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Abstract. This paper proposes an analytical model to approximate the transient aggregate
joint queue-length distribution of tandem finite (space) capacity Markovian networks.
The methodology combines ideas from transient aggregation-disaggregation techniques
as well as transient network decomposition methods. The complexity of the proposed
method is linear in the number of queues and is independent of the space capacities of
the individual queues. This makes it a suitable approach for the analysis of large-scale
networks. The transient joint distributions are validated versus simulation estimates. The
model is then used to describe urban traffic dynamics and to address a dynamic traffic
signal control problem. The signal plan analysis shows the added value of using joint
distributional information, andmore generally spatial-temporal between-link dependency
information, to enhance urban traffic operations.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2015.0629.

Keywords: queueing networks • joint distribution • Markovian networks • urban traffic signal control

1. Introduction
With congestion prevailing in urban areas and limited
possibilities for road infrastructure expansion, there is a
need to rethink howwe operate our transportation sys-
tems.Transportation strategies are typically formulated
such as to improvefirst-orderperformancemetrics, e.g.,
expected travel times. They have the potential to fur-
ther enhance performance by accounting for higher-
order distributional information such as to improve, for
instance, network reliability and network robustness.
Various transportationagencieshave recently identified
improved network reliability and/or network robust-
ness as critical goals (Texas Transportation Institute
2012; Transport for London 2010; Department of Trans-
portation 2008). Performancemeasures that account for
network reliability/robustness involve the approxima-
tion of higher-order distributional information of the
main network, or path, performance measures. There
are two main challenges that arise when attempting to
analytically approximate the full joint network, or path,
distribution.
First, an analytical probabilistic approximation of

the spatial-temporal dependencies between links (i.e.,
roads) is needed. Congested urban networks embed
intricate traffic dynamics, hence providing an analyt-
ical approximation of the between-link interactions is
intricate. Hence, the vast majority of the probabilis-
tic network models are simulation based (for a recent
review, see Barceló 2010). In the general field of trans-
portation (air, urban, maritime, etc.), few analytical
probabilistic and time-dependent traffic models have

been developed (Flötteröd andOsorio 2013; Osorio and
Flötteröd 2015; Osorio, Flötteröd, and Bierlaire 2011;
Gupta 2011; Heidemann 2001; Peterson, Bertsimas, and
Odoni 1995a, b; Odoni and Roth 1983). Recent work
has proposed link models (Osorio and Flötteröd 2015;
Osorio, Flötteröd, andBierlaire 2011) basedon transient
Markovian queueing network theory, which are consis-
tent with the mainstream deterministic traffic flow the-
orymodels, such as the KinematicWaveModel (KWM)
(Lighthill andWitham 1955; Richards 1956). Suchmod-
elsprovideadetaileddescriptionof thewithin-link traf-
fic dynamics. Nonetheless, their use for the joint and
tractable analysis of large-scale networks has yet to be
explored.

Second, the dimension of the state space of the joint
queue-length distribution is exponential in the num-
ber of links. Let the state of link i, denoted Ni , be
defined as the number of vehicles on the link. Then
the network state space is given by ×i∈L{0, 1, . . . , `i},
where L denotes the set of links and `i is the space
capacity of link i. Hence, the dimension of the state
space is ∏

i∈L(`i + 1). Given the dimensionality of the
joint distribution, providing a tractable approximation
suitable for the analysis of large-scale networks is a
major challenge.

This paper focuses on this dimensionality chal-
lenge. It proposes an analytical, tractable, and scalable
technique that approximates the joint time-dependent
queue-length distribution of a finite (space) capacity
tandem (also called series or linear) topology Marko-
vian network. The dimension of the state space of the
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proposed method is linear, instead of exponential, in
the number of links and is independent of the space
capacities of the individual queues. Thismakes it a suit-
able approach for the analysis of large-scale tandem
networks.
Hereafter, the term capacity refers to space capac-

ity. In the field of queueing network theory, the vast
majority of research has focused on stationary anal-
ysis, whereas transient techniques have received less
attention. Seminal works in transient analysis of a sin-
gle finite capacity queue include Morse (1958) and
Cohen (1982). For recent reviews of transient analysis,
see Kaczynski, Leemis, and Drew (2012) and Griffiths,
Leonenko, and Williams (2008). For Markovian finite
capacity queueing networks (FCQNs), the transient
joint queue-length distribution can be obtained by solv-
ing a system of linear first-order ordinary differential
equations (ODEs) (described in Section 2.1). Closed-
form expressions are limited to a single M/M/1/` or
a single M/M/2/` queue (Morse 1958; Sharma and
Gupta 1982; Sharma andShobha 1988). Exact numerical
techniques are the most common approach when ana-
lyzing transient networks (for reviews, see Stewart 1994,
2009). Nonetheless, the dimension of the joint distribu-
tion remains amajor challenge.
To address the issue of dimensionality, the most

common approach is to decompose the network into
subnetworks and approximate the subnetwork distri-
butions. These methods are known as decomposition
techniques. A review of stationary decomposition tech-
niques is given in Osorio and Bierlaire (2009). Station-
ary decomposition methods have mostly decomposed
the network into single queues, as in Osorio and Bier-
laire (2009). Stationary methods that decompose the
network into overlapping subnetworks of three queues,
as is done in this paper, include Brandwajn and Jow
(1988) and Schmidt and Jackman (2000). Unlike the
method proposed in this paper, the latter two methods
consider a stationary analysis.

Most transient decomposition techniques assume
infinite capacity queues (e.g., McCalla and Whitt 2002;
Whitt 1999; Peterson, Bertsimas, and Odoni 1995a;
Odoni and Roth 1983). This is due to the complexity
of providing an analytical description of the tempo-
ral between-queue dependencies in FCQNs, and even
more so in congested FCQNs. Transient decomposition
techniques for an FCQN include work in the field of
manufacturing, where detailed service processes are
used to describe intricate machine characteristics; see
Li (2005) for general topology networks and Zhang
et al. (2013) for tandem topology networks. A tech-
nique for general topologyMarkovian networks is pro-
posed in Flötteröd and Osorio (2013).
A second family of techniques to address the issue of

dimensionality are aggregation-disaggregation tech-
niques. The latter describe the state of the network

aggregately (i.e., reduced state space), while ensuring
consistency with disaggregate (i.e., high-dimensional)
distributions (e.g., Schweitzer 1991). Exact transient,
and stationary, aggregation-disaggregation techniques
have been proposed (Schweitzer 1984). Nonetheless,
such approaches are not sufficiently tractable for large-
scale networks. An approximate tractable stationary
aggregation-disaggregation method appropriate for
the analysis of urban networks is proposed in Osorio
andWang (2017).

This paper considers the transient analysis of net-
works and combines both techniquesmentioned above:
transient decomposition techniques and transient
aggregation-disaggregation techniques. The decompo-
sition technique decomposes the network into overlap-
ping three-queue subnetworks. For each subnetwork,
the state of each queue is described aggregately, and
an analytical approximation of the between-queue
dynamics is proposed. The combination of these two
families of ideas leads to a highly tractable and scal-
able description of network dynamics. It is this com-
bination that leads to a model complexity that is
both linear in the number of links (which is often
the case of decomposition methods) and indepen-
dent of the link space capacities (which is often the
case of aggregation-disaggregation methods). Addi-
tionally, this paper focuses on the transient analysis of
networks, unlike the stationary analysis proposed in
Osorio andWang (2017) or Osorio and Bierlaire (2009).

The recently proposed queueing-theoretic Marko-
vian vehicular traffic models that are consistent with
deterministic traffic flow theory (Osorio and Flötteröd
2015; Osorio, Flötteröd, and Bierlaire 2011) show the
great potential of queueing theory to complement
and extend traditional deterministic traffic flow theory.
Consistency with the KWM proves the adequacy of
using transient Markovian queueing theory to model
uninterrupted vehicular traffic, for all levels of conges-
tion. As differentiable and probabilistic models, they
can be used as stand-alone models to address a vari-
ety of optimization problems. The model proposed in
this paper is not formulated such as to be consistent
with traditional deterministic traffic flow theory. As
part of ongoing work, the aggregation-disaggregation
ideas presented in this paper are being combined with
detailed traffic-theoretic dynamic link models such as
to derive network models that are both consistent with
traditional deterministic traffic theories and suitable
for the analysis of large-scale networks.

