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Abstract.  In the Pickup and Delivery Problem (PDP) a fleet of vehicles must serve 

customers requests which consist of transporting objects from their origins to their 

destinations. We introduce the PDP with Fixed Partial Routes (PDP-FPR), in which some 

partial routes are given, and the problem consists in obtaining a solution (a set of routes) 

which include those partial routes. We have analyzed the complexity of determining 

whether or not a feasible solution exists for this problem as well as for some relaxations of 

it. Checking the feasibility of the PDP-FPR and some of its relaxations is shown to be NP-

complete, while for other relaxations, the problem was proved to be polynomial-time 

solvable. 
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1 Introduction

Pickup and Delivery Problems (PDPs) constitute an important class of vehicle routing

problems in which objects or people have to be collected and distributed. These problems

arise in many areas such as robotics, courier services, and ambulatory services. PDPs can

be classified into three different groups. In many-to-many PDPs, any vertex can serve

as a source or as a destination for any commodity. The second group consists of one-to-

many-to-one PDPs in which some commodities are available at the depot and are destined

to the customer vertices while others are available at the customers are destined to the

depot. Finally, in one-to-one PDPs, each commodity (also known as a request) has a

given origin and a given destination. This problem is sometimes simply called the Pickup

and Delivery Problem (PDP). Examples of the one-to-one PDP are courier operations

and door-to-door transportation services offered for the elderly and handicapped people

in many cities. The problem can have several constraints such as time windows, maximum

ride times and other quality-of-service related restrictions. For a survey and classification

of PDPs see e.g., Berbeglia et al. [2007].

In this paper, we introduce an extension of the one-to-one PDP called the Pickup and

Delivery Problem with Fixed Partial Routes (PDP-FPR). Informally, in this problem we

are given some partial routes and we need to construct a solution (i.e., a set of routes)

that includes those partial routes. Our main motivation to study this problem and some

of its relaxations is the development of a constraint programming algorithm to solve

the Dial-a-Ride Problem. Under the constraint programming paradigm, solutions are

constructed through the interaction between filtering methods and search techniques [Apt,

2003]. Along the way of finding a feasible solution or proving that none exists, partial

solutions consisting of partial routes are obtained. It is here that it becomes relevant to

determine whether the actual partial solution can be ‘extended’ into a complete solution

or if backtracking must be performed. Many of the results derived in this paper are used

in a constraint programming approach to determine the feasibility of Dial-a-Ride Problem

instances [Berbeglia et al., 2009]. In addition, the study of the PDP-FPR can also be

useful in other contexts where a feasible solution must respect some fixed partial routes,
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such as the study of arc-exchange procedures like k-opt [De Backer et al., 2000] as well

as routing problems in which certain sequences of customers must be respected due to

particular constraints.

The main contribution of this article is to prove that the problem of determining a

feasible solution for the PDP-FPR is strongly NP-complete. This contrasts with the fact

that the problem is polynomial-time solvable when no partial routes need to be respected.

We have also studied the computational complexity of some of its relaxations and we have

found some of them to be polynomial time solvable, while others remain NP-complete.

The PDP-FPR is not the first known routing problem for which determining the

existence of a feasible solution is hard. Two other examples are the Black and White

Traveling Salesman Problem [Ghiani et al., 2006], and the One-commodity Traveling

Salesman problem with Pickups and Deliveries [Hernández-Pérez and Salazar-González,

2003].

Similar results, this time in the field of scheduling, have been obtained by Mascis

and Pacciarelli [2002] for a version of the job-shop scheduling problem. In their paper,

the authors have proved that the problem of finding a feasible schedule that extends a

given set of partial schedules is NP-complete, contrasting with the fact that the problem

is polynomial time solvable when no partial schedules are imposed. Later, Meloni et al.

[2004] have developed heuristics for the same problem based on the extension of partial

schedules.

2 The Pickup and Delivery Problem with Fixed Par-

tial Routes

The Pickup and Delivery Problem with Fixed Partial Routes can be defined as follows.

Let G = (V,A) be a complete and directed graph with vertex set V = {1, . . . , 2m} ∪ R,

where m represents the number of available vehicles, vertices D = {1, . . . , 2m} represent

the depot, and R (|R| = 2n) represents the customer vertices. The set R is partitioned

into sets R+ (pickup vertices) and R− (delivery vertices). Let H = {1, . . . , n} be the set

3

Feasibility of the Pickup and Delivery Problem with Fixed Partial Routes: A Complexity Analysis

CIRRELT-2010-15



of requests. Request i has pickup vertex i+ ∈ R+ whose load qi > 0 and delivery vertex

i− ∈ R− whose load is −qi. The loads of depot vertices are equal to zero, i.e., qi = 0 for

i = 1, . . . , 2m and each vehicle has a capacity Q > 0. A route (not necessarily feasible)

is a path over some vertices, that starts at any vertex i ∈ {1, . . . , m} (called the starting

depot of vehicle i or start(i)) and finishes at vertex m + i (called ending depot of vehicle

i or end(i)) such that the other vertices of the path belong to R. The maximum load of

a route r = (i, w1, . . . , wt, i + m) is equal to max{∑h
j=1 qwj

|1 ≤ h ≤ t}.
A partial route is a sequence of vertices of V which do not repeat and that can consti-

tute a subsequence of a route. A partial solution consists of a set P of partial routes such

that each vertex i ∈ D ∪ R appears exactly in one partial route p ∈ P . The PDP-FPR

consists of constructing m vehicle routes such that:

(c1) every vertex v ∈ V appears in exactly one of the routes;

(c2) for every request r, the pickup vertex and the delivery vertex are visited by the same

route;

(c3) for every request r, the pickup vertex r+ is visited before its delivery vertex r−;

(c4) the maximum load of each route does not exceed Q;

(c5) every partial route p ∈ P is a subsequence of some of the m routes.

If such a solution exists, the PDP-FPR instance is said to be feasible, otherwise it is

infeasible. Note that this problem generalizes the feasibility problem of the one-to-one

Pickup and Delivery Problem, since the latter can be seen as a special case in which each

partial route in P is composed of just one vertex. Observe also that the one-to-one Pickup

and Delivery Problem is obtained if we do not impose constraint (c5).

3 Definitions

Before studying the complexity of the PDP-FPR, we provide some notation and

definitions regarding partial routes. Consider the partial route p = (p0, . . . , pu). We

define α(p) = max {∑j
i=0 q(pi) : 0 ≤ j ≤ u}, δ(p) =

∑u
i=0 q(pi) and γ(p) = max
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{−∑j
i=0 q(pi) : 0 ≤ j ≤ u}. Thus, α(p) records how much more load will the vehicle

attain along the path p with respect to the load it had at the beginning. The value δ(p)

is the difference between the vehicle load after and before the partial route p. Finally,

γ(p) records for how much less load the vehicle will lose along the path p with respect to

the load it began (see Figure 1 for an illustration). Observe that −δ(p) ≤ γ(p) and that

α(p) ≥ δ(p) for any partial route p. Given partial routes p1 and p2, the partial route p

that consists of the concatenation of the partial routes p1 and p2 (in this order) is written

p = (p1, p2).

α(p) = 3

δ(p) = 1

V ehicle load

V isits

γ(p) = 1

Figure 1: An example of a partial route which has a sequence of three pickups, followed

by four deliveries and finishing with two pickups. All requests have unitary loads.

A vehicle route or simply route r = (v0, . . . , vk) is said to be empty if k = 1 since in

this case the route does not contain pickup nor delivery vertices. We say that a vertex i

belongs to the route r = (v0, . . . , vk) and we write it, i ∈ r, if i = vj for some 1 ≤ j ≤ k.

We say that a request i ∈ H belongs to the route r if i+ ∈ r and i− ∈ r.

Let I be an instance of the PDP-FPR. We say that a route is feasible if it respects

the capacity and the precedence constraints. Formally, a route r = (v0, . . . , vk) is feasible

if (1) for each i ∈ H i+ ∈ r ⇔ i− ∈ r; (2) for each i ∈ H such that i+ = vl for some

1 ≤ l ≤ k− 1 then i− = vj with l < j ≤ k and (3)
∑j

i=1 qvi
≤ Q for all j = 1, . . . , k. Note

that an empty route is by definition feasible.
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4 Problem complexity

Determining whether a feasible solution exists for an instance of the one-to-one Pickup

and Delivery Problem (i.e., without the constraint of fixed partial routes) is simple. One

has just to verify if the inequality Q ≥max{qi|i ∈ R+} holds. If it does, it is possible

to construct a feasible route that performs one at a time the pickup and the delivery of

each request. If it does not, there is at least one request whose load is greater than the

capacity of the vehicles and therefore no feasible solution exists. In this section, we prove

that the PDP-FPR is strongly NP-complete, even for the single vehicle case (m = 1) and

unitary loads.

