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ABSTRACT 

This paper proposes an algorithm that automatically translates the "continuum 

approximation" (CA) recipes for location problems into discrete designs. It is applied to 

terminal systems but can also be used for other logistics problems. The study also 

systematically compares the logistics costs predicted by the CA approach with the actual 

costs for discrete designs obtained with the automated procedure. Results show that the 

algorithm systematically finds a practical set of discrete terminal locations with a cost 

very close to that predicted. The paper also gives conditions under which the CA cost 

formulae are a tight lower bound for the exact minimal costs. 
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1. BACKGROUND 

Designing a physical distribution system for minimal logistics cost is a complex task. The 

objective function usually includes complicated cost expressions for the various 

distribution stages, i.e., inbound costs for deliveries into the terminals, outbound costs for 

deliveries from terminals to customers, and terminal costs for handling within terminals. 

Furthermore, the decision variables are usually discrete and very numerous, including the 

number of terminals, their locations, delivery routes, schedules, and the allocation of 

customers to terminals. 

 The paper focuses on the strategic design of a terminal system in a continuous 

service area S, where customer demand is distributed with a spatial density λ(x), ∈x S. 

The goal is to find a set of terminal locations, x={x1, x2, … xN}, and a partition of S into a 

set of influence areas served by these terminals, I={I1, I2, … IN}, that minimize the total 

logistics cost, ZD(x, I). The number of terminals N is itself a decision variable. The 

minimization problem is: 
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where zD(x, xi, Ii) is the cost of serving a unit of demand at iIx∈  via a terminal at xi. 

A simpler version of (1) is called in the applied mathematics literature the “optimal 

resource allocation problem” (Okabe et al., 1992, Du et al., 1999.) These problems also 

allow point-like service facilities to be located among a continuum of customers. 

However, for the problems to be tractable, zD must be a simple function of a norm, ||x-xi||; 

e.g. ||x-xi||2. Unfortunately, these simple forms are not realistic for typical logistics 

problems (e.g., including inbound costs). 

Facility location problems can also be formulated by considering a finite number of 

possible locations for customers and terminals. Optimal locations are then selected with a 

mixed-integer program. An extensive literature also exists on this subject; see e.g., 

Daskin (1995) and Drezner and Hamacher (2002). This approach is effective if the 

number of candidates is small, but for a problem like (1), the number of possible choices 

is so large that a discrete optimization process is not practical even if done heuristically. 

To circumvent some of those drawbacks and building on the work in Newell (1971 

and 1973), Daganzo and Newell (1986) proposed a continuum approximation (CA) 

approach for terminal system design. It was argued in this reference that a near optimum 

solution should have influence areas as “round” as possible, with terminals located near 
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their centers. It was also argued that if in addition λ(x) varies slowly with x, and the areas 

Ii can be approximated by a slow-varying function of x, A(x), such that 

Ii≅ iIxxA ∈ if  )( , then the set function zD(x, xi, Ii) in (1) can be approximated by a 

simpler function of two real arguments, zC(x, A(x)).  

The function A is a decision variable representing the desired influence area size for 

locations near x. With this approximation, (1) can be replaced by 

 

       Min ( ) ( )∫ ⋅=
S CC dxxxAxzAZ )()(, λ ,      (2) 

 

where ZC(A) is a functional of A. More details about the procedure for obtaining zC from 

zD are given in Sec. 3, and also in Daganzo (1999).  

The advantage of (2) is that it can be optimized point by point, by finding the value of 

A(x) that minimizes zC(x, A(x)) at every x. This result is denoted A*(x), and the 

corresponding cost Z*
C (A*). One then looks for a partition of S with “round” influence 

areas such that: 

 

ii IxxAI ∈∀≅     ),(* ,            (3) 

 

and for a set of centrally located terminals. The hope is that the discrete solution so 

identified, {xC, IC}, will satisfy ( ) ( )**, AZZ CCCD ≅Ix . The extent to which this happens is 

explored in this paper. The paper also proposes a discretization algorithm to obtain the 
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solution {xC, IC}, since to the authors’ best knowledge, no systematic procedure has yet 

been proposed for the discretization step.  