For interrupted traffic (e.g., at signal controlled inter-
sections), stationary or transient Markovian queueing
network models that are highly accurate have not been
proposed. Nonetheless, they have been successfully
used to design computationally efficient simulation-
based optimization (SO) algorithms for interrupted
urban traffic (Osorio and Bierlaire 2013; Osorio and
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Chong 2015; Osorio and Nanduri 2015; Chong and
Osorio 2017; Osorio and Selvam 2017). In these SO
algorithms, information fromhigh-resolution, yet com-
putationally inefficient, models of interrupted traffic
(e.g., stochastic microscopic traffic simulators) is com-
bined with information from low-resolution, yet effi-
cient, analytical Markovian queueing network models.
This combination leads to SO algorithms with an
appealing resolution-efficiency trade-off.
The model proposed in this paper is formulated

such as to be consistent with queueing network the-
ory, rather than traffic flow theory. It is analytical,
differentiable, and computationally efficient. Hence, it
can be combined with higher-resolution traffic-theore-
tic models of interrupted traffic to address a variety of
optimization problems, both analytical and simulation
based. In this paper, the proposed queueing model is
used to address an analytical traffic signal control prob-
lem (Section 4). The model identifies signal plans with
good performance; this shows its potential to be com-
bined with higher-resolution models of interrupted
traffic to address intricate time-dependent optimiza-
tion problems. Additionally, the results of Section 4
show that the signal plans derived by the proposed
transientmodel outperform the signal plans derived by
the stationary model used in past work for simulation-
based signal control (Osorio and Bierlaire 2013; Osorio
and Chong 2015; Osorio and Nanduri 2015). This indi-
cates the potential of the proposed model to enhance
the performance of existing SO frameworks.
Modeling and optimizing the spatial and temporal

propagation of urban congestion is a great challenge.
In particular, models that can describe between-queue
dependencies, andmore specifically theoccurrenceand
effects of spillbacks are of interest. Major congested
cities, such as New York City (Osorio et al. 2015),
are rethinking the way they operate their traffic lights
such as to mitigate spillbacks. The proposed approach
contributes by providing a probabilistic description
of between-queue dependencies.
Section 2 presents the proposed methodology. The

method is validated versus a general-purpose discrete-
event queueing network simulator (Section 3). It is then
used to address an urban traffic signal control problem
(Section 4), this illustrates its potential to address vari-
ous transportationoptimizationproblems.Conclusions
are presented in Section 5.

2. Methodology
This section is structured as follows. It presents the gen-
eral transient aggregation-disaggregation framework
(Section 2.1). This framework is formulated for an
aggregate description of a single queue (Section 2.2),
and generalized for a tandem network of queues (Sec-
tion 2.3). The main challenge in the analytical analysis
of a network of finite capacity queues is the analytical

description of between-queue dependencies. This chal-
lenge is illustratedwith a simple example in Section 2.4.
The proposed analytical descriptions of the between-
queue dependencies are given in Sections 2.5–2.7. An
algorithm that summarizes the proposed method is
presented in Section 2.8.

2.1. Transient Aggregation-Disaggregation
Framework

This paper builds on the exact aggregation-disaggre-
gation technique for transient Markov chains given
in Schweitzer (1984). This section presents the main
idea underlying the Schweitzer (1984) framework. Con-
sider a continuous-timeMarkov chain with a finite and
large state space. The Markov chain is assumed aperi-
odic and communicative. Let Ω denote the state space
with card(Ω) � M. The rate at which a transition from
state i to j, i , j, (i , j) ∈Ω2, can take place is given by qi j .
The transition rate matrix, Q, is then defined by

Qi j �


qi j , if i , j,

−
∑

k∈Ω\i
qik if i � j. (1)

Let N denote the network state (e.g., joint net-
work queue length) and let pN(t) be the row vector
that represents the transient joint state distribution at
time instant t. Then, pN(t) satisfies the (forward) Kol-
mogorov system of equations (see, for instance, Durrett
1999, Chapter 4.2)

dpN(t)
dt

� pN(t)Q. (2)

Assuming valid boundary conditions, there are
numerous exact numerical techniques to solve the
above system of linear first-order ODEs. For reviews on
such numerical methods, see Stewart (1994, 2009). The
main challenge in solving (2) remains the dimension of
the state space. For instance, for a finite capacity queue-
ing network with m queues each with space capacity `,
where N represents the joint queue-length state, the
state space is of dimension M � (`+1)m , which is expo-
nential in the number of queues and depends on the
space capacities of the individual queues.

To address the dimensionality issue, Schweitzer
(1984) proposes to partition the M states into M̄ aggre-
gate disjoint states, such that M̄�M. Let Ω̄ denote the
set of aggregate states. Let Ωa denote the set of disag-
gregate states within aggregate state a. Let A denote
the random variable representing the aggregate net-
work state. The probability of being in aggregate state a
at time t is denoted pA�a(t) and defined as

pA�a(t)�
∑
i∈Ωa

pN�i(t). (3)
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Schweitzer (1984) shows that the aggregate distribu-
tion satisfies a system of the form

dpA�a(t)
dt

� pA�a(t)Q̄(t), (4)

where Q̄(t) represents the transition rate matrix of the
aggregate system. Element (a , b) of Q̄(t) is denoted
by q̄ab(t) and is referred to as an aggregate transition
rate. Schweitzer derives the following exact closed-
form expression for Q̄(t) as a function of disaggregate
transition rates and disaggregate state probabilities
(Schweitzer 1984, Equation (10.4))

q̄ab(t)�



∑
j∈Ωa

∑
i∈Ωb

pN� j(t)q ji∑
j∈Ωa

pN� j(t)
,

if (b , a) ∈ Ω̄2 , b , a ,

−
∑

c∈Ω̄\a
q̄ac , if a � b.

(5)

2.2. Aggregate State Representation
This section defines the aggregate state representa-
tion. It then considers the aggregation-disaggregation
framework presented in Section 2.1, and applies it to
a single finite capacity M/M/-type queue. The exact
expression derived is used in subsequent sections to
formulate the methodology for a network of queues.
Consider a single M/M/1/` queue. The (disaggre-

gate) state of the queue is described by the number
of jobs (e.g., vehicles), N , in the queueing system. The
(disaggregate) state space is given byΩ� {0, 1, . . . ., `},
where ` ∈ �+ is the space capacity. Let λ ≥ 0 and µ > 0
denote, respectively, the arrival and service rates.
We aggregate the ` + 1 (disaggregate) states into the

following three (aggregate) states: the queue is empty,
the queue is full, and the queue is neither empty nor
full. The aggregate states are described by the ran-
dom variable A: (i) empty queue: A � 0, Ω0 � {N � 0};
(ii) nonempty and nonfull queue: A � 1, Ω1 � {N ∈
[1, ` − 1]}; and (iii) full queue: A � 2, Ω2 � {N � `}.
The choice of these three states is based on between-

queue dynamics in urban networks, where there are
vehicle transmissions from link j to its downstream
link k as long as (i) a vehicle is ready to be sent from the
upstream link j (i.e., nonempty upstream link: A j > 0)
and (ii) there is space in the downstream link k to
receive a vehicle (i.e., nonfull downstream link: Ak < 2).
With only three states we can describe the boundary
conditions that each queue provides to its upstream
and downstream queues. This yields amodel complex-
ity that is independent of the space capacity of each
queue, making this approach highly tractable for large-
scale networks. Additionally, the use of such a low-
dimensional aggregate description of the within-link
state will facilitate the combination of this model with
othermore detailed link trafficmodels that describe the

within-linkdynamics inmore detail yet lack tractability
(e.g., Osorio and Flötteröd 2015).
The aggregate transition rate matrix of anM/M/1/`

queue is given by

Q̄(t)� ©­«
−λ λ 0
µ̄(t) −(µ̄(t)+ λ̄(t)) λ̄(t)

0 µ −µ
ª®¬ , (6)

where λ̄(t) (respectively, µ̄(t)) is used to denote q̄12(t)
(respectively, q̄10(t)) and represents the rate at which
transitions take place from the aggregate state A � 1 to
the full queue state A � 2 (respectively, empty queue
state A � 0).
The (disaggregate) transition rate matrix of an

M/M/1/` queue is given by

qi j �


λ, if j � i + 1 and i ∈ J0, ` − 1K,
µ, if j � i − 1 and i ∈ J1, `K,
−

∑
j∈Ω\i

qi j , if i � j.
(7)

Inserting (7) into (5), and noting that Ω0 � {0} and
Ω2 � {`}, we obtain the following exact expressions for
the aggregate transition rates:

λ̄(t)� λ
pN�`−1(t)
pA�1(t)

, (8a)

µ̄(t)� µ
pN�1(t)
pA�1(t)

. (8b)

System (8) is equivalent to{
λ̄(t)� λpN�`−1 |A�1(t), (9a)
µ̄(t)� µpN�1 |A�1(t). (9b)

System (9) indicates that an accurate approximation of
λ̄(t) and of µ̄(t) can be derived based on an accurate
approximation of the probabilities pN�`−1 |A�1(t) and
pN�1 |A�1(t). We refer to these probabilities as disaggre-
gation probabilities since they represent the probabili-
ties of being in a disaggregate state of a given aggregate
state. System (9) will serve as a building block for the
proposed methodology.

