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This paper focuses on designing facility networks in the public sector so as to maximize the number of people 

benefiting from their services. We develop an analytical framework for the maximal accessibility network 

design problem that involves determining the optimal number, locations and capacities of a network of 

public sector facilities. We assume that the time spent for receiving the service from a facility is a good 

proxy for its accessibility. We provide a generic model that incorporates both the congestion at the facilities 

and the customer-choice environment that underlies most of the services offered by the public sector. We 

devise an ϵ-optimal algorithm for the arising nonlinear integer program. The proposed algorithm performs 

well in tackling fairly large problem instances. Through a realistic example based on the hospital network of 

Toronto, Canada, we demonstrate the model’s capability in providing policy insights. 

Key words : Pubic Sector, Accessibility, Service System Design, Elastic Demand, Congestion, Nonlinear 

Integer Program. 

1. Introduction 

The modern governments’ mandate is to maximize the societal benefit by acting as agents of the 

public, in contrast with the private firms’ mission to maximize its shareholder benefits. “The public 

sector includes all government controlled entities such as ministries, departments, funds, organizations, 
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and business enterprises, which political authorities at all levels use to implement their social and 

economic policies” (Statistics Canada, 2008). In some sectors, such as energy and mining, government 

enterprises compete with the private sector, whereas in others such as, the construction of mega-

hospitals, transportation and communication infra-structure, public-private partnerships are becoming 

more common. Nevertheless, in all these endeavours, the governments’ overarching objective is to 

maximize the accessibility of their services to the general public, while maintaining their economic 

viability. 

The healthcare sector is a good example of industries where the government-controlled entities and 

private enterprises co-exist. For example, while private mammography centres offer screening services 

for profit, state/provincial governments provide subsidized breast cancer screening programs (in some 

cases, by recruiting some of the screening centres to form their network) so as to protect the largest 

number of women within the designated age group. Another example is long-term care where the 

establishment of a network of long-term care facilities that is capable of caring for all the elderly in 

need is typically within government mandate, although private facilities do exist. The education sector 

exhibits very similar characteristics. Notwithstanding the abundance of private universities, colleges, 

schools and daycare facilities, modern governments are obliged to provide publicly-funded education 

opportunities at all levels, so that education is accessible to everyone regardless of their household 

income. 

The policy makers and regulators constantly face the problem of (re-)designing a public service 

so as to maximize the number of people who benefit from the program. This is usually a better 

option than simply increasing the budget allocated to that public service, which often inherits the 

systemic obstacles that mitigate performance improvement. Empirical evidence suggests that improved 

accessibility would lead to increased participation in public services. For example, Zimmerman (1997) 

found out that the convenience of access to a facility is a very important factor in the customers’ 

decision to have prostate cancer screening. We define the maximal accessibility network design problem 

as follows: Determine the optimal number, locations and capacities of a network of facilities so as 

to maximize the number of people who can benefit from the service being provided. In this context, 

the governmental budget allocation manifests itself as a limit on the total amount of service capacity 

that can be distributed across the jurisdiction. In this paper, we view each service facility as a single 

server and aim at optimizing its overall capacity. Note that there are alternative ways of configuring 

the resource levels to provide the same capacity at a facility. This tactical capacity planning problem, 

however, is out of the scope of our work. 

Unless participation is mandated by the government (e.g., separation of the recyclables and house-

hold waste), each individual is free to choose whether or not to use the services of a publicly-funded 
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program. The people who participate often patronize the facility with highest accessibility. In rep-

resenting this customer-choice environment, we assume that the time spent for receiving the service 

from a facility is a good proxy for its accessibility. This is certainly a simplification, since we ignore 

other potentially important factors such as the variation among facilities pertaining to the quality 

of service. Assuming such differences are insignificant, the travel time to the facility and the waiting 

(plus service) time at the facility comprises that site’s attractiveness for an individual. An important 

feature of this problem is the congestion at the facilities caused by the uncertainty in demand and 

the limited capacity. Note that the expected total time customers spend in the system (waiting and 

receiving service) depends on the level of congestion, and hence each individual’s facility choice is 

indeed affected by the preferences of the other members of the public. Consequently, the total demand 

at a facility is elastic with respect to its accessibility to the people who reside in its vicinity. 

The contributions of this paper are two-fold: First, we formalize and analyze the basic network 

design problem pertaining to the public sector. Although there is some literature that focuses on 

some of the features of the maximal accessibility network design problem (which will be discussed in 

the next section), we are not aware of a study that includes all the features examined in this paper. 

Second, we devise an ϵ-optimal solution method for the problem. Given the nonlinear nature of the 

arising models for this problem family, an overwhelming majority of the relevant literature is confined 

to heuristic solution approaches. 

We assume that a set of potential operational facilities that can provide the new service (mammog-

raphy service) are available (e..g. hospitals). Therefore the location decisions we consider is to select 

those facilities that will offer the new service. 

There are two common ways to model flexible capacity of a queuing system. One way which takes 

the micro view is to assume a multiple parallel servers each with service rate 1 and the control of 

the system is the number of servers N = µ. The other way which takes the macro view and which we 

follow in the paper is to assume a single server in each facility with a flexible service rate µ which 

is the control variable. The discrete-capacity model may be more suitable to a single facility (for 

example a pump at a gas station). The continuous model is more appropriate for complex system 

such as mammography service in a hospital, where capacity is not only the mammography machines 

but also doctors, nurses and examining rooms. 

Zhang et al. (2010) and Aboolian et al. (2012) constitute the most relevant papers to our work. Here, 

we point out the differentiating characteristics of this paper so as to better highlight our contributions. 

Also aiming at maximizing the total number of people who receive service in a customer-choice 

environment, Zhang et al. (2010) adopts the micro viewpoint of optimizing the number of servers 
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(in particular, the number of mammography machines in each screening center) at each facility. In 

contrast, we view the macro perspective i.e., using a service rate. In Zheng et al. (2010), the problem 

is formulated as a bi-level problem where the allocation of customers to facilities is determined in the 

lower level and the location of facilities and their capacity level are determined in the upper level. 

Bi-level programming approach could be shown to be efficient when the capacity alternatives are 

relatively small, but as these alternatives increases, given the exponential increase in combinations 

of capacity levels even for a given facility location set in the upper level problem, this approach 

gradually loses its efficiency. In our problem, where we consider the capacity as a continuous variable 

with unlimited alternatives to choose from, bi-level programming becomes almost impossible to use. 

Therefore, in our paper the problem is solved as an exact (single level) mixed integer problem (MIP). 