The closest literature deals with surface-fitting problems, and is described under the 

rubric “location optimization of observation points for estimating the total quantity of a 

continuous spatial variable” in Okabe et al. (1992). Unfortunately, the solutions to these 

kinds of problems (e.g., as in Hori, H. and Nagata, M., 1985) turn out to be Voronoi 

tessellations, where the partitioned sub-areas may not be round with proper sizes. Thus, 

this literature is not suitable for our purposes.  

Numerical examples show that the feasible designs obtained with the proposed 

algorithm indeed exhibit costs ) ,( CCDZ Ix  very close to the CA prediction *
CZ (A*). The 

paper also gives sufficient conditions under which *
CZ (A*) is a tight lower bound for the 

exact optimal system costs. Since ) ,( CCDZ Ix  and *
CZ (A*) are close to each other, the 

optimality gap between ) ,( CCDZ Ix  and the true optimum should be small under these 

conditions.  

This paper is organized as follows. Section 2 develops the discretization algorithm; 

section 3 shows the numerical examples; and section 4 shows the conditions under which 

*
CZ (A*) bounds from below the true minimum. A final section discusses generalizations. 

 

2. THE MODEL AND ALGORITHM 

As discussed before, a near optimum design {xC, IC} should: (i) satisfy the size 

requirement (3), (ii) have influence areas as round as possible, and (iii) have terminals 
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located near the centers of the influence areas. (We assume from now on that distances 

are given by the Euclidean metric.) 

 

2.1.  A Disk Model 

To capture (ii) and (iii), we will imagine that each influence area contains a round disk 

centered at the terminal, and instead of {xC, IC} we will look for a set of N non-

overlapping disks, where ∫ −≅
S

dxxAN 1* )]([ . By sliding the disks within S, different 

designs can be obtained. Two examples are displayed in Figure 1. We use r(x) ={ })( ixr  

for the set of disk radii; see dotted arrows. For a good design, disks should jointly cover 

most of S without protruding outside it, as shown in Figure 2(a). Since each influence 

area must contain one disk, this ensures that the influence areas are “round”. In addition, 

for a good design, the area of each disk should be as close as possible to A(x*); i.e.,  

 

π
)(

)(
*

i
i

xA
xr ≈ , i=1,2,…,N.         (4a) 

 

It should be possible to satisfy these two conditions simultaneously since there always are 

many ways to cover most of S with disks of different sizes, as illustrated by Figure 2(b). 

Of course, since disks cannot tessellate convex Euclidean regions, we cannot expect 

the equality in (4a) to be satisfied exactly. Therefore, we look instead for radii that satisfy 

 

k
xA

xr i
i

)(
)(

*

= , i=1,2,…,N,         (4b) 
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for k as small as possible. (Given our definition for N, k ≥ π.)  

To automate the sliding procedure, we now introduce two types of repulsive “forces” 

that act on the centers of the disks. The first type, terminal force FT, acts along the line 

connecting the centers of overlapping disks. The other type, boundary force FB, acts on 

disks touching the boundary, pointing toward the interior of S in a direction normal to the 

boundary.  Solid arrows in Figure 1(a) depict these forces.  

Figure 3 defines our choices for the magnitudes of FT and FB. They depend on r(x), 

vanishing when no disks overlap or touch the boundary. We use (N+1)f for the magnitude 

of FB, where f is the maximal value of FT, to ensure that disks are never pushed out of S.  

We call a pattern with zero forces an equilibrium. The disk centers of an equilibrium give 

xC. This is sufficient to obtain a solution since S can then be easily partitioned into 

influence areas, IC, that contain the disks as will be explained shortly. Although such 

equilibrium solution {xC, IC} may not be unique, it should satisfy the near-optimality 

requirements (i) – (iii).  

 

2.2.  The Algorithm 

The forces defined above are used to slide the disks within S for small distances, while 

r(x) and the forces themselves are updated. The algorithm stops when all forces vanish. 

An equilibrium obviously exists and can be found for a sufficiently large k. Conversely, 

an equilibrium will not exist if k is too small. Therefore, the algorithm increases k by a 

small increment, k∆ , if the current value does not yield an equilibrium. 
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Step sizes for disk movements should not be too large for fast convergence. One 

could use constant step sizes comparable with the tolerance level ε (in distance units) or, 

even better, gradually decreasing step sizes; e.g., µ/m, where µ is an initial step size and m 

is the iteration count. 