2.3. Transient Aggregate Description of a
Tandem Network

We consider a discrete-time context and introduce the
following notation:

δ time step length;
k time interval index for interval [kδ, (k + 1)δ];

Ni disaggregate state of queue i;
Ai aggregate state of queue i;
Āi aggregate joint state of subnetwork i:

Āi � (Ai ,Ai+1 ,Ai+2);
pk

Xi
(t) distribution of Xi at continuous time t within

time interval k, t ∈ [0, δ];
Q̄k

i aggregate transition rate matrix of subnet-
work i during time interval k.
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Consider a tandem topology network with I queues.
Each queue has a finite space capacity `i ∈ �+, inde-
pendent exponentially distributed service times with
parameter µi , and external arrivals (i.e., arrivals that
come from outside of the network) that follow a Pois-
son process with rate parameter γi .

We decompose the network into I − 2 overlap-
ping subnetworks with three adjacent queues each, as
depicted in Figure 1. A three-queue subnetwork is the
smallest subnetwork in which the traffic dynamics of
each queue account for the states of both its upstream
anddownstreamqueues. Subnetwork i consists of three
queues indexed i, i + 1, and i + 2.Theproposedmethod-
ology analyses all subnetworks simultaneously, and
yields for each subnetwork i an analytical approxima-
tion of its transient joint aggregate distribution. For
subnetwork i, the joint aggregate state probabilities
at continuous-time t of time interval k are denoted
pk

Āi�s
(t), where an aggregate state s is defined as the

triplet: s � ( ji , ji+1, ji+2) ∈ {0, 1, 2}3. Each queue of a sub-
network has three aggregate states, hence the dimen-
sion of the state space of the subnetwork is aggregated
into 33 � 27 distinct states. For a network with I queues,
the proposed approach yields I − 2 subnetwork distri-
butions, eachwith a state space of dimension 27.Hence,
the complexity of the proposed model is linear, instead
of exponential, in the number of queues and is indepen-
dent of the space capacities of the individual queues.
This makes it a suitable approach for the analysis of
large-scale tandem networks.
For each subnetwork i, we assume that the temporal

evolution of its joint aggregate distribution satisfies a
system of equations of the form (4). Additionally, for
a given time interval k of duration δ, we approximate
the aggregate transition rate matrix of subnetwork i,
Q̄i(t), by a time invariant matrix Q̄k

i . Equation (4) then
becomes a linear ODE

dpk
Āi
(t)

dt
� pk

Āi
(t)Q̄k

i , ∀ t ∈ [0, δ], (10)

which has a solution of the form (see, for instance,
Reibman 1991)

pk
Āi
(t)� pk

Āi
(0)e tQ̄k

i , ∀ t ∈ [0, δ]. (11)

Figure 1. Overlapping Subnetworks of Three Tandem Queues

· · · · · ·

Subnetwork
i – 2

Subnetwork
i – 1

Subnetwork
i

Queue i – 2 Queue i – 1 Queue i Queue i + 1 Queue i + 2

The initial conditions that ensure the temporal continu-
ity of the aggregate distribution across time intervals
are given by

pk
Āi
(0)� pk−1

Āi
(δ). (12)

The approximation of the aggregate time-dependent
transition rate matrix Q̄i(t), is formulated as a func-
tion fQ̄ of four parameters, three of which are time
dependent

Q̄k
i � fQ̄(γ̄k

i , µ̄
k
i , α

k
i , βi), (13)

where γ̄k
i represents the rates of arrival from outside

the subnetwork, µ̄k
i denotes subnetwork service rates,

αk
i are disaggregation probabilities, and βi are blocking

probabilities. The full expression for Q̄k
i (i.e., the defi-

nition of the function fQ̄) is given in Table 1 of Online
Appendix A. The structure of thematrix Q̄k

i is the same
as that of the time-independent transition rate matrix
used in Osorio and Wang (2017, Table 10). The defi-
nitions and approximations of αk

i , βi , γ̄k
i , and µ̄k

i are
described, respectively, in Sections 2.5–2.7. Section 2.4
illustrates through an example the intricate traffic phe-
nomena that may arise in finite capacity networks.
This serves to highlight the challenge of approximating
these subnetwork parameters.

2.4. Describing the Propagation of Congestion
Through Blocking

When considering a network of multiple finite capac-
ity queues, intricate traffic dynamics may arise because
of the emersion of blocking (referred to as spillback in
urban traffic). Blocking arises when a job (e.g., a vehi-
cle) completes service yet finds no available space in its
downstream queue to proceed. Hence, the job is said
to be blocked by its downstream queue. A blocked job
is also blocking the use of the underlying server (e.g.,
road space) by other upstream jobs. There are various
types of blocking mechanisms (see Balsamo, De Nitto
Persone, and Onvural 2001), here we consider blocking
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after service, which is also known as production block-
ing or manufacturing blocking. In this case, once a
job is blocked it continues to occupy the underlying
server until it can proceed downstream (i.e., until it is
unblocked). This formof blockingmimicswell the spill-
back dynamics that arise in urban traffic.
Blocking leads to intricate between-queuedependen-

cies. For instance, a service completion at a blocking
queue (i.e., a queue that is blocking jobs at up-
stream queues) triggers instantaneous state changes at
upstream blocked queues. Additionally, for a general
topology network if queue i is blocked by downstream
queue j, then queue j is full and may be blocking jobs
at other upstream queues other than queue i. Hence,
the rate of job departures from queue i (known as the
unblocking rate) depends not only on the state and ser-
vice rate of queue j but also on the occurrence of block-
ing at all upstream queues of queue j.

The following example, taken fromOsorio andWang
(2017, Section 2.3.2), illustrates the notion of blocking
and the intricate between-queue dependencies that it
leads to. Consider for subnetwork i a joint aggregate
state s � (1, 2, 2), where queue i (i.e., the most upstream
queue) is in state 1, and queues i + 1 and i + 2 are in
state 2, i.e., they are full. Assume there is a service
completion at queue i + 2. This service completion can
trigger a transition to one of the following states:

• if queue i + 2 is not blocking queue i + 1, then the
new state is (1, 2, 1);

• if queue i + 2 is blocking queue i + 1 and is not
blocking queue i, then the new state is (1, 1, 2);

• if queue i + 2 is blocking queue i + 1 and is block-
ing queue i, then the new state is either (1, 2, 2)
(this occurs with probability pNi>1 |Ai�1) or (0, 2, 2) (this
occurs with probability pNi�1 |Ai�1). These probabilities
are known as disaggregation probabilities.
This example illustrates the need to approximate:

(i) disaggregation probabilities, and (ii) blocking prob-
abilities for states where blocking can occur. Analytical
approximations for these two elements are proposed,
respectively, in Sections 2.5 and 2.6. One of the main
challenges when analyzing finite capacity networks is
to accurately approximate blocking and unblocking
events. This is an even greater challenge in our context,
since the proposed paper considers an aggregate (i.e.,
nondetailed) representation of queue states.

2.5. Disaggregation Probabilities
For a three-queue network, an exact expression for
the aggregate and disaggregate transition rates can be
derived as was done for a single queue in Section 2.1
(which lead to System (9)). The aggregate transition
rate matrix is then described as a function of disag-
gregation probabilities (see System (9)), where each
queue j in subnetwork i has two disaggregation prob-
abilities that are of interest: pN j�n |A j�1(t), n ∈ {1, ` j − 1}.

We propose to approximate these disaggregation
probabilities by accounting for the joint subnetwork
state. In other words, we approximate pN j�n |A j�1(t) by
using information from pN j�n |A j�1, Āi�s(t). That is, we
derive state-dependent disaggregation probabilities.
Let us describe this in more detail.

For subnetwork i, we consider a total of six scenarios
(or sets of states) described below. These scenarios con-
sider each queue of the subnetwork and distinguish
between states where the queue can be blocked and if
so by which queue.

For queue i (which is the most upstream queue in
subnetwork i), we consider three types of disaggrega-
tion probabilities:

(1) If its directly downstream queue i + 1 is not full,
then queue i cannot be blocked. This leads to the fol-
lowing disaggregation probabilities:

pNi�n |Ai�1,Ai+1,2(t), n ∈ {1, `i − 1}.