The plan for the proof is the following. After giving a short definition and a lemma,

we describe a problem, called the Restricted M-optimal Scheduling Problem which, as we

will see later, is strongly NP-complete. We then describe a procedure that transforms, in

polynomial time, instances of the Restricted M-optimal Scheduling Problem into instances

of the PDP-FPR, and we give an example. Finally, we prove that this transformation is

such that the transformed instance of the PDP-FPR is feasible if and only if the original

instance of the Restricted M-optimal Scheduling Problem is feasible, which proves that

the PDP-FPR is strongly NP-complete.

Definition 1. Two instances, I and I ′, of the PDP-FPR are said to be equivalent if

either both are feasible or both are infeasible.

Consider an n requests instance I of the PDP-FPR in which requests loads are positive

rational numbers {a1/b1, . . . , an/bn} with ai, bi ∈ N and gcd(ai, bi) = 1 for i = 1, . . . , n.

Assume also that the capacity of the vehicles is a rational number q1/q2 with q1, q2 ∈ N
and gcd(q1, q2) = 1. Let x be the least common multiple of {b1, . . . , bn, q2}. The following

lemma will be needed for the NP-completeness proof that follows.

Lemma 2. It is possible to transform in polynomial time the instance I, into another

equivalent instance I ′ such that the vehicle’s capacity is a natural number and with
∑n

i=1 xai/bi

unitary requests.

Proof. The transformation begins by first multiplying the load of every request as well

as the capacity of the vehicles by x. The request loads and the vehicle’s capacity are
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now integers and since this can simply be seen as a change of units of the loads, this new

instance is equivalent to I. Now every request r ∈ H will be split into as many requests as

the size of the load of request r. The pickup vertex r+ is replaced with a new partial route

f(v) = (v1, . . . , vh) consisting of the pickups of unitary load requests with h = xav/bv,

where av/bv is the original load of the request r. The same procedure is executed for

the delivery vertex r−, but the load of each of the vertices of the new partial route is

−1 instead of 1. Finally, every partial route p = (w1, . . . , wf ) of the original instance

is replaced f ′(p) = (f(w1), . . . , f(wf )) which is the concatenation of the partial routes

obtained for each of the vertices of partial route p. Under this transformation, passing

through a partial route f(v) simulates performing the pickup or delivery operation at the

single vertex v. We can then conclude that the new instance is equivalent to the original

instance I.

start(1) end(1)

b+

b− a+

c−

a−c+

end(1)start(1)

b+
1

b+
2

b+
3

c+
1

c−1

b−3b−1

a−1

a+
1

a−2
a+

2b−2

Original Instance Transformed Instance

Figure 2: The instance of the left has requests {a, b, c} with loads 1/2, 3/4, 1/4 respectively

and the vehicle capacity is 3/4. The equivalent instance on the right, with unitary requests

and a vehicle capacity of 4, is obtained following the described transformation.

We proceed to define the Restricted M-optimal Scheduling Problem.

Name: Restricted M-optimal Scheduling Problem.

Input: A natural number k and a directed, acyclic and connected graph G′ = (V ′, E ′).

Each node w ∈ V ′ has associated a value π(v) which is equal to −1 if the out degree

δ+(v) = 0 and 1 otherwise.
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Question: Does there exist a permutation s = (s1, . . . , sn) of the vertices in V ′ such

that (i) no path exists from si to sj in G′ whenever i > j; and (ii)
∑j

i=1 π(si) ≤ k, for

1 ≤ j ≤ n?

As its name indicates, this problem is a restricted version of the M-optimal Schedul-

ing Problem defined by Abdel-Wahab [1976] in which the function π can take any in-

teger values. See Figure 3 for an example of an instance of the Restricted M-optimal

Scheduling Problem and a feasible solution. Abdel-Wahab [1976] have shown that the M-

optimal Scheduling Problem is NP-complete by showing how to polynomially reduce the

NP-complete Register Allocation Problem [Sethi, 1973]. In their proof, the authors trans-

form every instance of the Register Allocation Problem into an instance of the M-optimal

Scheduling Problem which is also an instance of the Restricted M-optimal Scheduling

Problem. Therefore, the Restricted M-optimal Scheduling Problem is NP-complete.

v4

π(v3) = 1

v1

v2

v5 v6

v3

π(v5) = −1 π(v6) = −1

π(v4) = −1

k = 2
π(v1) = 1

π(v2) = 1

Instance

S = (v1, v4, v2, v5, v3, v6)

Solution

Figure 3: An instance of the Restricted M-optimal Scheduling Problem and a solution.

Observe that since the input graph is assumed to be acyclic, the set of arcs E ′ induces

a partial order in V ′ as follows. Vertex x precedes vertex y (written x < y) if there is

a path p in G′ that starts at x and finishes at y. Thus, property (i) required in the

Restricted M-optimal Scheduling Problem can be rephrased stating that the permutation

must extend the mentioned partial order.

Assume that the vertex set of G′ is V ′ = {1, . . . , n} and let V + = {v ∈ V ′ : π(v) = 1}
and V − = {v ∈ V ′ : π(v) = −1}. Given an instance I ′ of Restricted M-optimal Scheduling

Problem, i.e., a graph G′ = (V ′, E ′) and a natural number k, we will construct a instance

I of the PDP-FPR. For illustration, the transformation of the instance shown in Figure
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3 is given in Figure 4.

The instance I has n + 4 partial routes P = {1, . . . , n + 4}. Each i ∈ V ′ = {1, . . . , n}
of instance I ′ has associated the partial route i ∈ P . Partial routes n + 3 and n + 4 are

the starting depot and the ending depot respectively and they do not contain any request

vertex. Finally two additional partial routes n + 1 and n + 2 are part of the new instance

I. The request vertices of instance I are placed following Algorithm 1. The function

AddRequest(i, j) in the algorithm means that a request whose pickup vertex is at partial

route i and whose delivery vertex is at partial route j is inserted.

Algorithm 1 Insertion of request vertices on the partial routes of instance I

1: Input: Graph G′ = (V ′ = {1, . . . , n}, E′)

2: for each v ∈ V − do

3: AddRequest(n + 1, v)

4: end for

5: for each v ∈ V + do

6: AddRequest(v, n + 2)

7: end for

8: for each e′ = (i, j) ∈ E′ do

9: AddRequest(i, j)

10: end for

11: AddRequest(n + 1,n + 2)

We can see from Algorithm 1 that the number of pickup vertices in each partial route

i, i ∈ V +, is equal dout(i) + 1, i.e., the ‘out’ degree in the graph G′ plus one, because of

the request whose delivery is at partial route n + 2. The number of delivery vertices in

each partial route i, i ∈ V + is equal to din(i), i.e., the ‘in’ degree of vertex i in G. Observe

that each partial route i, i ∈ V −, has no pickup vertices and din(i) + 1 delivery vertices,

i.e. the ‘in’ degree in the graph G′ plus one because of the request whose pickup is in the

partial route n + 1. In each partial route, it is assumed that the delivery vertices, in case

there are some, are placed before the pickup vertices.
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We now define the load for each request. Let ε be a positive real number, whose value

will be given later. Table 1 shows the load of each request according to the partial routes

where their pickup and delivery vertices are located in terms of ε.

Requests Load

Pickup Delivery

p ∈ V ′ q ∈ V ′ ε

n + 1 n + 2 ε

w ∈ V + n + 2 ε(din(w)− dout(w)) + 1

n + 1 v ∈ V − 1− dout(v)ε

Table 1: Load of the requests according to the partial routes where their pickup and

delivery vertices are located in terms of ε.

Since each request load must be positive, we need

ε(din(w)− dout(w)) + 1 > 0

for each w ∈ V +, and

1− din(v)ε > 0

for each v ∈ V −.

