

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Solving the Liner Shipping Fleet Repositioning Problem with Cargo Flows

Tierney, Kevin; Askelsdottir, Björg; Jensen, Rune Møller; Pisinger, David

Published in:
Transportation Science

Link to article, DOI:
10.1287/trsc.2013.0515

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Tierney, K., Askelsdottir, B., Jensen, R. M., & Pisinger, D. (2015). Solving the Liner Shipping Fleet Repositioning
Problem with Cargo Flows. Transportation Science, 49(3), 652-674. https://doi.org/10.1287/trsc.2013.0515

https://doi.org/10.1287/trsc.2013.0515
https://orbit.dtu.dk/en/publications/55f79644-28c2-491a-bfdb-851752118416
https://doi.org/10.1287/trsc.2013.0515

TRANSPORTATION SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0041-1655 |eissn 1526-5447 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Solving The Liner Shipping Fleet Repositioning
Problem with Cargo Flows

Kevin Tierney
IT University of Copenhagen, 2300 Copenhagen S, Denmark, kevt@itu.dk

Björg Áskelsdóttir
DTU Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, bjorgaskels@gmail.com

Rune Møller Jensen
IT University of Copenhagen, 2300 Copenhagen S, Denmark, rmj@itu.dk

David Pisinger
DTU Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, pisinger@man.dtu.dk

We solve a central problem in the liner shipping industry called the Liner Shipping Fleet Repositioning

Problem (LSFRP). The LSFRP poses a large financial burden on liner shipping firms. During repositioning,

vessels are moved between routes in a liner shipping network. Liner carriers wish to reposition vessels as

cheaply as possible without disrupting the cargo flows of the network. The LSFRP is characterized by

chains of interacting activities with a multi-commodity flow over paths defined by the activities chosen.

Despite its industrial importance, the LSFRP has received little attention in the literature. We introduce a

novel mathematical model and a simulated annealing algorithm for the LSFRP with cargo flows that makes

use of a carefully constructed graph and evaluate these approaches on real world data from our industrial

collaborator. Additionally, we compare the performance of our approach against an actual repositioning

scenario, one of many undertaken by our industrial collaborator in 2011. Our simulated annealing algorithm

is able to increase the profit earned on our industrial collaborator’s scenario from $18.1 million to $31.8

million dollars using only a few minutes of CPU time, showing that our algorithm could be used in a decision

support system to solve the LSFRP.

Key words : liner shipping, fleet repositioning, maritime optimization

1. Introduction

Responsible for transporting over 1.5 billion tons of cargo in 2012, according to UNCTAD (2012),

liner shipping networks reliably and cheaply connect the world’s markets. Liner shipping differenti-

ates itself from other forms of shipping due to its fixed, periodic schedules that determine the routes

1

Author: Article Short Title
2 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

of vessels, and for the standardized form of cargo, the ISO container, that makes up the majority

of the goods carried. This stands in contrast to other forms of shipping, such as tramp or industrial

shipping, in which ships generally do not have fixed schedules (Ronen (1983), Christiansen et al.

(2004)).

In order for liner shippers to adjust to the needs of their customers, vessels are regularly reposi-

tioned between services in liner shipping networks. These repositionings adjust the networks to the

world economy and help them to stay competitive. Since repositioning a single vessel can cost hun-

dreds of thousands of US dollars, optimizing the repositioning activities of vessels is an important

problem for the liner shipping industry.

The Liner Shipping Fleet Repositioning Problem (LSFRP) consists of finding sequences of activ-

ities that move vessels between services in a liner shipping network while respecting the cargo flows

of the network. The LSFRP maximizes the profit earned on the subset of the network affected

by the repositioning, balancing sailing costs and port fees against cargo and empty equipment

revenues, while respecting important liner shipping specific constraints dictating the creation of

services and movement of cargo. The subset of the network used in our model is partially defined

by the repositioning coordinator in order to help avoid side effects of repositioning from reducing

the profitability of the network. A unique feature of the LSFRP is the state-based nature of the

activities in the problem. Many LSFRP activities span multiple physical locations and depend on

the location of vessels in order to be performed. Automated planning techniques were used to rep-

resent a high-level version of the LSFRP that ignored cargo flows in Tierney et al. (2012). Cargo

flows, however, are an important aspect of the LSFRP that drive decisions on how vessels should

be repositioned.

In this paper, we present a novel mathematical model of the LSFRP with cargo flows on top of

a detailed graph that embeds many LSFRP constraints. We solve our model using CPLEX (IBM

(2012)) and with a simulated annealing (SA) approach, and study the performance of our model

on real world data from our industrial collaborator. We investigate the scaling performance of our

model on an actual repositioning scenario in addition to several constructed scenarios. We provide

an overview of our parameter tuning procedures for the SA, as well as a comparison of the SA to a

reference solution for our actual repositioning instance. This instance models the decisions available

to repositioning coordinators as they planned an actual repositioning at Maersk Line involving 11

vessels in 2011. On this instance, our SA is able to find a solution with a profit between $3 million

and $13 million higher than the reference solution in only a couple of minutes, thereby doubling the

profit earned in the scenario. Our simulated annealing approach is often able to find the optimal

solution or very close to the optimal solution and quickly finds solutions for instances that are too

large for CPLEX to solve.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 3

It takes a repositioning coordinator several days to find a solution to such a repositioning scenario

by hand. Coordinators create a repositioning plan through a trial and error approach which relies on

the experience and deep domain knowledge of the coordinator to find a good plan. The coordinators

use spreadsheet-like tools to assist them in creating a plan, however they have no optimization

capabilities.

We seek to provide an algorithm capable of functioning within a decision support system (DSS)

for repositioning coordinators. Within a DSS, the user requires quick answers for planning ship

routes. In some cases, the user may need to give feedback to the algorithm, such as not allowing a

particular port call or adding extra buffer time on a sailing, so that the plan is real-world feasible.

We therefore seek to solve LSFRP instances within a ten minute window.

This paper is structured as follows. We first present a detailed description of the LSFRP in

Section 2, including a overview of related work in Section 2.2. Section 3 contains our mathematical

model of the LSFRP and graph description. Our SA approach is described in Section 4, followed

by a description of our benchmark and a computational evaluation in Section 5. A comparison to

our industrial collaborator’s repositioning scenario is presented in Section 5.6. Finally, we conclude

in Section 6 and present directions for future work. Parts of this paper appeared as an extended

abstract in Tierney and Jensen (2012).

2. Liner Shipping Fleet Repositioning
2.1. Problem Description

Liner shipping networks consist of a set of cyclical routes, called services, that visit ports on a reg-

ular, periodic schedule1. Liner shipping networks are designed to serve customers’ cargo demands,

which have seasonal fluctuations and shift over time with the world economy. In order to stay

competitive, liner carriers must adapt to these changing demands and adjust their networks accord-

ingly. Liner carriers do this by adding, removing and modifying services in their network. Whenever

a new service is created, or an existing service is expanded, vessels must be repositioned from their

current service to the service being added or expanded. Vessel repositioning is expensive due to the

cost of fuel (in the region of hundreds of thousands of dollars) and the revenue lost due to cargo

flow disruptions. Given that liner carriers around the world reposition hundreds of vessels per year,

optimizing vessel movements can significantly reduce the economic and environmental impacts of

containerized shipping, and allow carriers to better utilize repositioning vessels to transport cargo.

The aim of the LSFRP is to maximize the profit earned when repositioning a number of vessels

from their initial services to a service being added or expanded, called the goal service. We focus

1 We focus on weekly schedules, as the majority of the services at our industrial collaborator have this structure.
However, our work is applicable to any periodic schedule.

Author: Article Short Title
4 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

on the case where a new service is being added to the network because expanding a service can be

seen as a special case of adding a new service, in which vessels are repositioned from the service

being expanded to itself along with extra vessels from elsewhere in the network.

Liner shipping services are composed of multiple slots, each of which represents a cycle that is

assigned to a particular vessel. Each slot is composed of a number of visits, which can be thought

of as port calls, i.e. a specific time when a vessel is scheduled to arrive at a port. A vessel that is

assigned to a particular slot sequentially sails to each visit in the slot. Figure 1 shows a schedule of

an example service that contains three slots and visits five ports. The service requires three weeks

to complete a cycle, and therefore needs three vessels in order to maintain weekly frequency. Each

line (solid black, dashed green, and dotted blue) represents a slot, and each solid circle is a visit

at a port at a particular time.

Vessel sailing speeds can be adjusted throughout repositioning to balance cost savings with

punctuality. The bunker fuel consumption of vessels increases approximately cubically with the

speed of the vessel (Wang and Meng (2012)). Slow steaming, in which vessels sail near or at their

minimum speed, therefore, allows vessels to sail more cheaply between two ports than at higher

speeds, albeit with a longer duration (see, Jorgensen (2011), Meyer et al. (2012)). We linearize the

bunker consumption of each repositioning vessel in order to more easily model the LSFRP.

2.1.1. Phase-out & Phase-in The repositioning period for each vessel starts at a specific

time when the vessel may cease normal operations, that is, it may stop sailing to scheduled visits

and go somewhere else. Each vessel is assigned a different time when it may begin its repositioning,

or phase-out time. After this time, the vessel may undertake a number of different activities to

reach its goal service at low cost. In order to complete the repositioning, each vessel must phase

in to a slot on the goal service before a time set by the repositioning coordinator. After this time,

normal operations on the goal service are set to begin, and all scheduled visits on the service are

to be undertaken. In other words, the repositioning of each vessel and optimization of its activities

takes place in the period between two fixed times, the vessel’s earliest phase-out time and the latest

phase-in time of all vessels.

See again Figure 1, which also shows a phase-in service with a phase-in deadline at port c in

week 2. After the hollow black circles at port c in weeks 2 through 4, the repositioning vessels

must begin regular service, i.e., all visits must be undertaken. Before this time point, visits are

only carried out if they are profitable.

Within a trade zone, which is a country or group of countries with trade agreements such as

the EU or China, vessels may sail freely from their initial service to goal service, as well as back

from the goal service to the initial service. However, if two ports lie in different trade zones, vessels

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 5

Figure 1 A time-space graph of a service with three vessels, with a latest phase-in requirement of port c in week

3.

may only sail between them when going from the initial service to the goal service. We use trade

zones to model restrictions preventing cargo from being brought somewhere it might violate the

law, or violate a customer’s contract on where the shipment may travel. Many countries have

laws called cabotage restrictions that prevent foreign flagged vessels from offering domestic cargo

services. Cabotage restrictions are taken into account during network design, but when vessels

are repositioned, their altered paths could result in a violation. Additionally, cargo from certain

customers may not be carried on ships that visit certain countries (such as military cargo). We

can avoid a detailed modeling of such laws by simply restricting vessels to not leave trade zones

when performing certain sailings, such as sailing from visits on the phase-in service to visits on the

vessel’s initial service.

When a port is visited that is not in the initial or goal service, or is visited out of order, it is

called an inducement. If a port on the initial or goal service is left off of the repositioning vessel’s

schedule, it is called an omission. Figure 2 shows a vessel’s repositioning (solid line) from its

initial service (dashed) to its goal service (dotted) within a trade zone. Although Felixstowe is

on both the goal and initial services, it is omitted from the repositioning. Note also that the ports

Rotterdam and Bremerhaven are induced onto the repositioning path. This is only possible

because the induced ports are in the same trade zone as Le Havre and Aarhus (the European

Union trade zone).

2.1.2. Cargo and Equipment Revenue is earned through delivering cargo and empty equip-

ment (typically empty containers). We use a detailed view of cargo flows. Cargo is represented as a

set of port to port demands with a cargo type, a latest delivery time, an amount of TEU2 available,

and a revenue per TEU delivered. We subtract the cost of loading and unloading each TEU from

the revenue to determine the profit per TEU of a particular cargo demand. In contrast to cargo,

2 TEU stands for twenty-foot equivalent unit and represents a single twenty-foot container.

Author: Article Short Title
6 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Figure 2 An example repositioning (blue) from a vessel’s phase-out service (dashed red) to its phase-in service

(dotted green).

which can be seen as a multi-commodity flow where each demand is a commodity with a start and

end port, empty equipment can be sent from any port where it is in surplus to any port where it is

in demand. Ports which have an empty equipment surplus or deficit can be considered to have an

infinite amount of supply or demand for a particular type of empty equipment. This is reasonable

since the amount of extra containers on-hand or that are required tends to be much greater than

the size of a vessel. Each piece of empty equipment brought from a port where it is in excess to a

port where it is needed earns a small revenue. The revenue earned is an estimation of how much

money was saved by bringing the empty equipment on a repositioning vessel instead of moving the

empty equipment through other, more expensive, means.

We consider both dry and reefer (refrigerated) cargo. Dry containers are standard containers

with no specific handling requirements. Reefer containers, in contrast, must be stowed on a vessel in

a location with a plug in order to keep the refrigeration unit running. There are, therefore, different

capacities on a vessel for dry and reefer containers. Note that although empty equipment can

consist of both dry and reefer containers, reefer equipment does not require a reefer slot on a vessel,

as containers without any cargo do not need any power source. It is still important to differentiate

between dry and reefer equipment, however, as they are not interchangeable for customers.

Some ports have empty equipment, but are not on any service visited by repositioning vessels.

These ports are called flexible ports, and are associated with flexible visits. The repositioning

coordinator may choose the time a vessel arrives at such visits, if at all. All other visits are called

inflexible, because the time a vessel arrives is fixed.

