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This paper proposes an exact method for solving an optimization problem arising in several distribution

networks, where customers can be served either directly, using vehicle routes from a central depot, or through

transhipment facilities. The problem consists of optimizing the following inter-dependent decisions: selecting

transhipment facilities, allocating customers to these facilities and designing vehicle routes emanating from

a central depot to minimize the total distribution cost. This problem is called the Vehicle Routing Problem

with Transhipment Facilities (vrptf). The paper describes two integer programming formulations for the

vrptf, an edge-flow based formulation and a Set Partitioning (SP) based formulation. The LP-relaxation

of the two formulations are further strengthened with the addition of different valid inequalities. Moreover,

two new route relaxations that are used by dual ascent heuristics to find near-optimal dual solutions of the

LP-relaxation of the SP model are described. The valid inequalities and the route relaxations are used in a

branch-and-cut-and-price approach to solve the problem to optimality. The proposed method is tested on

a large family of instances, including real-world instances, and the computational results obtained indicate

the effectiveness of the proposed method.

Key words : transhipment facilities, dual ascent heuristic, column-and-cut generation
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1. Introduction

In several distribution networks the shipment to a customer is performed either directly, using

vehicle routes emanating from a central depot, or through intermediate depots or transhipment

facilities. In the latter case, the shipment is first delivered to a transhipment facility by a vehicle

1



Baldacci, Ngueveu, Wolfler Calvo: VRP with Transhipment Facilities

2 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

route, and then it is successively delivered to the final customer. Transhipment facilities provide

a way to consolidate shipments into large vehicle loads, thereby allowing for a reduction of total

distribution cost, and provide the capability to transfer shipments between different vehicles or

modes of transportation (e.g., railroads, aircraft). In some cases, the transhipment facilities can

be part of the same company which owns the central depot, and which makes the final delivery

to the customers with its fleet of vehicles. In other cases, transhipment facilities are owned by a

third-party subcontractor, who is also in charge of performing the final shipment to the customers.

The problem addressed in this paper is motivated by a real application of interest to an Italian

company operating in the production and distribution of non-perishable products. More specifically,

the problem consists of selecting transhipment facilities, allocating customers to these facilities

and designing vehicle routes to minimize the total distribution cost. We call this problem the

Vehicle Routing Problem with Transhipment Facilities (vrptf). In the vrptf, each customer can

be served either directly by a vehicle route or through a facility selected from a set of potential

facilities to which the customer can be assigned. The total load of a vehicle route, computed as the

sum of the customer demands and of the quantities delivered to the facilities, must be less than or

equal to the vehicle capacity. The problem objective is to minimize the total sum of routing and

assignment costs.

1.1. Literature review

The vrptf generalizes the well-known Capacitated Vehicle Routing Problem (cvrp). In the cvrp,

a fleet of identical vehicles located at a central depot has to be optimally routed to supply a set of

customers with known demands. Each vehicle performs at most one route, each customer must be

visited exactly once, and the total demand of the customers visited by a route cannot exceed the

vehicle capacity. The book edited by Toth and Vigo (2014) provides a comprehensive overview of

exact methods for the cvrp and other variants.

As far as the authors know, the vrptf has never been addressed in the literature. Closely related

problems to the vrptf are the Capacitated m-Ring-Star Problem (cmrsp), the Multiple Vehicle

Traveling Purchaser Problem (mvtpp), the Two-Echelon Capacitated Vehicle Routing Problem

(2e-cvrp), and the Location Routing Problem (lrp). The cmrsp, introduced in Baldacci et al.

(2007), arises in the design of urban optical telecommunication networks and it consists of designing

a set of rings that pass through a telephone exchange and through some transition points (also

called steiner nodes) and/or users. Each nonvisited user must be assigned to a visited point or

to a user. The number of users visited and assigned to a ring is bounded by the capacity of the

ring. The objective is to minimize the total routing cost plus the assignment costs. The special

case of the cmrsp arising when the users can be assigned only to steiner nodes, can be solved
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as a vrptf with unit demands. The mvtpp described by Riera-Ledesma and Salazar-González

(2012) models a family of routing problems combining stop selection and bus route generation. The

problem consists of choosing a set of bus stops to which users are assigned, and simultaneously

designing bus routes visiting such stops. The total number of users assigned to the stops of a route

cannot exceed the seat capacity of a bus. The objective is to minimize the total length of all routes

plus the total assignment cost. The undirected version of the mvtpp is equivalent to the vrptf

with the additional constraint imposing that the customers can only be assigned to facilities (or

bus stops) and cannot be visited by a route. Both Baldacci et al. (2007) and Riera-Ledesma and

Salazar-González (2012) proposed branch-and-cut approaches for the solution of the cmrsp and

mvtpp, respectively. Recently, Riera-Ledesma and González (2013) also proposed a branch-and-

cut-and-price algorithm for the mvtpp. The 2e-cvrp is a two-level distribution system where the

deliveries to customers from a depot are managed through intermediate capacitated depots, called

satellites. The first level consists of vehicle routes visiting satellites only whereas the second level

routes supply all customers. The main difference between the vrptf and the 2e-cvrp is that in

the vrptf a customer can be either visited on a route or assigned to a facility, whereas in the

2e-cvrp each customer is visited once by exactly a second level route. The 2e-cvrp model is

particularly useful when the facilities are part of the same company owing the main depot whereas

in the vrptf model the facilities are generally owned by third-party contractors, which are in

charge of delivering to the final customers the quantity consolidated at the facilities. Exact methods

for the 2e-cvrp have been proposed by Jepsen et al. (2013) and Baldacci et al. (2013). The lrp is

a special case of the 2e-cvrp and consists of opening a set of depots and designing a set of routes

for each opened depot so that the total load of the routes operated from a depot does not exceed

its capacity and each customer is visited by exactly one route. The objective is to minimize the

sum of the fixed costs of the opened depots and the costs of the routes operated from the depots.

A recent review of location routing problem variants and heuristic and exact algorithms can be

found in Prodhon and Prins (2014).

