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An efficient method to compute traffic assignment
problems with elastic demands

F. Babonneau∗ J.-P. Vial∗

Abstract

The traffic assignment problem with elastic demands can be formulated as an optimiza-
tion problem, whose objective is sum of a congestion function and a disutility function.
We propose to use a variant of the Analytic Center Cutting Plane Method to solve this
problem. We test the method on instances with different congestion functions (linear with
capacities on the arc and BPR) and different demand functions (constant elasticity and
linear). The results of the numerical experiments show that it is possible to solve large
instances with high accuracy.

Keywords. Traffic assignment problem, Elastic demand, ACCPM.

Introduction

The traffic assignment problem, in short TAP, consists in determining which routes to
assign to the drivers who travel on a transportation network from some origins and some
destinations. Wardrop [26] enunciated two broad principles for determining the assign-
ment. According to the first principle, the assignment is an equilibrium state in which
no user can reduce his travel time by using an alternative route. The second principle
states that the assignment should minimize the total travel times of all users. The two
principles lead to different assignments. In the first case the assignment is named a user
equilibrium, and, in the second case, one talks of system optimum. An essential point is
that in both cases, the assignment can be characterized as an optimal solution of a convex
multicommodity flow problem.

In most formulations, the number of drivers who want to travel from a specific origin
node to a specific destination node is fixed. In economic terms, the demand associated to
an origin/destination pair is inelastic. A more realistic stand considers that the demands
may be adversely affected by the travel times. The user equilibrium can be extended
to account for elastic demands. In particular, it has been shown [6, 12] that the user
equilibrium with elastic demands can be computed as the solution of an optimization
problem, whose objective is sum of a congestion function and a disutility demand function.
A similar property holds for the system optimum.
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The traffic assignment problem with elastic demands is often studied in the toll pricing
framework with elastic demands. As noted earlier the user equilibrium and the system
optimum are not equivalent: the user equilibrium is sub-optimal from a social point of
view. By adding suitable tolls on the arcs, it is possible to force the user equilibrium
to achieve a social optimum. The solution methods for the toll pricing TAP use as a
subproblem the TAP with elastic demands.

The elastic TAP is well-studied in the literature [25], at least from a theoretical point of
view, but few papers discuss solution methods and their performance. We briefly review
two approaches. We first mention the methodology proposed in [12, 13]. The elastic
demand TAP is transformed as an equivalent inelastic TAP in an expanded network. A
new arc is added in the graph for each commodity. The cost associated with that arc
is the disutility of the demand; it plays the same role as a congestion function. This
elegant transformation introduces as many arcs as the number of commodity, a very large
number in many applications. As a result the equivalent problem is often impractical. The
alternative for solving elastic TAP is to use variants of the Frank-Wolfe method [11], either
by linearization of two components of the objective function or, as in Evans algorithm [9],
a linearization of the congestion function alone and explicit computation of the demand
associated with the particular linearization. The numerical studies found in the literature
[13, 10, 16, 21] mostly apply to small-size problems. This is in sharp contrast with the
case of inelastic demands for which very efficient methods have been proposed to solve
extremely large problem instances [3, 7, 14]. More recently, huge instances have been
solved [1, 2] using a variant of the Analytic Center Cutting Plane Method (ACCPM) [15].
The purpose of this paper is to use this methodology to compute traffic assignments with
elastic demands.

The solution method is based on Lagrangian relaxation. As noted in [2], the La-
grangian dual objective function of TAP has two main components: a piece-wise linear
one and one that is the negative Fenchel conjugate of the congestion function. This type
of convex non-differentiable problem is well-solved by ACCPM [14]. The key point in
this method is that a linear approximation of the epigraph of the two functions can be
obtained using subgradients computed at privileged points. These linear approximations,
or cutting planes, define, in the epigraph space, a so-called localization set that contains
the set of optimal solution. ACCPM improves the quality of the approximation by choos-
ing iteratively the linearization points as the analytic center of the localization set. This
choice ensures pseudo-polynomial convergence and excellent performance in practice. This
very general method ignores the fact that the second component of the objective of the
Lagrangian dual problem, namely the negative of the Fenchel conjugate of the congestion
function, is smooth and that its derivatives can be computed explicitly. This knowledge
can be exploited to define a new localization set as the combination of a nonlinear set
—the one that pertains to the conjugate of the congestion function— and a linear ap-
proximation of the other epigraph. The method has been introduced in [2] and has made
it possible to solve huge instances. In the present paper we use the same methodology as
in [2] and we treat the elastic demand in a way similar to [9].