2.1.3. Sail-on-Service (SoS) Opportunities While repositioning, vessels may use certain

services to cheaply sail between two parts of the network. These are called SoS opportunities. There

are two vessels involved in SoS opportunities, referred to as the repositioning vessel, which is the

vessel under the control of a repositioning coordinator, and the on-service vessel, which is the vessel

assigned to a slot on the service being offered as an SoS opportunity. Repositioning vessels can

use SoS opportunities by replacing the on-service vessel and sailing in its place for a portion of

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 7

Figure 3 A subset of the case study we performed with our industrial collaborator.

the service. SoS opportunities save significant amounts of money on bunker fuel, since one vessel

is sailing where there would have otherwise been two. Using an SoS can even earn money from the

time-charter bonus, which is money earned by the liner carrier if the on-service vessel is leased.

Consider Figure 3, in which the Asia-CA3 service is offered as a SoS opportunity to the vessel

repositioning from Chennai Express to Intra-WCSA. The repositioning vessel can leave the Chennai

Express at tpp, and sail to hkg where it picks up the Asia-CA3, replacing the on-service vessel.

The repositioning vessel then sails along the Asia-CA3 service until it gets to blb where it can join

the Intra-WCSA. Note that no vessel sails on the backhaul of the Asia-CA3, and this is allowed

because very little cargo travels on the Asia-CA3 towards Asia.

When a repositioning vessel uses an SoS opportunity, the on-service vessel is either laid-up or

leased out, freeing a slot on the service. The repositioning vessel may join the freed slot in any

of the starting visits and may leave the slot in one of the ending visits. There are two ways for

repositioning vessels to start an SoS: transshipment and parallel sailing. When starting an SoS by

transshipment, all cargo loaded on the on-service vessel is transshipped (moved) to the repositioning

vessel. Each TEU transshipped has a fee roughly equal the cost of loading a TEU. Transshipment

is not always possible due to the previously described cabotage restrictions that exist in some

countries, or prohibitively expensive. Illegal or expensive transshipments can be avoided using

a parallel sailing, in which both the repositioning vessel and the on-service vessel visit ports in

tandem. The repositioning vessel only loads cargo, and the on-service vessel only discharges cargo.

Since two vessels are sailing in tandem during a parallel sailing, fuel consumption is doubled, as

are port fees. However, this is still sometimes cheaper than transshipping cargo directly between

vessels.

2.2. Literature Review

The LSFRP has received little attention in the literature and was not mentioned in any of the most

influential surveys of work in the liner shipping domain (Christiansen et al. (2013, 2007, 2004))

Author: Article Short Title
8 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

or container terminals (Steenken et al. (2004), Stahlbock and Voß (2008)). Although there has

been significant work on problems such as the Fleet Deployment Problem (FDP) (e.g., Powell and

Perakis (1997)) and the Network Design Problem (NDP) (e.g., Agarwal and Ergun (2008), Álvarez

(2009), Brouer et al. (2012)), these problems deal with strategic decisions related to building the

network and assigning vessels to services, rather than the operational problem of finding paths for

vessels through the network.

Although tramp shipping problems, such as in Christiansen (1999) and Korsvik et al. (2011),

maximize cargo profit while accounting for sailing costs and port fees as in the LSFRP, they lack

liner shipping specific constraints, such as SoS opportunities, phase-in requirements and strict visit

times. Airline disruption management (see Kohl et al. (2007), Clausen et al. (2010)), while also

relying on time-based graphs, differs from the LSFRP in two key ways. First, airline disruption

management requires an exact cover of all flight legs over a planning horizon. The LSFRP has no

such requirement over visits or sailing legs. Second, there are no flexible visits in airline disruption

management.

The vessel schedule recovery problem (VSRP), see Brouer et al. (2013), focuses on recovering

operations after a disruption, such as bad weather or mechanical failure, delays a container vessel.

Similar to the LSFRP, the VSRP must respect the periodic frequency of services and network

cargo flows. However, the two problems differ in that the VSRP lacks many cost saving aspects of

the LSFRP because it is solved over a much shorter time window with only a single vessel.

Andersen (2010) discusses a problem similar to the LSFRP, called the Network Transition Prob-

lem (NTP). No mathematical model or formal problem description is provided, so it is difficult to

exactly ascertain what the NTP solves in comparison to the LSFRP. However, it is clear that the

NTP lacks cost saving activities like SoS opportunities, empty equipment flows and slow steaming.

The primary previous work on the LSFRP in the literature is found in Tierney et al. (2012),

Kelareva et al. (2013) and Tierney and Jensen (2012). The first work on the LSFRP, Tierney et al.

(2012), solved an abstraction of the LSFRP without cargo or empty equipment flows and SoS

parallel sailings using Linear Temporal Optimization Planning (LTOP), a hybrid of automated

planning and linear programming that performs a branch-and-bound search for repositioning solu-

tions. However, LTOP and other automated planning methods are unable to model cargo flows

and are thus inapplicable to the LSFRP with cargo flows. In Kelareva et al. (2013), a constraint

programming approach is presented for the previously mentioned repositioning problem.

A mathematical model of the LSFRP with cargo and equipment flows is introduced in Tierney

and Jensen (2012), and CPLEX is used to solve the model. While CPLEX is able to solve a number

of instances to optimality, many instances are too large for CPLEX to tackle. This paper extends

that work with some model improvements, a public dataset, and a heuristic approach that solves

the instances that are too big for CPLEX to solve.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 9

3. Mathematical Model

We model the LSFRP with cargo flows on a graph G= (V,A), where V is the set of nodes and A

the set of directed arcs between nodes. Each node in V represents a visit of a vessel at a particular

port3, and each arc in A represents an allowed sailing between two visits. The graph encompasses

all of the activities each vessel may undertake during a fixed repositioning period, which is the

period from the time the vessel is first allowed to leave its phase-out service until the time when

normal operations must begin on the phase-in service. The path of each vessel through the graph

represents the activities to be undertaken by that vessel, and we therefore require the paths to be

node disjoint to prevent multiple vessels from performing the same activity. This is an important

constraint because i) container port terminals assign timeslots to vessels, meaning there is not

enough room for two vessels, and ii) profit from carrying cargo can only be earned a single time,

removing any reason for multiple vessels to visit the same node. Note that flexible visits, i.e. visits

without a prior fixed schedule, can be undertaken by multiple vessels, even simultaneously. For

ease of modeling, we therefore replicate flexible visits for each vessel and consider them as node

disjoint. We give more details about this process (and its justifications) later. We embed a number

of problem constraints and objectives directly in the graph, including sailing costs, sail-on-service

opportunities, cabotage restrictions, phase-in/out requirements, and canal fees, which are described

in detail in the next section, followed by our MIP model over the graph.

3.1. Graph Description

We give a textual overview of the graph used in our model of the LSFRP with cargo flows. For a

detailed formal description, we refer the reader to Appendix A. The visits in the graph are split

into two sets, thus V = V i ∪V f , where V i is the set of inflexible visits, i.e. visits associated with a

specific port call time, and V f is the set of flexible visits, which are assigned a time only if a vessel

performs the visit. The set V f contains visits in which a vessel can pick up/deliver equipment or

incremental cargo that are not on any phase-out, phase-in, or SoS service. Let S be the set of ships.

Visits are connected with either inflexible or flexible arcs represented by the sets Ai and Af ,

respectively. Inflexible arcs have fixed durations that can be pre-computed, whereas the time a

ship is sailing on a flexible arc must be determined during optimization.

The overall structure of the graph involves four types of visits: phase-out, phase-in, flexible, and

SoS visits. In addition to these visits, we include a graph sink, τ , which all vessels must reach for

a valid repositioning. We let V ′ = V \ τ be the set of all graph visits excluding τ . The four types of

visits represent four disjoint sets that make up V ′. We now describe the arc structure corresponding

to each of the four types of visits.

3 We use the terms visit and node interchangeably.

Author: Article Short Title
10 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

3.1.1. Phase-out Each ship is assigned a particular visit, σs ∈ V ′, at which the ship s ∈ S

begins its repositioning. This visit represents the earliest allowed phase-out time for that vessel. A

visit is then created for each subsequent port call of the ship on its phase-out slot. Each phase-out

visit is connected to the next one with an arc, as well as to all subsequent phase-in visits. Note

that phase-out visits do not connect to the phase-out visits of other ships.

Vessels may leave phase-out nodes to sail to SoS opportunities, flexible nodes, or to a phase-in

slot. Thus, arcs are created from each phase-out visit to each phase-in visit and SoS start visit

such that sailing between the visits is temporally feasible (i.e. the starting time of the phase-in/SoS

visit is greater than the end time of the phase-out visit plus the sailing time). Since flexible nodes

have no fixed start and end time, arcs are created to and from all flexible nodes to all phase-outs

within the same trade zone. Finally, phase-out visits have incoming arcs from phase-in visits in the

same trade zone. This allows ships to avoid sailing back and forth between ports when transferring

directly between the phase-out and phase-in.

3.1.2. Phase-in We create visits for each port call along a phase-in slot, and connect subse-

quent phase-in visits to each other. The final visit in a slot, which represents the time at which

regular operations must begin on a service, is connected to the graph sink, τ .

The phase-in graph structure ensures that the goal service has a vessel in each of its slots. An

example phase-in graph structure is portrayed in Figure 4, which shows the graph for the service

in Figure 1. Each sequence of visits (from top to bottom: red, green blue) represents a slot on the

goal service. Each visit is labeled with the port and week that it is visited. We note that our model

does not require services to have a weekly regularity, and can handle any service with a consistent

periodicity (i.e., every two weeks or every 15 days). The last node in each sequence corresponds to

the on-time requirement (node (c,2)) extended to each slot. After each of these visits, the service

begins normal operations, and is no longer under the control of the repositioning coordinator. This

graph structure ensures that all vessels perform a legal phase-in, namely that each slot is assigned

a single vessel. Each phase-in slot is guaranteed to be assigned a single vessel since there are as

many slots as there are vessels (three), the graph sink τ only has a single incoming node from each

slot, and the paths of vessels are node disjoint (except for τ).

3.1.3. Flexible visits Flexible visits are modeled by replicating each flexible visit for each

ship in the model. Flexible visits are connected to all inflexible and flexible visits within the same

trade zone. Replicating flexible visits for each vessel avoids requiring special constraints in the MIP

model to handle the fact that multiple vessels can visit the same flexible visit. This is because when

a vessel visits a flexible visit, the visit must be assigned a time when it can take place. Simply

copying the flexible nodes ensures that each flexible node can be scheduled along the path of a

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 11

Figure 4 The phase-in graph structure for the service in Figure 1. The sets RPI
0 ,RPI

1 , and RPI
2 contain the nodes

for each phase-in slot. Each set of nodes ends with a single visit at port c on weeks 2, 3 and 4, ensuring

that the weekly structure of the service is enforced.

vessel with simple constraints. Since our instances generally do not contain many flexible visits, this

duplication does not significantly hinder the solvability of the instances. Note that this opens the

possibility that two vessels may visit the same flexible visit at the same time. We do not consider

this to be a problem since flexible visits are at ports that will probably have the capacity to deal

with multiple ships. Since flexible visits do not have fixed entry and exit times, the time required

for a vessel to visit them must be taken into account. The total port stay at a flexible visit consists

of the piloting time, which is the time required to maneuver the vessel into, and out of, a port, and

the cargo/equipment (un)loading time. Flexible visits are connected to other visits in the graph

through the set of flexible arcs, Af .

3.1.4. Sail-on-service We introduce a number of disjoint sets of graph arcs and graph nodes

to represent a special graph structure that models SoS opportunities. We view an SoS as having

three types of ports; entry ports, where vessels may join the SoS, through ports, in which a vessel

must already be on the SoS, and end ports where a vessel may leave the SoS. The designation

of these ports is left to the repositioning coordinator. We make this distinction in case there are

circumstances outside the scope of the model that require certain ports to be called if an SoS is

used.

Figure 5 shows the graph structure of an example SoS opportunity, o. Vessels may enter the SoS

using arcs in the set ÂIn
o , either through parallel sailing nodes (OP

o) or transshipment nodes (OTS
o),

shown in red and green, respectively. Parallel sailings end in a transshipment, in which cargo is

moved to the repositioning vessel. The parallel sailing nodes are connected to the transshipment

nodes with the set of arcs ÂPTS
o . The set of arcs ÂPP

o contains arcs connecting subsequent ports for

parallel sailings. These arcs have twice the sailing cost for each vessel as the other arcs in the SoS

graph structure, which have the normal sailing cost between two ports for each vessel. Note that

p3 has no parallel sailing node because transshipment is not allowed in p4, which is a through port.

Ports with cabotage restrictions, such as p1, do not receive transshipment nodes, as transshipping

at that particular port would violate the law. Transshipment nodes connect to through nodes (blue)

using the arcs ÂTST
o . Once at a through node, a vessel must sail onward to the next through node

using the arc set ÂTT
o , until it reaches the arc âTE

o . This arc connects the through nodes to the

Author: Article Short Title
12 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Figure 5 The graph structure of an example SoS opportunity, which contains parallel nodes OPo in red, trans-

shipment nodes OTS
o in green, a cabotage restriction at port p1, through nodes OTo in blue, and end

nodes OEo in orange.

end nodes, and represents a bottleneck that ensures only one vessel uses a particular SoS. Since

the paths of the vessels are node disjoint, two vessels would have to visit the latest node in OT
o and

the earliest node in OE
o , which is not allowed. Finally, vessels may exit the SoS through the end

nodes (orange) in the set OE
o , using an arc in the set ÂOut

o . End nodes are connected by the arcs

in the set ÂEEo .