While Aboolian et al. (2012) also optimize the service rate at each facility in one version of the 

problems studied, their aim is to design a service network so as to maximize the total profit assuming 

that the customer-facility allocations can be made by a central planner. The problem in Aboolian et 

al. (2012) is also formulated as a bi-level problem. 

The remainder of the paper is organized as follows. Section 2 provides an overview of the most 

relevant literature and positions this paper. Section 3 presents the model we propose for the problem, 

whereas an ϵ-optimal procedure is highlighted in Section 4. Section 5 reports on the computational 

performance of the solution algorithm and presents a realistic illustrative example. Our concluding 

remarks are in Section 6. 

2. Overview of the Literature 

Two threads of research are immediately relevant to the work presented in this paper: (i) maximal 

covering location problem, and (ii) design of service facility networks with congestion. Schilling et 

al. (1993) provide a comprehensive review of the early work on the covering problems in facility 

location, and a very recent review can be found in Farahani et al. (2012). Concerning the incorporation 

of congestion in service system design, Berman and Krass (2002a) provides an early survey of the 

literature. 

In location theory, each customer within a predefined distance (or time) of a facility is considered 

covered by that facility. The maximal covering location problem involves determining the optimal sites 

for a predetermined number of facilities so as to maximize the total number of people covered. It is 

important that everyone within the threshold distance is considered covered, and hence the reduction 

in accessibility, as the distance to the facility increases, is not represented by the concept of coverage. 
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As an implementation of partial coverage, Verter and Lapierre (2002) used a linear decay function in 

modeling participation in preventive healthcare programs. Berman and Krass (2002b) presented the 

gradual coverage decay function using a step function. Berman et al. (2003) presented the gradual 

coverage decay model with two pre-specified threshold distances, where a customer is considered fully 

covered within the first threshold, partially covered between the two thresholds and “not covered” 

otherwise. 

Note that these three models represent the customer’s access to the facilities, and not necessarily 

to the service being offered, since they do not incorporate the congestion at the facilities. Zhang et 

al. (2009) extended Verter and Lapierre (2002) by representing the accessibility of a service as the 

sum of the travel and waiting times, the latter due to congestion caused by the pre-specified service 

capacities at each site. 

In general, the incorporation of congestion at the facilities under stochastic demand has been studied 

within the context of the service network design problem. The problem aims at determining the optimal 

configuration of the service facilities i.e., their number, locations as well as capacities, taking into 

account the trade off between the total cost of offering the service and the service quality. There are a 

multiplicity of measures for service quality, including the average waiting time per customer and the 

average number of customers waiting for service. There are two common ways of incorporating service 

quality in a service system design model: (i) Including a measure of service quality as an additional 

cost term in the objective function and minimizing the total overall cost (Elhedhli, 2006; Berman and 

Drezner, 2006; Aboolian et al., 2008; Castillo et al., 2009), and (ii) Including an additional constraint 

in the model to ensure that service quality remains above a certain threshold (Marianov and Serra, 

1998; Marianov and Serra, 2002; Berman et al., 2006; Baron et al., 2008). In this paper, we adopt the 

second approach, using the objective of maximizing accessibility. All the service system design models 

cited above assume inelastic demand, whereas we make an explicit attempt to incorporate demand 

elasticity in this paper. 

In a related paper, Marianov (2003) presents a model to site a predetermined number of multi-server 

facilities so as to maximize the demand served under elastic demand conditions. This paper differs 

from our approach in three ways: (i) the number of servers at each facility is given, (ii) the customer 

allocations are done by a central decision maker, and (iii) the congestion at the facilities is represented 

by the number of customers. In contrast, the customer choice model we propose in the next section 

optimizes the capacity and captures demand elasticity with respect to the total time spent by the 

customer in receiving the service. Marianov et al. (2005) (by taking the micro approach discussed in 

Section 1 to model flexible capacity) extend the earlier model to also determine the number of servers 
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allocated to each facility and represent the customers sensitivity to the waiting time at a facility. 

Recall that our model is focused on optimizing the service rate at each facility (the macro approach). 

In addition they used heuristic concentration to solve small-scale hypothetical problem instances. 

Finally, it is important to note that other measures of accessibility have been used. Two such 

measures are the floating catchment area (Luo and Qi 2009) and a modified catchment method that 

combines the floating catchment area and the gravity model (Gu et al. 2010). These two measures are 

mainly based on travel times and do not consider the service and waiting times. 

3. Maximal Accessibility Network Design Problem 

We consider a finite set M = {1, . . . ,m} of potential facility locations, a finite set N = {1, . . . , n} of 

population zones, and a travel time metric tij for i, j ∈ M ∪ N . Without loss of generality, we assume 

M ⊂ N and N represents nodes of a network, in which case tij is the shortest travel time between i 

and j. The facilities to be located in M provide a pre-specified set of public services. 

Let S ⊂ M be a set of facility locations (we call the facility located at j ∈ M , facility j). We assume 

that the people at i ∈ N generate a stream of Poisson demands with homogeneous rate λi ≥ 0, where 

λi, the demand rate of node i, is determined as follows. Let λmax
i ≥ 0 denote the maximum demand 

rate that can be generated by node i — this can be thought of as the total number of people at i who 

could potentially be interested in the services offered by the facilities in S. Suppose that yij is the 

= λmax fraction of the population of node i∈ N who request service from facility j ∈ S. Then λij i yij is 

the actual demand rate from i seen by facility j, such that 

∑ ∑ 
= λmax λi = λij i yij , 

j∈S j∈S 

(1) 

and Λj − the total demand that facility j faces is given by 

∑ ∑ 
λmax Λj = λij = i yij . 

i∈N i∈N 

(2) 

We assume that the service at each facility j is exponentially distributed with service rate µj ≥ 0 and 

the system is an M/M/1 queueing system (µj ’s are decision variables in our model). For the M/M/1 

system, Wj , the expected total time customers spend in facility j (which includes the expected waiting 

and service times), can be computed as follows: 

(3) 

Define τij = tij + Wj to be the expected total time that customers from node i that receive service at 
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facility j spend (from the time that travel starts until the time that the customer leaves the facility). 

Let fi be the fraction of λmax 
i that is realized. Then ∑ 

fi = yij , 
j∈S 

(4) 

and 

= fiλ
max λi i . (5) 

As we assume that customers select the facility with the shortest expected total time, we denote 

by T̂  
i the shortest total time incurred by customers at node i. We also assume that this will happen 

only if the shortest expected total time does not exceed a certain threshold denoted by ηi. Let Ti = 

min{T̂  
i, ηi}. 