From the first condition, we conclude that ε(dout(w) − din(w)) < 1. Note that this is

satisfied by any positive value of ε if dout(w)− din(w) ≤ 0. Therefore, to satisfy condition

(i) it is sufficient to take ε ≥ θ = min ({1/(din(w) − dout(w) + 1) : w ∈ V +, dout(w) −
din(w) > 0} ∪ {1}). To satisfy the second condition, we should have ε < 1/din(v) for all

v ∈ V −. It is therefore sufficient to take ε ≥ γ =min ({1/(din(v) + 1) : v ∈ V −} ∪ {1}).
Since we need to satisfy both conditions we set ε = min {θ, γ}.

Finally, the capacity of the vehicle is set to k + φ, where φ = ε +
∑

v∈V − 1 − din(v)ε,

i.e., the sum of the loads of the requests whose pickup vertices are in the partial route

n + 1.

We now show as an example, how the instance of the Restricted M-optimal Scheduling

Problem shown in Figure 3, is transformed into an instance of the PDP-FPR depicted in

Figure 4.
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In the instance shown in Figure 3, V + = {v1, v2, v3} and V − = {v4, v5, v6}. The in

and out degrees of the vertices are: din(v1) = 0, dout(v1) = 2, din(v2) = 1, dout(v2) = 2,

din(v3) = 0, dout(v3) = 1, din(v4) = 1, dout(v4) = 0, din(v5) = 1, dout(v5) = 0, din(v6) = 2,

dout(v6) = 0.

Thus, considering that ε = min {θ, γ}, where θ = min {1/(dout(w)− din(w) + 1) : w ∈
V +, dout(w)− din(w) > 0} ∪ {1} and where γ = min {1/(din(v) + 1) : v ∈ V −} ∪ {1} we

deduce that ε = 1/3. The capacity of the vehicle is set to Q = k+ε+
∑

v∈V − 1−din(v)ε =

2 + ε + |V −| − 4ε = 5 − 3ε = 5 − 3/3 = 4. The resulting instance of the PDP-FPR,

which consists of 10 partial routes and a set H = {1, . . . , 5, v1, . . . , v6, γ} of 12 requests,

is given in Figure 4. Each requests of the form vi with i = 1, . . . , 6 represents the request

associated to the vertex v ∈ V ′, which was added in the lines 2-7 of Algorithm 1. Each

request i with i = 1, . . . , 6 represents a request associated with an arc e′ ∈ E ′ which was

added in the lines 8 − 10 of Algorithm 1. Finally, the request γ is the one added in line

11. Above each partial route is written its number. The request loads are given in Table

2.

Request Load

v1 ε(din(v1)− dout(v1)) + 1 = 1/3

v2 ε(din(v2)− dout(v2)) + 1 = 2/3

v3 ε(din(v3)− dout(v3)) + 1 = 2/3

v4 1− din(v4)ε = 2/3

v5 1− din(v5)ε = 2/3

v6 1− din(v6)ε = 1/3

γ, 1, . . . , 5 1/3

Table 2: Load of the requests in the example

The described transformation is used to prove the following theorem.

Theorem 3. The Pickup and Delivery Problem with Fixed Partial Routes is strongly

NP-complete, even when m = 1 and request loads are unitary.

Proof. The problem belongs to NP, since whenever a problem instance is feasible, a com-

plete feasible route is a certificate which can be verified in polynomial time. Given
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γ+

γ−

v−1

v−2

v−3

start(1)

1+

5+

v+
3

end(1)

v−4

v+
4

v+
5

v+
6

v+
1

2+

1−

3−

v−5

4+

3+

v+
2

2−

4−

5−

v−6

n + 3 = 9

n + 1 = 7

n + 2 = 8

1

4

5

2

6

3

n + 4 = 10

Figure 4: The corresponding instance of the PDP-FPR
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an instance I ′ of the Restricted M-optimal Scheduling Problem, i.e. a directed graph

G′ = (V ′, E ′), with V ′ = {1, . . . , n}, and a natural number k, we construct an instance

I of the PDP-FPR as described above. Observe that this construction can be completed

in polynomial time, even if k is written in unary notation. We will now prove that the

instance of Restricted M-optimal Scheduling Problem has positive answer if and only if

the constructed instance I is feasible.

Assume that the instance I ′ is feasible. Thus, there exists a sequence s = (s1, . . . , sn)

of the vertices of V ′ such (i) it extends the partial order given by the arcs in E ′ and (ii)∑j
i=1 π(si) ≤ k, for 1 ≤ j ≤ n. We will show that the route that traverses the partial

routes of the constructed instance I ′ in the order s′ = (n+3, n+1, s1, . . . , sn, n+2, n+4)

is feasible. We first show that all precedence constraints between pickups and deliveries

are respected using the given order of the partial routes. The partial route n + 1 has no

delivery vertices and therefore it is possible to place it right after the partial route n + 3

which only contains the starting depot. The partial route n+2 has no pickup vertices and

therefore no precedence constraint is violated by placing it just before the partial route

n + 4 which only contains the ending depot. Suppose now that there is a request whose

delivery is in partial route si and whose pickup is in the partial route sj, with i < j.

This would imply that (sj, si) ∈ E ′ and therefore s = (s1, . . . , sn) would not respect the

precedence constraints in the Restricted M-optimal Scheduling Problem, which leads to a

contradiction.

We will now show that the capacity of the vehicle is never exceeded. After visiting

all vertices of the partial route n + 1, the vehicle load will be equal to the sum of the

loads of all pickup vertices in this partial route, which we denote by φ. Consider now a

partial route si whose associated vertex in G′ has π(si) = +1. What is the difference in

the vehicle load between before and after traversing all the pickup and delivery vertices in

the partial route si? To calculate this, we need to sum up the load of all requests whose

pickup vertices are in si and subtract the sum of the loads of all requests whose delivery

vertices belong to the same partial route. This is exactly δ(si). The load of the request

whose delivery is in the partial route n+2 is ε(din(si)−dout(si))+1. All the other pickup

vertices have a load of ε and there are dout(si) of them. The number of delivery vertices
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is equal to din(si) and each of them has a load of ε. Therefore

δ(si) = εdout(si) + ε(din(si)− dout(si)) + 1− εdin(si) = 1.

Applying the same reasoning, but for the partial routes sj whose associated vertex in G′

has π(sj) = −1, yields

δ(sj) = 0− (1− din(sj)ε + din(sj)ε) = −1.

Thus, for each v ∈ V , δ(v) = π(v). The load of the vehicle after visiting the partial route

sj with 1 ≤ j ≤ n is

δ(n + 1) +

j∑
i=1

δ(sj) = φ +

j∑
i=1

π(sj).

Since the sequence (s1, . . . , sn) is a feasible sequence for the Restricted M-optimal Schedul-

ing Problem, it follows that

φ +

j∑
i=1

π(sj) ≤ φ + k = Q

and therefore the vehicle capacity Q is respected at the end of visiting each partial route

(note that the last partial route n + 2 has only deliveries). The fact that in each partial

route, all deliveries are done before the pickups, ensures that the capacity is respected

along all the vertices of route. We conclude that the route which traverses the partial

routes in the order s′ = (n + 1, s1, . . . , sn, n + 2) is a feasible solution for the instance I of

the PDP-FPR.

Assume now that there is a feasible route s′ for the constructed instance I. The route

s′, which must visit exactly once each of the n + 4 partial routes, can be represented as

s′ = (n + 3, v1, . . . , vh, n + 1, s1, . . . , sl, n + 2, w1, . . . , wf , n + 4). The partial route n + 1

must be before the partial route n + 2, since both share a request whose pickup is in

the partial route n + 1. Observe that wi ∈ V − for all 1 ≤ i ≤ f because each β ∈ V +

has a pickup which must be delivered at a vertex in the partial route n + 2. Therefore,

δ(wi) = π(wi) = −1. Similarly, for all 1 ≤ i ≤ h, vi ∈ V +, since each β ∈ V − has a

delivery whose pickup is in the partial route n+1. This implies that δ(vi) = π(vi) = 1. We
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show now that the sequence s = (v1, . . . , vh, s1, . . . , sl, w1, . . . , wf ) is valid for the instance

I ′ of the Restricted M-optimal Scheduling Problem.

The sequence s respects the precedence constraints. This is easy to see, since for each

arc (x, y) ∈ E in the instance I ′ of the Restricted M-optimal Scheduling Problem, we have

created a request whose pickup is in the partial route x and whose delivery is in the partial

route y.

We now prove that the sequence s respects that each partial sum is at most k. Since

s′ is a feasible route, we know that

h∑
i=1

δ(vi) + δ(n + 1) = h + φ ≤ Q = φ + k.