3.1.5. Sailing Cost The fuel consumption of a ship is approximately a cubic function of the

speed of the vessel (Wang and Meng (2012)). We precompute the optimal cost for each inflexible

arc using a linearized bunker consumption function, and compute the costs of flexible arcs during

optimization in our MIP model. All inflexible arcs in the model are assigned a sailing cost for each

ship that is the optimal sailing cost given the total duration of the arc. Since ships have a minimum

speed, if the duration of the arc is greater than the time required to sail on the arc at a ship’s

minimum speed, the cost is calculated using the minimum speed and the ship simply waits for the

remainder of the duration. This is a common practice for liner carriers in order to add buffer to

their schedules, thus making the network more robust to disruptions.

3.2. MIP Model

We now define the MIP model that guides the vessels through the graph, and controls the flow

of cargo and empty equipment, using the following parameters and variables to supplement the

parameters used to define the graph.

3.2.1. Parameters

S Set of ships.
V ′ Set of visits minus the graph sink.
V i, V f Set of inflexible and flexible visits, respectively.
Ai,Af Set of inflexible and flexible arcs, respectively.
A′ Set of arcs minus those arcs connecting to the graph sink, i.e., (i, j) ∈A,

i, j ∈ V ′.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 13

Q Set of empty equipment types. Q= {dc, rf }.
M Set of demand triplets of the form (o, d, q), where o∈ V ′, d⊆ V ′ and q ∈Q

are the origin visit, destination visits and the cargo type, respectively.
V q+ ⊆ V ′ Set of visits with an equipment surplus of type q.
V q− ⊆ V ′ Set of visits with an equipment deficit of type q.

V q∗ ⊆ V ′ Set of visits with an equipment surplus or deficit of type q (V q∗ = V q+ ∪
V q−).

uqs ∈R+ Capacity of vessel s for cargo type q ∈Q.
MOrig

i , (MDest
i)⊆M Set of demands with an origin (destination) visit i∈ V .

vs ∈ V ′ Starting visit of ship s∈ S.
tMv
si ∈R Move time per TEU for vessel s at visit i∈ V ′.
tEi ∈R Enter time at inflexible visit i∈ V ′.
tXi ∈R Exit time at inflexible visit i∈ V ′.
tPi ∈R Pilot time at visit i∈ V ′.
rVar
q ∈R+ Revenue for each TEU of equipment of type q ∈Q delivered.
r(o,d,q) ∈R+ Amount of revenue gained per TEU of loaded containers carried for the

demand triplet.
cSailsij ∈R+ Fixed cost of vessel s utilizing arc (i, j)∈A′.
cVarSail
sij ∈R+ Variable hourly cost of vessel s∈ S utilizing arc (i, j)∈A′.
cMv
i ∈R+ Cost to move a single TEU on or off a ship at visit i∈ V ′.
cPort
si ∈R Port fee associated with vessel s at visit i∈ V ′.

∆Min
ijs ∈R+ Minimum duration for vessel s to sail on flexible arc (i, j).

∆Max
ijs ∈R+ Maximum duration for vessel s to sail on flexible arc (i, j).

a(o,d,q) ∈R+ Amount of demand available for the demand triplet.
In(i)⊆ V ′ Set of visits with an arc connecting to visit i∈ V .
Out(i)⊆ V ′ Set of visits receiving an arc from i∈ V .
τ ∈ V Graph sink, which is not an actual visit.

3.2.2. Variables

wsij ∈R+
0 The amount of time that vessel s∈ S sails on flexible arc (i, j)∈Af .

x
(o,d,q)
ij ∈R+

0 Amount of flow of demand triplet (o, d, q)∈M on (i, j)∈A′.
xqij ∈R+

0 Amount of empty equipment of type q ∈Q flowing on (i, j)∈A′.
ysij ∈ {0,1} Indicates whether vessel s is sailing on arc (i, j)∈A.
zEi ∈R+

0 Defines the entrance time of a vessel at visit i.
zXi ∈R+

0 Defines the exit time of a vessel at visit i.

3.2.3. Objective and Constraints

max
∑

(o,d,q)∈M

∑
j∈d

∑
i∈In(j)

(
r(o,d,q)− cMv

o − cMv
j

)
x

(o,d,q)
ij

 (1)

+
∑
q∈Q

 ∑
i∈V q+

∑
j∈Out(i)

(
rEqpq − cMv

i

)
xqij −

∑
i∈V q−

∑
j∈In(i)

cMv
i xqji

 (2)

−
∑
s∈S

 ∑
(i,j)∈A′

cSailsij y
s
ij +

∑
(i,j)∈Af

cVarSail
sij wsij

 (3)

Author: Article Short Title
14 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

−
∑
j∈V ′

∑
i∈In(j)

∑
s∈S

cPort
sj ysij (4)

s. t.
∑
s∈S

∑
i∈In(j)

ysij ≤ 1 ∀j ∈ V ′ (5)∑
j∈Out(i)

ysij = 1 ∀s∈ S, i= vs (6)∑
i∈In(τ)

∑
s∈S

ysiτ = |S| (7)∑
i∈In(j)

ysij −
∑

i∈Out(j)

ysji = 0 ∀j ∈ {V ′ \
⋃
s∈S

vs}, s∈ S (8)∑
(o,d,rf)∈M

x
(o,d,rf)
ij ≤

∑
s∈S

urf
s y

s
ij ∀(i, j)∈A′ (9)∑

(o,d,q)∈M

x
(o,d,q)
ij +

∑
q′∈Q

xq
′

ij ≤
∑
s∈S

udc
s y

s
ij ∀(i, j)∈A′ (10)∑

i∈Out(o)

x
(o,d,q)
oi ≤ a(o,d,q)

∑
i∈Out(o)

∑
s∈S

ysoi ∀(o, d, q)∈M (11)∑
i∈In(j)

x
(o,d,q)
ij −

∑
k∈Out(j)

x
(o,d,q)
jk = 0 ∀(o, d, q)∈M,j ∈ V ′ \ (o∪ d) (12)∑

i∈In(j)

xqij −
∑

k∈Out(j)

xqjk = 0 ∀q ∈Q,j ∈ V ′ \V q∗ (13)

∆Min
ijs y

s
ij ≤wsij ≤∆Max

ijs y
s
ij ∀(i, j)∈Af , s∈ S (14)

zEi = tEi
∑
s∈S

∑
j∈In(i)

ysij ∀i∈ V i (15)

zXi = tXi
∑
s∈S

∑
j∈Out(i)

ysij ∀i∈ V i (16)

zXi +
∑
s∈S

wsij ≤ zEj ∀(i, j)∈Af (17)∑
(o,d,q)∈MOrig

i

∑
j∈Out(o)

tMv
so x

(o,d,q)
oj +

∑
(o,d,q)∈MDest

i

∑
k∈d

∑
j∈In(k)

tMv
sd x

(o,d,q)
jk

+
∑
q∈Q

 ∑
i′∈{V q+∩{i}}

∑
j∈Out(i′)

tMv
si′ x

q
i′j +

∑
i′∈{V q−∩{i}}

∑
j∈In(i′)

tMv
sj x

q
ji′


− zXi + zEi + tPi

∑
j∈In(i)

ysij ≤ 0 ∀i∈ V f , s∈ S (18)

The domains of the variables are as previously described. The objective consists of several com-

ponents. The profit from delivering cargo (1) is computed based on the revenue from delivering

cargo minus the cost to load and unload the cargo from the vessel. Note that the model can choose

how much of a demand to deliver, even choosing to deliver a fractional amount. We can allow this

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 15

since each demand is an aggregation of cargo between two ports, meaning at most one container

between two ports will be fractional. Furthermore, since each individual demand triplet can have

multiple possible destinations we sum over all of these destinations, d. Empty equipment profit is

taken into account in (2). Empty equipment is handled similar to cargo, except that equipment

can flow from any port where it is in supply to any port where it is in demand. The sailing cost (3)

takes into account the precomputed sailing costs on arcs between inflexible visits, as well as the

variable cost for sailings to and from flexible visits. Note that the fixed sailing cost on an arc does

not only include fuel costs, but can also include canal fees or the time-charter bonus for entering

an SoS. Finally, port fees are deducted in (4).

Multiple vessels are prevented from visiting the same visit in (5). The flow of each vessel from

its source node to the graph sink is handled by (6), (7) and (8), with (7) ensuring that all vessels

arrive at the sink.

Arcs are assigned capacities if a vessel utilizes the arc in (9), which assigns the reefer container

capacity, and in (10), which assigns the total container capacity, respectively. Note that constraints

(9) do not take into account empty reefer equipment, since empty containers do not need to be

turned on, and can therefore be placed anywhere on the vessel. Cargo is only allowed to flow on

arcs with a vessel in (11). The flow of cargo from its source to its destination, through intermediate

nodes, is handled by (12). Constraints (13) balance the flow of empty equipment into and out of

nodes. In contrast to the way cargo is handled, equipment can flow from any port where it is in

supply to any port where it is in demand. Since the amount of equipment carried is limited only

by the capacity of the vessel, no flow source/sink constraints are required.

Flexible arcs have a duration constrained by the minimum and maximum sailing time of the

vessel on the arc in (14). The enter and exit time of a vessel at inflexible ports is handled by (15)

and (16), and we note that in practice these constraints are only necessary if one of the outgoing

arcs from an inflexible visit ends at a flexible visit. Constraints (17) sets the enter time of a visit

to be the duration of a vessel on a flexible arc plus the exit time of the vessel at the start of the

arc. Constraints (18) controls the amount of time a vessel spends at a flexible visit. The first part

of the constraint computes the time required to load and unload cargo and equipment, with the

final term of the constraint adding the piloting time to the duration only if one of the incoming

arcs is enabled (i.e. the flexible visit is being used).

The model forms a disjoint path problem in which a fractional multi-commodity flow is allowed

to flow over arcs in the vessel paths, along with a small scheduling component in the flexible nodes.

Flexible arcs could be alternatively represented using a discretized approach, however we forego

a discretization because of the vast differences in timescales between port activities and sailing

activities, which are on the order of hours and days, respectively. In order to achieve such a fine

Author: Article Short Title
16 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

grained view of flexible arc activities, we would require numerous extra arcs and nodes for each

flexible node.

3.3. Complexity

We reduce the knapsack problem to the LSFRP with flexible visits in order to show that the LSFRP

is NP-complete. Given n items, each with a profit pi and a size si, and a knapsack with a capacity

C, the knapsack problem maximizes the objective
∑n

i=0 pixi where xi is a binary variable indicating

whether or not item i is in the knapsack, subject to the capacity constraint
∑n

i=0 sixi ≤C.

Theorem 1. The LSFRP with flexible visits is NP-complete.

We first note that the LSFRP is clearly in NP, as the total profit can be easily computed from

the paths of the vessels through the graph. We initialize an LSFRP with a single vessel and no

cargo or equipment demands. The problem instance contains a single phase-out visit, ω, and a

single phase-in visit, λ. The port fees at both ω and λ are 0, and we let enter(ω) = exit(ω) = 0 and

enter(λ) = exit(λ) = C. In other words, the timespan in which the repositioning must take place

is limited to the capacity of the knapsack. For each knapsack item, we create a flexible visit, fi,

which has a duration of exactly si, i.e. pilot(fi) = si. The port fee for visiting fi is −pi, since the

LSFRP maximizes profit (i.e. minimizes fees). All flexible nodes, as well as ω and λ, are in a single

trade zone. Therefore, the specification of the LSFRP graph ensures that the phase-out node, ω,

connects to all flexible nodes, all flexible nodes connect to each other, and all flexible nodes connect

to the phase-in node, λ. The sailing time of the vessel between all nodes in the graph is set to 0.

Item i is included in the knapsack solution if and only if the vessel visits fi during its reposition-

ing. Since the vessel can only visit a single flexible visit at a time, the duration of each flexible visit

is fixed to the size of the item it represents, and the phase-in visit is fixed in time to the size of

the knapsack, the capacity constraint of the knapsack must be satisfied. Additionally, according to

the objective of the LSFRP, only the flexible visits corresponding to the maximum profit knapsack

items will be chosen. Therefore, the LSFRP with flexible visits is NP-complete. �

We note that flexible ports are not present in every LSFRP problem, and this proof only covers

those with flexible ports. This is not to say that LSFRP problems without flexible ports are neces-

sarily polynomial time solvable. Indeed, the LSFRP without flexible ports is likely NP-complete,

however this is not trivial to prove and remains an open problem at this time.

4. Simulated Annealing

We created a heuristic solution procedure for the LSFRP with cargo flows using a simulated

annealing (SA) algorithm. SA was introduced in Kirkpatrick et al. (1983) and consists of a local

search that tries to avoid getting stuck in a local optimum by accepting worsening solutions with

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 17

a probability proportional to a so-called temperature, which declines as the algorithm progresses.

SA therefore begins almost as a random walk, and slowly becomes more greedy as it explores the

search space, eventually converging on a local optimum.