In our numereical experiments, we consider the most popular congestion functions
used in transportation and two different demand disutility functions. The congestion
function is either linear with a capacity constraint or the classical BPR (Bureau of Public
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Roads) function. The demand function for each origin-destination pair is either a constant-
elasticity one, or a linear decreasing one. The new approach has been tested on standard
realistic transportation problems that can be found in the open literature. We report
results on large instances which we solve with high accuracy.

The paper is organized as follows. In Section 1, we give the formulation of the traffic
assignment problem with elastic demands and in Section 2 we present the associated
Lagrangian relaxation. Section 3 and Section 4 sketch the solution method and discuss
the particular settings of the method parameters. The last section is devoted to the
numerical results.

1 Traffic assignment problem

Let G(N ,A) be an oriented graph, where N is the set of nodes and A is the set of arcs.
The graph represents a network on which drivers, or commodities, must be shipped from
specific origins to specific destinations. We denote K the set of commodities. In the traffic
assignment problem (TAP), each commodity is characterized by an unique pair of origin
and destination nodes. Let N be the node-arc incidence matrix of G and x represent the
flow vector. We define the feasible set of flows as

X = {x ≥ 0 | Nxκ = dκ, κ ∈ K}. (1)

The vector dκ has only two non-zero components : −δκ at the origin and δκ at the
destination of the commodity. In that formulation, δκ is the demand for commodity κ.
We denote δ the vector of all demands.

Given a feasible flow x ∈ X , we can evaluate for each driver the travel time spent
for covering the distance from its origin to its destination. This travel time is the sum
of the travel times of the used arcs. We assume that the arc travel time, denoted tta,
is a positive, convex and non-decreasing function of the total flow on the arc a, denoted
ya. The total travel time is then separable into arc travel times. Let Rκ be the set of
all possible routes from the origin of the driver κ to its destination. We define the travel
time of a route r ∈ Rκ such that

λr
κ =

∑
a∈r

tta(ya).

The standard assumption [17] with elastic demands is as follows.

Assumption 1 The demand δκ for commodity κ only depends on the shortest travel time
from the supply node to the demand node. The demand function δκ(λ), where λ is the
travel time along the shortest path, is a function from R+ to R+. It is continuously
differentiable, non-negative, upper bounded, and strictly decreasing.

Assumption 1 implies that the total demand function is separable into commodity
demand functions. The other implication is that the inverse function of δκ exists. We
denote it λκ(s) = δ−1

κ (s), where s is a demand.
In the subsequent developments, we concentrate on the user equilibrium. The case of

the system equilibrium is very similar, but the discussion is omitted. According to the
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user equilibrium principle, the drivers select their routes independently and the travel
times of all used routes are less or equal than those which would be experienced by a
single driver on any unused route. This condition can be written as

xr
κ > 0 ⇒ λr

κ = min
p∈Rκ

λp
κ, r ∈ Rκ, κ ∈ K, (2a)

xr
κ = 0 ⇒ λr

κ ≥ min
p∈Rκ

λp
κ, r ∈ Rκ, κ ∈ K. (2b)

When the travel time and demand functions are separable and integrable, the equilibrium
conditions (2) are solution of the optimization problem (see [25]):

min
x,y,δ

∑
a∈A

∫ ya

0
tta(s)ds−

∑
κ∈K

∫ δκ

0
λκ(s)ds (3a)

y =
∑
κ∈K

xκ, (3b)

x ∈ X (δ). (3c)

Here, X (δ) denotes the set of feasible flow in (1).

