the task assigned to resource r under
x∗�� ′�. If r is not assigned under
x∗, then l∗�r� is the supersink;

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 407

r∗�l� = the resource assigned to task l under
x∗�� ′�. If l is not assigned under
x∗, then r∗�l� is the supersource.

We are primarily interested in the behavior of assign-
ment problems after we add or drop resources and
tasks. For these purposes it is useful to define

C+
r ��

′� = C�� ′ ∪ �r��� for r �∈�′�

C−
r ��

′� = C�� ′ − �r��� for r ∈�′�

C+
rl ��

′� = C�� ′ ∪ �r�∪ �l��� for r �∈�′� l �∈� ′�

C+
r1r2
�� ′� = C�� ′ ∪ �r1� r2��� for r1� r2 �∈�′�

C+
l ��

′��C−
l ��

′��C−
rl ��

′� and C−
r1r2
�� ′� are defined sim-

ilarly. Now let

v+r ��
′� = C+

r ��
′�−C�� ′�� provided r �∈� ′�

v−r ��
′� = C�� ′�−C−

r ��
′�� provided r ∈� ′�

vr��
′� =

{
v+r ��

′� if r �∈� ′

v−r ��
′� if r ∈� ′�

We define v+l ��
′��v−l ��

′� and vl�� ′� correspondingly.
We often have to consider the problem of adding

(removing) both a resource and a task to (from) a net-
work. For a network � ′, define

v+rl��
′� = C+

rl ��
′�−C�� ′�� provided r� l �∈� ′�

v−rl��
′� = C�� ′�−C−

rl ��
′�� provided r� l ∈� ′�

vrl��
′� =

{
v+rl��

′� if r� l �∈� ′

v−rl��
′� if r� l ∈� ′�

When we solve a problem at time t, our decisions
impact the assignment problem that will have to be
solved at t+ 1. Our solution strategy depends on our
ability to approximate the impact of present decisions
on the future.
To begin, the assignment problem is, of course, a

linear program, and therefore shares the basic prop-
erties of linear programs. For example, an assignment
problem is piecewise linear concave with respect to
the right-hand side constraints. For our work, we may
be adding or dropping multiple resources and tasks,
and we often have to evaluate the cost of adding or
dropping a resource-task pair. A fundamental result
relating the values of adding additional resources and
tasks separately to the value of adding them together
is due to Shapley (1962):

Theorem 1. Given a network � ′,
1. �C�� ′ ∪ �r1��− C�� ′��+ �C�� ′ ∪ �r2��− C�� ′�� ≥

C�� ′ ∪ �r1� r2��−C�� ′� (subadditivity);
2. �C�� ′ ∪ �l1�� − C�� ′�� + �C�� ′ ∪ �l2�� − C�� ′�� ≥

C�� ′ ∪ �l1� l2��−C�� ′� (subadditivity);

3. �C�� ′ ∪ �r�� − C�� ′�� + �C�� ′ ∪ �l�� − C�� ′�� ≤
C�� ′ ∪ �r� l��−C�� ′� (superadditivity) (Shapley 1962).

This means that, in Shapley’s terminology, two
resources or two tasks are substitutes, while a resource
and a task are complements.
As a corollary to Theorem 1, known as Shapley’s

theorem, relating the values of removing resources
and tasks from a network separately to removing
them together, we have

Corollary 1. Given a network � ′ with resources
r� r1� r2, and tasks l� l1� l2,
1. �C�� ′�− C�� ′ − �r1���+ �C�� ′�− C�� ′ − �r2��� ≤

C�� ′�−C�� ′ − �r1� r2��;
2. �C�� ′�− C�� ′ − �l1���+ �C�� ′�− C�� ′ − �l2��� ≤

C�� ′�−C�� ′ − �l1� l2��;
3. �C�� ′� − C�� ′ − �r��� + �C�� ′� − C�� ′ − �l��� ≥

C�� ′�−C�� ′ − �r� l��.
Given a network � ′, Shapley’s theorem (Theorem 1)

and Corollary 1 can be written

v+r ��
′�+ v+l �� ′�≤ v+rl�� ′�

v−r ��
′�+ v−l �� ′�≥ v−rl�� ′��

When we assign a resource to a task, we are drop-
ping the resource-task pair from the assignment prob-
lem in the future. We can approximate this effect by
simply adding the value of adding (dropping) the
resource plus the value of adding (dropping) a task.
From Shapley’s result, this will underestimate the
impact of adding (dropping) the resource and the task
together. Because it is computationally expensive to
estimate the value of adding (dropping) a resource-
task pair, it can be useful to be able to approximate
this. Below we provide a bound on the resource-task
gradients.

Theorem 2. Let � ′ be a network. Then we have

crl ≤ v+rl�� ′�≤max
r ′� l′

�crl′ + cr ′l− cr ′l′��
crl ≤ v−rl�� ′�≤ crl∗�r�+ cr∗�l�l− cr∗�l� l∗�r��

Proof.
1. Let y be the flow-augmenting path consisting of

the link �r� l�. Then C�y�= crl. Thus v+rl�� ′�=C+
rl ��

′�−
C�� ′�=C�y∗r�l�≥ crl.
2. Because v−rl��

′ ∪ �r�∪ �l��= v+rl�� ′�, we have crl ≤
v−rl��

′�.
3. To prove v−rl��

′� ≤ crl∗�r� + cr∗�l�l + cr∗�l� l∗�r�, we
require two cases:

Case a. If r and l are assigned to each other in
the optimal solution for � ′, the only flow-augmenting
path from l to r that preserves feasibility in the orig-
inal network is y = �l� r�. Then l∗�r�= l and r∗�l�= r .

Spivey and Powell: The Dynamic Assignment Problem
408 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

So we have C�y∗l� r �= C�y�=−crl. Because −v−rl�� ′�=
−C�y∗l� r �, we have v−rl�� ′�= crl = crl+ crl− crl = crl∗�r�+
cr∗�l�l− cr∗�l�l∗�r�.

Case b. If r and l are not assigned to each other in
the optimal solution for � ′, all flow-augmenting paths
from l to r that preserve feasibility in the original net-
work must contain at least the mirror arcs �l� r∗�l��
and �l∗�r�� r�. Let y be the flow-augmenting path from
l to r consisting of �l� r∗�l��, �r∗�l�� l∗�r�� and �l∗�r�� r�.
Then C�y�=−cl� r∗�l�+ cr∗�l�� l∗�r�− cl∗�r�� l. Thus C�y∗l� r �≥−cl� r∗�l�+cr∗�l�� l∗�r�−cl∗�r�� l. Because −v−rl�� ′�=−C�y∗l� r �,
we have v−rl��

′�≤ cl� r∗�l�+ cl∗�r�� l− cr∗�l�� l∗�r�.
4. Because v+rl��

′� = v−rl��
′ ∪ �r� ∪ �l��, we have

v+rl��
′�≤ cl� r∗�l�+ cl∗�r�� l− cr∗�l�� l∗�r� for the network � ′ ∪

�r�∪ �l�. Clearly, then, v+rl�� ′�≤maxr ′�l′�crl′ + cr ′l+ cr ′l′�
for the network � ′. �

2.2. Some Properties of Deterministic Dynamic
Assignment Problems

For a deterministic dynamic assignment problem the
resource and task arrival processes as well as the con-
tribution processes are known at all times. Thus there
is no expectation in the definition of F �t ; we have
F �t ��t�=

∑T+1
t′=t ct′ ·X�t′ .

Recall the definition of a policy �:

� = A set of decisions �t�� � that specify the action
to take if the system is in state S.