We use a combined reheating and restart strategy similar to the one used in Taheri and Zomaya

(2007) to overcome local optima. Reheating involves increasing the temperature of the SA after

convergence to a factor of the initial temperature. We combine reheating with full restarts, in that

we allow only several reheats before we restart the SA from the initial solution. The idea behind

such a restart is that several reheats could put the solution of the SA in a part of the search space

that is far away from the global optimum, and continual reheating may not move it in the correct

direction. Restarting from the initial solution allows the SA to move in a different direction and

find a better solution. Our solution procedure can be viewed as a form of iterated local search

(see Lourenço et al. (2003)), in which reheating is the perturbation procedure and the local search

to be iterated over is simulated annealing. Our SA algorithm uses a penalized objective in which

certain types of infeasible solutions are accepted in order to avoid getting stuck within the search

landscape.

Algorithm 1 shows the particular version of the SA algorithm that we are using in this work,

parameterized as follows: p represents the problem to solve, f is the objective evaluation function,

tInit is the initial temperature, α is the temperature reduction factor, β is the reheating factor, tMin

is the convergence temperature, rItrs is the maximum number of non-improving iterations before

reheating, rRestart is the number of reheats before resetting the solution to the initial solution,

rReheat is the number of non-improving reheats before stopping the search.

After creating an initial solution on line 2 and initializing variables on the following lines, the

algorithm begins its outer reheat/restart loop. On lines 7 – 9 we reset the solution used for the

current reheat if the number of reheats exceeds a parameter rRestart . This allows the SA to choose

a different path from the starting solution, one that could lead to better solutions. Within the SA

inner loop on lines 10 – 18, a random neighbor of the current solution is selected.The neighbor

selected on line 11 is generated randomly from one of several neighbor generators. We choose the

generator uniformly at random. We then check whether the objective of the new solution is better

than that of the current solution. When the new solution has a better objective value, we accept it.

However, when the new solution is worse than the current solution, we accept the solution according

to the Metropolis criterion introduced in Kirkpatrick et al. (1983). We then update the incumbent

solution (line 16) and reduce the temperature on an exponential cooling schedule according to the

factor α on line 17. We exit the inner loop if the temperature falls below the threshold, tMin , or the

number of iterations in which no improving solution was found is greater than rItrs . We reheat the

temperature to a factor β of the original temperature and continue the search until either running

out of CPU time or we exceed the maximum number of non-improving reheats, rReheat .

Author: Article Short Title
18 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 1 The SA algorithm with reheating and restarts.
0.9

1: function SA(p, f , tInit , α, β, tMin , rItrs , rRestart , rReheat)

2: sInit←CreateSolution(p)

3: t← tInit ; s∗← sInit ; s∗prev ← sInit

4: reheats← 0; nonImprovingReheats← 0

5: repeat . Reheat/restart loop.

6: nonImprovingItr ← 0;

7: if reheats ≥ rRestart then

8: s← sInit

9: reheats← 0

10: repeat . SA loop.

11: s′← SelectNeighbor(s)

12: if f(s′)> f(s) then s← s′

13: else

14: nonImprovingItr ← nonImprovingItr + 1

15: if exp((f(s′)− f(s))/t)>Random() then s← s′ . Metropolis acceptance

criterion.

16: if f(s′)> f(s∗) then s∗← s′

17: t← tα

18: until t < tMin or nonImprovingItr ≥ rItrs

19: t← tInitβ . Reheat to a factor β of the initial temperature.

20: reheats← reheats + 1

21: if s∗ ≤ s∗prev then nonImprovingReheats← nonImprovingReheats + 1

22: s∗prev ←max{s∗, s∗prev}

23: until Time limit reached or nonImprovingReheats ≥ rReheat

24: return s∗

4.1. Initial Solution Heuristics

We introduce several heuristics to generate initial solutions to the LSFRP for use in our SA

algorithm.

4.1.1. Direct route heuristic (DRH) We model the connections between the starting visit

of each vessel with all of the feasible phase-ins using a linear assignment problem. The cost of each

vessel/phase-in assignment is equal to the sailing cost of the vessel to the particular phase-in if

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 19

the sailing is feasible, or infinity if it is not. The direct route heuristic generates a feasible starting

solution, but it is rarely, if ever, an optimal solution to the LSFRP. We use the Hungarian algorithm

(Kuhn (1955)) to solve the linear assignment problem.

4.1.2. Shortest paths heuristic (SPH) We generate paths for vessels using a shortest path

algorithm that iteratively creates a path for each ship on a graph containing only those visits that

are not visited in any previously generated path. While this ensures that any solution the heuristic

generates will be feasible, it may not always be possible to generate any solution at all since all

of the feasible phase-in opportunities for a particular ship may already have been assigned to

another ship. We order the ships by their first possible phase-out time and generate paths starting

with the ship with the latest phase-out. We found that with this ordering, only one out of our 44

instances could not generate a feasible starting solution, whereas with random orderings or with

an ascending phase-out time ordering, feasible starting solutions could almost never be generated.

If it is not possible to generate a solution, we fall back on DRH, although this never happened in

our experiments.

Sailing costs on inflexible arcs as well as port fees are easy to take into account in the shortest

path algorithm, however flexible arcs and cargo/equipment revenues pose a challenge. It is not

possible to take these components fully into account within a standard shortest path algorithm,

since this would require the cost of a particular arc to vary based on the scheduling of flexible

arcs. Thus, the heuristic generates solutions that do not re-use visits between vessels, but are not

necessarily temporally feasible on instances with flexible arcs.

Flexible arc handling We allow flexible arcs to be used in the shortest path, even though they

represent a scheduling problem that cannot be solved while the shortest path algorithm is running.

We ignore temporal feasibility and focus only on the cost of the flexible arc. We define a parameter

γ in the range [0,1] that represents how fast the ship is sailing with a value of 0 being the ship’s

minimum speed, and a value of 1 being the maximum speed. We then assign arcs a sailing cost

based on the speed of the vessel. This allows the heuristic to try to take into account some of the

costs that would be incurred using a flexible arc.

Cargo handling The profit for each cargo demand in the graph is represented by computing the

total possible profit from the demand (cargo revenue less container loading/unloading fees at the

origin and destination) and multiplying this value by a scaling parameter `Cargo, which is in the

range [0,1]. We then offset the sailing costs and port fees at the origin and destination visits using

this scaled cargo profit. Thus, nodes where lots of cargo originates or is delivered have a high profit

and are desirable for the shortest path algorithm to visit. Since cargo can only be delivered if both

the origin and destination are on the path of a ship, this heuristic cannot guarantee that the path

taken is actually one that has profitable cargo flows.

Author: Article Short Title
20 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Empty Equipment handling We perform a similar process of adding profit to visits with empty

equipment surpluses/deficits. The primary difference is that we do not know how much equipment

can be loaded on to the vessel. Thus, we introduce a parameter `Eqp ∈Z+ that represents the amount

of equipment to load or unload at a visit. We cannot guarantee the ship will have sufficient capacity

to actually load or unload that amount of cargo, but this allows the shortest path algorithm to

utilize visits with empty equipment, which might otherwise be ignored.

Shortest Path Implementation Since we take into account cargo and equipment profits in this

heuristic, arcs can have costs or revenues associated with them, meaning the sign of all the arcs is

not the same. We therefore use the Bellman-Ford algorithm to sequentially compute the shortest

path for each vessel. After a shortest path is computed, we update a list of banned visits that may

not be used again. Any visit that is banned is considered to have a distance of infinity to and from

all visits, ensuring the shortest path algorithm does not choose it. It is possible that negative cycles

are generated by the algorithm. We handle these by clearing the list of banned visits and starting

the algorithm from the first vessel in the vessel ordering using updated cargo and equipment profit

parameters. After each failure, we subtract 0.1 from the cargo profit parameter `Cargo and 50 from

`Eqp, until these parameters reach zero. When both parameters are zero, the graph is guaranteed to

not have any negative cycles since arcs reflect only sailing costs. In practice, this is only necessary

on several instances.

4.1.3. Greedy heuristic (GH) The greedy heuristic (GH) chooses the most profitable out-

going arc from each visit based on the same profit calculations and parameters as SPH. Similar to

SPH, GH does not allow vessels to visit the same visit more than once, and does this by storing a

list of banned nodes after computing a greedy path for a vessel. The order the paths are generated

in is the same as in SPH, as nearly every other ordering we tried resulted in failure of the algo-

rithm to compute a solution. As in SPH, if a solution cannot be generated we fall back on DRH,

although this did not happen in our experiments. We also tried creating a greedy heuristic that is

not concerned with feasibility, however, we found that the solutions it generates tend to be of poor

quality, as many vessels sail to the same phase-in visit and the SA must then completely construct

new routes for those vessels.

4.2. Neighborhoods

We now describe the neighborhood operators for our SA algorithm. At each iteration of our SA,

a neighborhood operator is chosen uniformly at random to modify the current solution. The first

three neighborhoods we introduce have sizes that grow polynomially in the size of the problem, but

remain too large to enumerate within a local search, whereas our last two involve generating paths

through the graph, and can therefore generate exponentially many neighbors for a given solution.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 21

We therefore use a sampling approach and generate neighbors at random rather than attempt an

exhaustive search of the neighborhoods.

Visit addition A ship, s, is selected uniformly at random along with an arc (u, v) on the path

of s. A new visit, w, is chosen such that an arc exists from u to w and from w to v, i.e. w ∈ out(u)

and w ∈ in(v), and w is not already on the path of s. The visit w is then inserted into the path of

s between u and v. If no such visit w exists, then the neighborhood performs no changes.

Visit removal A ship, s, is selected uniformly at random along with a visit on its path, u, such

that u is neither the first or last visit on the path. Visit u is removed from the path if there exists

an arc from the visit before u to the visit after u. If no such arc exists, the solution is not changed.

Visit swap Two ships s and s′, s 6= s′ are chosen uniformly at random, and a visit u is selected

from the path of s. If a visit w on the path of s′ exists such that swapping u and w is possible,

i.e. In(u) ∩ In(w) 6= ∅ and Out(u) ∩ Out(w) 6= ∅, and swapping u and v would not introduce a

duplicated node on either path, then u and w are swapped between paths.

Random path completion (RPC) A random ship, s, is selected uniformly at random along with

a visit, u, on its path. All visits subsequent to u are removed from the path of s, and are replaced

with a random path from u to the graph sink. Each visit added to the random path must not

already be on the path of s, to ensure there are no loops over flexible visits. If it is impossible to

finish a random path without containing a loop, the random path is abandoned and the solution

is not changed.

Demand destination completion (DDC) A random ship, s, is selected uniformly at random along

with a visit on its path, u, from which demand is loaded. A demand is chosen that could be

loaded at u, but cannot be delivered because none of its delivery visits are on the path of s. The

neighborhood attempts to connect the current path to one of the destinations of the cargo using

a breadth first search. Then, another breadth first search is started from the destination back to

any subsequent visit on the path, v. If no such path exists, or such paths can only be created by

introducing a duplicated node into the vessel’s path, then the solution is left unchanged. All nodes

in between u and v are deleted from the path and replaced with the nodes from the breadth first

searches.

4.3. Objective Evaluation

We split our objective evaluation into two cases. The first case consists of a mathematical model

to compute the objective in situations where flexible nodes or several cargo opportunities require a

linear program in order to compute the objective. We then describe a second case where a greedy

objective evaluation function can be used in certain situations.

Author: Article Short Title
22 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

4.3.1. Single ship mathematical model After applying a neighborhood operator to a solu-

tion and generating a candidate solution, the search procedure must update its objective value for

the current solution. We exploit the fact that the paths of vessels are disjoint and only update the

objective for the paths that a neighborhood operator changes. Note that since we admit infeasible

solutions as described above, it is possible that some cargo is carried multiple times. However, the

extra revenue that vessels can gain is significantly less than the penalty for multiple vessels calling

the same visit.

The objective in the LSFRP consists of three components: the fixed costs for inflexible arcs and

port fees, the cost of sailing on flexible arcs, and the profit from delivering cargo and equipment.

The fixed costs are easy to compute since their costs are given by the constants of the problem.

Computing the cost of using flexible arcs requires solving a simple scheduling problem for the vessel.

Since the amount of time it takes to load cargo and equipment is taken into account at flexible

visits, the scheduling of flexible arcs and the handling of cargo and equipment must be solved

together. We therefore formulate a linear program to compute the objective and load the most

profitable cargo along the vessel’s path, and solve it using CPLEX. We adopt the same notation

as in our mathematical model in Section 3.

We compute the cost of each ship’s path independently according to the following mathematical

formulation. We define the path of ship s ∈ S as V̄s = (vs1, . . . , v
s
n(s)), where n(s) is the number of

visits on the path of ship s. Additionally, let V̄ f
s = V̄s ∩V f be the flexible visits used on the path,

and Ās = ((vs1, v
s
2), (vs2, v

s
3), . . . (vsn(s)−1, v

s
n(s))) be the sequence of arcs used on the path of ship s, and

Āfs = Ās ∩Af be the flexible arcs used on the path.

Since the ship’s path is fully defined by V̄s, we can pre-compute which demands and equipment

flows can be carried by ship s. We merge empty equipment flows into the demand structure of

the problem. We can do this because the equipment source and destination ports are fixed by the

ship’s path. Let MLS
s be the set of demand triplets relevant to the path of ship s∈ S merged with

empty equipment triplets. Formally,

MLS
s = {(o, d, q)∈M | o∈ V̄s ∧∃k ∈ d s.t. k ∈ V̄s}

⋃
q∈Q

Eq,

where M is the set of demand triplets, Q is the set of equipment types, and

Eq = {(o, d,dc) | o∈ V q+ ∩ V̄s ∧ d∈ V q− ∩ V̄s},

is the set of origin-destination pairs for equipment that is available on the vessel path, in which

V q+ and V q− are the sets of empty equipment surplus and demand visits, respectively. For any

(o, d,dc)∈Eq,∀q ∈Q, we let r(o,d,dc) = rEqp
q and a(o,d,dc) = udc

s . This sets the revenue of delivering a

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 23

demand representing equipment to the per TEU equipment delivery revenue, and the amount of

empty equipment available to be the dry capacity of the ship, respectively.