We consider fi to be elastic with respect to Ti, such that fi is a function of Ti: F(Ti) ∈ [0, fi 
max], 

where fi 
max ≤ 1 is the maximum participation fraction of the demand rate from node i. Although F(Ti) 

can be generalized to any decreasing functions in [0, fi 
max], for simplicity, we consider the following 

bounded linear function (considered also in Zhang et al. (2010)): 

= F(Ti) = (fmax − αTi) for i ∈ N, fi i (6) 

f max 

where α represents the sensitivity level of demand to Ti. We note that Ti ≤ ηi = i 
α and we can write [ ] 

f max 

Ti as a function of f : Ti(fi) ∈ 0, i 
α such that 

(7) 

In fact, for a given fi, Ti( fi) is the total time threshold that 100fi% of customers at node i are 

willing to spend for receiving service and transit time, while the actual total time that customers from 

node i spend at facility j ∈ S and in transit is τij . 

Remark 1We assume that the decision maker is risk neutral like in most queuing models and therefore 

there should be no problem to using the expected time customers stay in the system for the elasticity 

and the threshold. 

Given the set of facility locations S and service rates µj , j ∈ S, the customers when choosing which 

facility to patronize would like to minimize their expected total time. The eventual choice of facilities 

is a user-equilibrium problem, where at equilibrium, customers do not want to change their choices. 

As in Zhang et al. (2010), this equilibrium condition can be stated as: given S and µj , j ∈ S, ⎧ ⎨ = Ti(fi 
∗) if yij 

∗ > 0 
τij = tij + W (Λ ∗ 

j , µj ) for i ∈ N, j ∈ S. 
∗ ⎩ >Ti( fi 

∗) if yij = 0 
(8) 



∑ 
fmax 1 − i k∈S yik 

tij + ∑ 
λmax 

− ≥ 0 for i ∈ N, j ∈ S 
− α ( µj r∈N r yrj ∑ ) 

fmax 1 − i k∈S yik 
yij tij + ∑ 

λmax 
− = 0 for i ∈ N, j ∈ S 

− α µj r∈N r yrj 

yij ≥ 0 for i ∈ N, j ∈ S. 
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Note that Ti(fi 
∗) can be interpreted as the equilibrium disutility for clients from node i ∈ N . Thus, 

node i ∈ N will not be patronized from node j ∈ S when τij is greater than the equilibrium disutility. 

To further explain the equilibrium condition for a customer-choice system; let us focus on the case 

where yij are binary variables. In this case if yij = 1, for i ∈ N and i ∈ S, we must have 

tij + W (Λ ∗ 
j , µj ) ≤ tik + W (Λ ∗ 

k, µk) for k ∈ N, (9) 

which is equivalent to: 

tij + W (Λ ∗ 
j , µj ) ≤ tik + W (Λ ∗ 

k, µk)+ K(1 − yij ) for k ∈ N, (10) 

where K is sufficiently large to ensure that the inequality holds when yij = 0. Since we seek allocations 

under which no customer can do better by making unilateral move, we need to ensure that τij is the 

same for all j ∈ S where yij is positive, and hence (8) follows. Since yij can indeed be a fraction, then 

to find yij 
∗ for i ∈ N , j ∈ S in (8), we need solve the following nonlinear complementarity problem: 

tij + W (Λ ∗ 
j , µj ) − Ti(f ∗ ) ≥ 0 for i ∈ N, j ∈ S i 

yij (tij + W ( ∗ 
j , µj ) − Ti(fi 

∗ )) = 0 for i ∈ N, j ∈ S 

yij ≥ 0 for i ∈ N, j ∈ S. 

(11) 

Given that from (2) and (3) we have W (Λ∗ 
j , µj ) = ∑ 

r∈N 

1 
λmax for j ∈ S and from (4) and (7) we 

µj − r yrj ∑ 
fmax 

k∈S yik have Ti(fi) = i − 

α for i ∈ N , nonlinear complementarity problem (11) can be rewritten as: 

(12) 

Equations (12) can be regarded as the equilibrium condition. 

We next turn our attention to the objective of maximizing accessibility. Define a binary decision 

variable xj , j ∈ M to be 1 if an already located facility at j decides to open a service with a service 

rate of µj > 0 and 0 otherwise, and let x represent the m-dimensional location vector. As defined 

earlier, the decision variable yij is the fraction of the population of node i∈ N who request service 

from facility j ∈ M . The customer allocation is then represented by a (m × n)-dimensional matrix y, 



∑ 
yij ≤ 1, i ∈ N (14) 

j∈M 

yij ≤ xj , i ∈ N, j ∈ M (15) ∑ xj 
λmax µj − yij − ≥ 0, j ∈ M (16) i W max 

i∈N 

xj µ min ≤ µj ≤ xj µ
max , j ∈ M (17) ∑ 

= Cmax µj (18) 
j∈M ∑ 

fmax 1 − i k∈M yik 
tij + ∑ − ≥ 0, i ∈ N, j ∈ M (19) 

ε(1 − xj )+ µj − λmax α ( r∈N r yrj ∑ ) 
fmax 1 − i k∈M yik 

yij tij + ∑ − = 0, i ∈ N, j ∈ M (20) 
ε(1 − xj )+ µj − λmaxyrj α r∈N r 

yij ≥ 0, xj ∈ {0, 1}, µj ≥ 0, j ∈ M, i ∈ N. (21) 

∑ 1 
λmax 
i yij + . 

W max 
i∈

µj ≥ 
N 
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and given the service rate vector µ, the total number of people who would benefit from the public 

service is ∑∑ 
λmax Z(x, y, µ) = i yij . 

j∈M i∈N 

(13) 

Define W max to be the maximum waiting time that is allowed at each facility such that Wj ≤ W max 

for j ∈ S. From (3), for j ∈ S 

min max max > 1 max ≥ 2µ Define µ and µ (µ 
W max and µ min) to be the minimum and maximum possible 

min ≤ µj ≤ µmax service rate at each facility, respectively, such that µ for facility j ∈ S. Define Cmax ∑ 
= Cmax to be the available capacity to assign to all open facilities, such that µj . We also require 

j∈S 
min ≤ Cmax µ . 

We can now state the mathematical programming formulation of the Maximal Accessibility Network 

Design Problem (MANDP) as follows: 

∑ ∑ 
λmax max Z(x, y, µ) = j∈M i∈N i yij 

subject to 

Constraints (14) ensure that the number of people served at each population zone cannot exceed its 

population, whereas constraints (15) guarantee that service can be received from only open facilities. 