Another related problem to the vrptf is the Multi-Vehicle Covering Tour Problem (m-CTP)

introduced by Hachicha et al. (2000). In the m-CTP two sets of locations are given. The first set,

consists of potential locations at which some vehicles may stop, and the second set are locations

not actually on vehicle routes, but within an acceptable distance from a vehicle route. The m-

CTP consists of determining a set of total minimum length vehicle routes on a subset of the first

set of locations, subject to side constraints, such that every location of the second set is within

a prespecified distance from a route. Há et al. (2013) proposed a branch-and-cut for the variant

named the m-CTP-p where an upper bound on the number of vertices per route is given with a

parameter p and the m number of vehicles used is a decision variable.
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The vrptf does not require any specific synchronization of incoming and outgoing vehicles

at the facilities. In some practical applications, a correct synchronization can be required and

in this case the facilities are generally referred as cross-docking facilities. For an overview of the

cross-docking concept and extensive review of the existing literature the reader is referred to Belle

et al. (2012). In this context, a generic class of vrps that has recently received attention in the

literature is the class of vrps with Multiple Synchronization Constraints (vrpmss). vrpmss exhibit

synchronization requirements between the vehicles, concerning spatial, temporal, and load aspects.

A review of vrpms presenting a classification of different types of synchronizations and a discussion

about heuristic and exact algorithms can be found in Drexl (2012).

1.2. Contributions of this paper

This paper addresses a new problem of practical relevance and proposes both heuristic and exact

methods for its solution. More specifically, we introduce a two-index formulation (TI) and we

describe different valid inequalities for it, both by adapting those already proposed for the cmrsp,

and by introducing new ones specific for the vrptf. We also describe lower bounds derived from

a set-partitioning based formulation (SP ) of the problem, and computed using two efficient dual

ascent heuristics that use two new route relaxations, called q-∗route and ng-∗route, respectively.

The proposed methods have been tested on a large family of instances, including both instances

derived from the literature and real-world instances. The computational results show that real-

world instances with up to 142 customers and 18 facilities were solved to optimality and that high

quality solutions were computed for instances with up to 164 customers. In addition, tight lower

bounds were computed, with average percentage deviations equal to 98.7% and 97.4% for real-word

and literature-based instances, respectively.

This paper is organized as follows. The next section formally introduces the vrptf and presents

formulation TI for which different valid inequalities are described in Section 3. Section 4 presents

formulation SP and lower bounds based on its LP-relaxation; some properties of the LP-relaxation

of SP are also investigated in the section. A bounding method used to compute a lower bound on

the vrptf is described in Section 5. Section 6 describes the exact method used to solve the vrptf

to optimality together with two heuristic algorithms. Section 7 reports computational results, and

concluding remarks are given in Section 8.

2. Problem description and Two-Index (TI) formulation

This section describes the vrptf and presents a edge-flow based formulation to model it.

The vrptf is defined on a mixed graph G = (V,E ∪A), where V = {0} ∪ V ′ is the node set,

E = {{i, j} : i, j ∈ V, i 6= j} is the edge set, and A is the arc set. Node set V ′ is partitioned into

two subsets: VC = {1, . . . , nC} containing a node for each customer and VF = {nC +1, . . . , nC +nF}
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containing a node for each transhipment facility. Node 0 represents a central depot. Each customer

i ∈ VC requires a supply of qi units from the depot (we assume qi = 0, ∀i ∈ {0} ∪ VF ) that can

be delivered either directly from a vehicle route emanating from the depot or through a facility

selected from a set Fi ⊆ VF of facilities to which customer i can be assigned. Set A represents the

possible assignments between customers and facilities, i.e., A = {(i, j) : i ∈ VC , j ∈ Fi}. Set E is

the set of possible route edges, each edge e= {i, j} ∈E is associated with a non-negative routing

cost re = r{i,j}, while each arc (i, j) ∈ A is associated with a non-negative assignment cost dij.

Henceforth, if e connects the two nodes i and j then {i, j} and e will be used interchangeably to

denote the same edge.

A route is defined by a pair (R,A′) where R= (0, i1, . . . , ir,0), r≥ 1, is a simple cycle in G passing

through the depot, visiting nodes V (R) = {i1, . . . , ir} ⊆ V ′, and A′ ⊆ A are assignments between

customers of VC \ V (R) and nodes of V (R)∩ VF . Notice that if r= 1 then route R represents the

single-node route R = (0, i1,0). We say that a customer i is assigned to a route R if it is either

visited by the simple cycle (i.e., i∈ V (R)) or it is connected to a node of the route representing a

facility (i.e., a node j ∈ V (R)∩VF exists such that (i, j)∈A′). The total load of a route is computed

as the sum of the demands of the customers assigned to the route. The route is feasible if its total

load does not exceed the vehicle capacity Q. The cost of a route is equal to the sum of the routing

costs of the edges forming the route plus the sum of the assignment costs of the arcs in A′.

The aim of vrptf is to design a set of routes so that each customer is assigned to exactly one

route, each intermediate facility is visited at most once and the sum of the route costs is minimized.

We will use the following notation throughout. For any S ⊆ V ′, let VC(S) = S ∩VC and VF (S) =

S ∩ VF denote the set of customers and of facilities in S, respectively. Let Fi(S) = VF (S) ∩ Fi

denote the set of facilities in S associated with customer i ∈ VC . Also for any set S ⊆ V , define

δ(S) = {{i, j} ∈E : i∈ S, j /∈ S} (if S = {i}, we simply write δ(i) instead of δ({i})).

Let xe be an integer variable which takes value in {0,1}, ∀e ∈ E \ {{0, j} : j ∈ V ′} and value

in {0,1,2}, ∀e ∈ {{0, j} : j ∈ V ′}. Notice that x{0,j} = 2 when the single-node cycle R= (0, j,0) is

selected in the solution. For each arc (i, j) ∈A, let zij be a binary variable which is equal to 1 if

and only if customer i is assigned to node j. Moreover, for each i ∈ V ′, let yi be a binary variable

which is equal to 1 if and only if node i is on a route. Formulation TI is as follows:

(TI) min
∑

e∈E

rexe +
∑

(i,j)∈A

dijzij (1)

s.t.
∑

e∈δ(i)

xe = 2yi, ∀i∈ V ′ (2)

yi +
∑

j∈Fi

zij = 1, ∀i∈ VC (3)
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∑

e∈δ(S)

xe ≥
2

Q





∑

i∈VC (S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij



 , ∀S ⊆ V ′ : S 6= ∅ (4)

xe ∈ {0,1}, ∀e∈E \ {{0, j} : j ∈ V ′} (5)

xe ∈ {0,1,2}, ∀e∈ {{0, j} : j ∈ V ′} (6)

zij ∈ {0,1}, ∀(i, j)∈A (7)

yi ∈ {0,1}, ∀i∈ V ′. (8)

Constraints (2) impose that the degree of each node i ∈ V ′ is 2 if the node is on a route.