In order to keep track of the portion of the objective penalizing infeasibility, we let gsi = |{s′ ∈

S \{s} | i∈ V̄s′}|, which is the number of paths in which visit i is contained, other than the path of

ship s. Furthermore, the parameter hi is equal to 1 iff i ∈
⋃
`∈LR

PI
` , meaning visit i is a phase-in

visit.

Parameters Our LP uses the following parameters.

V̄s, V̄
f
s Sequence of visits on the path of ship s∈ S.

Ās, Ā
f
s Sequence of arcs on the path of ship s∈ S.

Q Set of equipment types. Q= {dc, rf }.
MLS

s Set of demands and equipment that can be carried by ship s∈ S, consisting
of demand triplets (o, d, q).

MLS
si Set of demands and equipment that can be carried by ship s ∈ S at visit

i∈ V̄s, where MLS
si = {(o, d, q)∈MLS

s | i= o∨ i∈ d}.
MLS

si,rf Set of reefer demands and equipment that can be carried by ship s∈ S at
visit i∈ V̄s, where MLS

si,rf = {(o, d, q)∈MLS
si | q= rf }.

cSailsij ∈R+ Fixed cost of vessel s utilizing arc (i, j)∈A′.
cVarSail
sij ∈R+ Variable hourly cost of vessel s∈ S utilizing arc (i, j)∈A′.
cMv
i ∈R+ Cost of a TEU move at visit i∈ V ′.
cPort
si ∈R Port fee associated with vessel s at visit i∈ V ′.
r(o,d,q) ∈R+ Amount of revenue gained per TEU delivered for the demand triplet

(o, d, q).
∆Min
ijs ,∆

Max
ijs ∈R+ Minimum and maximum duration for vessel s to sail on flexible arc (i, j),

respectively.
tEi , t

X
i ∈R Enter and exit time at inflexible visit i∈ V ′, respectively.

tPi ∈R Pilot time at visit i∈ V ′.
tMv
si ∈R Move time per TEU for vessel s at visit i∈ V ′.
a(o,d,q) ∈R+ Amount of demand available for the demand triplet.
uqs ∈R+ Capacity of vessel s for cargo type q ∈Q.
gsi Number of paths in which visit i is included, not including the path of

ship s.
hi Equal to 1 iff visit i is a phase-in visit.

Variables Our LP uses the following variables.

zEsi ∈R+ Entrance time at visit i∈ V̄s
zXsi ∈R+ Exit time at visit i∈ V̄s
x(o,d,q)
s ∈ [0, a(o,d,q)] Amount of demand (o, d, q)∈MLS

s carried.

Objective and constraints The LP is defined as follows.

max
∑

(o,d,q)∈MLS
s

(r(o,d,q)− cMv
o −max

k∈d
{cMv
k })x(o,d,q)

s (19)

−
∑

(i,j)∈Ās

cSailsij −
∑

(i,j)∈Āfs

cVarSail
sij (zXsj − zEsi)−

∑
i∈V̄s

cPort
si (20)

Author: Article Short Title
24 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

−
∑
i∈V̄s

gsi
(
(1−hi)p+hip

PI
)

(21)

s. t. ∆Min
ijs ≤ zXsj − zEsi ≤∆Max

ijs ∀(i, j)∈ Āfs (22)

zEsi ≤ zXsi ∀i∈ V̄s (23)

zEsi = tEi ∀i∈ V̄s \ V̄ f
s (24)

zXsi = tXi ∀i∈ V̄s \ V̄ f
s (25)

zXsi − zEsi− tPi −
∑

(i,d,q)∈MLS
s

tMv
si x

(i,d,q)
s −

∑
{(o,d,q)∈MLS

s | i∈d}

tMv
si x

(o,d,q)
s ≥ 0 ∀i∈ V̄ f

s (26)

∑
(o,d,q)∈MLS

si

x(o,d,q)
s ≤ udc

s ∀i∈ V̄s (27)

∑
(o,d,rf)∈MLS

si,rf

x(o,d,rf)
s ≤ urf

s ∀i∈ V̄s (28)

The objective is to maximize the container carrying profit (including equipment) in (19) minus

the sailing costs, both flexible and inflexible, minus the port fees in (20), and minus the penalization

of infeasibility in (21). We include the max term in (19) because d is a set of destinations, however

these destinations actually represent the same underlying port with the same costs. We apply the

penalization factor p for each path that visit i is contained in other than that of ship s if the visit

is not a phase-in visit. If the visit is a phase-in visit, we apply the penalty pPI . Note that the fixed

sailing cost and port fees components of objective (20) are simply constants that can be calculated

before solving the LP. These constants, with the addition of port fees and the penalty, are included

for completeness, but are not passed to the LP solver.

Constraints (22) require that the sailing time on flexible arcs is between the minimum and

maximum sailing speed of the ship. Constraints (23) ensure that the entrance time of a ship at a

visit is earlier than its exit time. Constraints (24) and (25) fix the times of inflexible visits on the

path. Note that we replace these variables with constants before passing the model into CPLEX

to improve the solution speed. The loading and unloading time of containers at flexible visits is

taken into account in constraints (26). Constraints (27) and (28) prevent the vessel from loading

too many dry and reefer containers or reefer containers, respectively. The bounds of the variables

are as defined.

If the model is temporally infeasible, we ignore cargo and equipment and penalize the objective

by the constant pT . We choose this over making the timing constraints soft because the sailing

costs are not correctly computed in such a model, and even offers some incentive for infeasibility.

4.3.2. Greedy objective computation In certain situations it is possible to avoid calling

CPLEX and thereby speed up the computation of the objective. If a vessel’s path includes no

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 25

flexible visits and at no visit could the amount of cargo (both dry and reefer) loaded on to the

vessel exceed its capacity, then we can use a simple greedy algorithm to load cargo onto the vessel.

The greedy algorithm works by loading all available cargo at all visits on the path, and then fills

the remaining capacity of the vessel with equipment. This will always be the optimal loading of

cargo and equipment as long as the profit earned per TEU from carrying equipment is less than

the profit per TEU of any demand. In practice this is true, since customer’s cargo is preferred over

empty containers. We then combine the cargo profit computed by the greedy algorithm with the

sailing costs and port fees, which do not require an LP to compute.

5. Computational Study

We evaluate the performance of our MIP and the SA algorithm across a dataset of real-world and

real-world inspired instances. We show that our novel approach to solving the LSFRP with cargo

flows is ready for use in a decision support system, as the solution time is fast enough for human

interaction (on the order of a few minutes). In addition, our SA algorithm is able to find high

quality solutions on our industrial collaborator’s reference scenario that earn twice the profit of

the reference solution.

5.1. Benchmark

We created a benchmark set of instances containing one real world repositioning scenario with

eleven ships, and one partially real-world scenario based on the routes in Figure 3. The rest of

our benchmark set consists of scenarios that never took place, but were crafted using real liner

shipping data to examine how our algorithms scale. Since all of our data in the benchmark is confi-

dential information from our industrial collaborator, we have duplicated the confidential instances

and perturbed the costs, revenues, amounts of cargo in demands, and randomly deleted/added

demands to create a publicly available benchmark. We combine publicly available liner shipping

data, such as ship information and port fees, from the ENERPLAN benchmark in Brouer et al.

(2012) with randomly perturbed data from our industrial collaborator. We perturb all values not

already contained in the ENERPLAN benchmark by ±20%, as in Brouer et al. (2012), including

non-cost/revenue related values such as port productivities, ensuring that no private data is con-

tained in the dataset4. We have kept the schedules of the ships in the repositioning scenarios the

same, as this is public information.

Tables 2 and 3 gives information about the instances in both the confidential and public datasets,

respectively, along with the runtime of our MIP model in CPLEX 12.4 (IBM (2012)). The MIP

runtimes are computed on a dual 6-core AMD Opteron 2425 HE machine with a maximum of 10GB

4 Our public dataset is available at http://www.decisionoptimizationlab.dk/index.php/datasets/17-research/

datasets/59-lsfrpcf.

Author: Article Short Title
26 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

of RAM per process. We allow CPLEX to use only a single processor. The tables give the instance

ID, the number of ships, |S|, the number of nodes in the graph, |V |, the number of inflexible arcs,

|Ai|, the number of flexible arcs, |Af |, the number of demands, |M |, the number of ports with

equipment surpluses or demands, |E|= | ∪q∈Q V q∗ |, the number of SoS opportunities, |SoS |, and

finally the runtime of CPLEX in seconds with a one hour timeout. Instances used in the training set

for our parameter tuning are marked with an asterisk. The main difference between the confidential

and public instances is their cost structure, as well as the number of demands and amount of cargo

in each demand.

We present results for both the confidential and public datasets to show that our public dataset

is able to capture the difficult components of the LSFRP, and is thus a viable benchmark for further

study of the LSFRP. Note that the instance IDs correspond between the confidential and private

instances, with the only difference being the cost structure of the instances, since the schedule

information used in the instances is already public.

The instances range in size from 3 to 11 ships with various SoS and equipment opportunities

made available in each instance. Our instances have between 30 and 379 nodes, and up to 11979

arcs. The number of demands can be as high as 1748, although most instances have less than 400

demands. The large number of demands often results in our model using a significant amount of

memory due to the large number of variables generated from the multi-commodity flow. On those

problems that do fit into memory, but still timeout, we suspect the problem to be the interaction

between determining the paths of vessels and the multi-commodity flow, which must be recomputed

for each new path a vessel is assigned.

Most instances have several hundred demands, with the largest confidential instance having 1748

demands and the largest public instance 1423 demands. CPLEX is able to solve 33 out of the

44 instances on both the confidential and the public datasets. Many instances are solved rather

quickly, with over 25 confidential instances solved in under two minutes of CPU time and 17 of

those instances requiring under ten seconds of computation time. Of the public instances, 28 are

solvable in two minutes and 17 in under 10 seconds. The MIP approach does not scale past 8 ships

on either dataset, as the graph sizes start to become large, and the number of variables increases

as well. Many of these instances are unsolvable purely due to running out of memory, which gives

hope for branch and price approaches. We encounter memory issues on instances that have many

arcs and cargo/equipment demands, since a variable must be created for each demand on each arc.

In addition to solving our MIP model to optimality, we attempted to solve to a 5% and 10%

gap, however the results of Tables 2 and 3 remain unchanged; instances that cannot be solved to

optimality still cannot be solved to a 10% gap, and instances that can be solved are not solved

significantly faster as a result. Since we aim to find good solutions to the LSFRP within ten minutes

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 27

Table 2 Confidential dataset instance information and solution time to optimality
with CPLEX 12.4.

ID |S| |V | |Ai| |Af | |Θ| |E| |SOS | MIP

repos1c 3 30 94 0 27 0 1 0.04

repos2c 3 30 94 0 27 0 2 0.04
repos3c 3 37 113 0 25 0 2 0.03

repos4c 3 40 143 0 21 0 3 0.03

repos5c 3 47 208 0 24 0 3 0.05
repos6c 3 47 208 0 24 0 3 0.06

repos7c 3 53 146 0 51 0 4 0.06

repos8c 3 104 1015 121 67 6 3 1.92
repos9c 3 104 1015 121 67 9 3 1.91

repos10c 4 58 389 0 150 0 0 16.08
repos11c 4 62 389 40 150 6 0 14.50

repos12c 4 74 469 0 174 0 2 72.91

repos13c 4 80 492 0 186 0 4 231.47
repos14c 4 80 492 0 186 24 4 182.06

repos15c∗ 5 68 237 0 214 0 0 0.39

repos16c 5 103 296 0 396 0 5 0.95
repos17c∗ 6 100 955 0 85 0 0 5.41
repos18c∗ 6 133 1138 0 101 0 9 6.72

repos19c∗ 6 133 1138 0 101 33 9 5.68
repos20c 6 140 1558 0 97 0 4 313.55
repos21c∗ 6 140 1558 0 97 13 4 47.78
repos22c 6 140 1558 0 97 37 4 39.51

repos23c∗ 6 152 1597 162 103 71 9 19.79
repos24c 7 75 395 0 196 0 3 2.30
repos25c 7 77 406 0 195 0 0 2.69

repos26c 7 77 406 0 195 16 0 1.96
repos27c 7 78 502 0 237 0 0 94.48
repos28c 7 89 537 0 241 0 4 174.55

repos29c 7 89 537 0 241 19 4 186.38
repos30c 8 126 1154 0 165 0 0 2075.82
repos31c 8 126 1300 0 312 0 0 99.02

repos32c∗ 8 140 1262 0 188 0 3 487.93
repos33c 8 209 2211 453 213 50 3 548.11
repos34c 9 304 9863 0 435 0 0 Time

repos35c 9 357 11289 38 1075 118 4 Mem
repos36c∗ 9 364 11078 0 1280 0 4 Mem

repos37c∗ 9 371 10416 0 1270 114 7 Mem

repos38c∗ 9 373 11979 38 1280 126 4 Mem
repos39c∗ 9 379 10660 0 1371 0 7 Mem

repos40c 9 379 10660 0 1371 118 7 Mem
repos41c∗ 10 249 7654 0 473 0 0 Time
repos42c∗ 11 275 5562 0 1748 0 5 Time

repos43c∗ 11 320 11391 0 1285 0 0 Mem
repos44c 11 328 11853 0 1403 0 4 Mem

in order to create a decision support system with our algorithms that can be used in industry,

heuristic methods are required.