Therefore, we have that h ≤ k, which implies that

j∑
i=1

π(vi) ≤ h ≤ k

for all 1 ≤ j ≤ h.

Using again the fact that s′ is a feasible route for instance I, we know that

h∑
i=1

δ(vi) + δ(n + 1) +

j∑
i=1

δ(si) =
h∑

i=1

δ(vi) + φ +

j∑
i=1

δ(si) ≤ Q = φ + k.

for 1 ≤ j ≤ l. Thus, it holds that

h∑
i=1

π(vi) +

j∑
i=1

π(si) ≤ k

for 1 ≤ j ≤ l.

Finally, taking into account that s′ is a feasible route and that δ(wj) = −1 for 1 ≤
j ≤ f , it holds that

h∑
i=1

δ(vi) +
l∑

i=1

δ(si) +

j∑
i=1

δ(wi) ≤ k.

Therefore we conclude now that the sequence s = (v1, . . . , vh, s1, . . . , sl, w1, . . . , wf ) is

valid for the Restricted M-optimal Scheduling Problem.
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Taking into account how ε was set, we know that ε ∈ A∪B where A = {1/(dout(w)−
din(w)+1) : w ∈ V +, dout(w)−din(w) > 0}∪{1} and B = {1/(din(v)+1) : v ∈ V −}∪{1}.
We can conclude that ε = 1/t where t is a natural number bounded by the number of

vertices of the original graph G plus one.

The load of the requests in the constructed instance are either of the form (i)ε = 1/t

or (ii) 1 + zε = (t + z)/t where z ∈ Z and |z| is bounded by the number of vertices in

G′. Therefore the load of each request i is of the form ai/bi with ai = 1 and bi = t; or

ai = t + z/gcd(t + z, t) and bi = t/gcd(t + z, t). Therefore, by Lemma 2, it is possible to

transform in polynomial time the instance I to one which has
∑n

i=1 tai/bi ≤
∑n

i=1 t+ z =

n(t + z) unitary requests. This number is at most 2n times the maximum degree of the

original graph G′ plus one, which is polynomial in the size of the instance I ′.

5 Complexity of some relaxations

In this section, we define four relaxations of the PDP-FPR and we study the complexity

of determining whether or not there exists a feasible solution. We also study a relaxation

of the PDP-FPR with an additional restriction which imposes a maximum ride time for

each request. This constraint is common in pickup and delivery problems where people

are transported, called Dial-a-Ride Problems [Cordeau and Laporte, 2007].

5.1 Elementary PDP-FPR

The Elementary PDP-FPR is a relaxation of the PDP-FPR that only takes into ac-

count constraints (c1), (c2), and (c5). Therefore, an instance I of the PDP-FPR is said

to be elementary feasible if it is possible to construct m routes such that (i) each vertex

is visited exactly once, (ii) the pickup vertex and the delivery vertex of the same request

are visited by the same vehicle and (iii) every partial route p ∈ P is a subsequence of

some of the m routes.

Let I be an instance of the PDP-FPR. The following definitions are needed to char-

acterize the instances which are elementary feasible.
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Definition 4. The instance I is said to be a complete solution (feasible or not) if for

every partial route p ∈ P and every request h ∈ H, p is a route and h+ ∈ p ⇔ h− ∈ p.

Note that any instance which is a complete solution is elementary feasible.

Definition 5. A route r (with 1 ≤ r ≤ m) is said to be open in I if there is no partial

route p ∈ P such that start(r) ∈ p and end(r) ∈ p.

Definition 6. A request h ∈ H is said to be divided in I if there is a partial route p ∈ P

which is a a route and exactly contains one of the vertices h+ and h−.

Given an instance I of the PDP-FPR, we consider the undirected auxiliary graph

G̃ = (Ṽ , Ẽ) defined as follows. Ṽ consists of the set of partial routes P of I. An edge i, j

(with i 6= j) belongs to the edge set Ẽ if one of these two properties hold: (1) there is a

request r ∈ H such that r+ ∈ i and r− ∈ j, (2) there is a vehicle v such that start(v) ∈ i

and end(v) ∈ j.

For simplifying notation, we say that a vertex x of the PDP-FPR instance I belongs to

a vertex w ∈ G̃ and we write it x ∈ w, when x belongs to the partial path of I associated

to the vertex w.

We are now ready to characterize the instances which are elementary feasible.

Theorem 7. An instance I of the PDP-FPR is elementary feasible if and only if (1) it

is a complete solution; or (2) for any pair of different vehicles v1, v2, the partial routes

associated to the vertices start(v1) and end(v2) do not belong to the same connected com-

ponent in auxiliary graph G̃; and there is at least one open route; and no request h ∈ H

is divided in I.

Proof. Suppose I is elementary feasible and it is not a complete solution, which means

that either there is partial route p′ that is not a route, or that there is a divided request

in I. In case there is a divided request, constraint c2 can never be respected and therefore

I can’t be elementary feasible. We can thus assume there exists a partial route p′ that

is not a route. Suppose that there is no open route, which implies that for each vehicle

i with 1 ≤ i ≤ m there is a partial route p = (start(i), . . . , end(i)) ∈ P . Therefore, it
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follows that it is impossible for the partial route p′ to be potentially part of a route and

therefore the constraint c5 is not respected. This means that I is not elementary feasible,

which is a contradiction. Suppose now that there are two vehicles v1 and v2 such that

there exists a path p̃ = (w1, . . . , wk) in G̃ such that start(v1) ∈ w1 and end(v2) ∈ wk.

Note now that whenever there is an edge {i, j} in G̃ then the partial routes i and j must

be part of the same route in any solution which is feasible for the Elementary PDP-FPR.

Therefore, the existence of the path p̃ implies that any extension of the instance I must

have the partial routes w1 and wk in the same route. This implies that any solution must

have the vertices start(v1) and end(v2) in the same route, in which case the instance I is

not elementary feasible, and this is a contradiction.

We proceed with the inverse implication: in the case that I is a complete solution,

then I is elementary feasible. Let us assume now that I is not a complete solution and

that for any pair of different vehicles v1, v2, the partial routes associated to the vertices

start(v1) and end(v2) do not belong to the same connected component in auxiliary graph

G̃. Let us assume also that there is at least one open route and that no request is divided.

We will now show that I must be elementary feasible. Let P = {τ1, . . . , τ`}, with ` ≥ m,

be a partition of the vertices of G̃ associated to the equivalence relation R defined as aRb

if and only if the vertices a ∈ Ṽ and b ∈ Ṽ are in the same connected component in G̃.

Let S ⊂ P be the set of connected components {c|such that there is no partial route p ∈ c

that contains a starting depot or an ending depot}. We construct now an elementary

feasible solution as follows. Let i be a route which is open in I. Let τi be the set of partial

routes which are in the connected component of the partial route that possesses start(i)

(therefore, the partial route containing end(i) is also in τi). Since route i is open, it is

possible to close route i by including all the partial routes in τi as well as all the partial

routes S. Since no request is divided in I, the route i will not have a pickup vertex of

a request without having its delivery vertex. Every other route 1 ≤ r ≤ m, r 6= i which

is open is completed by visiting all the partial routes of the connected component of the

partial route of start(r). It is clear that the resulting solution is elementary feasible.

This characterization of the elementary feasible instances shows that the problem of

determining whether or not an instance is feasible for the Elementary PDP-FPR can be
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solved in polynomial time.

5.2 Uncapacitated PDP-FPR

The Uncapacitated PDP-FPR is a relaxation of the PDP-FPR which consists of adding

the precedence constraint (c3) to the Elementary PDP-FPR. Thus, an instance of the

PDP-FPR is said to be feasible for the Uncapacitated PDP-FPR if it is possible to con-

struct m routes such that (i) each vertex is visited once, (ii) the pickup and the delivery

of the same request are in the same route and the pickup is visited before the delivery,

and (iii) every partial route p ∈ P is a subsequence of some of the m routes.

We show in this section how to determine, in polynomial time, whether or not an

instance of the PDP-FPR is feasible for the Uncapacitated PDP-FPR.

We define first the precedence graph Ĝ = (V̂ , Â) associated to instance I as follows.

The vertex set V̂ has as elements each of the partial routes of the partial solution P of I.

An arc (i, j) belongs to the arc set Â if and only if either one of these two properties hold:

(1) the partial route i has a pickup vertex whose associated delivery vertex is in the partial

route j; (2) there is a vehicle v such that partial route i has the starting depot vertex

associate to the vehicle v and the partial route j has the ending depot vertex associated

to vehicle v. The construction of the precedence graph can be completed in O(n2) time.