(2) If queue i + 1 is full but queue i + 2 is not full,
then queue i can only be blocked by queue i + 1:

pNi�n |Ai�1,Ai+1�2,Ai+2,2(t), n ∈ {1, `i − 1}.

(3) If both queues i + 1 and i + 2 are full, then queue i
can be blocked by either queue:

pNi�n |Ai�1,Ai+1�2,Ai+2�2(t), n ∈ {1, `i − 1}.

Similarly for queue i + 1:
(4) If its downstream queue i + 2 is not full, then

queue i + 1 cannot be blocked:

pNi+1�n |Ai+1�1,Ai+2,2(t), n ∈ {1, `i+1 − 1}.

(5) If its downstream queue i + 2 is full, then queue
i + 1 can be blocked by queue i + 2:

pNi+1�n |Ai+1�1,Ai+2�2(t), n ∈ {1, `i+1 − 1}.

For the most downstream queue of subnetwork i,
queue i + 2, we consider a single case:

(6) Queue i + 2 cannot be blocked:

pNi+2�n |Ai+2�1(t), n ∈ {1, `i+2 − 1}.

The above description presents the six scenarios
that we consider. For each scenario, we propose an
approximation for the corresponding disaggregation
probabilities.

Note from the above description of six scenarios that
for subnetwork i themost detailed description of block-
ing is given for queue i. This is because its blocking
scenarios account for joint states with two of its down-
stream queues (queues i + 1 and i + 2), whereas for
queue i + 1 the state of only one downstream queue is
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accounted for, and for queue i + 2 no information from
its downstreamqueues are accounted for. Thus,wepro-
pose an approach where the disaggregation probabili-
ties of a given queue i are derived by analyzing subnet-
work i (i.e., the subnetwork where queue i is the most
upstream queue). In other words, for subnetwork i the
disaggregation probabilities corresponding to queue i
(i.e., scenarios 1, 2, and 3) are obtained from the anal-
ysis of subnetwork i. This is described in Section 2.5.1.
For subnetwork i, the disaggregation probabilities of
queues i + 1 and i + 2 are obtained from the analysis of
subnetworks i + 1and i + 2, asdescribed inSection2.5.2.

2.5.1. Scenarios 1–3. For subnetwork i, the disaggre-
gation probabilities of queue i correspond to scenar-
ios j ∈ {1, 2, 3}. Let us describe how these disaggre-
gation probabilities are approximated. They each have
the form pNi�n | E j

(t), n ∈ {1, `i − 1}, where E j denotes
the conditioning event of scenario j. Considering a dis-
crete time context, we approximate each of these prob-
abilities by a constant value during time interval k,
denoted αk

i , j, n and approximated by

αk
i , j, n � pk−1

Ni�n | E j
(δ), j ∈ {1, 2, 3}, n ∈ {1, `i − 1}. (14)

Recall from Section 2.3 that our method approx-
imates the aggregate subnetwork distributions pĀi

.
Hence at the beginning of time interval k the aggregate
joint distribution pk−1

Āi | E j
and the aggregatemarginal dis-

tributions pk−1
Ai | E j

are known, but the disaggregate dis-
tribution that appears in the right-hand side of (14),
pk−1

Ni | E j
, is unknown.

To approximate this unknown distribution, we
assume it has the same functional form as that of the
disaggregate queue-length distribution of a single iso-
lated M/M/1/` queue. The functional form of the dis-
aggregate distribution for a single queue is derived
in Morse (1958, pp. 65–67). Its expression for a given
queue with space capacity `, arrival rate λ, service
rate µ, and initial distribution pN(0), is given by ∀ n �

0, 1, . . . , `, ∀ t ∈ [0, δ]

pN�n(t)�
∑̀
m�0

pN�m(0)dm
n (t , λ, µ, `); (15a)

dm
n (t , λ, µ, `)� sn +

2ρ(n−m)/2

` + 1
∑̀
j�1

µ

x j

·
[
sin

jmπ
` + 1 −

√
ρ sin

j(m + 1)π
` + 1

]
· · ·

·
[
sin

jnπ
` + 1 −

√
ρ sin

j(n + 1)π
` + 1

]
e−x j t ; (15b)

sn �
1− ρ

1− ρ`+1 ρ
n ; (15c)

x j � λ+ µ− 2
√
λµ cos

jπ
` + 1 ; (15d)

ρ � λ/µ. (15e)

We denote the above system of equations as a
function fD

pN�n(t)� fD(n , t , λ, µ, `, pN(0)). (16)

The distribution pk−1
Ni | E j
(t) (i.e., {pk−1

Ni�n | E j
(t), n ∈ {0, 1,

. . . , `i}}) is approximated by assuming it satisfies (15),
i.e.,

pk−1
Ni�n | E j

(t)� fD

(
n , t , λk−1

i , j , µ
k−1
i , j , p

k−2
Ni | E j
(δ)

)
. (17)

In (17) the parameters λk−1
i , j and µk−1

i , j are unknown.
They are approximated by noticing that there is a one-
to-one mapping between the disaggregate state Ni � 0
(respectively, Ni � `i) and the aggregate state Ai � 0
(respectively, Ai � 2). Ensuring consistency among the
disaggregate and the aggregate probabilities of these
states leads to the following equations:{

pk−1
Ai�0 | E j

(δ)� pk−1
Ni�0 | E j

(δ), (18a)

pk−1
Ai�2 | E j

(δ)� pk−1
Ni�`i | E j

(δ). (18b)

Thus, we can obtain the parameters λk−1
i , j and µk−1

i , j by
solving the following system of equations:{

pk−1
Ai�0 | E j

(δ)� fD(0, δ, λk−1
i , j , µ

k−1
i , j , p

k−2
Ni | E j
(δ)), (19a)

pk−1
Ai�2 | E j

(δ)� fD(`i , δ, λ
k−1
i , j , µ

k−1
i , j , p

k−2
Ni | E j
(δ)). (19b)

Let us detail this. Recall that fD represents the sys-
tem of equations (15). In the system of equations (19)
the fixed input parameters are 0, `, δ, and pk−2

Ni | E j
; there

are two endogenous variables (i.e., the unknowns in
the system of equations): λk−1

i , j , µ
k−1
i , j . In other words,

(19) represents a two-dimensional system of nonlinear
equations.

Given the rates λk−1
i , j and µk−1

i , j , the distribution
pk−1

Ni | E j
(t) is fully defined, and is used to evaluate the

disaggregation probabilities: pk−1
Ni�n | E j

(t), n ∈ {1, `i − 1},
i.e., αk

i , j, n , j ∈ {1, 2, 3}, n ∈ {1, `i − 1}.

2.5.2. Scenarios4–6. Section2.5.1describes themethod
to obtain for all subnetworks i the probabilities αk

i , j, n ,
j ∈ {1, 2, 3}. This section describes the approximation of
the remaining disaggregation probabilities, i.e., αk

i , j, n ,
j ∈ {4, 5, 6}. Our proposed network decomposition con-
sists of overlapping subnetworks. Hence, a queue may
belong to multiple subnetworks. For instance, queue i
belongs to subnetworks i − 2, i − 1, and i. The remaining
disaggregation probabilities (i.e., αk

i , j, n , j ∈ {4, 5, 6}) are
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derived such as to ensure consistency among the disag-
gregationprobabilities of a givenqueue i across subnet-
works. The following equations ensure consistency:

αk
i , 4, n � α

k
i+1, 1, n , n ∈ {1, `i+1 − 1}; (20a)

αk
i , 5, n � pk−1

Ai+3,2(δ)αk
i+1, 2, n + pk−1

Ai+3�2(δ)αk
i+1, 3, n ,

n ∈ {1, `i+1 − 1}; (20b)
αk

i , 6, n � pk−1
Ai+3,2(δ)αk

i+2, 1, n + pk−1
Ai+3�2(δ)

· [pk−1
Ai+4,2(δ)αk

i+2, 2, n + pk−1
Ai+4�2(δ)αk

i+2, 3, n], . . .
n ∈ {1, `i+2 − 1}. (20c)

The left-hand side of Equation (20a) considers sce-
nario 4 of subnetwork i. That scenario considers queue
i + 1 and assumes that its directly downstream queue
(i + 2) is not full. This is equivalent to considering sce-
nario 1 of subnetwork i + 1, which is the left-hand side
of Equation (20a). Similarly, Equation (20b) is derived.
Equation (20c) is obtained by defining αk

i , 6, n just as
αk

i , 5, n in (20b)

αk
i , 6, n � pk−1

Ai+3,2(δ)αk
i+1, 4, n + pk−1

Ai+3�2(δ)αk
i+1, 5, n , (21)

and then inserting the expressions of αk
i+1, 4, n (respec-

tively, αk
i+1, 5, n) as given by (20a) (respectively, (20b)).