2 Lagrangian relaxation

For the sake of simpler notations, we define the congestion function

g(y) =
∑
a∈A

ga(ya) =
∑
a∈A

∫ ya

0
tta(s)ds,

and the disutility demand function

h(δ) =
∑
κ∈K

hκ(δκ) = −
∑
κ∈K

∫ δκ

0
λκ(s)ds.

We also write the constraint y =
∑

κ∈K xκ in this abstract form y = Mx. Problem (3) is
now written as

min g(y) + h(δ) (4a)
Mx = y, (4b)
x ∈ X (δ), (4c)

where M is a matrix collecting the flows on the arcs. If we associate dual variables u with
(4b) and relax this constraint, we obtain the so-called Lagrangian dual problem

max
u

f(u), (5)

where f is defined by

f(u) = min
y,x,δ

{g(y) + h(δ) + 〈u, Mx− y〉 | x ∈ X (δ)}. (6)
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By convexity, the Lagrangian dual problem has the same optimal value as (4).
A quick inspection shows that (6) is separable in the variables y and x. Thus, (6) can

be written as

f(u) = f1(u) + f2(u), (7)

where
f1(u) = min

x,δ
{h(δ) + 〈MT u, x〉 | x ∈ X (δ)},

and
f2(u) = min

y
{g(y)− 〈u, y〉}.

Recall that the formulation (4) hides the fact that the x and δ variables have different
components for each commodities. These variables are linked by (4b), but relaxing this
constraint has the effect that f1(u) and f2(u) are separable in the commodities. For the
sake of a simple presentation, we shall assume that Problem (5) has only one commodity.
In this case δ ∈ R+. In our problem of interest, x is the vector of arc flows that ships δ
units from an origin node to a destination node. The following assumption is thus verified.

Assumption 2 x ∈ X (δ) if and only if 1
δ x ∈ X (1).

Computing f1(u) is equivalent to the two-stage minimization

f1(u) = min
δ

{
h(δ) + min

x
{〈MT u, x〉 | x ∈ X (δ)}

}
.

In view of Assumption 2

min
x
{〈MT u, x〉 | x ∈ X (δ)} = δ min

x
{〈MT u, x〉 | x ∈ X (1)}.

For convenience, we denote

ξu = arg min
x
{〈MT u, x〉 | x ∈ X (1)}.

Thus
f1(u) = min

δ
{h(δ) + 〈MT u, ξu〉δ}.

In the considered applications, the function h is convex and differentiable. Moreover,
h′(δ) = −λ(δ) is strictly decreasing. Therefore, the minimum is achieved at

δu = −(h′)−1(〈MT u, ξu〉) = arg min
δ
{h(δ) + 〈MT u, ξu〉δ}. (8)

Note that (h′)−1(l) = −δ(l), where l is a travel time.
To implement a cutting plane, we need to be able to compute anti-subgradients of f1.

Let u and u′ be two different points and define the quantities

f1(u′) = min
x,δ
{h(δ) + 〈MT u′, x〉 | x ∈ X (δ)}

= h(δu′) + 〈MT u′, ξu′〉δu′

≤ h(δu) + 〈MT u′, ξu〉δu

= h(δu) + 〈MT u′, ξu〉δu + 〈(Mξu)δu, u′ − u〉δu

= f1(u) + 〈a, u′ − u〉,

5



with γ = (Mξu)δu. This proves that f1(u) is convex and that a ∈ −∂(−f1(u)) is an
anti-subgradient of f1.

Akin, the function f2(u) is the point-wise minimum of a collection of affine functions
of u. It is thus concave and one may construct an inequality. Actually, we can get more.
From the definition, we observe that f2(u) is the opposite of the Fenchel conjugate g∗(u)
of g. In the cases under study, g∗(u) can be given in closed form and it also appears to
be twice continuously differentiable. We certainly want to exploit this property when it
is verified, and devise more efficient algorithms to solve the Lagrangian dual problem.