To proceed, we need to define a property of partial routes called locally feasible, which

intuitively tells whether or not a partial route satisfies the precedence constraint.

Definition 8. A partial route p = (p1, . . . , pk) of an instance I of the PDP-FPR is said

to be locally feasible, if for every request r ∈ H, if pi = r+ for some i = 2, . . . , k, then

pj 6= r− for all j = 1, . . . , i− 1.

The following theorem characterizes the instances of the PDP-FPR which are feasible

for the Uncapacitated PDP-FPR.

Theorem 9. An instance I is feasible for the Uncapacitated PDP-FPR if and only if I

is elementary feasible, each partial route of I is locally feasible and Ĝ is acyclic.
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Proof. First note that for I to be feasible for the Uncapacitated PDP-FPR, the partial

routes of I must be locally feasible and I must be elementary feasible. Assume now that

instance I is feasible for the Uncapacitated PDP-FPR and suppose its precedence graph

Ĝ contains a cycle c = (i1, . . . , ik, i1), with k > 1.

Observe first that in any solution that respects the constraints of the Uncapacitated

PDP-FPR, the pair of partial routes i and j associated to any arc a = (i, j) ∈ Â must be

part of the same route. Moreover, partial route i must be traversed before partial route

j. By transitivity, the existence of the cycle c = (i1, . . . , ik, i1) means that partial route

i2 must be visited before and after partial route i1, which is a contradiction.

Assume now that the directed graph Ĝ is acyclic, each partial route of I is locally

feasible and that the instance I is elementary feasible. Consider a partition P of the

vertices of Ĝ into their connected components. First note that since I is elementary

feasible, for any vehicle i, the partial routes of its starting depot and of its ending depot

must belong to the same set in the partition P . In addition, the depot vertices of different

vehicles must be in different sets of the partition. The opposite case would mean that

there must be a route which visits two depots associated with different vehicles, which

is impossible. The partition can then be written as P = {C1, . . . , Cm, E1, . . . , Eρ} with

ρ ≥ 0. The set Ci is the connected component of Ĝ which contains the partial routes

of the starting and ending depot of vehicle i. The sets Ei with 1 ≤ i ≤ ρ, consists

of the connected components which do not contain any partial route with a starting or

ending depot. We now construct each of the vehicle routes. If the sets {C1, . . . , Cm}
contain exactly one partial route each, then it means that ρ = 0 because I is elementary

feasible. Thus, there is nothing left to do because all routes are already closed, and since

we assumed I to be elementary feasible and each partial route to be locally feasible, the

routes are feasible for the Uncapacitated PDP-FPR. Assume now that there is at least one

partition set Ci such that |Ci| ≥ 2. We construct the following route: First we traverse

the partial route of Ci where the starting depot is. Then, we traverse one after another,

all the partial routes of the partition sets {E1, . . . , Eρ}, in topological order, i.e., never

choosing a partial route y such that there is another partial route x which has not yet

been chosen satisfying (x, y) ∈ Â. Once all the partial routes of {E1, . . . , Eρ} have been
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visited, we finish the route by visiting the rest of partial routes of Ci using a topological

order, which ensures that all the precedence constraints are respected. The route for each

of the other partition sets Cj, with j 6= i, is constructed by visiting only the partial routes

in Cj in a topological order, therefore meeting all the precedence constraints.

Since the problems of determining whether or not a partial routes is locally feasible,

checking whether I is elementary feasible, and detecting a cycle in a graph are polynomial-

time solvable, deciding whether or not an instance of the PDP-FPR has a solution satis-

fying the constraints of the Uncapacitated PDP-FPR can be solved in polynomial time.

5.3 PDP-FPR without Precedence

The PDP-FPR without Precedence is a relaxation of the PDP-FPR in which the only

relaxed constraint is the precedence constraint i.e., constraint (c3). Thus, an instance

of the PDP-FPR is feasible for the PDP-FPR without Precedence if it is possible to

construct a set of m routes such that the pickup and delivery vertices of each request are

both in the same route and their maximum load does not exceed Q.

In this section we present a polynomial time algorithm to solve this problem in the

single vehicle case (m = 1). For the multiple vehicle case, the question whether or not

there exists a polynomial time algorithm remains open. It is worth saying, that the

presented algorithm can also be used to determine the feasibility of the fixed partial route

extension of the Traveling Salesman Problem with Pickups and Deliveries [Mosheiov,

1994].

Let π = {p1, . . . , pl} be a non-empty set of partial routes. We define h(π) = min{α(x)|
x = (pσl(1), . . . , pσl(l)) with σl ∈ Sl} where Sl is the symmetric group on {1, . . . , l} (i.e.,

the set of permutations of l elements). Therefore, h(π) is the minimum value of α that

can be obtained from a partial route which is the concatenation of all the partial routes in

the set π. We will later show how to compute this function in polynomial time by solving

a single machine scheduling problem.
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5.3.1 The algorithm

Checking whether an instance is feasible for the single vehicle PDP-FPR without

Precedence basically consists in verifying that the partial routes in S can be ordered in

such a way that the capacity constraint (c4) is satisfied. Algorithm 2 performs this task.

Algorithm 2 Feasibility checking algorithm for the single vehicle PDP-FPR without

Precedence
Input: Instance I of the PDP-FPR.

if I is not elementary feasible then

return FALSE

end if

if |P | = 1 then

return (α(P ) ≤ Q)

end if

Let s1 ∈ P be the partial route to which the starting depot belongs.

Let s2 ∈ P be the partial route to which the ending depot belongs.

if (α(s1) > Q) or (
∑

i∈P\{s2} δ(i) + α(s2) > Q) or (h(P \ {s1, s2}) > Q− δ(s1)) then

return FALSE

end if

return TRUE

First observe that I must be elementary feasible to be feasible for the PDP-FPR

without Precedence. Second, if the set of partial routes P has only one partial route (i.e.,

|P | = 1) then P is already a complete route. Therefore, P is feasible for the PDP-FPR

without Precedence if and only if α(s) ≤ Q, with s being the only partial route in P . If

there are at least two partial routes in a partial solution P , observe first that the starting

depot and the ending depot must belong to different partial routes, since we assume that

the instance is elementary feasible. We then have to verify that (i) the partial route of

the starting depot, s1, does not exceed the vehicle’s capacity Q; (ii) at the end of the

route the partial route of the ending depot, s2, does not exceeds the vehicle’s capacity;
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and (iii) all the other partial routes, P \ {s1, s2} can be ordered in such a way that they

do not exceeds the value Q − δ(s1) (see Algorithm 2). The complexity of the algorithm

is equal to the complexity of computing the function h(R) which will be shown to be in

O(n2) where n is the number of partial routes in P . Therefore, single vehicle PDP-FPR

without Precedence is solvable in polynomial time.

A polynomial time algorithm to compute h(P ) is presented in the following section.

5.3.2 Computing h(P )

The problem of computing h(P ) as it was defined is an optimization problem. The

decision version of the problem can be stated as follows.

Name: h(H) decision problem.

Input: A set H = {1, . . . , k} of partial routes and a natural number Q. Each partial

route p has associated two integer values denoted δ(p) and α(p) ≥ 0 such that α(p) ≥ δ(p).

Question: Does there exist an ordering o = (o1, . . . , ok) of the elements in H, such

that
∑j

i=1 δ(oi) + α(oj+1) ≤ Q for j = 0, . . . , k − 1?

This problem can be seen as a single machine scheduling problem with due dates and

processing times in which we need to determine whether or not there exists a schedule

with no tardy tasks. The latter problem can be stated as follows.

Name: Single machine scheduling decision problem with due dates and processing

times.

Input: A set J = {1, . . . , k} of jobs. Each job i has associated a processing time p(i)

and a due date d(i).

Question: Does there exist an ordering o = (o1, . . . , ok) of the elements in J , such

that
∑j

i=1 p(oi) ≤ d(oj) for j = 1, . . . , k?

Suppose we are given an instance of the h(H) decision problem, i.e., a set of partial

routes H and a natural number Q. The instance is then feasible if there exists an ordering

o = (o1, . . . , ok) of the elements in H such that
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j∑
i=1

δ(oi) + α(oj+1) ≤ Q for j = 0, . . . , k − 1

⇔
j+1∑
i=1

δ(oi) ≤ Q + δ(oj+1)− α(oj+1) for j = 0, . . . , k − 1

⇔
j∑

i=1

δ(oi) ≤ Q + δ(oj)− α(oj) for j = 1, . . . , k.