In System (20), the marginal probabilities of a given
queue i, pAi

(δ), are derived from the analysis of net-
work i − 2.

2.6. Blocking Probabilities
Considering the set of states where jobs can be blocked,
we approximate the corresponding blocking proba-
bilities with state-dependent, simple, and exogenous
expressions. These are given in Table 1. These expres-
sions are taken from Osorio and Wang (2017, Sec-
tion 2.3.2). This table considers the queues of subnet-
work i that are blocked (column 1), the queue that is at
the source of (i.e., causes) the blocking (column 2), the
feasible joint states where such blocking can occur (col-
umn 3), and the corresponding probability with which
this blocking occurs (column 4). Multiple states for
the initial joint states are listed in braces. For instance,
the first row considers the case where queue i can be

Table 1. Blocking Probabilities of Subnetwork i

Blocked Source
queues queue Initial joint states Āi Blocking probability

i i + 1 ({1, 2}, 2, {0, 1}) βi , 1 �
µi

µi + µi+1

i, i + 1 i + 2 ({1, 2}, 2, 2) βi , 2 �
µi

µi + µi+1 + µi+2

µi+1

µi+1 + µi+2
+

µi+1

µi + µi+1 + µi+2

µi

µi + µi+2

i + 1 i + 2 ({0, 1, 2}, 1, 2), (0, 2, 2) βi , 3 �
µi+1

µi+1 + µi+2

i + 1 i + 2 ({1, 2}, 2, 2) βi , 4 �
µi+1

µi + µi+1 + µi+2

µi+2

µi + µi+2

blocked by queue i + 1 and cannot be blocked by queue
i + 2. This canoccur as long as queue i is nonempty (Ai ∈
{1, 2}), queue i + 1 is full (Ai+1 � 2), and queue i + 2 is
not full (Ai+2 ∈ {0, 1}). The approximation of all block-
ing probabilities (column 4) are given by simple expres-
sions that involve only the exogenous parameters µi ,
i � 1, . . . , I. The approximation is based on the property
referred to as “competing exponentials” or “competing
Poisson processes.” Consider n independent exponen-
tially distributed random variables {Xr}r�1: n with rate
parameter µr , then

P(Xr < Xi ,∀ i , r)�
µr∑n
j�1 µ j

. (22)

For a derivation, see Larson and Odoni (1981, Chap-
ter 2.12.4, Equation (2.62)). Hence, if we consider n
independent services, the probability that the first ser-
vice completion is of type r is given by Equation (22).
This property is used to approximate the blocking
probabilities in column 4 of Table 1. For instance, the
first row of the table considers states where queue i
can be blocked by queue i + 1 and not by queue i + 2.
This can occur if queue i is nonempty, queue i + 1 is
full, queue i + 2 is not full, and queue i finishes service
before queue i + 1. The probability that queue i finishes
service before queue i + 1 is µi/(µi + µi+1).

2.7. Subnetwork Arrival and Service Rates
Subnetwork i is a part of a larger network, hence
the arrival rate to its most upstream queue (queue i)
depends on the states and rates of queues further
upstream of the subnetwork (e.g., queue i − 1). The
total external arrival rate (i.e., from outside the sub-
network) to the queues of subnetwork i (during time
interval k) is denoted γ̄k

i and is given by

γ̄k
i � [γ̂k

i , γi+1 , γi+2], (23)

where γ̄k
i is a three-dimensional vector and each term in

the brackets is a scalar. The rates γi+1 and γi+2 are exoge-
nous parameters. The rate γ̂k

i is approximated by

γ̂k
i (1− pk−1

Ai�2(δ))� γi + γ̂
k
i−1(1− pk−1

Ai−1�2(δ)). (24)

The above expression is a flow conservation equation
that relates the arrival rate to queue i, γ̂k

i , to its external
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arrival rate (from outside the network), γi , and to the
arrival rate of its upstream queue, γ̂i−1. The probabil-
ities arise because we consider finite space capacity
models (` < +∞). For such models, flow can enter the
queue as long as it is not full, hence the flow that
enters is the product of the total arrival rate, γ̂k

i , with
the probability of the queue not being full, 1 − pk−1

Ai�2.
Equation (24) is a time-dependent extension of the
time-independent subnetwork arrival rate proposed in
Osorio and Wang (2017, Equation (20)).
Similarly, since subnetwork i is a part of a larger net-

work, the service rate of its most downstream queue
(queue i + 2) depends on the states and rates of queues
further downstream of the subnetwork (e.g., queue
i + 3). When analyzing subnetwork i the service rate
vector of its queues is denoted µ̄i and is given by

µ̄k
i � [µi , µi+1 , µ̂

k
i+2], (25)

where µ̄k
i is a three-dimensional vector and each term

in the brackets is a scalar. The rates µi and µi+1 are exo-
genous parameters. The rate µ̂k

i is approximated by

1
µ̂k

i

�
1
µi

+

[
pk−1

Ai+1�2(δ)
µi

µi + µi+1

]
·
[ γ̂k

i+1(1− pk−1
Ai+1�2(δ))

γ̂k
i (1− pk−1

Ai�2(δ))
1
µ̂k

i+1

]
. (26)

This expression relates the effective service rate of
queue i, µ̂k

i , to its exogenous service rate, µi , plus a
term that approximates the expected blocking time.
The expression in the first pair of brackets represents
the probability that a job (e.g., a vehicle) in queue i
gets blocked. This is approximated by the product
of (i) the probability that the downstream queue is
full pAi+1�2, and (ii) the probability that the service at
queue i is completed before the service of the down-
stream queue i + 1. The expression in the second pair
of brackets represents the expected blocked time of a
job at queue i given that it gets blocked. The left frac-
tion represents the inverse of the proportion of arrivals
to the downstream queue that arise from queue i (this
may not be equal to 1 since external arrivals from out-
side the network are allowed). The right fraction rep-
resents the expected time between unblocking events,
which is given by the inverse of the effective service
rate of the downstream queue µ̂i+1. Equation (26) is
a time-dependent extension of the time-independent
expression proposed in Osorio and Wang (2017, Equa-
tions (30), (32), and (33)).

2.8. Algorithm
Algorithm 1 summarizes the proposed approach. The
algorithm involves solving three systems of equations
at steps 6(a), 6(e), and 6(g), respectively. The system of
step 6(e) is a system that is linear in the unknowns γ̂k .

The system of step 6(g) is linear in the unknowns 1/µ̂k .
Step 6(a) solves a set of two-dimensional nonlinear sys-
tem of equations. These are solved with the MATLAB
routine fsolve and its “trust region reflective” algorithm
(Coleman and Li 1994, 1996). The termination tolerance
on the function value is set to 10−6.

Algorithm 1 (Tandem network algorithm).
Carry out each of the following steps for all subnet-

works i before proceeding to the next step.
1. Set the exogenous parameters µ, γ, `.
2. Evaluate the exogenous blocking probabilities βi

according to Table 1.
3. Set k � 1.
4. Set initial aggregate joint distributions pk

Āi
(0) (or

equivalently pk−1
Āi
(δ)).

5. Set initial conditional disaggregate distributions:
pk−1

Ni | E j
(δ). Go to step 6(c).

6. Repeat the following for time intervals k � 1,
2, . . . .

(a) Compute λk−1
i , j and µk−1

i , j , j ∈ {1, 2, 3} by solving
the system of equations (19).

(b) Compute the disaggregate distributions pk−1
Ni | E j

,
j ∈ {1, 2, 3} according to (17) and (15).

(c) Compute the disaggregation probabilities
αk

i , j, n , j ∈ {1, 2, 3}, n ∈ {1, `i − 1} according to (14).
(d) Evaluate αk

i , j, n , j ∈ {4, 5, 6}, n ∈ {1, `i − 1} ac-
cording to (20).

(e) Solve the linear system of equations (24) to
obtain γ̂k .

(f) Compute γ̄k
i according to (23).

(g) Solve the system of equations (26) to obtain µ̂k .
(h) Compute µ̄k

i according to (25).
(i) Evaluate the aggregate transition rate matrix

Q̄k
i according to (13), where the function fQ̄ is given by

Table 1 of Online Appendix A.
(j) Evaluate the aggregate joint distribution at the

end of the time interval pk
Āi
(δ) according to (11).

(k) Set initial conditions for the next time interval:
pk+1

Āi
(0)� pk

Āi
(δ).