Even for reasonably large k, this algorithm may not converge to an equilibrium if we 

encounter sets of degenerate terminal locations (also called singular points in Okabe et 

al., 1992). This happens for example if points are on a straight line that intersects the 

boundaries of S orthogonally. In this case points would remain trapped on this line, since 

all ensuing terminal movements would have to be along the line. Fortunately, such 

degeneracy is usually unstable, and can be eliminated by small location perturbations. 

Therefore we add perturbations of random direction with a displacement size δ < ε at 

each step of the procedure.  

Once an equilibrium has been obtained, S is partitioned into IC with a weighted-

Voronoi tessellation (WVT) that ensures each Ii contains one entire disk. The recipe is 

simple: first partition S into very small squares, and then allocate each square to one Ii 

with the rule 










 −

=
)(

minarg
j

j

j xr

xx
i , where x is the center of the square. This rule ensures 

that every disk is a subset of its influence area. 

 

In summary, the steps of the algorithm are: 

1) Choose N arbitrary locations in area S and initialize all parameters: tolerance ε, 

initial step size µ, perturbation size δ, and increment for k, k∆ ; set initial k ≅ π 

and m=1; 
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2) Calculate the disk sizes with (4b) and then the forces on every terminal as per 

Figure 3; if all the forces equal zero (equilibrium reached), go to step 5); 

otherwise, move each terminal along the direction of its resultant force by a step 

size µ/m, and add a random-direction perturbation of size δ. 

3) If µ/m < ε, reset m = 0, and increase k by k∆ ;  

4) m = m+1; go to step 2); 

5) Tessellate S with the WVT recipe. ■ 

 

3. ILLUSTRATIONS 

3.1.  Convergence Test 

The algorithm’s convergence is illustrated with a problem that has a known solution, 

using the poly-hexagonal region S of Figure 4(a). The side of each hexagon in S 

equals 31 . If 23)(* =xA  and N = 7, then the partition in Figure 4(a) is optimal.  

The initial locations are arbitrarily generated and shown in Figure 4(b). For simplicity 

a constant step size µ = 0.01 is used. Figure 4(c) shows an intermediate result, and Figure 

4(d) finds the equilibrium, which was achieved after 440 iterations. Note that the 

weighted-Voronoi tessellation corresponding to Figure 4(d) matches in Figure 4(a). Thus, 

the algorithm performs as expected.  

 

3.2.  Practical Examples 

In this section we use practical examples to further illustrate how the algorithm translates 

A*(x) into discrete designs {xC, IC}. The exact costs of the design, ZD (xC, IC), are then 

compared to the estimated costs Z*
C(A*). 
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Daganzo (1999, Section 5.3.5) gives an example of terminal system design, in which 

customers are uniformly distributed in an L×L square area S. They are served with one 

transshipment from a depot at one corner of S. Line-haul vehicles with infinite capacity 

shuttle between the depot and the terminals. Local delivery vehicles have a small capacity 

vmax, travel full, and visit only one customer per delivery.  

If we only consider inventory and transportation costs (both inbound are outbound), 

and ignore fixed costs such as terminal facility rents, the formula for ( )iiD Ixxz ,,  in (1) is 

(Daganzo, 1999):  

( ) ),(5.1
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In (5), a’, b’, a, b are cost parameters, R(x) is the distance from point x to the depot, and 

s(x, xi) is the outbound delivery distance from xi to x.  

On the other hand, the expression for ( ))(, xAxzC  in (2), as shown in (Daganzo, 1999), 

is: 

( ) )(
)()()(

)(''2)(, 2
12

1

max

max xA
v

b
x

av
xAx
xRbaxAxzC ++








=

λλ
.    (6) 

 

Formula (6) is derived from (5) by approximating the terminal throughput ∫
iI

dxx)(λ  

appearing in the first term with )()( xAxλ , and s(x, xi) with the average a delivery 

Inbound 
costs 

Outbound 
costs 
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distance )(
3

2 xA
π

 in a hypothetical circular influence area of size A(x) ≈ |Ii|. The idea 

is to express every item in (5) as a local property of point x. This local approximation 

device can be used with more general forms of (5). Experience shows that it works well 

when λ(x) and Ii vary slowly with position, as mentioned in Section 1. Two scenarios 

with different demand density functions λ(x) are now used to demonstrate this idea. The 

results are then formalized in Section 4.  