In view of the definition of the congestion function g, the right derivative g′+(y) of g at
y = 0 is well-defined. From the first optimality conditions of (4) and since g is monotone
increasing, the constraint

u ≥ g′+(0) = ul, (9)

is always met at the optimum. It is nevertheless convenient to introduce this redundant
constraint in the formulation of problem (5).

3 ACCPM (with a proximal term)

We aim to solve (5) with a version of ACCPM which exploits the fact that the smooth
component f2 of the objective function is convave with explicit first and second derivatives.
We introduce the constraint u ≥ ul into (5) and work with the canonical version

max{f(u) = f1(u) + f2(u) | u ≥ ul}, (10)

in which u ∈ Rm, f1 : Rm → R is a concave function and f2 : Rm → R is a concave,
twice continuously differentiable function. Information on these functions is delivered by
oracles.

Definition 1 A first order oracle for the concave function h : Rm → R is a black-box
procedure that returns a support to h at the query point ū:

aT (u− ū) + h(ū) ≥ h(u), ∀u ∈ dom h, (11)

where the vector a ∈ −∂(-h(ū)) ⊂ Rm is an element of the anti-subgradient set.

Definition 2 A second-order oracle for the concave function h : Rm → R is a black box
procedure with the following property. When queried at ū, the oracle returns the function
value and the first and second derivatives of h(u) at u = ū.

The first order oracle f1 has been presented in the previous section. We shall compute
later the explicit form of f2 for our applications. For the time being, we assume that f2

is accessed through a second-order oracle.
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3.1 The algorithm

The hypograph set of the function f is the set defined by {(z+ζ, u) | z ≤ f1(u), ζ ≤ f2(u)}.
Optimality cuts (11) provide an outer polyhedral approximation of the hypograph set of
the concave function f1. Suppose that a certain number of query points uk, k = 1, . . . ,K,
have been generated. The associated anti-subgradients ak ∈ −∂(-f1(uk)) are collected
in a matrix A. We further set γk = f1(uk) − 〈ak, uk〉. The polyhedral approximation of
the hypograph set of f1 is γ ≥ ze − AT u, where e is the all-ones vector of appropriate
dimension. Finally, let θ be the best recorded value: θ = maxk≤K{f1(uk) + f2(uk)}.

In view of the above definitions, we can define the so-called localization set, which is
a subset of the hypograph of f

Fθ = {(u, z, ζ) | −AT u + ze ≤ γ, ζ ≤ f2(u), z + ζ ≥ θ, u ≥ ul}. (12)

Clearly, the set contains all optimal pairs (u∗, f(u∗)). Thus, the search for a solution
should be confined to the localization set. The selection of a point within the localization
set is a crucial ingredient of a cutting plane method. Leaving this critical issue aside for
a while, we sketch the basic step, or outer iteration, of a generic cutting plane method.

Algorithm 1: Outer iteration of constrained ACCPM

1. Select a query point in the localization set.

2. Send the query point to the first order oracle and get back an
optimality cut to f1.

3. Send the query point to the second order oracle to compute the
objective function f2.

4. Update the lower and upper bounds and the localization set.

5. Test termination.

3.2 Proximal analytic centers

In the proposed version of ACCPM, the query point is an approximate proximal analytic
center of the localization set defined as the intersection of cutting planes and a fixed cutting
surface. The proximal analytic center is defined as the unique minimizer of a logarithmic
barrier for the localization set, augmented with a proximal term. The analytic center is
the u component of the solution (u, z, ζ) to the minimization problem

min F (u, z, ζ) =
ρ

2
||u− u||2 −

K∑
i=0

log si − log σ −
m∑

i=1

log(ui − uli) (13a)

s0 = z + ζ − θ ≥ 0, (13b)

si = γi − z + (ai)T u ≥ 0, i = {1, . . . ,K}, (13c)

σ = f2(u)− ζ ≥ 0. (13d)
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Note that F (u, z, ζ) is defined on the interior of the localization set Fθ. The proximal
reference point u and the proximal coefficient ρ are arbitrary. In practice, u is chosen to be
the query point uk that achieves the best recorded value θ, i.e., u = arg maxk≤K{f1(uk)+
f2(uk)}.