Thus, if we consider each partial route p ∈ P as a job and we let δ(p) be the processing

time of job p and Q − α(p) + δ(p) be its due date, then h(P ) ≤ Q if and only if there

exists a schedule of the set of jobs such that all due dates are respected.

It is worth observing that after this transformation, some deadlines as well as some

processing times of the tasks may be negative, and therefore the classical “earliest deadline

first” algorithm cannot be applied. We present now a polynomial time algorithm to

minimize the number of tardy tasks for the Single machine scheduling decision problem

with due dates and processing times in which processing times and deadlines can be

negative. The algorithm runs in O(n2) time and is to the best of our knowledge, the first

one for this problem.

Consider an instance of the Single machine scheduling decision problem with due dates

and processing times where J = {1, . . . , n} is the set of jobs. Given a schedule (an

ordering) S = (s1, . . . , sn) of the jobs in J , a job sk is considered to be tardy in schedule

S, if
∑k

i=1 p(si) > d(sk).

The problem consists of obtaining a schedule S = (s1, . . . , sn) of all jobs in J such

that the number of tardy jobs is minimized. Such a schedule is called optimal. A schedule

is said to be feasible if it has no tardy tasks. Moore [1968] presented an O(n2) time

algorithm to solve this problem but the algorithm requires the processing times of all

tasks to be non-negative. To handle the case in which some jobs have negative processing

time or negative deadlines, we decompose the problem into two subproblems, transform

one of them, and apply Moore’s algorithm to each subproblem. Before presenting the

algorithm we need the following lemma.
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Lemma 10. In any instance of the single machine scheduling with due dates, there exists

an optimal schedule s = (s1, . . . , sn) such that p(si) ≥ 0 ⇒ p(si+1) ≥ 0 for i = 1, . . . , n−1.

Proof. Consider an optimal schedule s = (s1, . . . , sn) such that there exists i ∈ {1, . . . , n−
1} with p(si) ≥ 0 and p(si+1) < 0. We now prove that the schedule s̃ = (s1, . . . , si+1, si, . . . , sn)

is also optimal. It is clear that all jobs other than si and si+1 are done on time in s̃ if and

only if they are on time in s. Observe now that if si+1 is not late in s, it cannot be late

in s̃. Note also that since p(si+1) < 0, si cannot be late in s̃ if it is not in s. Applying

this swapping procedure repetitively, we will obtain an optimal schedule respecting the

desired property.

Lemma 10 allows us to decompose the problem into two subproblems. The first one

consists of optimally scheduling the jobs in J− = {j ∈ J : p(j) < 0}. After scheduling

the jobs in J−, we will have ‘extra time’ (equal to
∑

j∈J− p(j)) to schedule the jobs in

J+ = J \ J−. We could add this extra time to each deadline of the jobs in J+ and

then obtain an optimal schedule for this second subproblem. Once both subproblems are

solved, an optimal solution for the general problem can be obtained by concatenating both

schedules. In the second subproblem, all processing times are non-negative and therefore

an optimal schedule can be obtained using Moore’s algorithm.

We now describe how to find an optimal schedule of the tasks in J−. Consider any

schedule S = (s1, . . . , sk) of the jobs in J−. Job si is tardy if and only if
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i∑
j=1

p(sj) > d(si) ⇔ (1)

k∑
j=1

p(sj)−
k∑

j=i+1

p(sj) > d(si) ⇔ (2)

k∑
j=i+1

−p(sj) > d(si) +
k∑

j=1

−p(sj) ⇔ (3)

k∑
j=i

−p(sj) > d(si)− p(si) +
k∑

j=1

−p(sj). (4)

Note now that a job si is tardy if and only if it is tardy in the schedule S ′ = (sk, . . . , s1)

of the problem in which each job sl has processing time −p(sl) and a deadline equal to

d(sl)−p(sl)+
∑k

j=1−p(sj). Since in this new problem all processing times are non negative

(because −p(sl) ≥ 0), we can apply Moore’s algorithm, obtain an optimal schedule and

reverse it for the original problem in which processing times are negative.

The algorithm for the general problem can then be stated as shown in Algorithm 3.

5.4 Positive Uncapacitated PDP-FPR without Precedence

The Positive Uncapacitated PDP-FPR without Precedence is a relaxation of the PDP-

FPR that contains constraints c1, c2, c5 of the PDP-FPR and an additional constraint

which can be stated as follows.

(c6) On every route r = (r0, . . . , rq), the load cannot be negative, i.e.,
∑j

i=0 qri
≥ 0 for

j = 0, . . . , q.

Thus, the Positive Uncapacitated PDP-FPR without Precedence relaxation resembles

the PDP-FPR without Precedence except that there is a lower bound constraint (equal

to zero) to the vehicle load, instead of an upper bound (equal to Q).

We will see that the problem of determining whether or not an instance of the Single ve-

hicle PDP-FPR is feasible for the Positive Uncapacitated PDP-FPR without Precedence,
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Algorithm 3 Minimizing the number of tardy jobs in the single machine scheduling with

due dates and negative processing times

Consider J− = {i ∈ J : p(i) < 0}
Consider J+ = {i ∈ J : p(i) ≥ 0};
Let O− = (v1, . . . , vk) be an optimal sequence obtained by Moore’s algorithm to schedule

the tasks in J− with modified processing times and deadlines. A job ji with processing time

p(ji) will have as new processing time p′(ji) = −p(ji). Its new deadline will be d′(ji) =

d(ji) − p(ji) +
∑

l∈J− −p(sl), where d(h) and p(h) are the original deadline and the original

processing time of job h.

Let O+ = (wk+1, . . . , wn) be an optimal sequence obtained by Moore’s algorithm to schedule

the tasks in J+ with modified deadline. For each job ji ∈ J+, the new deadline is d′(ji) =

d(ji)−
∑

h∈J− p(h) where d(ji) is the original deadline and p(h) is the original processing time

of the job h ∈ J−.

Return the schedule S = (vk, . . . , v1, wk+1, . . . , wn).

can be solved in polynomial time using an algorithm very similar to the one presented

in the previous section for the PDP-FPR without Precedence. The question of whether

there exists a polynomial time algorithm for checking if an instance of the PDP-FPR is

feasible for the Positive Uncapacitated PDP-FPR without Precedence remains open for

the multiple vehicle case.

Let π = {p1, . . . , pl} be a non-empty set of partial routes. We define ȟ(π) = min{γ(x)|
x = (pσl(1), . . . , pσl(l)) with σl ∈ Sl} where Sl is the symmetric group on {1, . . . , l}. There-

fore, ȟ(π) is the minimum value of γ that can be obtained from a partial route which is

the concatenation of all the partial routes in the set π. The decision problem associated

to ȟ can be stated as follows.

Name: ȟ(H) decision problem.

Input: A set H = {1, . . . , k} of partial routes and a natural number µ . Each

partial route p has associated two integer values denoted δ(p) and γ(p) ≥ 0 such that

γ(p) ≥ −δ(p).

Question: Does there exist an ordering o = (o1, . . . , ok) of the elements in H, such

that
∑j

i=1 δ(oi)− α(oj+1) ≥ µ for j = 0, . . . , k − 1?
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In the same way as the h(H) decision problem, the ȟ(H) decision problem can be seen

as a Single machine scheduling with due dates and processing times, and it is therefore

polynomial time solvable.

Algorithm 4 describes how to determine whether an instance of the PDP-FPR is

feasible for the Single vehicle Positive Uncapacitated PDP-FPR without Precedence in

polynomial time. The structure of the algorithm is the same as the algorithm presented

for the PDP-FPR without Precedence.

Algorithm 4 Feasibility checking algorithm for the single vehicle Positive Uncapacitated

PDP-FPR without Precedence
Input: Instance I of the PDP-FPR.

if I is not elementary feasible then

return FALSE

end if

if |P | = 1 then

return (γ(P ) = 0)

end if

Let s1 ∈ P be the partial route to which the starting depot belongs.