 

Scenario 1: Consider homogeneous demand λ(x) =1, ∀x∈S, and also assume that vmax = 

b = b’ = a’ = b’ = 1. Then )(* xA  is obtained by minimizing (6), and the result is: 

)(2)(''2
)( 2

12
1

max* xRxRba
b

v
xA =












=

λ
.        (7) 

Substituting (7) into (6) and (6) into (2), we then find: 

 

( ) ( ) ( )∫∫ ⋅+=⋅=
SS CC dxxRdxxAxzxAZ )(221)(,)( 4
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If we now combine (1) and (5), the result is: 
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== 
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2
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Our algorithm uses (7) as an input. The set of discrete designs {xC, IC} obtained with 

it, and the associated values of Z*
C (A*), and ZD (xC, IC) given by (8) and (9) for various L 

are shown in Figure 5(a)–(d). 
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The difference between Z*
C (A*), and ZD (xC, IC) is quite small: 2.4% for L=5, 0.8% for 

L=7, 0.9% for L=10, and 0.9% for L=25. These relative differences would be even smaller if 

other fixed costs were also included in our cost expressions.  

Scenario 2:  Assume now an inhomogeneous demand such that )()( 2
1

xRx −=λ , ∀x∈S. 

All other parameters remain the same. Now we have 

 

)(2)( 4
3* xRxA = ,         (10) 

 

( ) ( ) ( )∫∫
−+=⋅=
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The set of designs and associated costs are now shown in Figure 6(a)-(d). 

The cost differences are 2.6%, 2.3%, 1.6%, and 0.7% respectively. They are 

approximately the same as those in scenario 1. This shows that the cost differences are 

insensitive to gradual demand variations. 

In all the examples the algorithm produced the solution in less than 30 minutes on a 

1.7 GHz PC with our choice of parameters. Note too that in both examples, Z*
C (A*) is 

slightly smaller than ZD (xC, IC). This is not necessarily true in general (Daganzo, 1999), 

but is quite common. Section 4 below gives sufficient conditions under which Z*
C (A*) is 

a lower bound for the costs of a design {x, I}.  
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4. A LOWER BOUND 

We consider in this section a generalization of (5) of the following form:   

  

( ))(),,()(),(),,( xxxszdxxxRzIxxz i
o

I
i

i
iiD

i

λλ +









= ∫ ,   (12) 

      

where zi and zo are ordinary functions of two arguments. For this case, the local 

approximation device yields: 

 

          ( ) ( ) 







+= )(,)(
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We can now prove the following theorem. 

 

Theorem: Z*
C (A*) ≤ ZD (x, I), if:  

(a) Locations x are centroids of the influence areas; (b) the demand density λ(x) is a 

constant, λi, within each influence area; (c) the inbound transportation cost is a concave 

function of distance; (d) the outbound transportation cost is a convex and (e) increasing 

function of distance. 

 

Inbound 
costs 

Outbound 
costs 
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Proof: Consider an arbitrarily shaped influence area, I∈iI , with a terminal i located at 

its centroid ix ; see Figure 7. Let iDZ , (x, I) and iCZ , (A) represent the parts of (1) and (2) 

corresponding to influence area i, and denote s = s(x, xi) for simplicity. 

Since the demand density is constant, substitution of (12) into (1) yields: 

 

( ) ( )∫∫ +=
ii I

ii
o

I
iiii

i
iD dxszdxIxRzZ λλλλ ,),(),(, Ix ,   (14) 

 

Likewise, substitution of (13) into (2) yields: 
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If we can prove that 

 

( )siCiD AZZ ,, ),( ≥Ix ,       (16) 

 

where )(xAs  is constrained to be a step function; i.e., iis IxIxA ∈=  if ,)( , then (16) 

would establish that ( )sCD AZZ ≥),( Ix . This would prove the theorem since Z*
C (A*) is 

the optimum of ( )AZC  without any constraint; therefore ( ) ),()( ** IxDsCC ZAZAZ ≤≤ . 