Constraints (16, 17) ensure that the waiting time and the service rate at each facility remain within 

their pre-specified levels, respectively. Constraint (18) makes sure that the total available service 

capacity is distributed to the open facilities. Constraints (19, 20) are the equilibrium conditions, where 

ε is a very small number and the term ε(1 − xj ) is to avoid division by zero when xj = 0 forcing the 

associated yij and µj variables to zero. 
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We note that in MANDP we do not include a budget constraint on locating facilities since we assume 

that the potential locations are already up and running and there is no fixed cost associated with 

allocating servers to them. Nevertheless, if there are fixed costs for locating facilities our methodology 

to solve the problem can still be applied. 

The formulation above belongs to the customer choice class of models since it is based on the 

assumption that customers always travel to the facility with minimum expected time (rather than to 

a facility chosen by a central authority). The main difficulty in solving the problem is, clearly, the 

equilibrium constraints (19, 20), which are nonlinear. In Section 4, we will show how MANDP can be 

linearized to find ϵ-optimal solutions efficiently. 

4. An ϵ-optimal Solution Method for MANDP 

In this section we outline an efficient approach to solve MANDP as an MIP. In Section 4.1 we first 

formulate the problem of finding the optimal customer allocation y ∗(x, µ(x)) given location vector x 

and server capacity vector µ(x). We then formulate the problem of jointly finding the optimal server 

allocation µ ∗(x) and optimal customer allocation y ∗(x, µ ∗(x)) given a location vector x. Since the 

resulting problem is nonlinear, in Section 4.2 we describe how to linearize this problem. Finally, in 

Section 4.3 we show how MANDP can be presented as an efficient MIP. The idea we use in Section 4.2 

is to replace the decision variables {µj } by the waiting times {Wj } and then to approximate functions 

of {Wj } using the TLA method developed in Aboolian et al. (2007). 

4.1. Formulation of Subproblems OCA and OSACA 

We first focus on a subproblem aiming at finding Optimal Customer Allocation (OCA) given a set 

of open facilities each with a pre-specified capacity. To find the customer allocation we just need to 

solve the nonlinear complementarity problem (12) given S = {j ∈ M∥xj = 1}, the set of facility nodes 

under vector x, and µ(x). 

Let zij be a binary decision variable which is equal to one if any fraction of customers at i ∈ N 

visits facility j ∈ S (i.e. if yij > 0), and zero otherwise (if yij = 0). Then clearly yij ≤ zij , i ∈ N, j ∈ S. 

To obtain the equilibrium solution to the nonlinear complementarity problem (12), we propose the 

following model for OCA (recall that x and µ(x) are known): ( ) ∑ ∑ 
λmax max Zx, µ(x)(y) = i yij 

i∈N j∈S 

subject to 

yij − zij ≤ 0, i ∈ N, j ∈ S (22) 



( ) ∑ α 
fmax yik − i − αtij − ∑ ≥ 0, i ∈ N, j ∈ S (23) 

µj − λmax 
k∈S r∈N r yrj ( ) ∑ α 

fmax yik − i − αtij − ∑ −Li(1 − zij ) ≤ 0, i ∈ N, j ∈ S (24) 
µj − λmaxyrj r∈N r k∈S 

α 
fmax 
i − αtij − ∑ + Li(1 − zij ) ≥ 0, i ∈ N, j ∈ S (25) 

µj − λmax 
r∈N r yrj 

yij ≥ 0, zij ∈ {0, 1}, j ∈ S, i ∈ N (26) 
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where Li is a large enough number. Later we show how to compute Li. Consider the following exhaus-

tive cases: ∑ 
Case 1: (yij > 0). In this case, from (22) we have zij = 1 and from (23) and (24) we obtain k∈S yik = ( ∑ ) 

fmax α 1 fi 
max 

k∈S yik ∑ . Hence yij ∑ − 
− 

= 0. i − αtij − 
µj − r∈N λ

maxyrj 
tij + 

µj − r∈N λ
maxyrj α 

= fmax ∑ α 

r r ∑ 
Case 2: (yij = 0). In this case, whether zij = 1 and then − αtij − , k∈S yik i µj − r∈N λ

max 
r yrj ∑ 

≥ fmax α or zij = 0, and then, from (23) and (24), yik − αtij − ∑ 
r∈N λ

max , we obtain k∈S i µj − r yrj ( ∑ ) 
fmax − 1 i k∈S yik ∑ yij tij + 

r∈N λ
max − = 0. 

µj − r yrj α 

Therefore, constraints (22)–(24) ensure that the second set of equilibrium condition in (12) hold 

and since constraints (23) are the first part of the equilibrium condition in (12), we can conclude that 

constraints (22)–(24) ensure that the equilibrium condition in (12) holds. 

Constraints (25) ensure that if fi(Ti) = (fi 
max − ατij ) < 0, then zij in (25) is forced to be equal to 

f max ∑ 
0 and therefore, from (22), yij = 0. If zij = 1, from (25) τij = Ti(fi) ≤ i . In case zik = 0, then 

α k∈S ∑ 
= fmax α from (22) we have yik = 0 and from (23) fmax − ατij − αtij − ∑ ≤ 0 for j ∈ S, k∈S i i 

r∈N λ
max µj − r yrj 

f max 

therefore, τij = Ti(fi) ≥ i 
α . ∑ 

Note that if yik > 0 then there exists a j ∈ S such that zij = 1 and from (23) and (24) we obtain ∑ k∈S 

= fmax yik i − α(tij + Wj ) ≤ 1. Therefore, constraints (14) are redundant in OCA. 
k∈S 

Since when fi 
max − αtij ≤ 0, zij = 0, we can replace in OCA and MANDP, the parameter N with Nj 

for any j ∈ M , where Nj denotes the set of all customer nodes for which fmax 
i − αtij > 0. 

As a next step we consider the subproblem aiming at Optimal Server Assignment and Customer 

Allocation (OSACA). To this end, we assume that only a location vector x is given, and consider the 

problem of determining also the corresponding optimal capacity assignment vector µ ∗(x) in addition 

to the optimal customer allocation y ∗(x,µ ∗(x)). Since the service rate at each facility is a decision 

variable we should include the maximum waiting time, the service rate and the total service capacity 

constraints. Let S be the set of open facilities corresponding to x. Then, the mathematical program-

ming formulation of OSACA for S is: ∑∑ 
λmax max Zx(y) = i yij 

j∈S i∈Nj 



∑ 1 
λmax µj ≥ yij + , j ∈ S (27) i W max 

i∈N 
min max µ ≤ µj ≤ µ , j ∈ S (28) 

∑ 
= Cmax µj , (29) 

j∈S 

yij ≥ 0, zij ∈ {0, 1}, µj ≥ 0, j ∈ S, i ∈ Nj . 