5.2. SA Implementation

We implemented the SA algorithm described in Section 4 in C++11 (ISO/IEC (2011)). The imple-

mentation relies on CPLEX 12.4 for solving components of the objective function, as well as Google

OR Tools (Google (2012)) for computing the assignment problem in the DRH heuristic. Our imple-

mentation is able to process over 700,000 SA iterations per second on smaller instances, where an

Author: Article Short Title
28 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 3 Public dataset instance information and solution time to optimality with
CPLEX 12.4.

ID |S| |V | |Ai| |Af | |Θ| |E| |SOS | MIP

repos1p 3 36 150 0 28 0 1 0.06

repos2p 3 36 150 0 28 0 2 0.06
repos3p 3 38 151 0 24 0 2 0.04

repos4p 3 42 185 0 20 0 3 0.04

repos5p 3 51 270 0 22 0 3 0.07
repos6p 3 51 270 0 22 0 3 0.08

repos7p 3 54 196 0 46 0 4 0.08

repos8p 3 108 1185 126 50 6 3 1.89
repos9p 3 108 1185 126 50 10 3 1.82

repos10p 4 58 499 0 125 0 0 74.85
repos11p 4 62 499 38 125 6 0 38.17

repos12p 4 74 603 0 145 0 2 106.63

repos13p 4 80 632 0 155 0 4 99.81
repos14p 4 80 632 0 155 24 4 97.15

repos15p 5 71 355 0 173 0 0 0.47

repos16p 5 106 420 0 320 0 5 1.08
repos17p 6 102 1198 0 75 0 0 4.64
repos18p 6 135 1439 0 87 0 9 6.79

repos19p 6 135 1439 0 87 33 9 8.18
repos20p 6 142 1865 0 80 0 4 13.84
repos21p 6 142 1865 0 80 13 4 23.04
repos22p 6 142 1865 0 80 37 4 17.67

repos23p 6 153 1598 159 89 71 9 19.58
repos24p 7 75 482 0 154 0 3 2.23
repos25p 7 77 496 0 156 0 0 3.19

repos26p 7 77 496 0 156 16 0 2.05
repos27p 7 79 571 0 188 0 0 1394.44
repos28p 7 90 618 0 189 0 4 1099.87

repos29p 7 90 618 0 189 19 4 1183.01
repos30p 8 126 1450 0 265 0 0 307.12
repos31p 8 130 1362 0 152 0 0 57.40

repos32p 8 144 1501 0 170 0 3 65.51
repos33p 8 212 2227 433 179 50 3 139.99
repos34p 9 304 10577 0 344 0 0 Time

repos35p 9 357 11284 35 874 118 4 Mem
repos36p 9 364 11972 0 1048 0 4 Mem

repos37p 9 371 11371 0 1023 114 7 Mem

repos38p 9 373 11972 35 1048 126 4 Mem
repos39p 9 379 11666 0 1109 0 7 Mem

repos40p 9 379 11666 0 1109 118 7 Mem
repos41p 10 249 8051 0 375 0 0 Time
repos42p 11 279 6596 0 1423 0 5 Time

repos43p 11 320 13058 0 1013 0 0 Mem
repos44p 11 328 13705 0 1108 0 4 Mem

iteration is an application of a neighborhood operator to the current solution and an update of the

objective function, and 7,100 iterations per second on our largest instance, repos44c.

5.2.1. Parameter Tuning Our SA algorithm has many different parameters which can affect

its performance, and in order to ensure a fair comparison of our SA against the MIP model, we

perform parameter tuning on the SA. There are many suggestions in the literature for parameter

settings of the components of SA algorithms, e.g., Johnson et al. (1989), Hoos and Stützle (2004).

We have used these guidelines in our parameter tuning procedure, but are ultimately relying on the

performance of our SA on a training set of instances to determine which parameters are the best

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 29

for the LSFRP. In order to avoid overtuning our algorithm to the instances of the LSFRP that we

present, we tune our SA algorithm on a training set of 15 instances from the confidential dataset

and validate the performance of the parameters on the entire set of instances. The instances were

chosen at random from instances in which the SA algorithm using the GH heuristic was unable

to find the optimal solution. The training set consists of 15 instances, which is a little over one

third of our dataset. This is a standard amount in the machine learning and parameter tuning

literature (Ansotegui et al. (2009)). The 15 instances used in our training set are marked with an

asterisk in Table 2.

There are 13 parameters to tune in total. The feasible shortest paths heuristic has three parame-

ters, γ, `Cargo and `Eqp, which describe the cost factor to use when estimating flexible arc costs, the

amount of cargo profit to earn at the origin and destination visits of a demand, and the amount of

equipment to “load” in the heuristic, respectively. The SA algorithm has seven parameters, α, tInit ,

tMin , rItrs , rReheat , β, rRestart , which are the geometric temperature decrease factor, the starting SA

temperature, the SA convergence temperature, the maximum number of non-improving iterations

before convergence, the number of non-improving reheats before convergence, the reheating factor,

and the number of reheats before resetting the current solution to the starting solution, respec-

tively. Finally, there are three parameters that control the penalization of infeasible solutions in

the objective. The parameters p, pPI , and pT are the penalization of multiple vessels utilizing the

same visit in their paths, the penalty for two vessels using the same phase-in visit, and the penalty

for a vessel’s path being temporally infeasible. Note that pPI is describing a case of p which we

penalize separately because it tends to be a more difficult infeasibility for the SA to fix, and thus

needs a higher penalization to ensure its repair.

We tune the SA algorithm by running each setting of each parameter to each value in its domain,

independent of other parameters, ten times on each training instance, each time with a differ-

ent random seed. Running each parameter configuration multiple times is necessary due to the

stochastic nature of the SA algorithm. In order to avoid a combinatorial explosion of parameter

settings, we assume that parameters are independent of each other. While this is clearly not a true

assumption, it is the only way to perform parameter tuning across so many parameters without

spending extraordinary amounts of CPU time. We then choose the best parameter value for each

parameter based on the total profit earned by using each parameter.

Table 4 gives the discretized parameter domains we used during hand tuning, as well as the

best value for each parameter for each initial heuristic with all SA neighborhoods enabled. We

determined which parameter was the best by computing the total profit earned by each parameter

across the training set.

Author: Article Short Title
30 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Category Parameter Discretized domain values. DRH SPH GH

GH/SPH
γ 0.0, 0.1, 0.25, 0.5, 0.75 0.25 0.25 0.25

`Cargo 0.0, 0.1, 0.25, 0.5, 0.75, 0.95 0.95 0.95 0.95
`Eqp 0, 10, 50, 100, 250, 500, 1000 100 100 100

SA

α 0.997, 0.998, 0.999, 0.9999, 0.99999, 0.999999 0.999999 0.999999 0.999999
tInit 1×104, 5×104, 1×105, 5×105, 1×106 1×106 1×106 5×105

tMin 1×10−8, 1×10−10, 1×10−12, 1×10−15 1×10−8 1×10−8 1×10−8

rItrs 500, 1000, 2500, 5000, 7500, 1×104 7500 10000 7500

rReheat 1, 5, 10, 20 20 20 20
β 0.1, 0.25, 0.5, 0.75 0.75 0.75 0.75

rRestart 1, 5, 10, 20 10 10 20

Penalization
p {1,2,5,7}×105, {1,2,5,7}×106, 1×107 7×106 7×106 1×106

pPI {1,2,5,7}×105, {1,2,5,7}×106, 1×107 7×106 5×106 5×106

pT {1,2,5,7}×105, {1,2,5,7}×106, 1×107 1×105 1×105 7×105

Table 4 The discretized parameter domains used in hand tuning are given with parameters classified into

several categories. The best parameter for each initial solution heuristic as determined through parameter tuning

are given on the right side of the table.

DRH SPH GH

Best Obj. 29 30 13
Worst Obj. 9 13 31

Obj. Average -4.14×105 -1.34×106 -8.13×106

Obj. Median -1.93×106 -1.93×106 -3.76×106

Table 5 Starting solution statistics for all three heuristics on the confidential dataset.

5.3. Initial Solution Heuristics Comparison

We compare the performance of the initial solution heuristics introduced in Section 4.1 across our

dataset using the tuned parameters from Section 5.2.1. Table 5 describes the performance of the

starting heuristics across the dataset.

The DRH and SPH heuristics achieve the best initial objectives out of the three heuristics on 29

and 30 of the instances, respectively (on many instances both heuristics return the same solution),

while the GH heuristic only provides the best value on 13 instances. In order to determine the

significance of the difference in the means of the solutions, we use a one-way ANOVA test (see, e.g.,

Tabachnick and Fidell (2012)) with the null hypothesis that the means of SPH, DRH and GH on

the private dataset are not different from each other. We are unable to reject the hypothesis given

the value p = 0.581. Although we can see that the solutions provided by each heuristic are not

exactly the same, we do not have significant enough evidence to say that any one initial solution

heuristic is better than another. Once the SA algorithm finishes, the answers tend to be relatively

similar between the various starting heuristics.

5.4. Neighborhood Analysis

We perform an analysis of two of the neighborhoods from Section 4.2, the RPC neighborhood and

the DDC neighborhood, in order to determine if they are beneficial to the SA algorithm. We do not

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 31

analyze the visit addition, removal and swapping neighborhoods because they are basic building

blocks that any local search would need to be successful.

5.4.1. Random Path Completion We tune the parameters of the SA algorithm with and

without the RPC neighborhood in order to determine whether the random paths generated are

beneficial to the SA. We perform this experiment both with and without the DDC neighborhood,

and solve each instance using 25 different seeds. Figures 6 and 7 show the performance of the SA

algorithm using an initial solution generated by GH with the RPC neighborhood vs. not using the

RPC neighborhood, both using the DDC neighborhood and without using DDC, respectively. We

only show data using the GH initial heuristic since the performance of all three heuristics is similar

after optimization. Points below the line y= x in the scatter plots indicate better performance for

the RPC neighborhood. The RPC neighborhood’s usefulness is clear both with and without the

DDC neighborhood. Not using the RPC neighborhood outperforms using the neighborhood only

on several instances, and in many cases, the RPC neighborhood is able to find solutions that are

orders of magnitude better than without the neighborhood. The line like structures in Figure 7 are

due to multiple runs of instances that result a number of solutions with similar objectives.

With the DDC neighborhood, the average objective of GH with the RPC neighborhood is

8.6×106, versus an average objective of 7.3×106 without the RPC neighborhood. A t-test confirms

the statistical significance of our findings, with p < 1× 10−4, allowing us to reject the null hypoth-

esis that the RPC neighborhood does not improve the solution quality. The difference in objective

quality becomes even more pronounced when the DDC neighborhood is turned off. In this case,

using the RPC neighborhood has an average objective of 7.4×106, but turning off RPC results in

only -1.9×106.

We conclude that the RPC neighborhood is an important mechanism for the SA to explore new

paths in the graph and avoid getting stuck in a local optimum. In contrast to the visit addition,

removal and swap operators, which can help refine a solution, the RPC neighborhood creates large

changes in solutions that are critical to good performance from our SA algorithm.

5.4.2. Demand Destination Completion We also test the effectiveness of the DDC neigh-

borhood in order to see how much the neighborhood benefits the solution. Figure 8 plots the

performance of the SA algorithm using initial solutions generated by GH with the DDC neigh-

borhood vs. without the DDC neighborhood on each instance in the confidential dataset with 25

different seeds per instance. We hand tuned parameters for the SA for both with and without the

neighborhood for fairness of comparison. Points below the line y = x indicate a higher profit for

the DDC neighborhood, whereas points above the line indicate that turning the neighborhood off

provides a higher profit. The benefit of the DDC neighborhood is clearly demonstrated by the plot,

Author: Article Short Title
32 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

0.0 1.0e7 2.0e7 3.0e7
GH

0.0

1.0e7

2.0e7

3.0e7

G
H

(n
o

R
P

C
)

Figure 6 Effectiveness of the RPC neighborhood with the DDC neighborhood

-3.0e7-2.0e7-1.0e7 0.0 1.0e7 2.0e7 3.0e7
GH (no DDC)

-3.0e7

-2.0e7

-1.0e7

0.0

1.0e7

2.0e7

3.0e7

G
H

(n
o

R
P

C
/D

D
C

)

Figure 7 Effectiveness of the RPC neighborhood without the DDC neighborhood

0.0 1.0e7 2.0e7 3.0e7
GH

0.0

1.0e7

2.0e7

3.0e7

G
H

(n
o

D
D

C
)

Figure 8 Performance of the SA algorithm with and without the DDC neighborhood using the GH initial solution

heuristic.

with the majority of the instances lying below the line. Indeed, a t-test confirms the statistical

significance of the result, allowing us to reject the null hypothesis that the mean of the SA perfor-

mance with the DDC neighborhood is the same as without the neighborhood with a significance

level of p < 1× 10−4. The average objective across all instances and seeds with the neighborhood

is 8.6×106, and without the neighborhood is 7.4×106, an improvement of 14%.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 33

5.5. SA vs. MIP

We compare the objective value of the SA algorithm to the optimal value found by the MIP to

determine whether our SA is finding good solutions.