For a deterministic problem, a policy � is equiva-
lent to a set of decisions �xt�Tt=0 that are specified in
advance and that are independent of the state of the
system at each point in time.
There are two interesting properties of determin-

istic dynamic assignment problems. The first, which
is a known result (Glasserman and Yao 1994, pp.
234–238), establishes a condition under which a
myopic solution can be optimal. Let 	′ be the set of
paired elements �r� l� in � ′ and let � be an ordered
sequence of such pairs. Assume that elements r and
l occur before either r ′ or l′. Then � is said to be a
Monge sequence provided crl + cr ′l′ − crl′ − cr ′l ≥ 0. If a
Monge sequence can be constructed of all the pairs in
	′ then the static assignment problem can be solved
optimally using a simple greedy solution.
The next result, which is original, establishes a

condition under which a resource and task that are
assigned to each other in the optimal solution should
be assigned as soon as both are actionable. This result
is stated as follows:

Theorem 3. Consider a deterministic dynamic assign-
ment problem in which ctrl is a strictly decreasing function
of t. Let "arl be the first-time resource r and task l, which
are both actionable. If x∗trl = 1 for some t in an optimal
solution x∗, then x∗rl"arl = 1.

Proof. Suppose not. Then there exists an optimal
solution x∗ such that for some r ′ and l′, x∗r ′l′"a

r ′ l′
= 0

but x∗r ′l′t′ = 1 for some t′ > "ar ′l′ . Let � be a policy
such that X� = x∗ for all r� l� t except that X�r ′l′"a

r ′ l′
= 1

and X�r ′l′t′ = 0. Then F ���0� = F ∗��0� − cr ′l′t′ + cr ′l′"a
r ′ l′
.

However because ctrl is a strictly decreasing funct-
ion of t, we have cr ′l′"a

r ′ l′
> cr ′l′t′ . Thus F ���0� > F ∗��0�,

which contradicts the assumption that x∗ is an opti-
mal solution. �

3. Solution Strategy for Problems
with Small Attribute Spaces

Although in prior sections we have considered gen-
eral dynamic assignment problems, in the rest of the
paper we concentrate, for practical purposes, on sim-
pler problems: those in which "r = "ar and "l = "al ,
i.e., those in which the time that the existence of a
resource or task becomes known is the same as the
time at which the resource or task becomes actionable
for assignment.
We define the value function as follows:

Vt��t� = max
xt∈�t

{
ct ·xt+E)Vt+1��t+1� ��t*

}
� t=0�����T �

= 0� t=T +1� (17)

The traditional dynamic programming approach
is to calculate the value function explicitly for each
state. By the principle of optimality we have Vt��t�=
F ∗
t ��t� (Puterman 1994). In particular, V0��0�= F ∗

0 ��0�,
and thus we could solve the original problem by
solving the value function recursions. Unfortunately,
the number of possible states �t is on the order
of the number of possible combinations of available
resources and tasks, which is 2���+���. Because solv-
ing the value function recursions involves calculating
Vt��t� for each state �t , calculating the value function
explicitly is feasible only for the smallest sets � and
�. Instead, we use an approximation V̂ of the value
function at t + 1 when solving the value function
recursion at time t. Our approximation at t + 1 can
be made into an explicit function of the time t deci-
sion variables, and then the value function at t can be
solved by embedding it into a network structure.
More explicitly, we replace the expression Vt+1��t+1�

with an approximation of the form

V̂t+1�St+1�= V̂ R ·Rt+1+ V̂ L ·Lt+1� (18)

where V̂ R and V̂ L are, respectively, the vectors con-
sisting of the resource and task value approximations.

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 409

Substituting this expression in the objective function
of (17) yields

ct · xt +E
[
V̂ R ·Rt+1+ V̂ L ·Lt+1 ��t

]
= ct · xt +E

[
V̂ R · �Rt − xRt + R̂t+1�
+ V̂ L · �Lt − xLt + L̂t+1� ��t

]
= ct · xt +E

[
V̂ R ·Rt ��t*−E)V̂ R · xRt ��t

]
+E[V̂ R · R̂t+1 ��t]+E[V̂ L ·Lt ��t]
−E[V̂ L · xLt ��t]+E[V̂ L · L̂t+1 ��t]

= ct · xt + V̂ R ·Rt − V̂ R · xRt + V̂ R ·E)R̂t+1*
+ V̂ L ·Lt − V̂ L · xLt + V̂ L ·E)̂Lt+1*� (19)

where Equation (19) arises because Rt�xRt �Lt , and x
L
t

are deterministic given St , and R̂t+1 and L̂t+1 are inde-
pendent of St .
Because Rt� R̂t+1�Lt , and R̂t+1 do not contain an xt

term, they do not affect the choice of xt in the maxi-
mization. Thus for practical purposes the terms V̂ R ·Rt ,
V̂ R · E)R̂t+1*, V̂ L · Lt and V̂ L · E)̂Lt+1* can be dropped
from the objective function. This gives us the follow-
ing approximation of (17) for t ≤ T :

Ṽt��t�=max
xt∈�t

�ct · xt − V̂ R · xRt − V̂ L · xLt �� (20)

Note also that the expectation in (17) has disappeared.
This simplification is important because the expecta-
tion is itself computationally intractable.
We consider three main classes of approximations.

The simplest is the greedy or myopic approximation;
in this case V̂ = 0. We use this approximation only as
a means of comparison for our other two classes of
approximations. Another is to let the value of a state
be the sum of the values of the individual resources
and tasks in the state: V̂ ��t�=

∑
r∈� vtr ·Rtr +

∑
l∈� vtl ·

Ltl. This approximation is separable. We also consider
a nonseparable approximation based on the values
of resource-task pairs: V̂ ��t+1� = −∑

r∈�
∑
l∈� vt+1� rl ·

xtrl. All of our approximations are calculated adap-
tively; that is, the values of the resources, tasks, and
resource-task pairs that we use are calculated over a
number of iterations.

3.1. Separable Approximations
First, we consider an approximation of Vt+1��t+1�
based on values of individual resources and tasks.
We define the value of a resource to be the impact
of adding or removing the resource from the system,
i.e., the resource’s gradient.

+V ∗
t ��t�

+Rtr
=
{
Vt��t�−Vt��t − �r�� if Rtr = 1�
Vt��t ∪ �r��−Vt��t� if Rtr = 0�

Thus +V ∗
t ��t�/+Rtr is either the left or the right deriva-

tive, depending on the situation. The gradient of a
task is defined similarly.
We see that +V ∗

t ��t�/+Rtr is equivalent to the nat-
ural extension of the definition of vr�� ′� in §2.1 to
vtr ��t�:

vtr ��t�=
{
Vt��t�−Vt��t − �r�� if r ∈�t�

Vt��t ∪ �r��−Vt��t� if r �∈�t �

Thus +V ∗
t ��t�/+Rtr = vtr ��t�.

We also define the following.

v̂ktr = the estimate of the value of resource r at time t
obtained directly in iteration k. We have
that v̂ktr = vtr ��t� if �t is the system state
at iteration k, time t.

v̄ktr = the smoothed estimate of the value of resource
r at time t after iteration k. In particular,
for smoothing function -k, v̄ktr = -kv̂ktr +
�1−-k�v̄k−1tr .