Constraints (3) state that a customer i ∈ VC is either on a route or is assigned to one of its

facilities. Inequalities (4) are the fractional route capacity inequalities (FrCC). These constraints,

within the integrality of x, z and w variables, impose that for a given subset S of nodes, at least
⌈

(
∑

i∈S
qiyi +

∑

(i,j)∈A:j∈S
qizij)/Q

⌉

routes are needed to visit the customers assigned to nodes in

S.

3. Strengthening the LP-relaxation of formulation TI

A number of valid inequalities can be used to improve the quality of the lower bound obtained from

the LP-relaxation of formulation TI. In this section, we first derive valid inequalities by extending

the results proposed for the cmrsp by Baldacci et al. (2007) to the vrptf. Then, a new class of

valid inequalities specifically devised for the vrptf is introduced. The separation procedures for

different valid inequalities are then described in Section 5.2.

Simple valid inequalities are the following: (i) x{i,j} ≤ yj, i ∈ VC , j ∈ VC , i 6= j; (ii) x{i,j} ≤ yj, i ∈

VF , j ∈ V
′, i 6= j; (iii) x{i,j} + zij ≤ yj, i ∈ VC , j ∈ Fi, (iv) yj ≤

∑

i∈VC :j∈Fi
zij ,∀j ∈ VF . Further, the

following inequalities are also valid.

a) Connectivity inequalities (CI):

∑

e∈δ(S)

xe ≥ 2



yi+
∑

j∈VF (S)∩Fi

zij



 , ∀S ⊆ V ′,∀i∈ VC(S), S 6= ∅. (9)

b) Multistar inequalities (MI):

∑

e∈δ(S)

xe ≥
2

Q





∑

i∈VC (S)

qiyi+
∑

(i,j)∈A:j∈VF (S)

qizij +
∑

i∈VC (S)

∑

j∈S

qix{i,j}



 ,∀S ⊆ V ′, S 6= ∅. (10)

where S = V ′ \S.

c) Rounded capacity constraints I (RCI):

∑

e∈δ(S)

xe ≥ 2

⌈

∑

i∈S:Fi⊆S

qi/Q

⌉

, ∀S ⊆ V ′, VC(S) 6= ∅. (11)
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d) Rounded capacity constraints II (RCII):

∑

e∈δ(S)

xe ≥ 2





















∑

i∈VC (S)

qiyi+
∑

(i,j)∈A:
j∈VF (S)

qizij









/Q













, ∀S ⊆ V ′, S 6= ∅. (12)

Notice that CI inequalities are not dominated by MI inequalities whereas MI inequalities dominate

FrCC inequalities. RCII inequalities (12) are clearly nonlinear. In the next section, we describe

two ways of linearizing inequalities (12). The first linearization extends to the vrptf a similar

linearization proposed for the cmrsp, whereas the second one is new and it is based on mixed

integer optimization.

3.1. Linearized versions of inequalities RCII

A first family of valid inequalities can be obtained using the following lemma, proposed by Baldacci

et al. (2007).

Lemma 1. Let m,n and o be three non-negative integer values with m> o and mod(m,o) 6= 0:

⌈

m−n

o

⌉

≥
⌈m

o

⌉

−
n

mod(m,o)
. (13)

�

The term
∑

i∈VC (S) qiyi+
∑

(i,j)∈A:j∈VF (S) qizij of RCII inequalities (12) can be rewritten as:

q(VC)−





∑

i∈VC (S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij



 (14)

and by using Lemma 1, from expression (14) we obtain the following inequality valid for any S ⊆ V ′,

S 6= ∅:

∑

e∈δ(S)

1

2
xe ≥

⌈

q(VC)

Q

⌉

−
1

mod(q(VC),Q)





∑

i∈VC (S)

qiyi +
∑

(i,j)∈A:j∈VF (S)

qizij



 , (15)

hereafter called RCII-a inequalities.

The term
∑

i∈VC (S) qiyi+
∑

(i,j)∈A:j∈VF (S) qizij of RCII inequalities (12) can also be rewritten as:

q(VC(S))−









∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qizij −
∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qizij









, (16)

and by using Lemma 1 and by disregarding the term
∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qizij from (16) we get:

∑

e∈δ(S)

1

2
xe ≥

⌈

q(VC(S))

Q

⌉

−
1

mod(q(VC(S)),Q)

∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qizij , (17)
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hereafter called RCII-b inequalities.

Proposition 1 of the e-companion to this paper shows that there are no dominance relations

between inequalities RCII-a and RCII-b.

The following lemma is based on mixed integer optimization. For a number m ∈R, define m̂=

m−⌊m⌋ to be its fractional part.

Lemma 2. Let o ∈ R with ô > 0 and T = {m ∈ R, n ∈ Z : m + n ≥ o,m ≥ 0}. The following

inequality is valid for T :

m+ ô n≥ ô⌈o⌉. (18)

Proof. The proof is provided in the e-companion to this paper. �

Based on the above lemma, a second family of valid inequalities for the vrptf can be obtained

using the following theorem.

Theorem 1. Let αe ≥ 0, ∀e∈E, βi ≥ 0, ∀i∈ V ′ and γij ≥ 0, ∀(i, j)∈A and consider the following

inequality valid for formulation TI:

∑

e∈E

αexe +
∑

i∈V ′

βiyi+
∑

(i,j)∈A

γijzij ≥ o (19)

where o∈R and ô > 0. Then the following inequality:

∑

e∈E

ϕo(αe)xe+
∑

i∈V ′

ϕo(βi)yi+
∑

(i,j)∈A

ϕo(γij)zij ≥ ⌈o⌉ (20)

where ϕo(m) = ⌊m⌋+min

{

m̂

ô
,1

}

, m ∈ R, n ∈R, ô > 0, is also a valid inequality for formulation

TI.