3. Validation
We validate the transient aggregate joint distributions
versus distributions estimated with a discrete event
simulator of a Markovian FCQN (Meier 2007). For
more extensive validation experiments and details, we
refer the reader to Yamani (2013, Chapter 3).

The simulated estimates are obtained from 10,000
simulation replications. Let ps(t) denote the transient
probability of being in a given joint aggregate state s
at time t. A 95% confidence interval for ps(t) is given
by p̂s(t)±1.96

√
p̂s(t)(1− p̂s(t))/(10,000− 1), where p̂s(t)

is the simulated estimate of ps(t) (see, for instance,
Rice 1994, Section 7.3.3).We collect simulated estimates

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

66
.3

0.
11

.4
] 

on
 1

9 
O

ct
ob

er
 2

01
7,

 a
t 0

7:
46

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Osorio and Yamani: Analytical Transient Markovian Finite Capacity Network Models
832 Transportation Science, 2017, vol. 51, no. 3, pp. 823–840, ©2017 INFORMS

Table 2. Validation Scenarios for Three Queue
Network

Scenario [µ1 , µ2 , µ3] [`1 , `2 , `3]

1 [1.9,1.9,1.9] [2,2,2]
2 [1.9,1.9,1.9] [5,5,5]
3 [1.9,1.9,1.9] [10,10,10]
4 [1.9,4,6] [2,2,2]
5 [1.9,4,6] [5,5,5]
6 [1.9,4,6] [10,10,10]
7 [6,4,1.9] [2,2,2]
8 [6,4,1.9] [5,5,5]
9 [6,4,1.9] [10,10,10]

10 [1.7,1.7,1.7] [2,2,2]
11 [1.7,1.7,1.7] [5,5,5]
12 [1.7,1.7,1.7] [10,10,10]
13 [1.7,4,6] [2,2,2]
14 [1.7,4,6] [5,5,5]
15 [1.7,4,6] [10,10,10]
16 [6,4,1.7] [2,2,2]
17 [6,4,1.7] [5,5,5]
18 [6,4,1.7] [10,10,10]
19 [2,2,2] [2,2,2]
20 [2,2,2] [5,5,5]
21 [2,2,2] [10,10,10]
22 [2,4,6] [2,2,2]
23 [2,4,6] [5,5,5]
24 [2,4,6] [10,10,10]
25 [6,4,2] [2,2,2]
26 [6,4,2] [5,5,5]
27 [6,4,2] [10,10,10]

with a time step of t � 1. The analytical model is run
with time step δ � 0.1. For all validation scenarios, we
consider an initially empty network. In most of these
scenarios stationarity is reached by time t � 50. Station-
arity is assumed to be reached if the Euclidean distance
between the simulated distributions across two consec-
utive intervals is below 10−7.
We consider a tandem topology network with three

queues. External arrivals arise only to the first (i.e.,
most upstream) queue, with γ1 � 1.8. We consider a
set of 27 scenarios tabulated in Table 2. All scenar-
ios consider highly congested traffic conditions. Across
the scenarios we vary the minimal service rate µi ,
leading to a maximal ratio γ1/µi that takes values
{0.9, 0.95, 1.05}. We also vary the location of the queue
with the highest traffic intensity (we call this the bot-
tleneck queue): it can be either the first queue (most
upstream), the last queue (most downstream), or all
three queues. For a given scenario, all three queues
have common space capacity, `i . Across the scenarios,
the space capacity `i can take values {2, 5, 10}. We con-
sider all combinations of the three possible locations of
the bottleneck, the three values of the bottleneck traf-
fic intensity, and the three space capacity values. This
leads to a total of 33 � 27 scenarios.

Figure 2 calculates for each of the 27 scenarios a sin-
gle error metric, which is the average absolute error.

Figure 2. Average Absolute Error for Each of the 27
Scenarios, Which Are Grouped Such as to Observe the
Effect of Varying the Space Capacity `

1 2 3 4 5 6 7 8 9
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Scenario set index

A
ve

ra
ge

 a
bs

ol
ut

e 
er

ro
r

l = 2
l = 5
l = 10

The average is taken over all aggregate state probabili-
ties of all queues at all time steps (t � 1, 2, . . . , 50). Each
average is an average over a total of 1,350 state prob-
abilities. The total 1,350=33 · 50 corresponds to the 27
joint aggregate state probabilities of the three-queue
network, evaluated for each of the 50 time instances.

In Figure 2 the circles (respectively, crosses and
squares) denote the scenarios where the queues have
a space capacity ` � 2 (respectively, ` � 5 and ` � 10).
Figure 2 groups the 27 scenarios of Table 3 of Online
Appendix C into nine sets (indexed 1 to 9 along the
x-axis of Figure 2). For a given scenario set (i.e., a given
x-value in Figure 2), the only difference in the three sce-
narios is their space capacity value, all other scenario
parameters are common.

The first three sets of scenarios (indexed 1, 2, and 3
in Figure 2) correspond to the cases where all queues
have common traffic intensities. The index increases as
the traffic intensity increases; i.e., index 1 (respectively,
2 and 3) corresponds to a traffic intensity of 0.9 (respec-
tively, 0.95 and 1.05) for all queues. The second three
sets of scenarios (indexed 4, 5, and 6) correspond to
the cases where the bottleneck queue (i.e., the queue
with the highest traffic intensity) is the most upstream
queue. Again, the index increases as the traffic inten-
sity of the bottleneck queue increases; i.e., index 4
(respectively, 5 and 6) correspond to a traffic inten-
sity of the bottleneck queue of 0.9 (respectively, 0.95
and 1.05). The final three sets of scenarios (indexed 7, 8,
and 9) correspond to the cases where the bottleneck
queue is the most downstream queue. Again, the index
increases as the traffic intensity of the bottleneck queue
increases; i.e., index 7 (respectively, 8 and 9) corre-
sponds to a traffic intensity of the bottleneck queue
of 0.9 (respectively, 0.95 and 1.05).

For seven out of the nine sets of scenarios (i.e., all
sets except 7 and 8) the average absolute error increases
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Figure 3. Average Absolute Error for Each of the 27
Scenarios, Which Are Grouped Such as to Observe the Effect
of Varying the Traffic Intensity of the Bottleneck Queue
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with the space capacity. This can be seen in Figure 2
as follows: for a given scenario set, the lowest average
corresponds to the circle (` � 2), followed by the cross
(` � 5), and then followed by the square (` � 10). Fig-
ure 2 shows that the sets of scenarios with the smallest
errors are sets 4 and 6, which both correspond to cases
where the bottleneck location is upstream. This is fur-
ther illustrated in the remaining figures of this section.
Figure 3 also considers for each scenario the aver-

age absolute error; it groups the scenarios accord-
ing to common values of the highest traffic intensity.
For a given scenario set (i.e., a given x-value in Fig-
ure 3), the only difference in the three scenarios is
the value of the bottleneck traffic intensity value; all
other scenario parameters are common. The circles
(respectively, crosses and squares) denote the scenarios
where the bottleneck queue has a traffic intensity of 0.9
(respectively, 0.95 and 1.05). For seven of the nine sets
of scenarios, the error does not varymuchwith the traf-
fic intensity. This holds for all sets except sets 6 and 9.
Note that sets 6 and 9 both consider scenarios where
the queues have the largest space capacities (` � 10).
The larger the space capacity, the more challenging it
is to accurately approximate the disaggregation proba-
bilities (since there are more disaggregate states within
the aggregate state).
Figure 4 considers for each scenario the average

absolute error; it groups the scenarios according to
common location of the bottleneck queue (i.e., queue
with the highest traffic intensity). For a given scenario
set (i.e., a given x-value in Figure 4), the only dif-
ference in the three scenarios is the location of the
bottleneck queue; all other scenario parameters are
common. The circles denote the scenarios where all
three queues have common traffic intensity, and hence
they are all considered bottlenecks. The crosses (respec-
tively, squares) denote the scenarios where the bottle-

Figure 4. Average Absolute Error for Each of the 27
Scenarios, Which Are Grouped Such as to Observe the Effect
of Varying the Location of the Bottleneck Queue
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neck queue is the most upstream (respectively, most
downstream) queue.

Figure4 shows that for eightoutof thenine sets of sce-
narios (i.e., all but set 6), the smallest errors are obtained
when the bottleneck queue is themost upstream queue
only. This can be explained as follows.When the bottle-
neck is located upstream of the network, blocking (e.g.,
spillback) effects are not likely to occur further down-
stream, andhence thebetween-queuedependencies are
not as intricate as if the bottleneck were located further
downstream. Since the bottleneck effects are very diffi-
cult to describe and approximate analytically, upstream
bottlenecks are the scenarios with the highest accuracy
in the predictions.