The quantities v̂ktl and v̄ktl are defined similarly.
We believe the smoothing is necessary because the
resource value estimates for a particular iteration are
dependent on the realization of the stochastic resource
and task processes in that iteration. To get a more
accurate estimate of the true value of the resource,
the estimates from each iteration must be combined in
some manner. (For a more careful discussion of how
the resource value estimates themselves are calculated
in a particular iteration, please see §3.3.)
Using the resource and task gradients we can

approximate Vt+1��t+1� during iteration k in any one
of three ways:

V̂ r� kt+1 ��t+1�=
∑
r∈�
v̄k−1t+1� r ·Rt+1� r � (21)

V̂ l� kt+1��t+1�=
∑
l∈�
v̄k−1t+1� l ·Lt+1� l� (22)

V̂ r� l� kt+1 ��t+1�=
∑
r∈�
v̄k−1t+1� r ·Rt+1� r +

∑
l∈�
v̄k−1t+1� l ·Lt+1� l� (23)

These approximations are both linear and separable.
Substituting the resource gradients approximation

(21) (the others would be similar) for Vt+1��t+1� in the
value function recursion (17) yields, as in (20):

Ṽ r� kt ��t�=max
xt∈Xt

{∑
r∈�

∑
l∈�
�ctrl− v̄k−1t+1� r � · xtrl

}
� (24)

We can see from the formulation (24) that if
resource r is assigned to some task, then the quan-
tity v̄k−1t+1� r is subtracted from the original objective
function. We can thus view the resource gradients
as contributions for not assigning the corresponding
resources. This leads to a network formulation of

Spivey and Powell: The Dynamic Assignment Problem
410 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

t = t´ +1 +2

New Resources

Held Resources

New Tasks

Held Tasks

V
Rt´+1

V
Rt´+1

c
R

L
t´+

1

V
Rt´+2

cR
Lt´

cR
Lt´

V
Lt´+1

c
R

Lt´+1

V
Lt´+2

c
R

Lt´+2

cR
Lt´+

2

t = t´ t = t´

Figure 1 A Dynamic Assignment Problem with Resource and
Task Gradients

the problem consisting of the usual arcs connecting
resources and tasks but also including no-assignment
arcs from each resource to a supersink with the appro-
priate resource gradient as the contribution of the
no-assignment arc. (When utilizing the task gradients
instead of or in addition to the resource gradients
we include them in the network formulation as the
contributions on no-assignment arcs from the super-
source to the tasks.) Figure 1 illustrates a dynamic
assignment problem over three periods, and the flow
augmenting paths represented by the resource and
task gradients.

3.2. A Nonseparable Approximation
The basic decision unit in a dynamic assignment prob-
lem is a single decision variable at time t, xtrl. It
seems reasonable, then, to consider an approximation
of Vt+1��t+1� based on these decision variables.
In a network formulation each decision variable xtrl

is associated with a particular arc in the network; thus
we refer to a marginal value with respect to xtrl as an
arc gradient.
We define the following.

+V ∗
t+1��t+1�
+xtrl

=



Vt+1��t+1− �r� l��−Vt+1��t+1�
if xtrl = 0� r� l ∈�t�

Vt+1��t+1− �r��−Vt+1��t+1 ∪ �l��
if xtrl = 0� r ∈�t� l �∈�t�

Vt+1��t+1− �l��−Vt+1��t+1 ∪ �r��
if xtrl = 0� r �∈�t� l ∈�t�

Vt+1��t+1�−Vt+1��t+1 ∪ �r� l��
if xtrl = 0� r� l �∈�t�

Vt+1��t+1�−Vt+1��t+1 ∪ �r� l��
if xtrl = 1�

The four cases under xtrl = 0 are necessary to cover
the various instances pertaining to the availability of
r and l under �t . In the latter three of these four cases
in which xtrl = 0, calculating the marginal value with
respect to xtrl actually violates feasibility because xtrl
cannot be set equal to 1 if either of r and l is not
available at time t. Hence these three definitions are
needed.
For the two feasible cases, the definition of

+V ∗
t+1��t+1�/+xtrl is similar to the extension of the def-

inition of vrl�� ′� in §2.1 to vt+1� rl��t+1�. In addition to
the cases r� l ∈ �t+1 and r� l �∈ �t+1 covered in §3, we
also wish to examine the cases r ∈ �t+1� l �∈ �t+1, and
r �∈ �t+1� l ∈ �t+1. This gives us the following defini-
tion of vt+1�rl��t+1�:

vt+1� rl��t+1�=



Vt+1��t+1�−Vt+1��t+1− �r� l��
if r� l ∈�t+1�

Vt+1��t+1 ∪ �l��−Vt+1��t+1− �r��
if r ∈�t+1� l �∈�t+1�

Vt+1��t+1 ∪ �r��−Vt+1��t+1− �l��
if r �∈�t+1� l ∈�t+1�

Vt��t+1 ∪ �r� l��−Vt+1��t+1�
if r� l �∈�t+1�

The conditions on these four cases are equivalent,
respectively, to (1) xtrl = 0 and r� l ∈�t , (2) xtrl = 0 and
r ∈ �t , l �∈ �t , (3) xtrl = 0 and r �∈ �t , l ∈ �t , and (4)
either xtrl = 0 and r� l �∈ �t or xtrl = 1. Thus we have
the relationship +V ∗

t+1��t+1�/+xtrl =−vt+1� rl��t+1�. This
means we can also think of the arc gradients as gra-
dients with respect to resource-task pairs.
We define the following.

v̂ktrl = the estimate of the value of resource-task pair
�r� l� at time t obtained directly in
iteration k. We have that v̂ktrl = vtrl��t� if
�t is the system state at iteration k, time t.

v̄ktrl = the smoothed estimate of the value of
resource-task pair �r� l� at time t after
iteration k. In particular, for smoothing
function -k, v̄ktrl = -kv̂ktrl+ �1−-k�v̄k−1trl .

Using the arc gradients we can then approximate
Vt+1��t+1� by

V̂ rlt+1��t+1� =
∑
r∈�

∑
l∈�

+V ∗
t+1��t+1�
+xtrl

· xtrl

= ∑
r∈�

∑
l∈�

−vt+1� rl��t+1� · xtrl�

At iteration k, time t, we have

V̂ rl� kt+1 ��t+1�=
∑
r∈�

∑
l∈�

−v̄k−1t+1� rl · xtrl�

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 411

This gives us the following approximation

Ṽ rl� kt ��t�=max
xt∈Xt

{∑
r∈�

∑
l∈�

(
ctrl− v̄k−1t+1� rl

) · xtrl}� (25)

This leads to a network formulation of the problem
consisting of the usual resources, tasks, and arcs but
with the modification that, for each arc, the contribu-
tion is now the original contribution minus the corre-
sponding arc gradient. Because the decision variables
are not independent of each other, this approximation
is, of course, nonseparable.

3.3. An Adaptive Dynamic Programming
Algorithm

We now present our basic algorithm. In each iteration
k and at each time t we solve a network assignment
problem consisting of the currently known resources,
tasks, and contributions. In addition, we incorporate
our resource, task, resource and task, or arc gradients
from iteration k − 1 into the network. (For instance,
resource gradients would be included as contribu-
tions on the arcs from the respective resources to
the supersink. Arc gradients would be subtracted
from the contributions on the corresponding arcs.)
After solving this problem using a network solver we
remove the assigned resources and tasks from the sys-
tem and roll forward in time.
The gradients for iteration k are not calculated until

after the forward pass has been completed. Thus the
history of the entire stochastic process for iteration
k is known. We calculate the gradients backward by
constructing, for each time t, a network consisting
of the currently known information as well as all
of the information that becomes available at times
t+ 1� � � � � T . We believe that calculating the gradients
in this fashion captures more accurately the actual
marginal impact of the resources, tasks, or resource-
task pairs on the system. This is because including
this later information, rather than just the informa-
tion available at time t, incorporates into the gradi-
ents some of the downstream impact of removing the
resources or tasks, or both, from the system. These
gradients are then smoothed in some fashion with
the gradients from iteration k − 1 for use in itera-
tion k+ 1. Calculating the gradients in this fashion
does not violate knowledge measurability constraints
because none of the gradients in iteration k are used
until iteration k+ 1. By the start of iteration k+ 1, all
of the information from iteration k is known, and thus
we can use all of this information in calculating the
gradients.
We present our algorithm using the resource gradi-

ents approximation.
The algorithm can be easily modified to include the

task gradients or to use the arc gradients approxima-
tions instead, as we detail below. The algorithm with
resource gradients is as follows.