Proof. The proof is provided in the e-companion to this paper. �

Notice that, inequality (19) can be scaled by a rational number t thus obtaining the following

valid inequality for formulation TI:

∑

e∈E

ϕto(tαe)xe+
∑

i∈V ′

ϕto(tβi)yi+
∑

(i,j)∈A

ϕto(tγij)zij ≥ ⌈to⌉. (21)

Starting from inequalities (4) and substituting the right-and side according to expressions (14)

and (16) we get:
∑

e∈δ(S)

1

2
xe +

∑

i∈VC (S)

qi
Q
yi +

∑

(i,j)∈A:j∈VF (S)

qi
Q
zij ≥

q(VC)

Q
, (22)

and
∑

e∈δ(S)

1

2
xe +

∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qi
Q
zij −

∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

qi
Q
zij ≥

q(VC(S))

Q
. (23)
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First of all, notice that for m,n ∈ R, mod(m,n) = n((m/n)− ⌊m/n⌋). Then, by setting o= q(VC )

Q

and as ϕo( 1
2
) =min

{

Q

2mod(q(VC ),Q)
,1
}

and ϕo( qi
Q
) =min

{

qi
mod(q(VC),Q)

,1
}

, ∀i∈ VC , from Theorem 1

and inequality (22) we obtain the following valid inequality:

∑

e∈δ(S)

min

{

Q

2mod(q(VC),Q)
,1

}

xe ≥

⌈

q(VC)

Q

⌉

−

∑

i∈VC (S)

min

{

qi
mod(q(VC),Q)

,1

}

yi −
∑

(i,j)∈A:j∈VF (S)

min

{

qi
mod(q(VC),Q)

,1

}

zij .

(24)

Also from Theorem 1, by disregarding the negative term of inequality (23) we obtain:

∑

e∈δ(S)

min

{

Q

2mod(q(VC(S)),Q)
,1

}

xe ≥

⌈

q(VC(S))

Q

⌉

−

∑

(i,j)∈A:

i∈VC (S),j∈VF (S)

min

{

qi
mod(q(VC(S)),Q)

,1

}

zij .
(25)

We call inequalities (24) and (25) RCII-c and RCII-d inequalities, respectively. Inequalities RCII-

c and RCII-d are stronger than the pure integer rounding inequalities obtained from inequalities

(22) and (23). In addition, notice that the coefficients of variables {xe} in both inequalities (24)

and (25) are greater than 0.5 and less than or equal to 1. If qi = 1, ∀i∈ VC , inequalities RCII-a and

RCII-b dominate inequalities RCII-c and RCII-d. In general, no dominance relations exist among

the four types of inequalities RCII-a, RCII-b, RCII-c and RCII-d.

4. Lower bounds based on a Set-Partitioning (SP) formulation

In this section, we first describe a Set-Partitioning (SP) based formulation for the vrptf. Then, we

investigate lower bounds based on the LP-relaxation of formulation SP . We introduce a theorem

that is used to derive two dual ascent heuristics to find near-optimal dual solutions of the LP-

relaxation of the SP model. Then, we describe how the valid inequalities described for the TI

formulation in the previous sections can be used for strengthening the value of the LP-relaxation

of formulation SP . Finally, we derive some properties of the LP-relaxation of formulation SP .

Let R be the index set of all feasible routes. Given a route ℓ∈R, we denote with Rℓ the sequence

(i1 = 0, i2, . . . , ir = 0) of the nodes visited by the route and with VC(Rℓ) and VF (Rℓ) the sets VC ∩

V (Rℓ) and VF ∩V (Rℓ), respectively. In addition, VA(Rℓ) denotes the customers of the route assigned

to facilities in VF (Rℓ). Let aiℓ be a (0-1) binary coefficient equal to 1 if node i∈ V (Rℓ), 0 otherwise.

In addition, let bjiℓ be a (0-1) binary coefficient equal to 1 if customer i ∈ VA(Rℓ) is assigned to

node j ∈ VF (Rℓ), 0 otherwise. Given a route ℓ, we denote with cℓ its routing cost computed as
∑|Rℓ|

h=2 r{ih−1,ih}, and with pℓ its assignment cost computed as
∑

j∈VF (Rℓ)

∑

i∈VA(Rℓ)
bjiℓdij. Let ξℓ,
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ℓ ∈ R, be a (0-1) binary variable equal to 1 if and only if route ℓ is in the optimal solution.

Formulation SP is as follows:

(SP ) min
∑

ℓ∈R

(cℓ+ pℓ)ξℓ (26)

s.t.
∑

ℓ∈R

aiℓξℓ = 1, ∀i∈ VC (27)

∑

ℓ∈R

aiℓξℓ ≤ 1, ∀i∈ VF (28)

ξℓ ∈ {0,1}, ∀ℓ∈R, (29)

where aiℓ = aiℓ +
∑

j∈VF (Rℓ)
bjiℓ, i∈ VC , ℓ∈R. In the formulation, constraints (27) and (28) impose

that each customer is assigned exactly once and each facility is visited at most once, respectively.

We denote by LSP the LP-relaxation of formulation SP and by DSP the dual of LSP . The

variables of DSP are given by the vector u= {u1, . . . , u|VC |, u|VC |+1, . . . , u|V ′|}, where u1, . . . , u|VC |

are associated with constraints (27), and u|VC |+1, . . . , u|V ′|, with constraints (28). In the following,

we denote with qmin =mini∈VC
{qi}. The following theorem holds.

Theorem 2. Let us associate penalties λi ∈R, ∀i ∈ VC , with constraints (27), and λi ≤ 0, ∀i ∈

VF , with constraint (28). Let Ri = {ℓ∈R : aiℓ > 0}. For each i ∈ VC compute:

νi = qimin
ℓ∈Ri

{

(cℓ+ pℓ)−
∑

j∈VC
ajℓλj −

∑

j∈VF
ajℓλj

∑

j∈VC
ajℓqj

}

. (30)

A feasible DSP solution u of cost z(DSP (λ)) is given by the following expressions:

u0 = 0 and ui = νi +λi,∀i∈ VC , and ui = λi,∀i∈ VF . (31)

Proof. The proof is provided in the e-companion to this paper. �

The pricing problem associated with formulation SP is a strongly NP–hard problem, since it

requires finding minimum cost elementary routes over a graph with both positive and negative edge

and arc costs. In the special case where VF = ∅, the pricing problem consists of finding capacitated

elementary cycles, a strongly NP-hard problem (see Poggi and Uchoa 2014).

Therefore, in practice we enlarge the set of routes R to contain also nonnecessarily elementary

routes, i.e., coefficients aiℓ are general nonnegative integers, thus a node can be visited in a route

more than once and/or a customer can be assigned more than once to facilities of the routes.