∑ 1 
λmax µj = + i yij for j ∈ S. 

Wj 
i∈Nj 

( ) ∑∑ ∑ ∑ ∑ 1 1 
λmax Zx(y) = i yij = µj − = µj − 

Wj Wj 
j∈S i∈Nj j∈S j∈S j∈S 

∑ −1 
(W) = Cmax Zx + . 

j∈S 
Wj 

12 

subject to 

(22)-(25), 

Recall that constraints (27) ensure that Wj ≤ W max from all j ∈ S and together with constraints 

(28) and (29) are the relevant constraints from MANDP that determine the size of µj , j ∈ S. Thus, the 

only differences between problem OSACA and problem OCA are constraints (27)-(29) and the new 

decision variables µj ≥ 0, j ∈ S. Here it can be easily verified that we can set Li = max{αtij + αW max} 
j∈S ∑ 

yik ≥ fmax since it ensures that when zij = 0, there is no conflict between (23) and (24) (i.e. i − ∑ k∈S 

αtij − ∑ α
λmax , and yik ≤ a (a is a number that is greater than or equal to fi 

max). We note 
µj − r yrj 

r∈N k∈S 

that problem OSACA is still a very hard problem to solve because of the nonlinearities in constraints 

(23)–(25). 

In the next section, we will convert OSACA into an MIP. 

4.2. Formulating subproblem OSACA as an MIP 

The nonlinearity in OSACA is due to the expected waiting times {Wj }. As mentioned earlier, the 

main idea here is to use {Wj } instead of {µj } as decision variables and then to approximate functions 

of {Wj }. Since Wj = 
µj − 

∑ 1 
λmax , 

i∈Nj i yij 

(30) 

∑ ∑ 
λmax 1 = Cmax Since from (30) yij = µj − for j ∈ S and from (29) µj , we can reformulate i∈Nj i Wj j∈S 

the objective function 

as our new objective function: 

(31) 



Lj ϵ ∑∑ ∑ 
l l max + Cmax max Zxφ(W) = aj b

l
j ej − µ 

j∈S l=1 j∈S 

subject to 

yij − zij ≤ 0, i ∈ Nj , j ∈ S ∑ 
yik − (fmax 

i − αtij − αWj ) ≥ 0, i ∈ Nj , j ∈ S (34) ∑ k∈S 

yik − (fmax 
i − αtij − αWj ) −Li(1 − zij ) ≤ 0, i ∈ Nj , j ∈ S 

k∈S 

fmax 
i − αtij − αWj + Li(1 − zij ) ≥ 0, i ∈ Nj , j ∈ S 

Lj ϵ∑ 
l l 1 

Wj − aj ej = 
µmax 

, j ∈ S 
l=1 

Wj ≤ W max , j ∈ S 
Lj ϵ∑ ∑ 

l bl l λmax aj j ej − i yij ≥ 0, j ∈ S (35) 
l=1 i∈Nj 

13 

Note that −1 is concave increasing in Wj for j ∈ S, and therefore we can use the TLA approxi-
Wj 

mation technique proposed in Aboolian et al. (2007) and summarized in Appendix A to create an 

ϵ-approximator (piece-wise linear approximation with maximum relative error ϵ) for −1 . [ ] Wj 

Denote G(Wj ) = −1 for Wj ∈ 1 ,W max and Gϵ(Wj ) to be the ϵ-approximator for G(Wj ), such 
µmax Wj 

that 

G(Wj ) ≤ Gϵ(Wj ) ≤ (1 + ϵ)G(Wj ). 

Let Lj ϵ be the number of linear segments in Gϵ(Wj ), with the endpoints of segment l given by clj 

l+1 l l+1 l and c for l ∈ {1, ..., Lj ϵ}. Let bl be the slope of segment l, and a = c − c be the length of j j j j j 

this segment (projected onto the Wj axis). The function Gϵ(Wj ) can be represented as follows for 

1 ,W max]: Wj ∈ [
µmax 

Lj ϵ(Wj ) ∑ 
max l l Gϵ(Wj ) = −µ + aj bj

l ej , 
l=1 

(32) 

where in (32) we take into consideration (see (30)) that G(Wj ), which is a negative function, starts 

max l l at −µ and Lj ϵ(Wj ) = max{l : cj ≤ Wj } (note that Lj ϵ = Lj ϵ(W max)), and ej = 1 if l < Lj ϵ(Wj ) and 
Lj ϵ 

l 
l j l l 1 Wj −c ∑ 
ej = l if l = Lj ϵ(Wj ). Note that Wj = aj ej + 

µmax . aj l=1 

We now introduce the linearized φ − optimal model for OSACA. Let, 

⎛ ⎞ 
Lj ϵ Lj ϵ ∑ ∑ ∑∑ ∑ 

φ(W) = Cmax ⎝ l bl l max l bl l
j + Cmax − max Zx + aj j ej − µ ⎠ = aj j e µ . 

j∈S l=1 j∈S l=1 j∈S 

(33) 

The problem is: 



yij − zij ≤ 0, i ∈ Nj , j ∈ M 

zij − xj ≤ 0, i ∈ Nj , j ∈ M 

Wj ≤ W max xj , j ∈ M ∑ 
yik − (fmax 

i − αtij − αWj )+ 1 − xj ≥ 0, i ∈ Nj , j ∈ M (38) ∑ k∈M 

yik − (fmax 
i − αtij − αWj ) −Li(1 − zij ) ≤ 0, i ∈ Nj , j ∈ M 

k∈M 

fmax 
i − αtij − αWj + Li(1 − zij ) ≥ 0, i ∈ Nj , j ∈ M 

Lj ϵ∑ xj 
Wj − − aj

l e l = 0, j ∈ M 
µmax j 

l=1 
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Lj ϵ∑ ∑ 
l l λmax max − µ min aj b

l
j ej − i yij ≤ µ , j ∈ S (36) 

l=1 i∈Nj 
Lj ϵ ∑∑ ∑∑ ∑ 

λmax l l Cmax − max yij − a bj
l e = µ (37) i j j 

j∈S i∈Nj j∈S l=1 j∈S 

0 ≤ e l ≤ 1, j ∈ S, l ∈ {1, ..., Lj ϵ} j 

yij ≥ 0, zij ∈ {0, 1}, Wj ≥ 0, j ∈ S, i ∈ Nj . 