Remark 1 It is easy to show that F (u, z, ζ) achieves its minimum value when the local-
ization set has a non-empty interior. Moreover, this minimum is unique.

The algorithm that computes the analytic center is a damped Newton method applied
to the first order optimality conditions of Problem (13). See [2] for more details. Each
iteration of the damped Newton method is named an inner iteration.

3.3 Upper and lower bounds

By duality, any feasible solution of (10) provides a lower bound for the original problem
(3). Taking the values returned by the two oracles at the successive query points, we
obtain the lower bound

θ = max
k≤K

{f1(uk) + f2(uk)}. (14)

An upper bound θ̄ can be obtained from information collected in the computation
of the analytic center. As descibed in [1], ACCPM provides at each iteration a convex
combination of flow vectors in X : it also belongs to X . This convex combination is directly
used in the primal objective to compute the upper bound θ̄.

4 Implementation issues

In this section, we review the main items in the implementation of our solution method.

4.1 First order oracle

The first order oracle is a two-stage optimization process. In the first stage, the first order
oracle consists of |K| shortest path computations, using Dijkstra’s algorithm [8]. This
algorithm computes shortest paths from a single node to all other nodes in a directed
graph. To compute the shortest paths for all commodities, we partition the commodities
according to the origin node of the demand. For each origin node, we compute in the
same pass of Dijkstra’s algorithm the shortest paths for all the commodities having their
origin in that node. The number of solves is thus at most |N |, the cardinality of the node
set. For large graphs, most of the computational time is devoted to data handling. To
speed-up computation, the algorithm is implemented with binary heap structures. This
implementation is efficient enough, but probably not on par with the state-of-the-art. A
better implementation could improve the performance of the overall algorithm, but only
marginally.

In the second stage, the first order oracle uses the length of the shortest path of each
commodity to compute its demand to be assigned on its shortest path using (8).
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4.2 Parameter settings in ACCPM

Few parameters have to be set in ACCPM. The important ones are the coefficient of the
proximal term and the proximal reference point; and the weight on the logarithmic barrier
on the floor cut.
Proximal reference point and proximal coefficient The initial proximal reference
point is the first query point. Thereafter, the proximal reference point is updated to the
current query point whenever the oracle returns an objective function value that improves
upon the best lower bound. The value for the proximal coefficient ρ is 10−5 and it is not
updated during the process.
Weight on floor cut The localization set is bounded below by the special constraint
z + ζ ≥ θ in (12). We name it the floor cut. It is easily checked that the floor cut makes
a negative angle with the cutting planes. When the number of cutting planes increases,
their total weight dominates the weight of the floor cut in (13). Thus, the floor cut tends
to become active at the analytic center, with the possible effect of slowing the global
convergence. To counteract this negative effect, we put a weight to the floor cut that
equals the total number of generated cuts.

4.3 Termination criterion

The standard termination criterion is a small enough relative optimality gap:

(θ̄ − θ)/max(θ, 1) ≤ ε, (15)

where θ is the best lower bound computed with (14) and θ̄ is the best upper bound. In
our experiments we use ε = 10−5.

5 Numerical experiments

The main goal of our empirical study is to test the efficiency of our method on traf-
fic assignment problems with elastic demands. We solve large size instances using two
congestion functions and two demand disutility functions.

5.1 Travel time functions

In this subsection, we introduce the two travel time functions mainly used in traffic. We
also give the associated congestion functions.

In traffic assignment problem, the literature essentially deals with the BPR (Bureau
of Public Roads) function [3, 4, 7, 19]. The BPR congestion function is

ga(ya) = raya

(
1 +

p

q + 1
(
ya

ca
)q

)
, with ya ≥ 0. (16)

The associated travel time is

tta(ya) = ra +
rap

cq
a

yq
a, with ya ≥ 0. (17)

9



In general, the parameter p is very small and q > 1 does not exceed 5. When the flow
ya is less than ca, the second term under the parenthesis in (16) is negligible. Thus
ga(ya) ≈ raya. The parameter ra is called free-flow travel time; it can be interpreted
as a fixed travel time on a congestion-free arc. For larger values of ya the nonlinear
contribution to congestion increases. The threshold value ca for the flow ya is usually
named the practical capacity of the arc, beyond which congestion becomes effective. In
some applications, the parameters p and q are arc-dependent.