Although non-elementary routes are infeasible, this relaxation has the advantage that the pricing

subproblem becomes solvable in pseudo-polynomial time (by dynamic programming). Moreover,

Theorem 2 remains valid if the set of routes R is enlarged to contain also nonnecessarily elementary

routes.
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In Section 5, we introduce two route relaxations called q-∗route and ng-∗route, used by two dual

ascent heuristics based on Theorem 2 to find near-optimal solutions of problem DSP . q-∗route

and ng-∗route relaxations are based on route relaxations already proposed for the cvrp and on

the observation that given a route Rℓ = (i1 = 0, i2, . . . , ir = 0), a lower bound on its cost cℓ + pℓ

can be computed as
∑|Rℓ|

h=2 r{ih−1,ih} +
∑

j∈VF (Rℓ)
lbj, where lbj ≤

∑

i∈VA(Rℓ)
bjiℓdij. Each value lbj ,

j ∈ VF (Rℓ), can be computed as the minimum of the costs of all possible assignments of facility j

involving customers in {i :∈ VC : j ∈ Fi} with a total load q=
∑

i∈VA(Rℓ)
bjiℓqi.

Formulation LSP can be strengthened by adding valid inequalities derived for the TI formulation

as follows. For each ℓ ∈R, let coefficients ηℓe be defined as follows: if ℓ is a route covering node h

only, then ηℓ{0,h} =2 and ηℓ{i,j} = 0, ∀{i, j} ∈E \{0, h}; if ℓ is not a single-node route, then ηℓ{i,j} =1

for each edge {i, j} traversed by route Rℓ, and η
ℓ
{i,j} =0 otherwise.

Any feasible solution ξ of SP can be transformed into a feasible TI solution (x, z,w) by setting:

xe =
∑

ℓ∈R

ηℓeξℓ, ∀e∈E, (32)

zij =
∑

ℓ∈R

bjiℓξℓ, ∀(i, j)∈A, (33)

yi =
∑

ℓ∈R

aiℓξℓ =1−
∑

j∈Fi

∑

ℓ∈R

bjiℓξℓ, ∀i∈ VC , and (34)

yi =
∑

ℓ∈R

aiℓξℓ, ∀i∈ VF . (35)

The following theorem shows that any feasible solution of formulation LSP already satisfies some

valid inequalities derived from formulation TI.

Theorem 3. The LP-relaxation of the SP formulation satisfies both CI and FrCI inequalities,

and a weak form of MI inequalities.

Proof. The proof is provided in the e-companion to this paper. �

5. Bounding procedure

This section presents a method for computing a lower bound on the vrptf which combines in

sequence two dual ascent heuristics (see Section 5.1), and a column-and-cut generation method

(see Section 5.2), all based on formulation LSP .

5.1. Dual ascent heuristics

The dual ascent heuristics are based on Theorem 2 where the set of routes R is enlarged with set

R> containing also nonnecessarily elementary routes (i.e., R> ⊇ R). In particular, two different

route relaxations are used, called q-∗route and ng-∗route, to compute lower bounds LB1 and LB2



Baldacci, Ngueveu, Wolfler Calvo: VRP with Transhipment Facilities

12 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

on the vrptf, respectively. The two dual ascent heuristics are based on a column generation-like

method, called CG for solving the following problem:

LCG=max
λ

{z(DSP (λ))}. (36)

CG executes a number of macro-iterations to compute a dual solution u of the master problem

DSP , defined by the route subset R ⊆ R>, and then CG solves problem (36) with a predefined

number Maxit2 of subgradient iterations to modify the penalty vector λ.

5.1.1. Route relaxation q-∗route q-∗routes are based on the q-path relaxation proposed by

Christofides et al. (1981). We define a q-∗path as a nonnecessarily elementary partial route in G

from depot 0 to node i∈ V ′ with a load equal to q. In a q-∗path a node i∈ V ′ can be visited more

than once and a customer i ∈ VC can be assigned more than once. In the following, we describe

a dynamic programming algorithm for computing q-∗paths, with the restriction that a q-∗path

can not contain loops formed by three consecutive nodes. Let f(q, i) be the cost of the least cost

q-∗path from node 0 to node i and let π(q, i) be the node immediately before i in the least cost path

of value f(q, i). Let g(q, i) be the cost of the least cost q-∗path from node 0 to node i, such that

γ(q, i) 6= π(q, i), where γ(q, i) is the node immediately before i in the least cost path corresponding

to g(q, i). For a given value of q, let h(i, j) be the cost of the least cost q-∗path from 0 to j, with

i ∈ V ′ just before j and without loops. In addition, for each facility k ∈ VF , let lbk(q) be a lower

bound on the assignment cost of any assignment of load q of customers to the facility k. lbk(q),

for each k ∈ VF and qmin ≤ q ≤Q, can be computed as the optimal solution cost of the following

knapsack problem KP (q, k):

(KP (q, k)) lbk(q) =min
∑

i∈VC :k∈Fi

dikχi (37)

s.t.
∑

i∈VC :k∈Fi

qiχi = q (38)

χi ∈ {0,1}, ∀i∈ VC : k ∈ Fi. (39)

We assume that lbk(q) =∞ if problem KP (q, k) does not admit a feasible solution for the given

pair q and k. For each q= qmin, . . . ,Q and i, j ∈ V ′, i 6= j, compute:

h(i, j) =















{

f(q− qj, i)+ r{i,j}, if π(q− qj, i) 6= j
g(q− qj, i)+ r{i,j}, otherwise.

, j ∈ VC

minqmin ≤w≤Q

{

f(q−w, i)+ r{i,j} + lbj(w), if π(q−w, i) 6= j
g(q−w, i)+ r{i,j} + lbj(w), otherwise.

, j ∈ VF

(40)

Then, compute:
{

f(q, j) =mini∈V ′\{j}{h(i, j)}
π(q, j) = i′

(41)
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where i′ is the node producing the above minimum,

{

g(q, j) =mini∈V ′\{j,i′}{h(i, j)}
γ(q, j) = i′′

(42)

where i′′ is the node producing the above minimum. The functions are initialized as follows:

• f(qj, j) = r0j, π(qj, j) = 0, j ∈ VC ;

• f(q, j) =∞, π(q, j) = 0, q= 0, . . . ,Q ,q 6= qj, j ∈ VC ;

• f(q, j) = r0j + lbj(q), π(q, j) = 0, q= 0, . . . ,Q, j ∈ VF ;

• g(q, j) =∞, γ(q, j) = 0, q= 0, . . . ,Q, j ∈ V ′.