Step 0. Determine a maximum number of iterations
K. Set v̂0tr = 0 and v̄0tr = 0 for all r and t. Set k = 1,
t = 0.
Step 1. For the current k and t, solve the assignment

problem

Ṽ r� kt ��t�=max
xt

{∑
r∈�

∑
l∈�

(
ctrl− v̄k−1t+1� r

) · xtrl}

subject to
∑
l∈�
xtrl ≤

{
1 ∀ r ∈�t�

0 ∀ r �∈�t�

∑
r∈�
xtrl ≤

{
1 ∀ l ∈�t�

0 ∀ l �∈�t�

xtrl ∈ �0�1� ∀ r ∈�� ∀ l ∈�� (26)

Step 2: Transition. Once the argmaxxt in Step 1 is
determined, let �t+1 =�t ∪�̂t+1−�R

t and �t+1 =�t ∪
�̂t+1−�L

t .
Step 3. If t < T then t = t+ 1 and go to Step 2.
Step 4: Backwards Calculation of Resource Gradients.

Let Nt be the network consisting of all resources and
tasks available at iteration k and times t′ ≥ t. Let
crl = cr� l� " arl . Then, for the current k and t, and for
each r and l that become available by time t (even if
one or both were assigned before time t), calculate
v̂ktr according to one of the following cases.

Case 1. If r is available at time t, then v̂ktr =
C�Nt�−C−

r �Nt�.
Case 2. If r is not available at time t, then v̂ktr =

C+
r �Nt�−C�Nt�.
Step 5: Smoothing. For each r , set v̄ktr = -kv̂ktr + �1−

-k�v̄k−1tr (for some smoothing function -k).
Step 6. If t > 0, then t = t− 1 and go to Step 4.
Step 7. If k < K, then k = k + 1 and go to Step 1;

otherwise stop.
Modifications of the algorithm include using the

resource and task gradients approximation rather
than just the resource gradients approximation in
Step 1. In this case we would denote the value func-
tion by Ṽ r� l� kt ��t� rather than by Ṽ

r� k
t ��t�. This would

also involve calculating task and resource gradients
in Step 4.
We could also calculate arc gradients instead of

resource and task gradients. This would involve the
following logic in Step 4.
Case 1. If r and l are available at time t, then v̂ktrl =

C�Nt�−C−
rl �Nt�.

Case 2. If r and l are not available at time t, then
v̂ktrl =C+

rl �Nt�−C�Nt�.
Case 3. If either of r and l is available at time t and

the other is not, then v̂ktrl = cr� l� "arl . (See Theorem 2.)

Spivey and Powell: The Dynamic Assignment Problem
412 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

These arc gradients would then be incorporated into
solving the value function (a Ṽ rlt in this case) in
Step 1.
Remark on Case 3. If r is available and l is not, for

instance, then the logical extension from Cases 1 and
2 to Case 3 is (and in fact our definition of vtrl��t�
implies) something like C+

l �Nt� − C−
r �Nt�. However,

this calculation includes in neither term the value
of the basis network Nt . From Theorem 2 the lower
bound for v̂ktrl in Cases 1 and 2 is cr� l� "arl . While this is
not guaranteed to be a lower bound for v̂ktrl in Case 3,
it seems a reasonable approximation, since in prac-
tice the value of v̂ktrl in Cases 1 and 2 is often found
to be close to its lower bound. The approximation
v̂ktrl = cr� l� "arl has the additional advantages of being
extremely easy to calculate and works well in our
experiments. Of course, the more obvious C+

l �Nt� −
C−
r �Nt� calculation as well as other types of logic are
also possible.
The gradients v̂ktr � v̂

k
tl, and v̂ktrl can be calculated

either with flow-augmenting paths (as discussed in
§2.1) or numerically, by calculating (in the case of v̂ktr)
C�Nt� and C−

r �Nt� (or C
+
r �Nt� and C�Nt�) and taking

the difference. The numerical calculations using a net-
work simplex code can be quite fast, provided one
uses the solution of C�Nt� as a warm start, rather than
cold starting, in calculating C−

r �Nt� and C
+
r �Nt�.

3.4. Experimental Results
We are interested in the relative performance of the
different classes of functional approximations, and
their comparison against posterior optimal solutions.
We created datasets with the intent of approximat-
ing a single region for a major truckload motor car-
rier. (Most companies use approximately 100 regions
to represent the United States.) To capture the range
from sparse to dense problems, we created 20 test
problems by randomly selecting different numbers of
points on a grid to represent the resources and tasks.
The datasets range in size from 2 resources and 2 tasks
(Dataset 5) to 55 resources and 55 tasks (Dataset 100).
The number associated with a particular dataset is
roughly the total number of resources and tasks in the
set. The initial contribution for assigning a resource
to a task was made to be a function of the distance
between the resource point and the task point. The
contribution for assigning a particular resource to a
particular task decreases over time from its initial
value.
In the experiments described below, we would per-

form 100 training iterations for estimating the value
of resources in the future, followed by 100 test-
ing iterations to evaluate solution quality. The code
was not tuned for speed, but since we were only
solving sequences of single-period assignment prob-
lems, none of the run times were especially large.

The most difficult algorithm used the arc gradients
to estimate the value of resources in the future. This
algorithm required approximately 0.3 minutes per
iteration on the largest datasets; the run times are
computed assuming a 2 GHz Intel processor. In an
operational setting, the training iterations would be
done in background, and real-time operations would
require solving only a single assignment problem,
because the remainder of the forward pass is used
only to approximate the value of resources in the
future.
We first performed runs on deterministic datasets

where the posterior optimal solution represents a
tight bound. Table 1 summarizes the results, compar-
ing a myopic model against models using resource
gradients alone, resource and task gradients, and the
arc gradients. The results show that all three classes of
nonmyopic strategies outperform the myopic model.
Furthermore, the arc gradients version performs the
best, with the resource and task gradients second best,
as we would expect. It is significant that the arc gradi-
ent algorithm produces near-optimal (and often opti-
mal) solutions, demonstrating that it is doing a bet-
ter job of approximating the value function. How-
ever, the computational burden is quite high because
it requires a calculation for every arc, and not just for
every node.
The next set of runs was performed under uncer-

tainty. We held the set of resource and tasks fixed,
but introduced randomness in the cost on an assign-
ment arc. We introduced a random cost that reflected

Table 1 Resources and Tasks Arrive Over Time: Deterministic Runs

Dataset Resource Resource and task Arc
size Myopic gradients gradients gradients

5 100 100 100 100
10 93�4 100 100 100
15 90�8 90�8 100 100
20 89�3 89�3 100 100
25 87�4 98�0 98�6 100
30 90�6 97�9 98�4 100
35 93�5 98�4 99�6 99�8
40 84�8 96�5 98�5 98�7
45 96�9 96�9 100 100
50 84�6 98�5 99�3 99�8
55 83�5 83�5 98�6 99�9
60 84�9 84�9 88�2 100
65 82�7 96�4 99�5 100
70 86�1 94�8 98�7 99�9
75 84�8 84�8 84�8 98�1
80 81�6 80�1 99�6 99�9
85 92�5 91�7 98�6 100
90 88�5 99�0 99�9 99�9
95 83�5 96�8 99�5 100
100 89�0 89�0 89�0 99�9
Mean 88�4 93�4 97�5 99�8
Median 88�0 96�5 99�4 100