The second main function used in traffic modeling is the linear congestion function
with a capacity on the total flow [23, 1, 20]. Here, the travel time is given by

tta(ya) =

{
ta, if ya ≤ ca,

+∞, otherwise.

where ta ≥ 0 is a constant and ca is the capacity on the total flow. The associated
congestion function is the linear function

ga(ya) =

{
taya, if ya ≤ ca,

+∞, otherwise.

5.2 Demand disutility functions

In this subsection, we present the two demand functions used to experiment our method.
Table 1 displays the generic demand functions and the associated disutility functions. The
parameters α and β actually depend on the commodity κ ∈ K. The first demand function,

Demand Disutility
Function δ(λ) h(δ)

Constant elasticity βe−αλ δ
α
[log( δ

β
)− 1]

Linear max(0,−αλ + β) 1
2α

δ2 − β
α
δ

Table 1: Demand and disutility functions.

used in [21], has a constant elasticity −α; the second one, used in [16, 10, 21], is a linear
and decreasing demand function. The linear demand function is actually piece-wise linear.
It is not strictly decreasing and does not match Assumption 1. This could be a problem
in equation (8) because the inverse function of h′(δ) = λ(δ) is not formally defined for
travel time larger than β/α. Actually, this is not an issue, because for all travel times
〈MT u, ξu〉 ≥ β/α, we can take δu = 0.

The data on which we perform our numerical experiments deal with fixed demands.
We set βκ to be equal to this fixed demand. Indeed, both demand functions tend to β
when α tends to zero, that is when the demand becomes inelastic. In the experiments we
use different values of α, to see how sensitive is the method to elasticity.
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5.3 Test problems

In the numerical experiments, we use a collection of problems composed of three realistic
transportation problems used in [1, 3, 7, 19]. The data are adapted for the BPR function.
They include free-flow travel time, practical capacity and the tuning parameters p and
q. Since this set of problems is originally devoted for the traffic assignment with fixed
demands, the data also provide demand which are used to calibrate the disutility demand
functions. These problems, can be downloaded from http://www.bgu.ac.il/∼bargera/
tntp/.

To solve these problems with the linear congestion function, we use the available
practical capacity as capacity on the total flow. The demand used to calibrate the disutility
demand function are those used in [1, 20]. These demands are made feasible with respect
to the practical capacity in the fixed demand model.

Problem ID |N | |A| |K| z∗Linear z∗BPR

Sioux-Falls 24 76 528 3.20184× 105 4.23133× 106

Winnipeg 1067 2975 4345 2.94065× 107 8.25672× 105

Barcelona 1020 2522 7922 3.89400× 107 1.23277× 106

Table 2: Test problems.

Table 2 displays problem data. For each problem instance, we give the number of
nodes |N |, the number of arcs |A| and the number of commodities |K|. In the last two
columns, we give the optimal values of the BPR and the linear functions for the inelastic
traffic problem, z∗BPR and z∗Linear, respectively.

5.4 Numerical results

In this subsection, we carry experiments using the two congestion functions (linear and
BPR) and the two demand functions (constant-elasticity and linear). For each possible
association of congestion and demand functions, we test different values for the parameter
α. All problems are solved with a 10−5 relative optimality gap. Since the congestion
function and the demand function are from different natures, they may have different
order of magnitude. To make the two components comparable we weigh the demand
function with a weight evaluated in a preprocessing phase.

Table 3 reports results using the BPR function for Sioux-Falls, Winnipeg and Barcelona,
respectively. Similarly, Table 4 reports results using the linear congestion function with
fixed capacities on the arcs. Each of these tables is divided in two parts. The upper part
contains the results with the constant-elasticity demand function while the lower part
gives the results using the linear demand function.