A q-∗route is obtained from a q-∗path ending in i by adding arc (i,0).

5.1.2. Route relaxation ng-∗route ng-∗routes are based on the route relaxations proposed

by Baldacci et al. (2011) for the cvrp. Let Ni ⊆ V ′ be a set of selected nodes for node i ∈ V ′

(according to some criterion) such that Ni ∋ i and |Ni| ≤ Γ, where Γ is a parameter (e.g., Γ = 5,

∀i∈ V ′, and Ni contains i and the four nearest nodes to i).

With a forward path P = (0, i1, . . . , ik) , we associate a set Π(P )⊆ V ′ defined as:

Π(P ) = {ir : ir ∈
k
⋂

s=r+1

Nis , r= 1, . . . , k− 1}∪ {ik}. (43)

A forward ng-∗path (NG,q, i) is a non-necessarily elementary partial route P =

(0, i1, . . . , ik−1, ik = i) starting from the depot with a load equal to q, ending at customer i, and

such that NG=Π(P ), and i /∈Π(P ′), where P ′ = (0, i1, . . . , ik−1). Let f(NG,q, i) be the cost of a

least-cost forward ng-∗path (NG,q, i). The dynamic programming (DP) recursion for computing

functions f(NG,q, i) is defined on a state-space graph H = (E ,Ψ) defined as:

E = {(NG,q, i) : qi ≤ q≤Q,∀NG⊆Ni s.t. NG∋ i,∀i∈ V }

Ψ= {((NG′, q′, j), (NG,q, i)) : ∀(NG′, q′, j) ∈Ψ−1(NG,q, i), ∀(NG,q, i)∈ E },
(44)

where Ψ−1(NG,q, i) = {(NG′, q − qi, j) : ∀NG′ ⊆ Nj s.t. NG′ ∋ j and NG′ ∩Ni = NG \ {i}, ∀j ∈

V \ {i}}, if i ∈ VC , and Ψ−1(NG,q, i) = {(NG′, q′, j) : 0 ≤ q′ ≤ q − mini∈VC
{qi}, ∀NG

′ ⊆

Nj s.t. NG′ ∋ j and NG′ ∩Ni =NG \ {i}, ∀j ∈ V \ {i}}, if i ∈ VF .

The DP recursion for computing functions f(NG,q, i), for each state (NG,q, i)∈ E is as follows:

i) i∈ VF :f(NG,q, i) =min(NG′,q′,j)∈Ψ−1(NG,q,i){f(NG
′, q′, j)+ r{j,i}+ lbi(q− q′)}, ∀(NG,q, i)∈ E ,

ii) i∈ VC : f(NG,q, i) =min(NG′,q′,j)∈Ψ−1(NG,q,i){f(NG
′, q′, j)+ r{j,i}}, ∀(NG,q, i)∈ E ,

where functions lbi(q) are computed as described in Section 5.1.1 and the initialization f({0},0,0)=

0 and f({0}, q,0) = ∞, ∀ 0 < q ≤ Q is required. We define a ng-∗route as a route obtained by

adding, to an ng-∗path (NG,q, i), edge e= {0, i}; the cost of an ng-∗route is equal to the cost of

ng-∗path (NG,q, i) plus re.
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5.1.3. Procedure CG Let R ⊆R> be a subset of routes satisfying a given route relaxation.

Moreover, given a route ℓ, we denote with q(Rℓ) =
∑

i∈VC (R) qi +
∑

i∈VA(Rℓ)
qi its load. Procedure

CG works as follows.

Step 1. Initialization. Generate a route set R to initialize the master problem which corresponds

to LSP , where R is replaced with R. We assume that R contains at least one route

containing each customer i∈ VC . Set LCG=0 and iter= 1.

Step 2. Find a master dual solution u of cost z. Initializes z = 0 and performs Maxit2 iterations

of the following operations.

(i) Compute a dual solution u of the master of cost z by means of expressions (30) and

(31), where R is replaced with R and by using the current vector λ. Let R̃ be the

index set of routes producing νi, i ∈ VC , in expressions (30), and let ℓ(i) be the index

of the route in R̃ associated with νi, i ∈ VC . Define a non-necessarily feasible solution

ξ of LSP as ξℓ =
∑

i∈VC
aiℓ

qi
q(Rℓ)

ζ iℓ, ℓ∈ R̃, by setting ζ iℓ(i) = 1 and ζ iℓ = 0, ∀ℓ∈ R̃ \{ℓ(i)},

∀i∈ VC . If z > z, update z = z, ξ= ξ, u=u.

(i) Update the penalty vectors λ as follows. Compute αi =
∑

ℓ∈R̃
aiℓξℓ, i ∈ VC , and αi =

∑

ℓ∈R̃
aiℓξℓ, i∈ VF . Then, vector λ is modified as follows: λi = λi−ǫγ(αi−1), i∈ VC , and

λi =min{0, λi− ǫγ(αi−1)}, i∈ VF . where ǫ is a positive constant and γ = 0.2z∑
i∈V ′ (αi−1)2

.

Step 3. Check if u is a feasible DSP solution. Generate the largest subset N ⊆ R> of routes

having negative reduced cost with respect to the current dual master solution u and such

that |N | ≤∆ (∆ is an a priori defined parameter). If N = ∅ and z is greater than LCG,

then LCG= z, u∗ = u, ξ∗ = ξ and λ
∗ =λ; otherwise, R =R ∪N is updated.

Step 4. Termination criterion. Set iter= iter+1. If iter=Maxit1, stop.

Computing lower bound LB1 Lower bound LB1 corresponds to lower bound LCG computed

by procedure CG using q-∗route relaxation. The initial route set R of the master problem contains

a feasible solution generated with the heuristic algorithm described in 6.1. We initialize λ= 0.