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 413

whether the user felt the assignment was “accept-
able”; see Powell et al. (2000b) for a discussion of
user-acceptance issues. We made the assumption that
any resource-task assignment would be acceptable
with probability 50%; this is equivalent to assuming
that the cost on an assignment arc is zero or “big M”
with equal probability. For the arc �r� l� this cost was
not known until "arl, the earliest time at which resource
r and task l were both available.
We tested our algorithm using the resource,

resource and task, and arc gradients variations. For
our training phase on each dataset we averaged the
gradients from 100 iterations. In each iteration we
used the posterior optimal, as described in the previ-
ous section, as the solution on which to base the gra-
dient calculations. We then ran another 100 iterations
to test these gradients.
Table 2 presents the stochastic runs. On average,

each of the three gradients variations of our algorithm
outperforms the myopic solution. As in the determin-
istic case, the variation that only uses resource gradi-
ents performs the worst of the three. However unlike
the deterministic case, the resource and task gradients
version slightly outperforms the arc gradients ver-
sion. A possible explanation for this is that there are
so many more arc gradients than resource and task
gradients to calculate that it requires a much larger
training phase to achieve a similar degree of accu-
racy. The results suggest that the arc gradients version
of the algorithm may not be useful in the context of
stochastic applications.

Table 2 Resources and Tasks Arrive Over Time: Stochastic Runs

Dataset Resource Resource and task Arc
size Myopic gradients gradients gradients

5 97�1 93�6 93�6 97�6
10 90�2 93�9 93�7 95�4
15 90�4 86�6 90�8 92�6
20 87�9 84�5 91�8 88�4
25 87�6 94�2 95�1 95�9
30 86�2 90�4 91�5 92�7
35 92�4 93�8 93�4 96�1
40 84�0 89�1 91�2 90�5
45 92�0 90�0 96�5 97�1
50 85�8 93�4 93�8 93�6
55 83�1 80�7 92�4 88�2
60 81�5 84�5 88�4 83�5
65 82�4 92�0 93�4 91�1
70 85�4 91�8 93�0 89�5
75 83�0 86�4 90�0 91�5
80 80�1 79�5 93�9 89�7
85 88�4 86�3 93�9 88�9
90 87�1 95�8 96�3 93�8
95 83�2 91�7 94�2 91�6
100 84�3 85�5 89�7 91�7
Mean 86�6 89�2 92�8 92�0
Median 86�0 90�2 93�4 91�7

4. Hierarchical Aggregation for
Problems with Large Attribute
Spaces

Up to now we have looked at the value of a par-
ticular resource or task in the future. Implicitly, this
approach allows us to model the attributes of a
resource or task at a high level of detail. Such an
approach requires either that we be able to enumerate
all the resources and tasks (and their attributes) that
might arise in the future or that we be able to enu-
merate all the possible attribute vectors of resources
and tasks. In practice, this assumption will generally
not hold. For real problems, attribute vectors can be
quite detailed, making it impossible to enumerate all
possible outcomes, and still produce a computation-
ally tractable algorithm. Even if we could enumerate
them, we would encounter a problem of statistical
reliability.
We would like to be able to make a decision to

assign a resource with attribute vector ar and take
into consideration the value of a resource with this
attribute vector in the future. Thus, rather than esti-
mating the value of resource r at time t + 1, we
would like to estimate the value of a resource with
attribute ar in the future, which we might denote
by v̂t+1� a. Because we are creating these estimates
through Monte Carlo sampling, we have to face the
problem that we may need to use an estimate of v̂t+1� a
based on very few observations; often, for exam-
ple, we have never observed a particular attribute
vector.
To illustrate, assume that the only attribute of a

driver is his location, expressed as a set of continu-
ous coordinates �x�y�. Assume we want to consider
assigning a driver to a load with a destination at
the point �x′�y′�. To properly evaluate the value of
assigning a driver to this load, we would need to
know the value of a driver at location �x′�y′�. Now
we face a statistical estimation problem: How do we
estimate the value of a driver with these coordinates?
Defined over continuous space, the likelihood of sam-
pling another driver with the same coordinates is
negligible, and we would need many observations
to obtain a statistically reliable estimate. The natural
strategy is to divide the region into a set of zones.
This approach, however, introduces the classic trade-
off between statistical error (larger zones provide
larger samples) and structural error (smaller zones are
better).
A common strategy in dynamic programming is to

choose a level of aggregation that seems to strike a
reasonable balance between statistical error and struc-
tural error. A single level of aggregation, however,
ignores the fact that some regions of our network
have a higher density of activity and will produce

Spivey and Powell: The Dynamic Assignment Problem
414 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

larger samples. More problematical is that algorithms
in the early stages have to deal with value func-
tions that are estimated with a small number of iter-
ations, and small samples, which means that we may
have more observations of drivers in some areas than
others. The decision of choosing the right level of
aggregation can be a function of how many iterations
the algorithm has progressed. We propose and test
a hierarchical aggregation procedure that simultane-
ously estimates the value of a driver at different lev-
els of aggregation. We have not seen this technique
in the general dynamic programming literature, and
it is certainly new to the routing and scheduling
literature.
Aggregation remains a widely used technique in

the operations research literature to handle complex
problems; see, in particular, the survey paper by
Rogers et al. (1991). Most of the aggregation algo-
rithms in the dynamic programming literature also
involve aggregating the original problem, solving the
aggregated problem, and disaggregating to find a
solution. The aggregation is done in order to reduce
the size of the state space. Some algorithms of this
type include those in Hinderer (1978), Mendelssohn
(1982), Bean et al. (1987) (which is for deterministic
dynamic programs only), and Bertsekas and Castanon
(1989). Morin (1978) is a general survey paper of
the older literature. Puterman (1994) presented a
general technique for approximating countable-state
Markov decision processes using a finite number of
states, complete with error bounds, but this tech-
nique essentially consists of truncating the number
of states. Whitt (1978, 1979) performed some error
analysis.
Bertsekas and Tsitsiklis (1996) provided a good gen-

eral discussion of partitioning techniques, including
using grids, exploiting special features, breaking the
value function approximation into a global value and
the sum of local values, solving small subproblems
exactly and only approximating the large ones, and
soft partitioning, which smooths the values of the par-
tition at the edges. Our approach represents a contri-
bution to this class of strategies.

4.1. An Algorithm Based on Hierarchical
Aggregation

We perform aggregation of resources and tasks thro-
ugh the use of a collection of aggregation functions

Gn2 	→	�n��

where Gn represents the nth level of aggregation of
the attribute space 	. It is not necessarily the case that
	�n� ⊆	�m� for n≤m.

We also define

a
�n�
r = Gn�ar �, the nth level aggregation attribute

vector associated with resource r ;

a
�n�
l = Gn�al�, the nth level aggregation attribute

vector associated with task l;

R
�n�
t = vector of aggregated resources at time t,

where R�n�ta =∑
r∈�t

1�Gn�ar �=a�;
L
�n�
t = vector of aggregated tasks at time t,

where L�n�ta =∑
l∈�t 1�Gn�al�=a�.