For all results, the tables give the parameter α, the objective value of the congestion
part, denoted Flow obj, the objective value of the demand disutility part, denoted Demand
obj, the weight used for the demand function, denoted Weight, the number of outer
iterations, denoted Outer, the number of Newton’s iteration, or inner iterations, denoted
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Inner, the computational time in seconds CPU and the percentage of CPU time denoted
%Or spent to compute the shortest path problems.

The ACCPM code we use has been developed in Matlab, while the shortest path
algorithm is written in C. The tests were performed on a PC (Pentium IV, 2.8 GHz, 2
Gb of RAM) under Linux operating system.

We observe first that all problems with all configurations are solved with the required
accuracy with CPU times less 145 seconds. As noted in [2], problems with a linear conges-
tion function and a fixed arc capacity are more difficult than those with the BPR nonlinear
congestion function, at least for the two larger problems Winnipeg and Barcelona. When
α is very small, we retrieve the solution computed in [1] and [2]. In those papers, the
performance (CPU, outer iterations) are superior because they use an active set strat-
egy and a partial linearization of the BPR function. In the present study those features
have been turned down. The last columns “%Or” and “Inner” reveal that one third of
the computing time is devoted to solving shortest path problems (oracle), and that the
average number of Newton steps to find an approximate analytic center is less than 2.25
for BPR and 2.86 for the linear congestion.

Our final remark is on the impact of the elasticity factor. The figures show that the
problems are easier for an absolute elasticity 10−1 for the BPR congestion function and
10−4 for the linear congestion function. For lower and higher values, the number of outer
iterations and the CPU are higher. We have no explanation for this behavior.

6 Conclusion

In this paper, we proposed a new method, i.e., ACCPM, for solving the traffic assignment
problem with elastic demands. This method already has proved its efficiency on the fixed
demand TAP [1, 2]. The numerical experiments are performed on relatively large instances
of TAP elastic demand show that ACCPM is also efficient for that class of problems.
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α Flow obj. Demand obj. Weight Outer Inner CPU %Or

Sioux-Falls

Constant-elasticity demand function

10−10 4.23134× 106 −3.60600× 1015 10−9 58 139 1.5 32
10−6 4.23114× 106 −3.60600× 1011 10−5 56 134 1.5 34
10−4 4.20992× 106 −3.60600× 109 10−3 57 165 1.6 29
10−1 1.11372× 106 −2.71966× 106 1 21 69 0.6 31
1 1.15165× 104 −1.56506× 104 1 24 49 0.6 33
3 9.34039× 101 −1.08521× 102 1 33 67 0.8 32

Linear demand function

10−10 4.23134× 106 −2.51030× 1018 10−12 57 136 1.5 36
10−6 4.23114× 106 −2.51021× 1014 10−8 56 136 1.4 34
10−4 4.21186× 106 −2.50132× 1012 10−6 57 137 1.5 34
10−1 4.21946× 105 −1.98689× 108 10−3 12 45 0.3 31
1 1.03892× 103 −8.73232× 103 1 24 49 0.5 36
3 0 0 1 37 75 0.9 35

Winnipeg

Constant-elasticity demand function

10−10 8.25672× 105 −6.47750× 1014 10−9 161 355 42.2 33
10−6 8.25658× 105 −6.47751× 1010 10−5 163 359 45.5 35
10−4 8.24186× 105 −6.47814× 108 10−3 111 271 25.7 39
10−1 2.29486× 105 −4.64149× 105 1 77 165 14.2 45
1 7.88694× 102 −1.00126× 103 1 137 278 33.7 38
3 2.09473 −2.38610 1 163 330 44.8 36

Linear demand function

10−10 8.25672× 105 −1.09019× 1016 10−10 158 349 42.1 35
10−6 8.25655× 105 −1.09016× 1012 10−6 157 347 41.7 35
10−4 8.23966× 105 −1.08730× 1010 10−4 148 329 37.9 36
10−1 1.18043× 105 −1.51622× 106 10−1 66 136 9.8 48
1 4.47438× 101 −8.14318× 101 1 144 292 35.8 37
3 0 0 1 161 326 43.2 35