∗ ∗ ∗ We note that the linearized version computes W instead of µj , j ∈ S, but once {y } and {N∗} j ij j ∑ ∗ 1 λmax ∗ are known we can simply compute µj = 
Wj 

∗ + i∈Nj i yij , j ∈ S. Constraints (35-36) ensures that ∑ 
min ≤ µj ≤ µmax = Cmax µ , j ∈ S. Constraint (37) ensures that j∈S µj . 

It can be easily verified that the Z x 
∗(y) ≤ Z x 

φ ∗ 
(W) ≤ (1 + φ)Z x 

∗(y), where ⎧ ∑ ∑ ∑ ⎨ λmax ≤ ϵ if j∈S µj ≤ 2 j∈S i∈Nj i yij 
φ = ∑ ∑ ∑ ∑ ⎩ j∈S µj λmax = −ϵ + ∑ ∑ ϵ if µj > 2 

λmaxyij j∈S j∈S i∈Nj i yij 
j∈S i∈Nj i 

and for a small enough ϵ (e.g. ϵ = 0.001) the error φ will be negligible and we can consider the solution 

to the φ -optimal model as the optimal solution for OSACA. 

4.3. The MIP Formulation of MANDP 

Next we introduce the linearized φ-optimal model for MANDP by extending the linearized φ-optimal 

model for OSACA to include the location of facilities as well. 

We now use the binary variables xj defined earlier and since S is not given as in OSACA we consider 

all the potential customers in M . The problem is 

Lj ϵ ∑∑ ∑ 
l l max xj + Cmax max Zφ(W, x) = aj bj

l ej − µ 
j∈M l=1 j∈M 

subject to 
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Lj ϵ∑ ∑ 
l l λmax aj bj

l ej − i yij ≥ 0, j ∈ M 
l=1 i∈Nj 
Lj ϵ∑ ∑ 

l l λmax max − µ min aj bj
l ej − i yij ≤ µ , j ∈ M 

l=1 i∈Nj 
Lj ϵ ∑∑ ∑∑ ∑ 

λmax l l max Cmax bl i yij − aj j ej + µ xj = 
j∈M i∈Nj j∈M l=1 j∈M 

0 ≤ e l ≤ 1, j ∈ M, l ∈ {1, ..., Lj ϵ} j 

yij ≥ 0, Wj ≥ 0, xj ∈ {0, 1}, zij ∈ {0, 1}, j ∈ M, i ∈ Nj . 

In this formulation we have a new constraint (zij ≤ xj i ∈ Nj , j ∈ M). To ensure that yij cannot be 

positive unless there is a facility located at j, and since (23) is not feasible when xj = 0, an additional ∑ 
term is added in (38) to ensure that k∈M yik ≥ b (where b is a negative number) when xj = 0. Again, 

it can be easily verified that Z∗(x, y) ≤ Zφ(W, x) ≤ (1 + φ)Z∗(x, y), where 

⎧ ∑ ∑ ∑ 
λmax ⎨ ≤ ϵ if µj ≤ 2 j∈M j∈M i∈Nj i yij 

φ = ∑ ∑ ∑ ∑ 
j∈M µj λmax ⎩ = −ϵ + ∑ ∑ ϵ if µj > 2 

λmaxyij j∈M j∈M i∈Nj i yij 
j∈M i∈Nj i 

and for a small enough ϵ (e.g. ϵ = 0.001) the error φ will be negligible and we can consider the solution 

to the φ-optimal model as the optimal solution for the original model of MANDP. 

Please note that Lj ε which is the number of line segments used to approximate the inverse waiting 

time at facility j is a function of ε and µmax . Each line segments corresponds to one continuous variable 

elj . Table 1 shows the number of line segments required for each potential facility location for each 

combination of ε and µmax . 

5. Computational Results 

In this section, we present a set of computational experiments to demonstrate the performance of the 

proposed algorithm as well as a realistic illustrative example. 

5.1. The Efficiency of the Algorithm 

We consider the 40 p-median problems in Beasley (1990) as a basis of our computational experiments. 

These problems range from n = 100 to n = 900 population zones. The values of p provided by Beasley 

(1990) are irrelevant in the context of this paper. For 100 ≤ n ≤ 500 and for 600 ≤ n ≤ 900, we 

generate problem instances by respectively increasing the number of alternative facility locations 

m = 20, 40, 60, . . . and m = 10, 20, 30 . . . until the resulting instance cannot be solved within a pre-

specified time. For example, Beasley Problem #6 with n = 200 cannot be solved within 3,600 seconds 
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Table 1 The number of line segments required for each potential facility location due to model linearization 

for m ≥ 160, and hence our experiment set contains only seven instances for this problem. For each 

Beasley problem, we selected the m potential locations as nodes k ∗⌊(n/m)⌋, where k = 1, 2, ..., m. For 

example, for Beasley Problem #1 (n = 100), when m = 20 the chosen alternative facility locations are 

nodes 5, 10, 15, 20, . . . , 100. 

Our aim is to evaluate the performance of the algorithm in terms of the CPU time, for which we 

set the limit as 1 hour per instance. A total of 136 problem instances were solved to optimality on a 

computer with Intel Core S2 Duo 2.67 Ghz with 4 GB ram running Windows Vista. The program was 

coded in C++ and all resulting MIPs were solved using CPLEX 12.6. The other model parameters 

n min max n were set as follows: total service capacity Cmax = 
2 , service rate limits µ = 5, µ = 

10 , maximum 

wait time W max = 1, maximum demand rate λmax
i = 1, maximum participation fraction fi 

max = 1, slope 

of the participation function α = .4 and maximum approximation error ε = 0.001. For 100 ≤ n ≤ 600, 

n = 700 and 800 ≤ n ≤ 900, we solved 5, 4, and 3 instances respectively. During the experiment we 

recorded the true gap and for ε = 0.001, we observed 0.00024 ≤ gap ≤ 0.00512 with an average gap 

= 0.00156. 