Note that ( )siC AZ ,  can be expressed as: 
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To prove (16) we first show that the first term of ),(, IxiDZ  bounds from above the first 

term of ( )siC AZ , . This is clear if we compare the first terms of (14) and (17), 

because )( ixR is the average of )(xR  by assumption (a), and Jensen’s inequality suggests 

(assumption (c)) that: 

 

( ) ( )∫∫ ≥
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Thus, to prove (16) we only have to show that the second term of (14) bounds from 

above the second term of (17); i.e., that 
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Note as a preliminary step that: 
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where s  is the average outbound delivery distance in Ii. This is true, again, by virtue of 

assumption (d) and Jensen’s inequality. 

We now define a point-to-point mapping {M: y=M(x), x∈Ii, y∈Ii’}, that transforms Ii 

into a round area Ii’ with the same centroid and the same area, and such that 

),(),(' ii xxsxys ≤  for ∀y=M(x); see Figure 8. [This last condition is trivially satisfied by 

specifying that all points in Ii ∩ Ii’ should be fixed points; i.e., y = x.] We consider now 

the cost of serving the transformed region if the demand density in it is still λi. Clearly, 

the inbound costs stay the same. Obviously, 

 

 ss ≤' ,       (21) 

 

where ii IIs
ππ 3

2'
3

2' ==  is the average outbound delivery distance in 'iI . We 

can now write:  
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where the first inequality is (20), the second inequality follows from (21) and assumption 

(e), and the final equality follows from the fact that 'ii II = . This completes the proof.■ 

 

This theorem is valid for any N and any partition of S. Of course, it is based on 

idealized conditions that are quite unrealistic if strictly enforced--since the cost 
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conditions may not apply in many cases, and demand density will rarely be constant in 

every influence area. However, we are often faced with problems for which these 

conditions are approximately true, such as our examples. In these cases the conditions of 

the theorem should hold, at least approximately. This is confirmed by the numerical 

results of Section 3, which were not coincidental. 

 

5. CONCLUSION 

This paper proposed an automated algorithm to obtain discrete designs out of the 

continuum approximation recipes for location problems. It can be easily extended to 

other logistics problems. Numerical results show that the algorithm systematically finds 

feasible discrete terminal designs with costs very close to those predicted.  

The algorithm was illustrated with Euclidean metrics and circular disks. However, it 

can easily be extended to other metrics and/or applications that require elongated 

influence areas. Recall too that our algorithm looks for centrally located terminals. There 

are systems, however, for which terminals should not be at the center of their influence 

areas; e.g. newspaper distribution systems, where it is advantageous to locate drop-off 

spots on the edge of their delivery districts (see Daganzo, 1984). In these cases the 

algorithm should be modified too. 

The study also validates the CA cost predictions, by comparing them with the costs 

for actual designs. The CA prediction is shown to be an approximate lower bound of the 

true optimum under certain conditions, and to be quite close to the costs of feasible 

designs. In these cases the CA method produces solutions with a small optimality gap. 
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FIGURE 8.  Mapping points from Ii into a round area Ii’. 
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FIGURE 1  Disks and terminals: (a) an infeasible overlapping pattern; (b) a feasible 

non-overlapping pattern. 
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FIGURE 2  Two possible layouts of 7 disks in a hexagon: (a) homogeneous pattern; 

(b) inhomogeneous pattern. 
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FIGURE 3  Possible definitions of forces: (a) repulsive force for terminal pair (i, j); 

(b) boundary force for terminal i. 
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FIGURE 4  Verification of convergence: (a) area S; (b) initial locations; (c) locations 

after 200 iterations; (d) equilibrium locations after 440 iterations. 
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FIGURE 5  Terminal designs for homogeneous customer demand: (a) L=5; (b) L=7; (c) 

L=10; (d) L=25. 
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FIGURE 6  Terminal designs for inhomogeneous customer demand: (a) L=5; (b) L=7; 

(c) L=10; (d) L=25. 
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FIGURE 7  Logistic operations in Ii. 
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FIGURE 8  Mapping points from Ii into a round area Ii’. 
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