Barcelona

Constant-elasticity demand function

10−10 1.23278× 106 −1.84677× 1015 10−9 133 302 35.6 38
10−6 1.23277× 106 −1.84677× 1011 10−5 132 300 34.1 36
10−4 1.23165× 106 −1.84684× 109 10−3 118 291 30.0 34
10−1 5.84859× 105 −1.62221× 106 1 99 214 21.2 39
1 1.04802× 104 −1.41871× 104 1 144 293 39.7 37
3 9.71231× 101 −1.15514× 102 1 174 353 56.3 36

Linear demand function

10−10 1.23278× 106 −1.12802× 1017 10−11 149 334 42.6 36
10−6 1.23277× 106 −1.12801× 1013 10−7 149 334 42.4 36
10−4 1.23152× 106 −1.12684× 1011 10−5 146 328 41.0 36
10−1 4.82731× 105 −4.61275× 107 10−2 37 273 10.7 24
1 3.43352× 103 −2.34378× 104 1 130 265 33.3 38
3 0 0 1 185 375 61.6 34

Table 3: Results with the BPR congestion function
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α Flow obj. Demand obj. Weight Outer Inner CPU %Or

Sioux-Falls

Constant-elasticity demand function

10−10 3.20184× 105 −3.60600× 1014 10−9 35 113 0.9 30
10−6 3.20180× 105 −3.60600× 1010 10−5 35 114 0.9 28
10−4 3.19818× 105 −3.60606× 108 10−3 30 153 0.9 23
10−1 1.17741× 105 −2.83284× 105 1 21 44 0.5 33
1 1.17533× 103 −1.59571× 103 1 32 65 0.7 32
3 9.67088 −1.12348× 101 1 41 83 0.9 34

Linear demand function

10−10 3.20184× 105 −2.51030× 1016 10−11 34 110 0.9 32
10−6 3.20180× 105 −2.51026× 1012 10−7 34 111 0.8 29
10−4 3.19804× 105 −2.50654× 1010 10−5 34 112 0.9 33
10−1 1.05194× 105 −7.03503× 106 10−1 16 34 0.3 40
1 5.68039× 102 −3.19020× 103 1 29 59 0.6 38
3 0 0 1 41 83 0.9 38

Winnipeg

Constant-elasticity demand function

10−10 2.94064× 107 −2.39907× 1014 10−7 277 899 144.6 19
10−6 2.93679× 107 −2.39966× 1010 10−3 265 914 142.0 19
10−4 2.59880× 107 −2.43696× 108 10−1 113 699 42.4 18
10−1 1.52477× 10−4 −1.60721× 10−4 1 266 537 117.2 21
1 0 0 1 - - - -
3 0 0 1 - - - -

Linear demand function

10−10 2.94064× 107 −1.49546× 1015 10−8 263 858 126.5 21
10−6 2.93488× 107 −1.49190× 1011 10−4 260 868 123.4 20
10−4 2.41990× 107 −1.18542× 109 10−2 119 604 47.3 19
10−1 0 0 1 266 537 118.0 22
1 0 0 1 266 537 118.1 22
3 0 0 1 266 537 118.1 22

Barcelona

Constant-elasticity demand function

10−10 3.89399× 107 −6.03680× 1014 10−7 162 483 43.8 31
10−6 3.89127× 107 −6.03743× 1010 10−3 156 481 43.5 30
10−4 3.63590× 107 −6.08433× 108 10−1 81 577 26.1 21
10−1 5.61160× 10−1 −6.12803× 10−1 1 254 513 105.1 30
1 0 0 1 - - - -
3 0 0 1 - - - -

Linear demand function

10−10 3.89399× 107 −1.24366× 1016 10−9 160 479 43.8 32
10−6 3.89008× 107 −1.24245× 1012 10−5 160 476 43.6 33
10−4 3.52103× 107 −1.12974× 1010 10−3 112 514 35.5 24
10−1 0 0 1 254 513 103.7 29
1 0 0 1 254 513 102.2 28
3 0 0 1 254 513 103.6 29

Table 4: Results with the linear congestion function
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