For seven out of the nine sets of scenarios (i.e., all but
sets 3 and 6), the largest errors are obtained when the
bottleneck is located at the most downstream queue
only. As described above, this leads to significant spill-
back effects, and hence intricate between-queue depen-
dencies that are difficult to approximate analytically.

Figure 5 displays the errors for all scenarios, all state
probabilities at all times. This considers a total of 36,450
probabilities, with an average absolute error of 0.0095.
Across all scenarios the average runtime for the analyt-
ical method is 13.7 seconds, with a standard deviation
of 0.74 seconds. All scenarios were run on a 1.7 GHz
Intel Core i5 processor and 4 GB RAM.

We now consider an eight-queue tandem network
with the scenario defined in Table 3. All queues have
a common service rate µ � 10. This leads to a net-
work with increasing congestion as the queue index

Table 3. Eight-Queue Network Scenario

Queue i 1 2 3 4 5 6 7 8

γi 4 0 1 1 0 2 0 1
`i 25 10 25 10 25 10 25 10
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Figure 5. (Color online) Histogram of the Errors for All 27
Scenarios, for All State Probabilities at All Times
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increases. The traffic intensities of the queues increase
from 0.4 to 0.9.

The proposed analytical approach decomposes an
eight-queue network into six overlapping subnet-
works. Each plot of Figure 6 considers the probabilities
obtained by both the analytical model (blue circles),
and the simulation model (red crosses with their corre-
sponding 95% confidence intervals). The probabilities
of all joint states of all subnetworks are displayed. Each
plot considers a different time, going from time t � 10
in the upper plot, to t � 20, 30, 40, and 50 in the lower
plots. Figure 6 shows that across time and across all
subnetworks the analytical approach yields accurate
approximations.

Figure 6. (Color online) State Probabilities for All States of All Subnetworks in the 8-Queue Network
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Figure 7. (Color online) Histogram of the Errors for All
State Probabilities at All Times for the 8-Queue Network
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Figure 7 displays the errors for all state probabilities
at all times. This considers a total of 8,100 probabilities,
with an average absolute error of 0.0105. The runtime
for the analytical method is 10.1 minutes.

We now consider a tandem network with 25 queues.
The queues with even indices have `i � 10, those with
odd indices have `i � 25. For all queues µ � 10. The only
nonzero external arrival rates are γ1 � 2, γ11 � 2, γ17 � 3,
and γ21 � 2. This leads to a networkwith increasing traf-
fic intensity as the queue index increases, the traffic
intensities vary from 0.2 to 0.9.
The analytical method decomposes the 25-queue

network into 23 subnetworks. Figure 8 displays five
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Figure 8. (Color online) State Probabilities for All States of All Subnetworks in the 25-Queue Network

0 100 200 300 400 500 600
0

0.2
0.4
0.6

P
ro

ba
bi

lit
y Time 10

0 100 200 300 400 500 600
0

0.2
0.4
0.6

P
ro

ba
bi

lit
y Time 20

0 100 200 300 400 500 600
0

0.2
0.4
0.6

P
ro

ba
bi

lit
y Time 30

0 100 200 300 400 500 600
0

0.2
0.4
0.6

P
ro

ba
bi

lit
y Time 40

0 100 200 300 400 500 600
0

0.2
0.4
0.6

P
ro

ba
bi

lit
y Time 50

Joint aggregate state

Analytical

Simulated

plots, each plot considers a given time: t � {10, 20,
30, 40, 50}. Each plot displays the analytical (blue cir-
cles) and the simulated estimate (red crosses with their
corresponding 95% confidence intervals) of the aggre-
gate state probability, for all feasible aggregate states.
Overall the proposed method provides a good approx-
imation to the aggregate state probabilities. The cor-
responding histogram that considers the errors of all
states at all times is displayed in Figure 9. Figure 9
considers a total of 31,050 state probabilities. The aver-
age absolute error is 0.0079. The runtime for the ana-
lytical method is 23.4 minutes.

Figure 9. (Color online) Histogram of the Errors for All
State Probabilities at All Times for the 25-Queue Network
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4. Urban Traffic Signal Control
This section considers an urban traffic signal control
problem, and studies the added value of accounting
for both transient and joint distributional information.
We compare the performance of the signal plans pro-
posedby (i) ourproposed transient jointmethod, (ii) the
stationary joint method of Osorio and Wang (2017),
and (iii) a stationary marginal model, which approx-
imates the (disaggregate) marginal queue-length dis-
tributions. The latter model is formulated in Osorio
and Bierlaire (2009) and Osorio (2010, Chapter 4), its
formulation for an urban network is given in Online
Appendix B. Methods (i) and (ii) both consider subnet-
works with three queues; method (i) considers a time-
dependent description of between-queue dependen-
cies, whereas method (ii) considers a stationary analy-
sis.Hence, their comparisongives insights on theadded
value of accounting for the dynamics of between-queue
dependencies. The comparison of methods (i) and (iii)
gives insights on the added value of providing both
a dynamic and a higher-order description of between-
queuedependency. Theperformanceof the signal plans
proposed by the different models are evaluated by a
microscopic stochastic urban traffic simulation model
implemented in Aimsun version 6.1 (TSS 2011). Addi-
tional details regarding the simulation model can be
found in Yamani (2013).

4.1. Road Network
The road network (see Figure 10) consists of 20 single-
lane roads and four intersections, each with two en-
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Figure 10. (Color online) Road Network

Figure 11. Queueing Network
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dogenous signal phases. Drivers travel along a single
direction (i.e., they do not turn within the network).
External arrivals anddepartures to the networkoccur at
the boundaries of the network (represented by the cir-
cles in Figure 10). The queueing representation along
with corresponding link/queue indices is displayed in
Figure 11. In Figure 11 the queues are represented with
rectangles.
We consider a medium demand and a high demand

scenario (see Table 4). In Table 4, the indices in the first
row correspond to link/queue indices as defined in
Figure 11. We assume an initially empty network, and
consider a time interval of 75 minutes.

4.2. Queueing Network
Let us describe how the road network is modeled as
a queueing network. The below approach has been
successfully used in past work that uses queueing-
theoretic models of road transportation (Osorio and
Bierlaire 2013).
All roads of the considered network are single-lane

roads, each lane is modeled as one queue. The space
capacity of a queue is given by

`i � b(li + d2)/(d1 + d2)c , (27)

Table 4. Demand in Vehicles per Hour for the Two Demand
Scenarios

Demand
scenario 19→ 1 2→ 20 3→ 4 7→ 9 10→ 8 14→ 13 17→ 18

Medium 700 700 100 600 600 100 100
High 900 900 100 600 600 200 200

Table 5. External Arrival Rates for Each Queue for the Two
Demand Scenarios

γ19 γ2 γ3 γ7 γ10 γ14 γ17

Medium demand 700 700 100 600 600 100 100
High demand 900 900 100 600 600 200 200

where li is the length of lane i in meters, d1 is the aver-
age vehicle length (set to four meters), and d2 is the
minimal intervehicle distance (set to one meter). The
fraction is rounded down to the nearest integer. This
expression for the space capacity follows similar ideas
than those in Heidemann (1996) and Van Woensel and
Vandaele (2007), where each road is divided into seg-
ments of length 1/kjam, where kjam is the jam density of
the lane. Hence, 1/kjam represents the minimal distance
that an average vehicle occupies.

The routing probability from queue i to queue j, de-
noted pi j , is derived from turning probabilities. Based
on Figure 11 for any pair of adjacent queues (i , j) con-
nected by a straight arrow from i to j: pi j equals 1, oth-
erwise pi j equals 0.

The external arrival rates of each queue, γi , are given
by the origin-destination matrix of Table 4, and stated
for eachqueue inTable 5.Queuesnot included inTable 5
have an external arrival rate of zero.

The service rate of a queue is defined as the down-
stream flow capacity of the underlying lane. For
nonsignalized lanes, the service rate is equal to the
saturation rate, s (set to 1,800 vehicles per hour). For
signalized lanes, the service rate is given by

µi � gi s , (28)

where gi represents the total green split of queue i (i.e.,
ratio of total green time to intersection cycle time).

The subnetworks of the joint models (transient and
stationary) are as follows. The cross streets (north-
bound and southbound) aremodeled individually (i.e.,
they constitute singleton subnetworks). The links of
the westbound and eastbound arterial are modeled
jointly, i.e., the paths are decomposed into three-queue
subnetworks. In other words, the subnetworks of the
network are (2, 6, 12), (6, 12, 16), (12, 16, 20), (11, 5, 1),
(15, 11, 5), (19, 15, 11), (3), (4), (7), (8), (9), (10), (13), (14),
(17), (18), where the numbers within parentheses are
queue indices.