Define the modified routing cost r{i,j} = r{i,j} − (1/2)(ui + uj), ∀{i, j} ∈ E (we assume u0 =

0), and the modified assignment cost dij = dij − ui, ∀(i, j) ∈ A, with respect to the current dual

solution u. The set N is computed as follows. We compute functions lbk(q), f(q, i) and g(q, i)

using the modified routing and assignment costs r{i,j} and dij instead r{i,j} and dij. Let h(i) =

minqi≤q≤Q{f(q, i)+ r{0,i}}, if ∀i∈ VC , and h(i) =minqmin≤q≤Q{f(q, i)+ r{0,i}}, ∀i∈ VF . The set N

contains any q-∗route corresponding to h(i)< 0, i∈ V ′. Set u1 =u∗, λ1 =λ
∗, and LB1 =LCG.

Computing lower bound LB2 Lower bound LB2 corresponds to lower bound LCG computed

by procedure CG using ng-∗route relaxation.
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We initialize λ= λ
1, define r1{i,j} = r{i,j} − (1/2)(u1

i + u1
j), ∀{i, j} ∈E (we assume u1

0 = 0), d1ij =

dij −u
1
i , ∀(i, j)∈A, and compute Ni to be the Γ nearest nodes to i according to r1{i,j}. We compute

functions f(NG,q, i) and lbk(q) using r
1
{i,j} and d1ij instead of r{i,j} and dij, respectively, and the

costs h(i) =min(NG,q,i)∈E {f(NG,q, i) + r1{0,i}}, of the least cost ng-∗route visiting i immediately

before arriving at the depot. The initial route set R contains the ng-∗routes corresponding to

h(i)< 0, i∈ V ′. At each iteration of procedure CG, to generate the set N , we compute functions

f(NG,q, i) and lbk(q) with the modified routing cost r{i,j} = r{i,j}− (1/2)(ui+uj), ∀{i, j} ∈E, and

the modified assignment cost dij = dij −ui, ∀(i, j) ∈A, with respect to the current solution u. N

contains every ng-∗route corresponding to h(i) =min(NG,q,i)∈E {f(NG,q, i)+ r{0,i}}< 0, i ∈ V ′. Set

LB2 =LCG.

5.2. Column-and-cut generation method

In this section, we describe a bounding procedure that computes a lower bound on the vrptf as

the cost of an optimal solution of problem LSP obtained from formulation LSP by substituting

the route set R with the set R> of ng-∗route and by adding valid inequalities derived from a family

F of valid inequalities described for formulation TI.

Any valid inequality t∈F can be expressed in general form as

∑

e∈E

αt
exe +

∑

i∈V ′

βt
iyi+

∑

(i,j)∈A

γt
ijzij ≥ ωt, (45)

and can be transformed into the following valid inequality for formulation SP using equations

(32)-(35), where R is substituted by R>:

∑

ℓ∈R>

(ϕt
ℓ +φt

ℓ +ψt
ℓ)ξℓ ≥ ωt, (46)

where ϕt
ℓ =

∑

e∈E
αt
eη

ℓ
e, φ

t
ℓ =

∑

i∈V ′ βt
iaiℓ and, ψ

t
ℓ =

∑

(i,j)∈A
γt
ijb

j

iℓ.

The bounding procedure solves problem LSP by using column and cut generation. The initial

master problem is obtained from the computation of lower bound LB2 by replacing the route set

R> with the route set R generated by procedure CG during the computation of LB2. The initial

set of valid inequalities F is set to the empty set. At each iteration (say k), the procedure performs

the following steps.

1. Solve problem LSP . Let ξ and (u,v) be the optimal primal and dual solutions, respectively.

Vector u is given by u= {u1, . . . , u|VC |, u|VC |+1, . . . , u|V ′|}, where u1, . . . , u|VC | are associated with

constraints (27), and u|VC |+1, . . . , u|V ′|, with constraints (28). Vector v= {v1, . . . , v|F |} is associ-

ated with the family of valid inequalities F .
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2. Generate the largest subset N ⊆ R> of ng-∗route having negative reduced cost with respect

to the current dual master solution (u,v) and such that |N | ≤ ∆ (∆ is an a priori defined

parameter). If N = ∅, the procedure terminates; otherwise a new iteration is made. At iteration

k+ 1, the procedure solves a new master problem LSP by replacing R with R ∪N and the

valid inequalities of F violated by the LSP solution ξ achieved by iteration k.

3. Given the solution vector ξ, compute the corresponding solution vector (x,z,w) by means of

equations (32)-(35) where R is substituted by R. Solve the separation problems associated with

the set of valid inequalities F (see below) and add, if any, violated inequalities to set F .

It can be easily shown that the complexity of the pricing algorithm solved at Step 2 of the above

procedure is not sensitive to the addition of the valid inequalities in F , since the values of the

corresponding dual variables can be translated into subproblem costs. Indeed, at each iteration of

the procedure, to generate the set N , we compute the ng-∗route functions f(NG,q, i) and lbk(q)

with the modified routing cost r{i,j} = r{i,j} − (1/2)(ui +
∑

t∈F
βt
ivt) − (1/2)(uj +

∑

t∈F
βt
jvt) −

∑

t∈F
αt
{i,j}vt, ∀{i, j} ∈E, and the modified assignment cost dij = dij −ui−

∑

t∈F
γt
ijvt, ∀(i, j)∈A,

with respect to the current dual solution (u,v) (we assume u0 = 0). N contains every ng-∗route

corresponding to h(i)< 0, i∈ V ′.

We conducted preliminary experiments to identify a good separation strategy to be used at Step

3. As a result of our experimentation, we decided to use the following inequalities to define the

family set F : CI, MI, RCI, RCII-a, RCII-b, RCII-c, and RCII-d inequalities. For a given solution

(x,z,w), we identified (as far as possible) violated inequalities of above seven types by applying

the corresponding separation procedures as described below.

5.2.1. Separation procedures The separation problems of CI, RCII-a and RCII-c inequal-

ities can be reduced to max-flow/min-cut problems using a standard construction, and therefore

solved in polynomial time; we omit the details for sake of brevity (see Baldacci et al. (2007)).

Concerning MI inequalities, the following theorem holds.

Theorem 4. Let (x, z, y) be a solution of the LP-relaxation of formulation TI and assume that

qi ≤ Q, ∀i ∈ VC , and that xe = 0, e = {i, j} ∈ E \ {{0, h} : h ∈ V ′}, if qi + qj > Q. The separation

problem for MI inequalities (10) is solvable in polynomial time.