Table 6 shows the objectives of the best solutions found by the parameter tuned SA algorithm

out of 25 runs with the three starting heuristics versus the optimal solution found by the MIP on

the confidential dataset. We also provide the optimality gap when the optimal solution is known.

For those instances where no optimal solution is known (repos34c – repos44c), we only provide the

objective of the solution found using SA. We allowed the SA algorithm to run for 10 minutes. The

SA algorithm is able to find optimal solutions for 29 out of 33 instances where the optimal solution

is known for both SPH and GH, and 28 instances for DRH. Even on the several instances where the

optimal solution is not found (repos30c – repos33c), the average gap across these instances is only

0.0353. For a number of large instances we do not know the optimal solutions, and therefore cannot

provide an optimality gap on these instances. We aim to remedy this with a column generation

approach in future work. On these large instances (repos34c – repos44c), the GH initial solution

heuristic tends to outperform the other heuristics, although this is not statistically significant.

Overall, the results between different initial solution heuristics are very similar. This indicates

that our SA algorithm is not strongly affected by its starting point, a desirable quality in any local

search approach. We note that although this table shows only the best solution found over 25 runs,

the average case is also competitive, with SA still finding the optimal solution on 24 out of the 33

instances where the optimal solution is known for all three starting heuristics.

Table 7 shows the same data as Table 6 for the public dataset. A similar picture emerges, in

which our SA algorithm is able to find optimal solutions across most of the dataset, with the initial

solution heuristic being relatively irrelevant. Note that the objective values tend to be a bit lower

than in the confidential data set. This is due to a combination of different ship fuel consumption

profiles and a different demand structure than in the confidential dataset. Despite these small

differences, the performance of the SA is comparable to its performance on the confidential dataset,

indicating that our publicly available data is a good representation of the actual LSFRP.

We now show details of the performance of the SA on individual instances to give a better idea

of the general performance of the algorithm. Figures 9, 10, and 11 show the average performance

and standard error of SA using GH (solid black squares) as it solves several confidential instances

with the best and worst SA performance (dashed black) and MIP performance (blue triangles) on

instances repos6c repos10c and repos33c, respectively. The optimal solution value is shown as a

horizontal black line. On instances repos6c, the MIP is able to solve the problem to optimality in

well under a second and is therefore not visible in the graph. However, on instance repos10c, the

MIP does not find a feasible solution until well after the SA has found an optimal solution. On

Author: Article Short Title
34 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 6 The best objectives (in tens of thousands) and optimality gaps found with
SA versus the optimal objective using all three starting heuristics out of 25 runs on

each instance of the confidential dataset.

ID Optimal
DRH SPH GH

Obj. Gap Obj. Gap Obj. Gap

repos1c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000
repos2c -33.91 -33.91 0.000 -33.91 0.000 -33.91 0.000

repos3c -55.58 -55.58 0.000 -55.58 0.000 -55.58 0.000

repos4c -6.30 -6.30 0.000 -6.30 0.000 -6.30 0.000
repos5c 0.44 0.44 0.000 0.44 0.000 0.44 0.000

repos6c 0.44 0.44 0.000 0.44 0.000 0.44 0.000

repos7c 83.20 83.20 0.000 83.20 0.000 83.20 0.000
repos8c 0.44 0.44 0.000 0.44 0.000 0.44 0.000

repos9c 0.44 -1.21 1.783 0.44 0.000 0.44 0.000

repos10c 205.76 205.76 0.000 205.76 0.000 205.76 0.000
repos11c 205.76 205.76 0.000 205.76 0.000 205.76 0.000

repos12c 210.34 210.34 0.000 210.34 0.000 210.34 0.000
repos13c 210.56 210.56 0.000 210.56 0.000 210.56 0.000

repos14c 210.56 210.56 0.000 210.56 0.000 210.56 0.000

repos15c 4.91 4.91 0.000 4.91 0.000 4.91 0.000
repos16c 4.91 4.91 0.000 4.91 0.000 4.91 0.000

repos17c -16.64 -16.64 0.000 -16.64 0.000 -16.64 0.000
repos18c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000
repos19c -13.38 -13.38 0.000 -13.38 0.000 -13.38 0.000

repos20c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000
repos21c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000
repos22c -20.15 -20.15 0.000 -20.15 0.000 -20.15 0.000

repos23c 14.07 14.07 0.000 14.07 0.000 14.07 0.000
repos24c -46.30 -46.30 0.000 -46.30 0.000 -46.30 0.000
repos25c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000

repos26c -41.07 -41.07 0.000 -41.07 0.000 -41.07 0.000
repos27c 2.89 2.89 0.000 2.89 0.000 2.89 0.000
repos28c 2.67 2.67 0.000 2.67 0.000 2.67 0.000

repos29c 2.67 2.67 0.000 2.67 0.000 2.67 0.000
repos30c 0.62 0.58 0.063 0.58 0.063 0.58 0.063
repos31c 3.55 3.45 0.027 3.45 0.027 3.45 0.027

repos32c 1.57 1.52 0.031 1.52 0.031 1.52 0.031
repos33c 2.38 2.33 0.020 2.33 0.020 2.33 0.020
repos34c - 36.48 - 37.01 - 36.48 -

repos35c - 301.33 - 295.71 - 324.01 -
repos36c - 322.79 - 313.38 - 341.49 -
repos37c - 337.40 - 334.76 - 342.23 -
repos38c - 316.00 - 310.27 - 344.45 -
repos39c - 351.14 - 352.40 - 366.81 -

repos40c - 357.07 - 358.92 - 368.32 -
repos41c - 32.68 - 32.43 - 31.84 -

repos42c - 307.09 - 308.85 - 318.07 -

repos43c - 320.10 - 304.87 - 332.45 -
repos44c - 315.14 - 306.06 - 344.63 -

Avg. 24.43 86.40 0.058 85.47 0.004 89.93 0.004

Std. dev. 81.26 140.38 0.305 138.79 0.013 146.33 0.013

instance repos33c, the MIP roughly tracks the performance of the worst SA instantiation, however

the SA converges before finding the optimal solution, whereas the MIP continues to improve,

eventually finding the optimal value at 548 seconds.

We also attempted to warm start the MIP using the best solution found by SA after running

for 10 seconds using the GH initial solution heuristic. Although this approach is able to reduce

the amount of time required to compute the optimal solution on several instances, such as on

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 35

Table 7 The best objectives (in tens of thousands) and optimality gaps found with
SA versus the optimal objective using all three starting heuristics out of 25 runs on

each instance of the confidential dataset.

ID Optimal
DRH SPH GH

Obj. Gap Obj. Gap Obj. Gap

repos1p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000
repos2p -39.83 -39.83 0.000 -39.83 0.000 -39.83 0.000

repos3p -61.77 -61.77 0.000 -61.77 0.000 -61.77 0.000

repos4p -46.62 -46.62 0.000 -46.62 0.000 -46.62 0.000
repos5p -8.21 -8.21 0.000 -8.21 0.000 -8.21 0.000

repos6p -8.21 -8.21 0.000 -8.21 0.000 -8.21 0.000

repos7p -11.49 -11.49 0.000 -11.49 0.000 -11.49 0.000
repos8p -8.21 -11.54 0.405 -8.21 0.000 -11.54 0.405

repos9p -8.21 -11.54 0.405 -8.21 0.000 -12.44 0.514

repos10p 137.61 137.61 0.000 137.61 0.000 137.61 0.000
repos11p 137.61 137.61 0.000 137.61 0.000 137.61 0.000

repos12p 138.55 138.55 0.000 138.55 0.000 138.55 0.000
repos13p 138.86 138.86 0.000 138.86 0.000 138.86 0.000

repos14p 138.86 138.86 0.000 138.86 0.000 138.86 0.000

repos15p -36.59 -36.59 0.000 -36.59 0.000 -36.59 0.000
repos16p -36.59 -36.59 0.000 -36.59 0.000 -36.59 0.000

repos17p -9.36 -9.36 0.000 -9.36 0.000 -9.36 0.000
repos18p 5.22 5.22 0.000 5.22 0.000 5.22 0.000
repos19p 5.22 5.22 0.000 5.22 0.000 5.22 0.000

repos20p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000
repos21p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000
repos22p -11.85 -11.85 0.000 -11.85 0.000 -11.85 0.000

repos23p 5.22 5.22 0.000 5.22 0.000 5.22 0.000
repos24p -53.89 -53.89 0.000 -53.89 0.000 -53.89 0.000
repos25p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000

repos26p -53.13 -53.13 0.000 -53.13 0.000 -53.13 0.000
repos27p -28.20 -28.20 0.000 -28.20 0.000 -28.20 0.000
repos28p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000

repos29p -32.13 -32.13 0.000 -32.13 0.000 -32.13 0.000
repos30p 5.72 4.93 0.138 5.06 0.115 5.35 0.064
repos31p -12.08 -12.08 0.000 -12.08 0.000 -12.08 0.000

repos32p -10.92 -10.92 0.000 -10.92 0.000 -10.92 0.000
repos33p -10.92 -10.92 0.000 -10.92 0.000 -10.92 0.000
repos34p - -2.01 - -2.01 - -2.01 -

repos35p - 132.01 - 124.98 - 135.82 -
repos36p - 147.67 - 148.86 - 154.34 -
repos37p - 129.29 - 128.08 - 133.84 -
repos38p - 142.25 - 143.30 - 158.83 -
repos39p - 146.22 - 143.63 - 149.44 -

repos40p - 146.86 - 150.18 - 153.39 -
repos41p - -46.69 - -51.33 - -43.79 -

repos42p - 242.78 - 243.28 - 244.28 -

repos43p - 174.68 - 183.38 - 188.67 -
repos44p - 175.46 - 176.63 - 186.70 -

Avg. 2.30 33.11 0.029 33.28 0.003 34.71 0.030

Std. dev. 60.33 84.44 0.098 84.76 0.020 86.70 0.111

repos13c where the time falls from 231.47 seconds to 134.02 seconds, and on repos29c where the

optimal solution can be computed in 103.60 instead of 186.38 seconds, there are just as many

instances where the solving time actually increases. On most instances, however, there is little

change, indicating that the solutions provided are not strong enough to really help in pruning the

search tree. Furthermore, this approach does not help CPLEX solve any instances that were not

Author: Article Short Title
36 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

0 5 10 15 20 25 30 35 40
CPU Time (s)

-1.0e6

-5.0e5

0.0e0

5.0e5

P
ro

fit
(U

SD
)

Figure 9 Worst, average and best SA performance using GH on repos6c.

0 0.2 0.4 0.6 0.8 1.0 1.2
CPU Time (s)

1.8e7

1.8e7

1.8e7

1.9e7

2.0e7

2.0e7

2.0e7

2.1e7

P
ro

fit
(U

SD
)

Figure 10 Worst, average and best SA performance using GH on repos10c.

0 100 200 300 400 500 600
CPU Time (s)

-4.0e6

-3.0e6

-2.0e6

-1.0e6

0.0e0

P
ro

fit
(U

SD
)

Figure 11 Worst, average and best SA performance using GH on repos33c.

previously solvable, i.e., no instances in which we experienced a timeout became solvable thanks

to this approach.

5.6. Reference Scenario Comparison

We foresee the SA algorithm presented in this paper as being used in a decision support system

for the LSFRP. In order to test whether or not the SA is effective at solving real problems, we

compare the results of our algorithms with a reference scenario from our industrial collaborator.

The scenario, instance repos42c, encompasses 11 vessels originating from 3 initial services. The

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 37

vessels seek to create a new service that visits the east coast of South America, Spain and the

Middle East. The vessels have a single SoS each week that can be used from Tanjung Pelepas,

Malaysia, to Jebel Ali, United Arab Emirates.

Since the reference solution to the scenario faced by our industrial partner was created in advance

of the repositioning happening (as one would expect), the people who made it were at a disadvan-

tage compared to our algorithm, which has a more complete view of the opportunities available

during the full repositioning period. In order to counter act this unfairness, we calculate the profit

of the reference solution under varying relaxations of restrictions present in our model.

Figure 12 shows the total profit earned by the reference solution as the size of the demand

delivery window is increased. This window determines what visits may be used to deliver cargo.

Our real-world data only specifies the date when demands were delivered, not the deadline for

delivery. Thus, in our model, we use a value of ±3 days for the demand delivery window, which

means that any visit within three days of the delivery date is used as a feasible delivery visit for

a demand. By relaxing this demand window to larger values, we allow the reference solution more

flexibility as to where cargo gets delivered, which counter-acts the uncertainty planners had when

creating the solution. The reference solution profit peaks at $18,137,488 with a 14 day delivery

window.

Figures 13 and 14 show the profit of the incumbent solution of the SA algorithm using the initial

solution generated by GH in terms of the number of SA iterations and the CPU time, respectively.

Error bars display the standard error across all 25 runs of the instance. The solid blue line shows

the profit of the reference solution with a 14 day demand delivery window. SA-GH is able to find

a solution with a better objective than the reference solution, even with a 14 day demand delivery

window, in only 20 seconds or so of run time, and only 150 iterations. In the best case, SA finds a

solution with an objective over $13 million higher than the reference solution, and over $11 million

more in the average case. Even in the worst out of all 25 runs of the algorithm, we find a solution

with a profit of over $3 million more than the reference solution.