Our algorithmic strategy is the same as before,
using linear approximations of the future to make
better decisions now. As we did in §3, we can use
the value functions based on resources, resources and
tasks, and resource-task combinations. Because these
all have the same basic structure, we illustrate the use
of hierarchical aggregation using only the task gradi-
ents. In this case, our approximation would look like

V̂
�n�r
t+1 ��t+1� =

∑
a∈	�n�

v̂
�n�
t+1�a ·Rt+1�a (27)

= ∑
a∈	�n�

v̂
�n�
t+1�a

∑
r∈�t

(
1− ∑

l∈�+
t

xtrl

)
1�Gn�ar �=a� (28)

= ∑
a∈	�n�

v̂
�n�
t+1�a

∑
r∈�t

(
1− ∑

l∈�+
t

xtrl

)
1�Gn�ar �=a�� (29)

We are only interested in the portion of V̂ that
depends on x, so we drop the constant term and
retain only the portion that includes x, giving us

V̂
�n�r
t+1 ��t+1�=− ∑

r∈�t

∑
l∈�+

t

xtrl

(∑
a∈	�n�

v̂
�n�
t+1� a1�Gn�ar �=a�

)
� (30)

Let âr satisfy 1�Gn�ar �= âr � = 1, which means that ar maps
to âr under aggregation Gn; we only use âr when the
level of aggregation is clear. This allows us to write
(30) as

V̂
�n�r
t+1 ��t+1�=− ∑

r∈�t

∑
l∈�+

t

xtrlv̂
�n�
t+1� âr � (31)

Combining Equations (17) and (31) gives

Ṽt��t�=max
xt∈�t

∑
r∈�t

∑
l∈�+

t

(
ctrl− v̂�n�t+1� âr

)
� (32)

We now turn to the problem of actually calculating
v̂
�n�
t� âr
. Our approximation methodology involves solv-

ing the function Ṽt��t� in Equation (17). We compute
the value of a resource r in the set �t using

ṽtr ��t�=
{
Ṽt��t�− Ṽt��t − �r�� if r ∈�t�

Ṽt��t ∪ �r��− Ṽt��t� if r �∈�t�

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 415

where the calculation of these gradients can be sim-
plified using flow augmenting path algorithms (see
Powell 1989). We now need to produce aggregated
estimates of these values. Aggregated versions have
to be defined relative to the attribute spaces 	R, 	L.
Aggregation can be formed in different ways (Ling
and Butler 1999). Assume we have a collection of
resources �â where if r� r ′ ∈��n�

â , then âr = âr ′ . Then
let
f a�� � = the aggregating function that takes a family

of values � and combines them to
produce the values of the aggregate
vectors.

This function could produce the mean, a weighted
mean, the median, or some other combination of the
disaggregate values. Let

� �n�r
ta = {

vtr � r ∈�t� a
�n�
tr = a}

= the set of values (in this case, for resources)
that aggregate up to the same attribute
vector a ∈	�n�.

We use � �n�
ta when we want to refer to a generic set of

values to be aggregated. We then define

ṽ
�n�
ta ��t�= f avg�� �n���

As an example, f avg as the mean function gives

ṽ
�n�
ta ��t�=

∑
�r∈� �n�

ta �
ṽtr

�� �n�
ta � �

In an iterative setting, we would let ṽktr represent an
estimate of the value of resource r at time t, and let
ṽ
�n�� k
ta be an aggregated estimate at iteration k.
Finally, having obtained an aggregated estimate of

the value of a resource (task or resource-task), we per-
form the usual smoothing to obtain

v̂
�n�� k+1
ta = �1−-k�v̂�n��k+-kṽ�n��kta �

where 0<-k < 1 is a stepsize.

4.2. Adaptive Hierarchical Aggregation
In this section we consider using different levels of
aggregation in an adaptive setting, and we present
a modification of our algorithm from §3. The basic
idea is to estimate the value of a resource vta with
attribute a at different levels of aggregation. Clearly,
as the level of aggregation increases, we gain statis-
tical accuracy but increase structural errors. For each
level n of aggregation and time t, define

s2
(
v
�n�
t� ar

) = the estimated variance of the value of
resource r with attribute vector a at
the nth level of aggregation at time t.
(We use the estimated variance s2

rather than actual variance �2

because we do not know �2.)

Then, when we need the value of resource r at time
t, we set

v̂tr = v�m�t� ar
�

where
m= argmin

n

{
s2
(
v
�n�
t� ar

)}
�

We incorporate this into our resource gradients
algorithm by adaptively choosing the level of aggre-
gation at each iteration. Our algorithm, then, will esti-
mate the value of a resource in the future by choosing
the level of aggregation which produces the lowest
error.

4.3. Experimental Testing of Hierarchical
Aggregation

We now present our experimental results. We exam-
ine the effects of different levels of aggregation as well
as the performance of our resource, task, resource and
task, and arc gradients algorithms. Our major ques-
tion, however, is how well the hybrid algorithm from
§4.2 works.
Our datasets are created by associating each re-

source and each task with a random point on a
1�000×1�000 square. Thus the attribute vector of each
resource and task consists of a unique label and a
location on the square. The contribution for assigning
a resource to a task is an inverse function of the dis-
tance between the resource and the task. Aggregation
is achieved by imposing different-sized grids on the
square, with the value of a resource or task set to be
the value of the grid cell in which the resource or task
lies. Our results are presented as a percentage of the
posterior optimal solution.
We now present our results on the effects of dif-

ferent grid sizes. In conducting these experiments we
used a battery of 20 deterministic datasets of vari-
ous sizes. We tested our resource and task gradients
algorithm on these datasets using several grid sizes.
Figure 2 shows the performance of several grid sizes
on the stochastic version of dataset 60 for iterations 1
through 1,000. The results that are plotted are expo-
nentially smoothed with a smoothing factor of 0.05.
As we would expect, the performance at the most

aggregate level performs the best over the earliest
iterations. As the number of iterations increases, suc-
cessively lower levels of aggregation perform better.
If we were to use a single level of aggregation, we
would be likely to obtain poor results if we can only
run a small number of iterations, and yet we would
never achieve the best results if we were to run a large
number of iterations.
We now present results from using our hybrid algo-

rithm discussed in §4.2. For these experiments our
two levels of aggregation were chosen to be the 1× 1
grid and the 5 × 5 grid. We ran 1,000 iterations of
the resource and task gradients algorithm on a series

Spivey and Powell: The Dynamic Assignment Problem
416 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

Figure 2 Comparison of Different Grid Sizes on Dataset 60

of stochastic datasets of increasing sizes for the pure
1 × 1 grid algorithm, the pure 5 × 5 grid algorithm,
and the hybrid algorithm. The choice between lev-
els of aggregation for a particular resource r at time
t was made based on the smaller of the two values
of s2�vtr � (the estimate of the sample variance of the
value of resource r at time t) for each level of aggre-
gation. What is important about these runs is not the
final solution, but rather the rate of convergence.
Figure 3 illustrates the performance of each of the

three algorithms (aggregation fixed on a 1 × 1 grid
size, aggregation fixed on a 5× 5 grid size, and the
hybrid aggregation algorithm). Finer levels of aggre-
gation will, as a rule, always work best after suffi-
ciently many iterations, but practical problems require
good convergence after just a few iterations. The 1×1
fixed aggregation works the best initially, but signif-
icantly underperforms the 1× 1 grid after about 500
iterations. The hybrid outperforms both algorithms
over the entire range.