Table 2 depicts the average CPU times for the smaller Beasley problems (100 ≤ n ≤ 600) in our set 

of experiments, whereas Table 3 reports on the larger problems that were solved. For a given (n, m), 

the number of problem instances solved to optimality are denoted by [.], unless all the instances 

were solved to optimality. As expected, when the number of population zones n is fixed, the problem 

becomes more computationally challenging as the number of alternative locations m increases (see 

Table 2). This is not necessarily true, however, when n is increased for fixed m. For example Table 



17 

2 shows that the average CPU time for the n = 200,m = 80 problems is 14.41 seconds, whereas the 

smaller n = 100,m = 80 problems require 5.71 seconds on the average. Table 3 shows that the proposed 

algorithm performs well in solving fairly large problem instances. For example, we were able to solve 

two of the n = 800 and m = 40 instances within an average of about 6.5 minutes. 

n\m 20 40 60 80 100 

100 

200 

300 

400 

500 

0.24 

0.35 

0.23 

0.47 

0.67 

0.48 

2.50 

5.10 

20.91 

35.45 

5.24 

4.66 

14.47 

190.71 

323.45 [4] 

5.71 

14.41 

32.74 

556.19 [4] 

[-] 

9.71 

22.31 

151.73 

754.73 [2] 

[-] 

Table 2 Average CPU times (sec) for the smaller instances from Beasley (1990) 

n\m 10 20 30 40 

600 

700 

800 

900 

0.59 

0.38 

0.96 

6.74 

2.72 

2.76 

57.34 

68.22 [2] 

34.25 

28.90 

74.25 

31.84 [1] 

291.53 

141.12 

390.05 

[4] 

[2] 

[-] 

Table 3 Average CPU times (sec) for the larger instances from Beasley (1990) 

5.2. An Illustrative Case Study 

In this section, we present a realistic case that is based on the network of 22 hospitals in the City 

of Toronto, Canada. Berman et al. (2007) is the source for the 96-node network model we use here 

in representing the hospital system, which serves a population of over 2.6 million according to the 

2011 census. Each node represents a forward sortation area (FSA) defined by the first 3 digits of the 

Canadian postal code. Berman et al. (2007) placed the nodes at the FSA centroids and established a 

link between any two nodes if the corresponding FSAs share a boundary. Using Euclidean distances 

among the connected nodes, they computed the shortest distance between all node pairs. To obtain 

the travel time between each node pair, we divide the shortest distance between the nodes by the 

average speed of travel. 

As an illustrative case, we study the development of a network of clinics as part of a preventive care 

program offered by the government (e.g., cancer screening, vaccination, counseling). There are two 
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hospitals in three FSAs: M3N, M6M and M6S, and a single hospital in 16 FSAs. Thus, we assume 

that each of the 19 hospital sites constitutes an alternative location for the clinics to be established. 

The demand of each node is the total number of residential and business dwellings. There are 1.12 

million dwellings in the area represented by our model. For FSAs on the border of the City of Toronto, 

the number of dwellings in the neighbouring FSAs are added to represent the fact that some of the 

customers of these hospitals do come from outside the city. Without loss of generality, we assume at 

most one annual visit per dwelling and set the λmax
i values accordingly. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600

Figure 1 The impact of total available system capacity on participation 

In developing the network of clinics, the government needs to decide which existing hospitals should 

be housing a new clinic, (xj ), and the allocation of the total investment in building the available 

service capacity at each clinic, (µj ). Given the strategic nature of the MANDP, the optimal capacity 

levels prescribe the target number of patients that can be seen in a given time window. The most 

appropriate number of physicians, nurses, technicians and equipment needed to achieve this target 

is left to the detailed operational design phase pertaining to each clinic. The public reaction to the 

offered services is represented in the model by the participation rates (yij ). 

We study the impact of increasing the overall system capacity, Cmax , on the total number of people 

served, when the clinic location and capacity allocation decisions are optimized. We work with an 

hourly minimum service capacity (µmin) of 10 patients and maximum service capacity (µmax) of 200 

patients. We assume 250 days/year, 8 hours/day for the clinics and average travel speed of 5 miles/hour 

for the patients. We also assume that 5% of the potential customers will not participate regardless 
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Location 

# 

FSA 

# 

# of 

hospi-

tals 

FSA 

code 

Cmax = 150 Cmax = 450 

Facility 

located 

(1=yes) 

Service 

rate 

assigned 

Demand 

served 

% 

utiliza-

tion 

Facility 

located 

(1=yes) 

Service 

rate 

assigned 

Demand 

served 

% 

utiliza-

tion 

1 11 1 M1P 1 34.97 25.75 73.63 

2 16 1 M1W 1 39.87 31.03 77.83 

3 20 1 M2K 1 18.19 15.93 87.58 

4 22 1 M2M 1 17.19 15.41 89.65 1 27.22 20.49 75.28 

5 25 1 M2R 1 15.31 10.42 60.06 

6 34 2 M3N 1 10.00 8.39 83.90 1 20.74 14.83 71.50 

7 37 1 M4C 1 38.17 30.04 78.70 

8 39 1 M4G 1 22.29 15.38 72.24 

9 43 1 M4M 1 15.54 8.93 69.95 

10 44 1 M4N 1 28.31 20.70 73.12 

11 52 1 M4Y 1 18.38 13.18 71.71 

12 54 1 M5B 

13 57 1 M5G 1 57.89 54.57 94.26 1 11.24 7.36 65.48 

14 65 1 M5T 1 38.14 29.51 77.37 

15 77 2 M6M 1 32.68 24.55 75.12 

16 81 2 M6S 1 37.11 28.45 76.66 

17 89 1 M9C 1 10.98 9.68 88.16 1 25.94 19.22 74.09 

18 92 1 M9N 1 25.75 23.2 90.10 1 20.06 14.13 70.44 

19 95 1 M9V 1 10.00 8.8 88.00 1 27.03 20.33 75.21 

Total 7 150 135.98 

average 

88.8% 17 450 334.3 

average 

72.8% 

Table 4 Capacity allocation decisions as a function of the total available system capacity Cmax 

of the level of accessibility i.e., fi
max = 0.95 and people are willing to spend about an hour and 45 

minutes to get the service i.e., α = 0.55. We also use W max = 1 hour and ϵ = 0.001 (the maximum 

error φ was recorded to be less than or equal to .001). 

Figure 1 depicts the impact of increasing the total available system capacity on the total partici-

pation. The decreasing returns to scale in the capacity investment is expected. Note, however, that 

the total participation rate remains under 65% for very high levels of service capacity. The policy 

insight that can be drawn from this finding is that the government’s ability to increase participation 

by improving access to preventive care is limited. In this illustrative case, there seems to be room for 

improvement through parallel investments into educational programs that would highlight the impor-
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tance of preventive care. Consequently, the slope of the participation function, α, can be reduced to 

enable the government to provide service to a larger population at the same levels of accessibility. 