Let s2 ∈ P be the partial route to which the ending depot belongs.

if (γ(s1) > 0) or (
∑

i∈P\{s2} δ(i)− γ(s2) < 0) or (ȟ(P \ {s1, s2}) > δ(s1)) then

return FALSE

end if

return TRUE

5.5 Positive PDP-FPR without Precedence

The Positive PDP-FPR without Precedence is a relaxation of the PDP-FPR which

contains all the constraints of the PDP-FPR without Precedence and the additional con-

straint (c6) described in the previous section which states that the vehicle load cannot

be negative along any route. Therefore, an instance I of the PDP-FPR is feasible for

the Positive PDP-FPR without Precedence if it is possible to construct m vehicles routes
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such that the pickup and delivery vertices of each request are both in the same route, the

capacity of each vehicle is never exceeded and for each vehicle, the load along each point

of its route cannot be negative. It worth observing that in the PDP-FPR, the load is

never negative since the precedence constraints forbid the appearance of a delivery before

its pickup in any route. We will prove that determining whether or not an instance is

feasible for the Positive PDP-FPR without Precedence relaxation is NP-complete even

for the single vehicle case (m = 1). Using the notation for partial routes, this problem

can be stated as follows.

Name: Single vehicle Positive PDP-FPR without Precedence.

Input: A set R = {1, . . . , k} of partial routes and a natural number Q. Each partial

route p has associated three integer values denoted δ(p), α(p) ≥ 0 and γ(p) ≥ 0 such that

−γ(p) ≤ δ(p) ≤ α(p). Also,
∑k

i=1 δ(i) = 0 and α(q) + γ(q) ≥ 1 for 2 ≤ q ≤ k − 1.

Question: Does there exist an ordering o = (o1, . . . , ok) of the elements in R, such

that: (i) o1 = 1; (ii) ok = k; (iii)
∑j

i=1 δ(oj)+α(oj+1) ≤ Q; (iv)
∑j

i=1 δ(oj)−γ(oj+1) ≥ 0

for j = 0, . . . , k − 1?

It is assumed that the partial route 1 has the starting depot and partial route k has

the ending depot. The conditions on the values of α, β and γ are simply to ensure that

the input indeed represents an instance of the single vehicle PDP-FPR.

To prove that this problem is NP-complete, we make a reduction from the NP-complete

problem Subset sum [Garey and Johnson, 1979]. This problem can be stated as follows.

Name: Subset sum problem

Input: < S,m > where S = (a1, . . . , an) is a sequence of positive integers, and m is a

positive integer.

Question: Does there exist a subset T ⊆ {1, . . . , n} such that
∑

j∈T aj = m?

We now describe a function ϕ(I) that transforms an instance I =< S = (a1, . . . , an),m >

of the Subset sum problem into an instance I ′ of the Single vehicle Positive PDP-FPR

without Precedence as follows. The resulting instance has n+4 partial routes. The partial

route 1 only contains the starting depot vertex, while the partial route n+4 has only the
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ending depot. The capacity of the vehicle is set to Q =max {m,
∑n

i=1 ai}. The values of

α, β,and γ as well as the number of pickups and deliveries at each of the partial routes

are shown in Table 3.

Partial route α γ δ Pickups Deliveries

1 0 0 0 0 0

i = 2, . . . , n + 1 ai−1 0 ai−1 1 0

n + 2 0
∑n

j=1 aj −∑n
j=1 aj 0 n

n + 3 Q−m m 0 2 2

n + 4 0 0 0 0 0

Table 3: Partial route attributes of the instance I ′ = ϕ(I)

It is not difficult to see that the instance I ′ = ϕ(I) defined above is a valid instance

of the PDP-FPR. One can consider that I ′ has n + 2 requests. Request i, for 1 ≤ i ≤ n,

has a load equal to ai, its pickup is in partial route i and its delivery is in partial route

n + 2. Finally, requests n + 1 and n + 2, have a load of m and Q−m respectively. The

pickup and delivery vertices of both requests are in partial route n+3, following the order

((n + 2)+, (n + 2)−, (n + 1)−, (n + 1)+)).

Theorem 11. Determining whether or not there exists a feasible solution for the Single

vehicle Positive PDP-FPR without Precedence is NP-complete.

Proof. Let I be a feasible instance of the subset sum problem, i.e, there is a subset

T ⊆ {1, . . . , n} such that
∑

j∈T aj = m. We will now prove that the instance I ′ = ϕ(I)

of the PDP-FPR has a feasible solution for the Positive PDP-FPR without Precedence

relaxation. Consider the route r written as the concatenation of the n + 4 partial routes

in the following order:

r = (1, t1, . . . , t|T |, n + 3, u1, . . . , un−|T |, n + 2, n + 4) (5)

where

{t1, . . . , t|T |} = {ai|ai ∈ T}; {u1, . . . , un−|T |} = {ai|i ≤ n, ai /∈ T} (6)
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.

We will now see that route r is feasible for the Positive PDP-FPR without Precedence

by checking that the two inequalities about the vehicle load are respected.

For the first partial route (partial route 1) both inequalities are respected since

α(1) = 0 ≤ Q

and

−γ(1) = 0 ≥ 0.

Now consider any tj with 1 ≤ j ≤ |T |. Observe that

δ(1) +

j−1∑
i=1

δ(ti) + α(tj) ≤ 0 +
n∑

i=1

ai ≤ max{m,

n∑
i=1

ai} = Q

and also that

δ(1) +

j−1∑
i=1

δ(ti)− γ(tj) ≥ 0.

For the partial route n + 3, the inequalities also hold since

δ(1) +

|T |∑
i=1

δ(ti) + α(n + 3) = 0 + m + Q−m ≤ Q

and

δ(1) +
T∑

i=1

δ(ti)− γ(n + 3) = 0 + m−m ≥ 0.

Now consider any partial route uj with 1 ≤ j ≤ n−|T |. Both inequalities are respected

since

δ(1) +

|T |∑
i=1

δ(ti) + δ(n + 3) +

j−1∑
i=1

δ(ui) + α(uj) ≤ 0 + m + 0 +

n−|T |∑
i=1

ui + 0 ≤
n∑

i=1

ai ≤ Q

and

δ(1) +

|T |∑
i=1

δ(ti) + δ(n + 3) +

j−1∑
i=1

δ(ui)− γ(uj) ≥ 0 + 0 + 0 + 0 + 0 ≥ 0.
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For the partial route n + 2, we have that

δ(1) +

|T |∑
i=1

δ(ti) + δ(n + 3) +

n−|T |∑
i=1

δ(ui) + α(n + 2) =
n∑

i=1

ai +−
n∑

i=1

ai = 0 ≤ Q

and that

δ(1) +

|T |∑
i=1

δ(ti) + δ(n + 3) +

n−|T |∑
i=1

δ(ui)− γ(n + 2) =
n∑

i=1

ai −
n∑

i=1

ai = 0 ≥ 0.

Finally since the partial route n + 4 that is linked to the ending depot is empty, the

inequalities also hold. Therefore, route r is feasible for the Positive PDP-FPR without

Precedence relaxation.

Now assume that the instance I of the subset sum problem is not feasible, and suppose

that the instance I ′ = ϕ(I) is feasible. By definition, in any possible route of the instance

I ′, the first and last partial routes are partial routes 1 (starting depot) and n + 4 (ending

depot) respectively. The partial route n + 2 must be placed after all the partial routes

{2, . . . , n+1} since it has γ(n+2) =
∑n

i=1 ai, otherwise the vehicle load reaches a negative

value. We now need to position the partial route n + 3 in the route. Observe first that

it cannot be placed after the partial route n + 2 since in that case the vehicle load would

become negative. We divide the partial routes {2, . . . , n + 1} into two sets A and B. The

set A consists of the partial routes visited before n + 3 while the partial routes visited

after n + 3 constitute the set B. The following inequalities must hold:

δ(1) +
∑
i∈A

δ(i) + α(n + 3) ≤ Q; (7)

δ(1) +
∑
i∈A

δ(i)− γ(n + 3) ≥ 0. (8)

If we replace α(n + 3) and δ(1) by their values the inequality (7) is equivalent to

∑
i∈A

δ(i) ≤ m. (9)

Replacing now γ(n + 3) and δ(1) by their values in the inequality (8) we have that

∑
i∈A

δ(i) ≥ m. (10)
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This implies that
∑

i∈A δ(i) = m, which means that the set T = {ai|i + 1 ∈ A} is a

solution of the subset sum problem since
∑

i∈T ai = m, which is a contradiction.