0.75

0.8

0.85

0.9

0.95

1

1
4
7

9
3

1
3
9

1
8
5

2
3
1

2
7
7

3
2
3

3
6
9

4
1
5

4
6
1

5
0
7

5
5
3

5
9
9

6
4
5

6
9
1

7
3
7

7
8
3

8
2
9

8
7
5

9
2
1

9
6
7

Iterations

P
e

rc
e

n
t

o
f

P
o

s
te

ri
o

r
O

p
ti

m
a

l

Figure 3 Comparison of 1× 1, 5× 5, and Hybrid Algorithms on
Dataset 100

5. The Value of Advance Information
An important issue in the study of real-time mod-
els is the value of advance information. It is pos-
sible to undertake comparisons of different degrees
of advance information using a myopic model, but
this ignores the ability people have to anticipate the
future in the form of distributional information. For
example, a dispatcher might think, “I am going to
hold this truck in this area because I have a lot of
customers nearby and I will probably get a phone
call,” which we would represent using a probabil-
ity distribution describing the number of phone calls
we expect to receive. For this reason, it is useful
to use our dynamic policy to estimate the value of
advance information. We also undertake comparisons
against a myopic model, where the expectation is that
a myopic model should work fine if there is enough
advance information.
Our study focuses on the difference between when

a resource or task becomes known " and when it
becomes actionable "a. We refer to the probability dis-
tribution describing the difference "a−" as the booking
profile. Although it is most common to think of ran-
dom information arising about tasks, there are prob-
lems where the same issue arises with the vehicles
(for example, this may be a major problem in the
movement of empty rail cars). Up to now our experi-
ments assumed that " = "a. Thus when resources and
tasks become known they are immediately action-
able. However, this is often not the case in the real
world; frequently information about resources and
tasks becoming available in the future is known in
advance.
We conducted a study where the knowable times,

"r and "l, are generated as they were before, while the
actionable times (for a particular task l) were com-
puted using

"al = "l+4l�
where 4l is a random variable representing the book-
ing profile. We assumed, as would typically be the
case, that 4l becomes known at time "a. We further
assumed that 4l was uniformly distributed between
0 and 4max; we used the same distribution for both
resources and tasks. When the assignment model is
run at time t, all resources and tasks with " ≤ t and
"a ≤ t+ "ph are considered, where "ph is the planning
horizon. Any decisions that are actionable at time t
are implemented, while any decisions that are action-
able in the future are reoptimized in the next period.
The value of knowing the future is, of course, a

function of the cost of making the wrong decision.
For our problem, this is controlled by the transporta-
tion cost. If the transportation cost were zero, then
there would be no value of advance information. In
our test problems each resource and each task has a

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 417

86

88

90

92

94

96

98

100

0 4 8 12 16 20 24 28

Knowledge Horizon

P
e
rc

e
n

t
o

f
O

p
ti

m
a
l

Normal Distance, Myopic

Normal Distance, R&T

1/2 Distance, Myopic

1/2 Distance, R&T

1/5 Distance, Myopic

1/5 Distance, R&T

Base costs

Base costs x 1/5

Base costs x ½

Figure 4 The Difference Between the Adaptive Dynamic Profits Using
Resource and Task Gradients (R&T) and the Myopic Algo-
rithm, as a Function of the Planning Horizon, for Different
Transportation Costs

location on a 1�000×1�000 grid, and the value of serv-
ing a task is fixed at $2,000, while the cost of serving
a task is equal to the distance from the resource to
the task times a transportation cost of $1 per mile.
We then conducted experiments where the transporta-
tion cost was one half and one fifth of the base costs.
The results are shown in Figure 4. The results show
that as the transportation cost declines, the difference
between the two algorithms over different planning
horizons diminishes quickly. The obvious conclusion
is that if it does not really matter what you will be
doing in the future, then you do not have to anticipate
the future.
In Figure 5 we examine the effects of decision hori-

zons in the presence of advance information. A deci-
sion horizon is the period into the future in which
decisions, once made, are locked into place. Up to
now, our decision horizon has always been a sin-
gle period. Locking in decisions now that cannot be
implemented until some time in the future (perhaps
for reasons of driver notification) would always be
expected to perform worse than policies that do not
lock in decisions. Implementing a decision horizon
of length "dh, in these experiments, means that any
assignment made at time t that is actionable between
t and time t + "dh is “locked in” and acted upon at
the time it does become actionable. For these runs, we
used 4max = 30.
The results are shown in Figure 5. They indicate,

as we would expect, that the myopic model performs
worse as the decision horizon is lengthened, over
the entire range of planning horizons. The dynamic
programming approximation, however, is relatively

86

88

90

92

94

96

98

100

0 4 8 12 16 20 24 28

Planning Horizon

P
e
rc

e
n

t
o

f
O

p
ti

m
a
l

Decision Horizon = 0, Myopic

Decision Horizon = 0, R&T

Decision Horizon = 2, Myopic

Decision Horizon = 2, R&T

Decision Horizon = 5, Myopic

Decision Horizon = 5, R&T

Decision Horizon = 10, Myopic

Decision Horizon = 10, R&T

R&T Algorithms

Myopic Algorithms

Figure 5 The Effect of the Decision Horizon as a Function of the Plan-
ning Horizon, for the Myopic Algorithm and the Adaptive
Dynamic Programming Algorithm with Resource and Task
Gradients (R&T)

independent of the decision horizon, with results that
are consistently better than all the myopic models as
long as the planning horizon is not too long.

6. Conclusions
This paper suggests a strategy for solving dynamic
assignment problems that is computationally tract-
able, requiring no specialized algorithms. The exper-
imental work is promising, but more research is
required to test the effectiveness of this approach on
different problem classes. For example, the section
on hierarchical aggregation did not explicitly test the
method on multiattribute resources and tasks. Also,
it is likely that other statistical methods such as
nonparametric regression would produce even better
results.
Our presentation has focused on the dynamic

assignment problem where resources and tasks may
be held if they are not acted on, but vanish from the
system if a resource is coupled to a task. Often, the
task vanishes from the system but the resource reap-
pears. Because our approach captures the value of a
resource if it is held, the same approach can be used
to capture the value of a resource in the future.
We have considered only linear value function

approximations. For larger problems, it is likely that
the value of a vehicle in a particular region, for exam-
ple, would depend on the number of other vehicles
in the region at the same time. For this, it would
be possible to use nonlinear functional approxima-
tions. Possible options include the use of polynomial

Spivey and Powell: The Dynamic Assignment Problem
418 Transportation Science 38(4), pp. 399–419, © 2004 INFORMS

approximations, such as those investigated in Tsitsik-
lis and Van Roy (1997), or the separable, piecewise
linear approximations used in Godfrey and Powell
(2002).

Acknowledgments
This research was supported in part by Grant AFOSR-
F49620-93-1-0098 from the Air Force Office of Scientific
Research. The authors would also like to acknowledge the
many helpful comments of the reviewers and the assistance
of the editors.

References
Ahuja, R., T. Magnanti, J. Orlin. 1992. Network Flows: Theory, Algo-

rithms and Applications. Prentice Hall, Upper Saddle River, NJ.
Balinski, M. 1985. Signature methods for the assignment problem.

Oper. Res. 33 527–537.
Balinski, M. 1986. A competitive (dual) simplex method for the

assignment problem. Math. Programming 34(2) 125–141.
Balinski, M., R. Gomory. 1964. A primal method for the assignment

and transportation problems. Management Sci. 10 578–593.
Bander, J., C. C. White. 1999. Markov decision processes with noise-

corrupted and delayed state observations. J. Oper. Res. Soc.
50(6) 660–668.

Barr, R., F. Glover, D. Klingman. 1977. The alternating path basis
algorithm for assignment problems. Math. Programming 13
1–13.

Bean, J., J. Birge, R. Smith. 1987. Aggregation in dynamic program-
ming. Oper. Res. 35 215–220.

Bertsekas, D. 1981. A new algorithm for the assignment problem.
Math. Programming 21 152–171.

Bertsekas, D. 1988. The auction algorithm: A distributed relax-
ation method for the assignment problem. Ann. Oper. Res. 14
105–123.

Bertsekas, D., D. Castanon. 1989. Adaptive aggregation methods for
infinite horizon dynamic programming. IEEE Trans. Automatic
Control 34(6) 589–598.

Bertsekas, D., J. Tsitsiklis. 1996. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

Bertsekas, D., J. Tsitsiklis, C. Wu. 1997. Rollout algorithms for com-
binatorial optimization. J. Heuristics 3(3) 245–262.