6. Conclusion

We presented a novel model of an important real-world problem, the LSFRP, and solved it using

a MIP model on a constraint embedded graph and an SA approach. Our model takes into account

all of the key aspects of the LSFRP, including liner shipping service construction constraints, cargo

flows, empty equipment repositioning, cabotage restrictions, and sail-on-service opportunities, and

maximizes the profit earned during repositioning. We evaluated our MIP and SA approaches,

showing that not only does the SA scale to real-world sized problems, but it is also able to find

a solution with a significantly higher profit than that of the reference solution from our industrial

collaborator.

Author: Article Short Title
38 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

2 4 6 8 10 12 14
Demand delivery window

-2.0e7

-1.5e7

-1.0e7

-5.0e6

0.0

5.0e6

1.0e7

P
ro

fit
(U

SD
)

Figure 12 The reference solution objective function.

100 101 102 103 104 105

Iterations

2.0e7

2.5e7

3.0e7

P
ro

fit
(U

SD
)

Figure 13 SA with GH profit versus iterations on the reference instance.

0 100 200 300 400 500
CPU Time (s)

2.0e7

2.5e7

3.0e7

P
ro

fit
(U

SD
)

Figure 14 SA with GH profit versus time on the reference instance.

Our modeling techniques, especially our graph construction, could be applicable to other liner

shipping problems, such as an extension to the vessel schedule recovery problem from Brouer et al.

(2013) if SoS opportunities and flexible visits were included. Additionally, our SA approach, in

particular our demand destination completion heuristic and initial solution heuristics, could be

useful in other dual-layer flow problems, in which a multi-commodity flow is directed through the

graph by the paths of vehicles.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 39

For future work, we intend to use a branch and price framework to overcome scaling issues in

our MIP model in order to solve large instances to optimality. Given the large amounts of money

involved in the LSFRP, optimal solutions to repositioning problems can give liner carriers a critical

edge over their competition.

Acknowledgments

We would like to thank our industrial collaborators Mikkel Muhldorff Sigurd and Shaun Long at Maersk

Line for their support and detailed description of the fleet repositioning problem. Additionally, we would

like to thank the anonymous reviewers of this work for their insightful comments that significantly improved

this manuscript. This research is sponsored in part by the Danish Council for Strategic Research as part of

the ENERPLAN research project.

Appendix A: Graph Formalization

In this appendix, we provide the details of our graph structure. The following parameters are used to define

the graph.

S Set of ships, indexed by s.
V ′ Set of visits minus the graph sink.
V i, V f Set of inflexible and flexible visits, respectively.
Ai,Af Set of inflexible and flexible arcs, respectively.
A′ Set of arcs minus those arcs connecting to the graph sink, i.e., (i, j)∈A, i, j ∈ V ′.
L Set of phase-in slots, where |L|= |S|, indexed by `.
SoS The set of SoS slots.
RPI` Set of visits of phase-in slot `∈L.
RPOs Set of phase-out visits of vessel s∈ S.
O{P,TS,T,E}
o Sets of parallel, transshipment, transit, and end visits, with o∈ SoS .

V R Set of non-SoS inflexible visits, V R =
⋃
`∈lR

PI
`

⋃
s∈sR

PO
s .

τ ∈ V Graph sink, which is not an actual visit.
TZ Set of trade zones.
zi ∈TZ Trade zone of visit i∈ V .
tEi ∈R Enter time at inflexible visit i∈ V ′.
tXi ∈R Exit time at inflexible visit i∈ V ′.
dmin∗
ij Minimum time required for any ship to sail from visit i to j.
ASD(R) Set of arcs connecting subsequent visits in the visit set R.
APO Set of arcs connecting phase-out slots to phase-in slots.
API Set of arcs from phase-in visits to same trade zone phase-out visits.
Aτ Set of arcs from the final phase-in visit to the graph sink.

ÂIn
o Set of arcs connecting to the start nodes of o∈ SoS .

ÂOut
o Set of arcs extending from the end nodes of o∈ SoS .

ÂPTS
o Set of arcs connecting the parallel nodes to transshipment nodes of o∈ SoS .

ÂTST
o Set of arcs connecting transshipment nodes to transit nodes of o∈ SoS .

ÂTT
o Set of arcs between transit nodes of o∈ SoS .

ÂEE
o Set of arcs between sequential end nodes of o∈ SoS .

âTE
o Arc from the latest transit node in o∈ SoS to its earliest end node.

We define the set of inflexible nodes as V i =
⋃
`∈lR

PI
`

⋃
s∈sR

PO
s

⋃
o∈SoS(OP

o ∪OT
o ∪OTS

o ∪OE
o). The set of

flexible visits, V f , contains all visits that have equipment surpluses/deficits such that V f ∩V i = ∅. In order

Author: Article Short Title
40 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

to formally define the set of arcs contained in the graph, let follows(i, j)∈B return true if and only if visit j

is scheduled on any service to immediately follow visit i, with i, j ∈ V i. In addition, we let can-sail(i, j)∈B

be true if and only if tEj ≥ tXi + ∆min∗
ij , where i, j ∈ V ′. This indicates whether or not it is possible to sail

between two visits at the fastest speed of the fastest vessel in the model. Note that all of the arc sets are

disjoint. We now formally define all of the previously mentioned sets of arcs.

ASD(R) = {(i, j) | i, j ∈R∧ follows(i, j)},R ∈
⋃
s∈S

{RPOs }
⋃
`∈L

{RPI` }

APO = {(i, j) | i∈
⋃
s∈S

RPOs ∧ j ∈
⋃
`∈L

RPI` ∧ can-sail(i, j)}

API = {(i, j) | i∈
⋃
`∈L

RPI` ∧ j ∈
⋃
s∈S

RPOs ∧ zi = zj ∧ can-sail(i, j)}

Aτ = {(i, τ) | i∈
⋃
`∈L

arg max
i′∈RPI

`

{tXi′ }}

Af = {(i, j) |
(
(i∈ V f ∨ j ∈ V R)∧ (i∈ V R ∨ j ∈ V f)∧ (i∈ V f ∨ j ∈ V f)

)
∧ zi = zj}

ÂIn
o = {(i, j) | i∈

⋃
s∈S

RPOs ∧ j ∈ (OP
o ∪OTS

o)∧ can-sail(i, j)}⋃
{(i, j) | i∈ V f ∧ j ∈ (OP

o ∪OTS
o)∧ zi = zj ∧ can-sail(i, j)}

ÂOut
o = {(i, j) | i∈OE

o ∧ j ∈

⋃
`∈L

RPI`
⋃

o′∈{SoS\o}

(OP
o′ ∪OTS

o′)

∧ can-sail(i, j)}

⋃
{(i, j) | i∈OE

o ∧ j ∈ V f ∧ zi = zj ∧ can-sail(i, j)}

ÂPTS
o = {(i, j) | i∈OP

o ∧ j ∈OTS
o ∧ follows(i, j)}

ÂTST
o = {(i, j) | i∈OTS

o ∧ j ∈OT
o ∧ follows(i, j)}

ÂTT
o = {(i, j) | i, j ∈OT

o ∧ follows(i, j)}

ÂEE
o = {(i, j) | i, j ∈OE

o ∧ follows(i, j)}

âTE
o = (arg max

i∈OT
o

{tXi },arg min
j∈OE

o

{tEj })

The set of all arcs in the graph, A, is therefore defined by

A=
⋃
s∈S

(
ASD(RPOs)

) ⋃
`∈L

(
ASD(RPI`)

)
∪API ∪Af ∪Aτ⋃

o∈SoS

(
ÂIn
o ∪ ÂOut

o ∪AST
o ∪ ÂTT

o ∪ ÂEE
o ∪ âTE

o

)
.

References

Agarwal, R., Ö. Ergun. 2008. Ship scheduling and network design for cargo routing in liner shipping.

Transportation Science 42(2) 175–196.

Álvarez, J.F. 2009. Joint routing and deployment of a fleet of container vessels. Maritime Economics and

Logistics 11(2) 186–208.

Author: Article Short Title
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 41

Andersen, M.W. 2010. Service Network Design and Management in Liner Container Shipping Applications.

Ph.D. thesis, Technical University of Denmark, Department of Transport.

Ansotegui, C., M. Sellmann, K. Tierney. 2009. A Gender-Based Genetic Algorithm for the Automatic

Configuration of Algorithms. Ian P. Gent, ed., Principles and Practice of Constraint Programming (CP

2009), LNCS , vol. 5732. Springer, 142–157.

Brouer, B.D., J.F. Alvarez, C.E.M. Plum, D. Pisinger, M.M. Sigurd. 2012. A base integer programming

model and benchmark suite for liner shipping network design. Transportation Science .

Brouer, B.D., J. Dirksen, D. Pisinger, C.E.M Plum, B. Vaaben. 2013. The Vessel Schedule Recovery Problem

(VSRP) – A MIP model for handling disruptions in liner shipping. European Journal of Operational

Research 224(2) 362–374.

Christiansen, M. 1999. Decomposition of a combined inventory and time constrained ship routing problem.

Transportation Science 33(1) 3–16.

Christiansen, M., K. Fagerholt, B. Nygreen, D. Ronen. 2007. Maritime transportation. Handbooks in oper-

ations research and management science 14 189–284.

Christiansen, M., K. Fagerholt, B. Nygreen, D. Ronen. 2013. Ship routing and scheduling in the new

millennium. European Journal of Operational Research 228(3) 467–483.

Christiansen, M., K. Fagerholt, D. Ronen. 2004. Ship routing and scheduling: Status and perspectives.

Transportation Science 38(1) 1–18.

Clausen, J., A. Larsen, J. Larsen, N.J. Rezanova. 2010. Disruption management in the airline industry–

concepts, models and methods. Computers & Operations Research 37(5) 809–821.

Google. 2012. Google OR-Tools. http://code.google.com/p/or-tools/.

Hoos, H.H., T. Stützle. 2004. Stochastic local search: Foundations & applications. Morgan Kaufmann.

IBM. 2012. IBM CPLEX Reference manual and user manual. V12.4.

ISO/IEC. 2011. Information technology – Programming languages – C++, Third Edition. ISO/IEC

14882:2011, International Organization for Standardization / International Electrotechnical Commis-

sion, Geneva, Switzerland.

Johnson, D.S., C.R. Aragon, L.A. McGeoch, C. Schevon. 1989. Optimization by Simulated Annealing: An

Experimental Evaluation; Part I, Graph Partitioning. Operations Research 37(6) 865–892.

Jorgensen, R. 2011. Slow steaming – The full story. http://www.maersk.com/Innovation/

WorkingWithInnovation/Documents/Slow%20Steaming%20-%20the%20full%20story.pdf. A.P.

Moller-Maersk Group. Accessed: 27/3/2013.

Kelareva, E., K. Tierney, P. Kilby. 2013. CP Methods for Scheduling and Routing with Time-Dependent Task

Costs. C. Gomes, M. Sellmann, eds., Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 7874. Springer

Berlin Heidelberg, 111–127.

Author: Article Short Title
42 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Kirkpatrick, S., CD Gelatt, MP Vecchi. 1983. Optimization by simulated annealing. Science 220 671–680.

Kohl, N., A. Larsen, J. Larsen, A. Ross, S. Tiourine. 2007. Airline disruption management–perspectives,

experiences and outlook. Journal of Air Transport Management 13(3) 149–162.

Korsvik, J.E., K. Fagerholt, G. Laporte. 2011. A large neighbourhood search heuristic for ship routing and

scheduling with split loads. Computers & Operations Research 38(2) 474 – 483.

Kuhn, H.W. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly

2(1-2) 83–97.

Lourenço, H., O. Martin, T. Stützle. 2003. Iterated Local Search. Handbook of Metaheuristics 320–353.

Meyer, J., R. Stahlbock, S. Voß. 2012. Slow steaming in container shipping. 45th Hawaii International

Conference on System Science (HICSS), 2012 . IEEE, 1306–1314.

Powell, B.J., A.N. Perakis. 1997. Fleet deployment optimization for liner shipping: An integer programming

model. Maritime Policy and Management 24(2) 183–192.

Ronen, D. 1983. Cargo ships routing and scheduling: Survey of models and problems. European Journal of

Operational Research 12(2) 119–126.

Stahlbock, R., S. Voß. 2008. Operations research at container terminals: a literature update. OR Spectrum

30(1) 1–52.

Steenken, D., S. Voß, R. Stahlbock. 2004. Container terminal operation and operations research – a classifi-

cation and literature review. OR spectrum 26(1) 3–49.

Tabachnick, B.G., L.S. Fidell. 2012. Using multivariate statistics. Pearson.

Taheri, J., A.Y. Zomaya. 2007. A simulated annealing approach for mobile location management. Computer

communications 30(4) 714–730.

Tierney, K., A.J. Coles, A.I. Coles, C. Kroer, A.M Britt, R.M. Jensen. 2012. Automated planning for liner

shipping fleet repositioning. L. McCluskey, B. Williams, J.R. Silva, B. Bonet, eds., Proceedings of the

22nd International Conference on Automated Planning and Scheduling . 279–287.

Tierney, K., R. M. Jensen. 2012. The Liner Shipping Fleet Repositioning Problem with Cargo Flows. Hao Hu,

Xiaoning Shi, Robert Stahlbock, Stefan Voß, eds., Computational Logistics, Lecture Notes in Computer

Science 7555 , vol. 7555. Springer, 1–16.

United Nations Conference on Trade and Development (UNCTAD). 2012. Review of maritime transport.

Wang, S., Q. Meng. 2012. Sailing speed optimization for container ships in a liner shipping network. Trans-

portation Research Part E: Logistics and Transportation Review 48(3).