Table 4 depicts a comparison between two overall system capacity scenarios: 150 patients/hour and 

450 patients/hour. Under the former scenario, 7 clinics are established with an average utilization 

of 88.8%. Whereas, the latter scenario results in 17 open clinics i.e., only M5B and M2K are not in 

the optimal solution, with an average utilization of 72.8%. Note that the utilization can be as low as 

60% in M2R. As expected, the standard deviation of the utilization increases in response to increased 

total system capacity, and hence the coefficient of variation of the utilization increases from 0.035 to 

0.064. A careful analysis of the service rate assigned to M3N, M6M and M6S which currently host 2 

hospitals each, under the Cmax = 450 scenario, reveals that having two hospitals in these FSAs needs 

to be examined in more detail (note that the service rates assigned to the clinics in these three FSAs 

are well within the range of the optimal service capacities of the other clinics). We believe that the 

reason for having only 7 facilities in the case of Cmax = 150 is that the service pooling effect results in 

more time saving (from reducing waiting time) than the increase in travel time. In other words, the 

pooling effect dominates. 

Table 5 reports on our analysis pertaining to the evolution of the clinic network as the total system 

capacity, Cmax , is gradually increased. Focusing on the number of open facilities, we identify three 

ranges: Cmax < 250, 250 ≤ Cmax ≤ 400, and Cmax > 400. Although the number of open clinics is not 

robust in the first range, it is interesting to note that it takes the values 13 or 14 in the second range 

and 17 or 18 in the third range. More importantly, nine of the 13 clinics established for Cmax = 250 

remain in the solution as the overall system capacity is increased to a level where all but one clinics are 

open. The observed robustness has two implications for the regulator: (i) the initial system capacity 

should not be set less than a certain level to avoid the range where the solution is not robust to changes 

in Cmax , and (ii) Within the robust range, it is possible to gradually build up the clinic network in the 

event that there are budget limitations associated with the number of clinics that can be established 

at the outset. 

6. Concluding Remarks 

In this paper, we provide a mathematical formulation for the problem of maximizing access to public 

services by determining the configuration of a facility network so as to optimize the incorporation of 

the customers’ choices. In addition to the siting decisions, we address the aggregate capacity decisions 

at each facility to be established. We present a procedure to linearize the resulting nonlinear integer 

program and identify an ϵ-optimal solution. The proposed approach proved effective in tackling fairly 

large-scale problem instances. 
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Alternative 

Location # 50 100 150 200 250 300 350 400 450 500 550 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 

9 1 1 1 

10 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 

12 1 1 1 

13 1 1 1 1 1 

14 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 1 

Total open 

facilities 1 3 7 8 13 13 14 14 17 18 18 

Table 5 Facility location decisions as a function of the total available system capacity Cmax 

In the context of a realistic case based on the Toronto hospital network, we demonstrate the capa-

bility of the modeling framework to produce policy insights. For this instance, we were able to show 

that (i) the capability of the Ontario government to increase participation in its services by simply 

increasing accessibility is limited, (ii) the current clustering of the hospitals in downtown Toronto may 

not be the best capacity allocation strategy (we note that this is based on our model that ignores 

other considerations such as quality that may be significant), and (iii) a gradual capacity expansion 

strategy can be robust in public services, as long as the system is designed with an overall capacity 

that is above a threshold level. It is important to note that, in this context, the additional investment 
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required for increasing the overall system capacity needs to be traded off against the potential benefits 

(i.e., cost savings and improved quality of life) of the more invasive treatments that are avoided by 

the increased service. 

Our model can be generalized or extended in a couple of ways. First, although as mentioned earlier 

the bi-level programming is not an efficient approach to solve our problem, it could be proven to be an 

efficient approach for the special case where only a limited number of service capacities are available. 

Second, our model can be extended to the case where a fixed cost is required to open a potential 

location. We could use our approach to solve this extended case, but it will result in an increase in the 

approximation error bound φ defined in section 4.3. Thus, the development of an efficient approach 

for dealing with fixed cost for facilities remains a challenge for future research. 
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Appendix A: The TLA Procedure 
¯ Let f(t) be a concave, non-decreasing and twice-differentiable function for t ∈ [0, ϕ] with f(0) = 0. We 

will construct a concave, piecewise linear function f ϵ(t) such that f ϵ(0) = 0 and 

¯ f(t) ≤ f ϵ(t) ≤ (1 + ϵ)f(t) for t ∈ [0, ϕ] (A.1) 

where ϵ ∈ (0, 1) is the error bound. 

To construct f ϵ(t) the following notation is used: 

l: is a line segment, l = 1, . . . ,L 

bl: is the slope of segment l 

¯ cl: is the starting point of segment l, cL+1 = ϕ. 

The TLA procedure is: 

1. Set f ϵ(0) = 0 and c1 = 0. 

2. Set the slope b1 of the first segment equal to f ′ (0) (f ′ (0) is the derivative of f(t) at t = 0). 

3. The endpoint of the segment is a point f ϵ(c2) on the ray originating at 0 and with the slope b1 

such that the relative error at c2 is equal to ϵ. 

4. The slope of segment l for l = 2, . . . ,L is the slope of the ray originating at (cl, f ϵ(cl)) that is 

tangent to the graph of f(·). 
2 l+1 5. To find the endpoint of segment l for l = 2, . . . ,L, we repeat step 3 where c is replaced by c , 

0 is replaced by f ϵ(cl+1) and b1 is replaced by bl . 
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In Figure A.1 we show f(t) and f ϵ(t) with three linear segments. 
f ϵ(t)−f (t) The relative error is the ratio . Note that since f(0) = 0, the relative error at 0 is set to 

f (t) 

0 and the first segment is tangent to the graph of f(·) at 0. The endpoint of the first segment c2 is 
(t)−f (c 2) ¯ chosen so that f ϵ 

= ϵ. The procedure continues until f ϵ has been defined for all points in [0, ϕ]. 
f (c2) 

It was shown in Aboolian, Berman and Krass (2007) that: (i) The TLA procedure converges in 

finitely many steps (finite L) to a piecewise linear function f ϵ such that f ϵ(0) = 0 and (A.1) holds 

¯ for all t ∈ [0, ϕ]; and (ii) The number of linear segments in f ϵ is minimized over all piecewise linear 

functions satisfying (A.1). 

f(t) 

c 1 = 0 c 3 

f ϵ(c 3) 

f (c 3) 

f(c 2) 

ϕ̄ c 2 

f ϵ(c 2) 

Figure A.1: f(t) and the piecewise linear approximation f ϵ(t) with three linear segments 


	Structure Bookmarks
	        
	  
	     
	      
	  ϵ     
	       
	       
	      
	   
	  ﬃ    
	     
	   
	 
	 
	     