Birge, J. 1985. Decomposition and partitioning techniques for multi-
stage stochastic linear programs. Oper. Res. 33(5) 989–1007.

Birge, J., F. Louveaux. 1997. Introduction to Stochastic Programming.
Springer-Verlag, New York.

Chen, Z.-L., W. Powell. 1999. A convergent cutting-plane and
partial-sampling algorithm for multistage linear programs with
recourse. J. Optimization Theory Appl. 103(3) 497–524.

Cheung, R. K.-M., W. B. Powell. 2000. SHAPE: A stochastic hybrid
approximation procedure for two-stage stochastic programs.
Oper. Res. 48(1) 73–79.

Cook, T., R. Russell. 1978. A simulation and statistical analysis of
stochastic vehicle routing with timing constraints. Decision Sci.
9 673–687.

Dantzig, G. 1963. Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, NJ.

Gale, D., L. Shapley. 1962. College admissions and the stability of
marriage. Amer. Math. Monthly 69 9–15.

Gendreau, M., F. Guertin, J. Potvin, E. Taillard. 1999. Parallel tabu
search for real-time vehicle routing and dispatching. Trans-
portation Sci. 33 381–390.

Glasserman, P., D. Yao. 1994. Monotone Structure in Discrete-Event
Systems. John Wiley and Sons, New York, 234–238.

Godfrey, G., W. B. Powell. 2002. An adaptive, dynamic program-
ming algorithm for stochastic resource allocation problems, I:
Single period travel times. Transportation Sci. 36(1) 21–39.

Goldfarb, D. 1985. Efficient dual simplex methods for the assign-
ment problem. Math. Programming 33 187–203.

Gross, O. 1959. The bottleneck assignment problem. Technical
Report p-1630, The RAND Corporation.

Hall, L., A. Schulz, D. Shmoys, L. Wein. 1997. Scheduling to min-
imize average completion time: Off-line and on-line approxi-
mation algorithms. Math. Oper. Res. 22 513–544.

Higle, J., S. Sen. 1991. Stochastic decomposition: An algorithm for
two stage linear programs with recourse. Math. Oper. Res. 16(3)
650–669.

Hinderer, K. 1978. On approximate solutions of finite-stage
dynamic programs. M. Puterman, ed. Dynamic Programming
and Its Applications. Academic Press, New York.

Hoogeveen, J., A. Vestjens. 2000. A best possible deterministic
on-line algorithm for minimizing delivery time on a single
machine. SIAM J. Discrete Math. 13 56–63.

Hung, M. 1983. A polynomial simplex method for the assignment
problem. Oper. Res. 31 595–600.

Infanger, G. 1994. Planning under Uncertainty: Solving Large-scale
Stochastic Linear Programs. Scientific Press Series, Boyd & Fraser,
New York.

Jonker, R., A. Volegnant. 1987. A shortest augmenting path algo-
rithm for dense and sparse linear assignment problems. Com-
puting 38 325–340.

Kall, P., S. Wallace. 1994. Stochastic Programming. John Wiley and
Sons, New York.

Lageweg, B., J. Lenstra, A. R. Kan, L. Stougie. 1988. Stochastic
integer programming by dynamic programming. Y. Ermoliev,
R. Wets, eds. Numerical Techniques for Stochastic Optimization.
Springer-Verlag, Berlin, Germany, 403–412.

Laporte, G., F. Louveaux. 1993. The integer l-shaped method for
stochastic integer programs with complete recourse. Oper. Res.
Lett. 13(3) 133–142.

Ling, B., R. Butler. 1999. Comparing effects of aggregation methods
on statistical and spatial properties of simulated spatial data.
Photogrammatic Engrg. Remote Sensing 65(1) 73–84.

Louveaux, F., M. van der Vlerk. 1993. Stochastic programming with
simple integer recourse. Math. Programming 61 301–325.

Mendelssohn, R. 1982. An iterative aggregation procedure for
Markov decision processes. Oper. Res. 30(1) 62–73.

Morin, T. L. 1978. Computational advances in dynamic program-
ming. M. Puterman, ed. Dynamic Programming and Its Applica-
tions. Academic Press, New York.

Murty, K. 1992. Network Programming. Prentice Hall, Englewood
Cliffs, NJ.

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems. Pren-
tice Hall, Englewood Cliffs, NJ.

Powell, W. B. 1989. A review of sensitivity results for linear net-
works and a new approximation to reduce the effects of degen-
eracy. Transportation Sci. 23(4) 231–243.

Powell, W. B. 1996. A stochastic formulation of the dynamic assign-
ment problem, with an application to truckload motor carriers.
Transportation Sci. 30(3) 195–219.

Powell, W., W. Snow, R. Cheung. 2000a. Adaptive labeling algo-
rithms for the dynamic assignment problem. Transportation Sci.
34 67–85.

Powell, W., M. T. Towns, A. Marar. 2000b. On the value of globally
optimal solutions for dynamic routing and scheduling prob-
lems. Transportation Sci. 34(1) 50–66.

Psaraftis, H. 1980. A dynamic programming solution to the single
vehicle many-to-many immediate request dial-a-ride problem.
Transportation Sci. 14 130–154.

Spivey and Powell: The Dynamic Assignment Problem
Transportation Science 38(4), pp. 399–419, © 2004 INFORMS 419

Psaraftis, H. 1988. Dynamic vehicle routing problems. B. Golden,
A. Assad, eds. Vehicle Routing: Methods and Studies. North
Holland, Amsterdam, The Netherlands, 223–248.

Psaraftis, H. 1995. Dynamic vehicle routing: Status and prospects.
Ann. Oper. Res. 61 143–164.

Puterman, M. L. 1994. Markov Decision Processes. John Wiley and
Sons, New York.

Regan, A., H. S. Mahmassani, P. Jaillet. 1998. Evaluation of dynamic
fleet management systems—Simulation framework. Transporta-
tion Res. Record 1648 176–184.

Rogers, D., R. Plante, R. Wong, J. Evans. 1991. Aggregation and
disaggregation techniques and methodology in optimization.
Oper. Res. 39(4) 553–582.

Secomandi, N. 2001. A rollout policy for the vehicle routing prob-
lem with stochastic demands. Oper. Res. 49(5) 796–802.

Shapley, L. S. 1962. Complements and substitutes in the optimal
assignment problem. Naval Res. Logist. Quart. 9 45–48.

Shmoys, D. B., J. Wein, D. P. Williamson. 1995. Scheduling parallel
machines online. SIAM J. Comput. 24(6) 1313–1331.

Sutton, R., A. Barto. 1998. Reinforcement Learning. MIT Press,
Cambridge, MA.

Swihart, M., J. D. Papastravrou. 1999. A stochastic and dynamic
model for the single-vehicle pickup and delivery problem. Eur.
J. Oper. Res. 114(3) 447–464.

Tomizawa, N. 1972. On some techniques useful for solution of
transportation network problems. Networks 1 179–194.

Tsitsiklis, J., B. Van Roy. 1997. An analysis of temporal-difference
learning with function approximation. IEEE Trans. Automatic
Control 42 674–690.

Van Slyke, R., R. Wets. 1969. L-shaped linear programs with appli-
cations to optimal control and stochastic programming. SIAM
J. Appl. Math. 17(4) 638–663.

Whitt, W. 1978. Approximations of dynamic programs I.Math. Oper.
Res. 3 231–243.

Whitt, W. 1979. Approximations of dynamic programs II. Math.
Oper. Res. 4 179–185.

Wilson, L. 1977. Assignment using choice lists. Oper. Res. Quart.
28(3) 569–578.