5.6 Uncapacitated PDP-FPR with ride times

An important case of the one-to-one PDP appears when the requests consist of users

that need to be transported from an origin to a destination. In these cases, the problem

is called the Dial-a-Ride Problem (DARP) whose main application is the transportation

of elderly or disabled people. Generally, the DARP contains additional constraints which

control user inconvenience, such as tight time windows and maximum ride times which

impose an upper bound on the user’s trip duration. Models and algorithms for the static

and the dynamic versions of the DARP were surveyed by Cordeau and Laporte [2007].

In this section we study a relaxation called the Uncapacitated PDP-FPR with ride

times, which is equivalent to the Uncapacitated PDP-FPR relaxation except that it also

possess an additional constraint about the maximum ride times for each request.

We will see that the inclusion of this constraint, converts the polynomial time solvable

Uncapacitated PDP-FPR into an NP-complete problem.

We denote by tij, the time taken to go from vertex i to vertex j in G. Consider a route

r = (1, v1, . . . , v2n, 2), that respects the precedence constraint c3 and such that it serves

the set H = {1, . . . , n} of n requests, where vertices 1 and 2 represent the starting and

the ending depot respectively. The route is assumed to respect the precedence constraint

(iii). Now consider a request i and assume its pickup i+ ∈ R+ be vj and its delivery

i− ∈ R− be vk. The ride time of request i ∈ H on route r is defined as

k−1∑

l=j

tl,l+1.

The maximum ride time constraint can be stated as follows.

(c7) At each route r, the ride time of each request i ∈ H does not exceed a preset value

L.
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Consider an instance I of the single vehicle PDP-FPR. Let R = {1+, 1−, . . . , n+, n−}
be the set of request vertices and 1(2) denote the starting (ending) depot vertex. Let P

denote a partial solution. The feasibility problem for the Uncapacitated PDP-FPR with

ride times can be stated as follows.

Name: Uncapacitated PDP-FPR with ride times.

Input: V = {1, 2} ∪ R, a non-negative number (maximum ride time) L. A partial

solution P and a distance function tij defined over V × V .

Question: Does there exist a permutation of V , ρ = (v1, . . . , v2n+1, v2n+2) such that

(i) v1 = 0 and v2n+2 = 2; (ii) for each 1 ≤ i ≤ n, if vj = i+ and vk = i− then j < k and∑k−1
l=j tl,l+1 ≤ L; (iii) ρ extends P .

By saying that the permutation ρ extends P , we mean that every partial route p ∈ P

is a subsequence of the permutation (route) ρ = (v1, . . . , v2n+1, v2n+2).

We prove that this problem is NP-complete even in the Euclidean case by showing

that the Traveling Salesman Problem with Deadlines can be polynomially reduced to the

Uncapacitated PDP-FPR with ride times. Note that vertex w0 represent the depot while

the other vertices represent customers. We define below the Traveling Salesman Problem

with Deadlines.

Name:Traveling Salesman Problem with Deadlines.

Input: A set W = {w0, . . . , wn}, a set of non-negative numbers (deadlines) T =

{t1, . . . , tn}. An Euclidean distance function t′ij on W ×W .

Question: Does there exist a permutation of W \ {0}, o = (o1, . . . , on) such that for

each k = 1, . . . , n, if ok = wj then t′0,o1
+

∑k−1
i=1 t′oi,oi+1

≤ tj?

The Traveling Salesman Problem with Deadlines is NP-complete even in the Euclidean

space, since in the case in which all deadlines wi are equal is equivalent to the problem

of determining whether there is a tour over all vertices that is shorter than wi+ max

{t′i0|1 ≤ i ≤ n}, which is the Euclidean Traveling Salesman Problem.

Theorem 12. The Uncapacitated PDP-FPR with ride times is strongly NP-complete,
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even in the single vehicle case and with Euclidean distances.

Proof. Consider an instance I of the Traveling Salesman Problem with Deadlines, i.e., a

set W = {w0, . . . , wn}, a set of non-negative numbers (deadlines) T = {t1, . . . , tn}, and

an Euclidean distance function t′i,j on W × W . We assume, without loss of generality,

that t1 ≤ t2 ≤ . . . ≤ tn.

We construct the following instance I ′ of the Uncapacitated PDP-FPR with ride time

as follows. The vertex set is V = {1, 2, 1+, 1−, . . . , n+, n−} where for each i = 1, . . . , n,

vertex i− is located at the same place as wi. Vertex n+ is placed at the location of

w0. The rest of the vertices ({1, 1+, . . . , n − 1+}) are located along a line in the order

(1, 1+, . . . , n− 1+) respecting the following distances

t1,1+ = α

and

tj+,j+1+ = tj+1 − tj

for j = 1, . . . , n− 1, where α is any non-negative constant.

The partial solution P contains n + 2 partial routes. The first partial route p1 is

composed of the starting depot (vertex 1) and of all the pickup vertices in the following

order p1 = (1, 1+, . . . , n+). The others partial routes are single vertex paths, one for each

of the vertices in {2, 1−, . . . , n−}. The maximum ride time is set to L = tn. See Figure 5

for an illustration.

Since any feasible route must contain as a subsequence the partial route p1 it is not

necessary to specify how the line of the vertices in p1 is placed with respect to the other

vertices.

We claim that the instance I ′ of the Uncapacitated PDP-FPR with ride times is

feasible if and only if the instance I of the Traveling Salesman Problem with Deadlines

is.

Observe first that since any feasible solution of the instance I ′ must extend the partial

route p1 = (1, 1+, . . . , n+), we need only to determine whether or not there exists a

permutation perm = (a1, . . . , an) of the delivery vertices, such that the route formed by

the concatenation of the p1 and perm, i.e., r = (v0, v1, . . . , vn)(perm) is feasible.
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By observing the way we have positioned the vertices of p1, the time traveled from the

pickup vertex i+ up to the end of the partial route p1 is equal to

n−1∑
j=i

ti+,i+1+ = ti+1 − ti + . . . + tn − tn−1 = tn − ti = L− ti.

Thus, the time left after visiting vertex n+ to visit the delivery vertex i− without

exceeding the maximum ride time is ti. Therefore, a feasible solution for I ′ exists if and

only if there exists a feasible solution for the instance I of the Traveling Salesman Problem

with Deadlines.

Observe that in the reduction from the TSP with deadlines, the constructed instance

of the Uncapacitated PDP-FPR with ride times always respects the precedence constraint

because all the pickup vertices are put in the partial route of the starting depot. Thus,

even by taking out the precedence constraint (constraint c3 of the PDP-FPR), the problem

remains NP-complete.

+2 +31+

2

n+

Depot (1 and 2)

1
n− −

1

0 3

n

2

−

3
−

Figure 5: An instance of the TSP with deadlines and the constructed instance of the

Uncapacitated PDP-FPR with ride times
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6 Conclusions

We have introduced an extension of the one-to-one Pickup and Delivery Problem in

which certain fixed partial routes must be respected. Unlike what happens in the standard

one-to-one PDP, we have proved that determining whether or not an instance of the

PDP-FPR is feasible is strongly NP-complete. We have then studied the complexity of

determining whether or not there exists a feasible solution to some relaxations of the

problem. For some relaxations, polynomial time algorithms based on detecting a cycle

in a graph and solving a scheduling problem with negative processing times, were found.

For other relaxations, the problems remained NP-complete. A summary of these results

is presented in Table 4. Constraints c1, c2, c3, c4 and c5 are those of the PDP-FPR,

while constraints c6 and c7 are those extra constraints presented in sections 5.4 and 5.6

respectively. We write ‘yes’ at a cell when the associate constraint is imposed, the symbol

‘-’ when it is not imposed but it is always respected due to the other constraints, and

‘no’ when it is not imposed and may not be respected. It is worth noting that for all the

relaxations studied, the problem is trivially polynomial time solvable when partial routes

are not considered.

Problem name
Constraints

Complexity
c1 c2 c3 c4 c5 c6 c7

PDP-FPR yes yes yes yes yes - no strongly NP-complete

Elementary PDP-FPR yes yes no no yes no no polynomial

Uncapacitated PDP-FPR yes yes yes no yes - no polynomial

PDP-FPR without precedence yes yes no yes yes no no open (poly for m = 1)

Positive uncapacitated PDP-FPR without precedence yes yes no no yes yes no open (poly for m = 1)

Positive PDP-FPR without precedence yes yes no yes yes yes no NP-complete

Uncapacitated PDP-FPR with ride times yes yes yes no yes - yes strongly NP-complete

Table 4: Summary of the complexity results
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