4.3. Problem Formulation
We consider a traffic signal control problem. For a
review of traffic signal control terminology and formu-
lations, we refer the reader to Appendix A of Osorio
(2010) or to Lin (2011). The signal control problem that
we consider is known as a fixed-time (also called time
of day or pretimed) control strategy. For a given inter-
section and a given time interval (e.g., evening peak
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period), a fixed-time signal plan is a cyclic (i.e., peri-
odic) plan that is repeated throughout the time inter-
val. The duration of the cycle is the time required to
complete one sequence of signals. The sequence may
contain all-red periods, where all streams have red
indications, as well as stages with fixed durations (e.g.,
for safety reasons). The sum of the all-red periods and
the fixed periods is called the fixed cycle time. Note
that there has been interesting recent research for other
families of traffic-responsive signal control problems
(Varaiya 2013; Gregoire et al. 2015; Gayah, Gao, and
Nagle 2014; He et al. 2014).
In this paper, the decision variables are the endoge-

nous green splits (i.e., normalized green times) of
each intersection. All other traditional control variables
(e.g., cycle times, offsets, stage structure) are assumed
fixed. The signal plans of all intersections are deter-
mined simultaneously.

To formulate this problem we introduce the follow-
ing notation:
[t0 , t1] time interval of interest;

δ time step;
ci cycle time of intersection i;
di fixed cycle time of intersection i;
el ratio of fixed green time to cycle time of

signalized lane l;
s saturation flow rate [veh/h];

x( j) green split of phase j;
xL vector of minimal green splits;
y endogenous queueing model variables;
u exogenous queueing model parameters;
I set of intersection indices;
L set of indices of the signalized lanes;

PI(i) set of phase indices of intersection i;
PL(l) set of phase indices of lane l.
The problem is formulated as follows:

min
x

g(x , y; u , t0 , t1) (29)

subject to
∑

j∈PI (i)
x( j)� ci − di

ci
, ∀ i ∈ I, (30)

µl −
∑

j∈PL(l)
x( j)s � el s , ∀ l ∈L, (31)

h(y; u , t0 , t1)� 0, (32)
y ≥ 0, (33)
x ≥ xL . (34)

The decision vector x is the vector of green splits for
each phase. Constraints (30) relate, for each intersec-
tion i, its available cycle time to its endogenous phases.
Constraints (31) relate the service rate (i.e., link flow
capacity) of a signalized link to the saturation flow s
(set to 1,800 vehicles per hour) and to its total green
time. Equation (32) represents the traffic model, which
depends on a vector of endogenous queueing vari-
ables y (e.g., disaggregation probabilities) and a set

of exogenous parameters u (e.g., external arrival rates,
space capacities). In the case of the proposed transient
model, u includes the time step δ and initial probabil-
ity distributions. The endogenous queueing variables
are subject to positivity constraints (33). Green splits
have lower bounds (Equation (34)),which are set to four
seconds following the transportation norms (VSS 1992).
The objective function g(x , y; u , t0 , t1) represents the
expected trip travel time during [t0 , t1].
For the proposed transient model, the objective func-

tion is given by

g(x , y; u , t0 , t1)�
1
K

K∑
k�1

gk(x , y; u , t0 , t1), (35)

where K is the total number of discrete time intervals,
and gk represents the expected travel time during time
interval k. The latter is obtained by applying Little’s law
at the end of the time interval (Little 1961, 2011)

gk(x , y; u , t0 , t1)�
∑I

i�1 E[N k
i ]∑I

i�1 γi pk
Ai,2(δ)

, (36)

where the summations consider all I queues in the net-
work, and E[N k

i ] represents the expected number of
vehicles in queue i at the end of time interval k

E[N k
i ]�

`i∑
n�0

npk
Ni�n(δ). (37)

The disaggregate distribution for queue i at time
interval k is obtained by solving the below system of
equations to obtain λk

i and µ
k
i , which then fully define

the disaggregate distribution according to the System
of Equations (15){

pk
Ai�0(δ)� fD(0, δ, λk

i , µ
k
i , p

k−1
Ni
(δ)), (38a)

pk
Ai�2(δ)� fD(`i , δ, λ

k
i , µ

k
i , p

k−1
Ni
(δ)). (38b)

For each queue i, its aggregate distribution pk
Ai

is
derived from the analysis of subnetwork i.

4.4. Implementation Notes
For the proposed model we set the time step δ � 0.1.
The signal control problem is solved using the active-
set algorithm of the fmincon solver of MATLAB (Math-
works 2011) with constraint and objective function tol-
erance of 10−6 and 10−3, respectively. The stationary
joint model as well as our proposed transient joint
model both use the plan considered optimal by the
stationary marginal model (Osorio 2010, Chapter 4)
as their initial signal plan. More details on how the
algorithms are initialized are included in Osorio and
Wang (2017, Section 4.3). The runtime to solve the opti-
mization problem using the transient joint method is
28 hours.
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Figure 12. The Left (Respectively, Right) Plot Displays the cdfs of the Average Trip Travel Time Considering the Medium
(Respectively, High) Demand Scenario
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4.5. Results
The performance of a given signal plan is evaluated
by embedding the signal plan within a microscopic
stochastic traffic simulator of the network depicted in
Figure 10 and running 50 simulation replications. For
each replication, we obtain a realization of the objective
function: the average trip travel time (ATTT). For each
signal plan, we use the 50 simulated observations of the
ATTT to construct a cumulative distribution function
(cdf). Figure 12 displays several cdf curves. The x-axis
displays the ATTT. For a given x, the y-axis displays
the proportion of simulation replications (out of the
50 replications) that have ATTT values smaller than x.
Hence, the more the cdf curves are shifted to the left,
the higher the proportion of small ATTT values.
The left (respectively, right) plot of Figure 12 dis-

plays the results considering themedium (respectively,
high) demand scenario. Each plot contains three cdf
curves. The solid curve corresponds to the signal plan
derived by our proposed transient joint model. The
dashed (respectively, dotted) curve corresponds to the
plan of the stationary joint (respectively, stationary
marginal) model. For both demand scenarios, the pro-
posed approach significantly outperforms the other
two approaches. It outperforms the stationary joint
approach, which shows the added value of account-
ing for transient information. Both joint approaches
(transient joint and stationary joint) outperform the
marginal approach, showing the added value of pro-
viding a higher-order (i.e., beyond first-order) descrip-
tion of the between-queue dependency.
We test the hypothesis that the expected trip travel

time derived from the joint transient model is equal to

that derived by the joint stationary model by conduct-
ing a paired t-test. Denoting the sample mean of the
paired differences as Ŷ, the standard deviation as ŝ, and
the number of observations as O, a paired t-statistic is
given by Hogg and Tanis (2006, p. 486):

√
OŶ/ŝ. For

both the medium and the high demand scenario, the
mean of the paired differences (i.e., difference between
the average trip travel time given by the joint station-
ary model and that given by the joint transient model)
is approximately 0.077 minutes. The standard devia-
tion of the paired differences is approximately 0.024
(respectively, 0.029) minutes for the medium (respec-
tively, high) demand scenario. Thus, for the 50 observa-
tions, the test statistic is 22.32 (respectively, 19.06) for the
medium (respectively, high) demand scenario. The null
hypothesis is rejected for both demand scenarios, as the
critical value, t0.01(49) � 2.405, is less than the value of
the test statistic. The improvement in average trip travel
time is statistically significant.

5. Conclusions
This paper proposes an analytical, tractable, and scal-
able technique that approximates the transient aggre-
gate joint queue-length distribution of a finite (space)
capacity tandem Markovian network. The complexity
of the proposed method is linear, rather than exponen-
tial, in the number of queues and is independent of the
queue space capacities, making it a suitable approach
for the analysis of large-scale networks.

The analytical approximations of the aggregate joint
distributions are validated versus estimates obtained
via discrete-event simulation of a queueing network.
The validation scenarios consider various congested
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networks. The analytical approximations are very ac-
curate. Themodel is then used to address an urban traf-
fic signal control problem. The proposed model yields
signal plans that significantly outperform thosederived
by a stationary joint model, as well as those derived
by a stationary marginal model. This shows the added
value of using a higher-order description of the spatial-
temporal between-link dependencies to devise traffic
management strategies for congested urban networks.
Extensions of this work include its formulation for a

general topology network. Additionally, it can be used
to improve the computational efficiency of dynamic
simulation-based optimization algorithms following
the frameworks in Osorio and Bierlaire (2013) and Oso-
rio and Chong (2015).
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