Proof. The proof is provided in the e-companion to this paper. �

RCI, RCII-b and RCII-d inequalities are separated using a heuristic separation procedure. The

procedure is a Multistart Local Search that, at each iteration, generates a starting point and evolves

it through a Local Search procedure. We start by generating a set S of 10(n− 1) subsets of V ′

as follows. For the RCI inequalities the first |VC | sets of S are obtained by inserting in each set,

for i= 1, . . . , |VC |, the nodes in Fi. The remaining sets are generated by first computing a random
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number m drawn from a uniform distribution in [1, . . . , n− 1], and then by randomly selecting m

different nodes of V ′, again using a uniform distribution. For the RCII-b and RCII-c inequalities all

the sets are randomly generated as above. Each set S ∈S is then iteratively expanded by adding

one node at each iteration until S = V ′. For a given set S, let θ(S) denote the difference between

the left-hand side and the right-hand side value of the considered inequality (i.e., the inequality can

be rewritten as θ(S)≥ 0 and the separation problem corresponds to compute argminS⊆V ′{θ(S)}).

Each set S is expanded by choosing the node i∈ V ′ \S such that θ(S ∪{i}) is minimized

6. Solving the vrptf to Optimality

In this section, we describe the method implemented for solving the vrptf to optimality. We start

by describing two heuristic algorithms that compute primal bounds used to initialize the exact

method. The exact method is a branch-and-cut-and-price (BCP) solution method based on the

SCIP (see Achterberg 2009) BCP solution framework.

6.1. Heuristic algorithms

Primal bounds for the vrptf are computed by means of two different types of heuristic algorithms:

a constructive heuristic and a Lagrangean heuristic.

The basis of the constructive algorithm is a heuristic to solve the cvrp. Given an instance of

vrptf, we define a complete graph G = (V ,E) where the node set V = {0} ∪ VC contains the

depot and the customer nodes. Each edge e ∈E has a cost given by re. Each customer i∈ VC has

a demand equal to qi and the capacity of the vehicles is set to Q. Roughly speaking, we solve

a problem obtained from vrptf by disregarding the facility nodes (set VF ) and the connection

arcs (set A). The cvrp instance is solved through an iterative multistart procedure based on a

cluster-first, route-second heuristic procedure. Each iteration consists of three phases: (i) determine

a partition of the customers into a number of subsets each one satisfying the capacity constraint;

(ii) for each set, find the route of a single vehicle that serves all the customers in the set (i.e.

we solve an instance of a Traveling Salesman Problem (tsp)); (iii) locally optimize the solution

obtained at step (ii). The cvrp solution so far obtained, is then locally optimized by iteratively

applying two post-optimization procedures specifically devised for the vrptf.

The Lagrangean heuristic is based on procedure CG described in Section 5.1.3. Procedure CG

is interwoven with an algorithm that produces a feasible vrptf solution using the route set R̃

(see Step 2 of procedure CG). The route set R̃ is first modified to contain only customers visited

at most once. Then, unrouted customers are inserted in order to obtain a feasible solution. The

solution obtained is further optimized by applying the same post-optimization procedures used by

the constructive algorithm.

A step-by-step description of the heuristics are given in the e-companion to this paper.
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6.2. Details of the BCP method

The lower bound at the root node of the enumeration tree is first computed by using the bounding

procedure described in Section 5, then by using the column-and-cut generation method described

in Section 5.2. The master problem at a generic node except the root node is initialized with the

set of valid inequalities F and the set of routes R of the parent node, where set R is further

modified by extracting the largest set of routes satisfying the branching conditions.

To choose a node-selection rule, we first performed some preliminary experiments with different

rules and, based on these results, we decided to adopt the best-first strategy for all the computations

of Section 7. We did not implement primal heuristics but the algorithm was initialized with the

best primal solution found by the two heuristic algorithms described in the previous section that

are executed at the root node. We used the default branching scheme of the SCIP framework,

namely the hybrid branching scheme (see Achterberg and Berthold 2009), that combines ideas from

pseudocost branching (Benichou et al. 1971) and strong branching (Applegate et al. 2007).

7. Computational Results

This section reports on the computational results of the exact method described in this paper and

analyses the effectiveness of the dual ascent heuristics and of the different types of inequalities on

the bounding procedure procedure described in Section 5.

The algorithms were coded in C++ and linked with the SCIP 3.1.1 BCP solution framework

(see Achterberg 2009) using the IBM Cplex 12.6.1 linear programming solver (see IBM CPLEX

2014). The experiments were performed on an Intel Core 2 Duo at 2.66 GHz personal computer

equipped with 4 Gb of RAM.

The exact method has been tested on real-world instances and on instances derived from lrp

instances already proposed in the literature, used to further evaluate the performance of our algo-

rithms. The same instances have been also used to generate 2e-cvrp instances. The following

sections 7.1 and 7.2 briefly describe the real-world and lrp based instances, respectively, and

report on the results obtained by the different algorithms. The complete details of the instances

are provided in the e-companion to this paper.

Based on the results of preliminary experiments to identify good parameter settings for our

method, we decided to use the following settings for our bounding procedure (see Section 5):

• in computing lower bound LB1: Maxit1= 50, Maxit2 = 50, ǫ=1.5 and ∆= 50;

• in computing lower bound LB2: Γ = 12, Maxit1 = 100, Maxit2 = 50, ǫ= 2.0 and ∆= 50;

• in the column-and-cut-generation method: ∆ = 100 at the root node of the BCP whereas

∆= 50 for the remaining nodes.
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7.1. Results on real-world instances

The data of this set of instances were provided by a major Italian transportation company that dis-

tributes non-perishable products over the whole Italian peninsula. The company operates through

three main distribution areas (North, Centre and South) using three main central depots located

in the provinces of Milan, Rome and Naples.

The three distribution areas operate independently in the corresponding areas to serve customer

orders using an existing set of intermediate facilities. The customer orders are placed into Euro-

pallet and distributed either to the final customers or the intermediate facilities by means of a

fleet of identical capacitated vehicles which are stationed at the different central depots and whose

capacity is expressed in terms of pallets. All the facilities are owned by third-party contractors,

that are in charge of delivering to the final customers the orders consolidated at the facilities.

The company was interested in analyzing different distribution scenarios associated with the

three distribution areas. A total number of 18 instances were provided by the company, six instances

per each area or depot. The following naming convention was adopted to identify the different

instances. The instance name is a string area a×b Qc, where area represents the area (i.e., North,

Centre, South), a represents the number of customers, b corresponds to the number of facilities,

and c is the vehicle capacity.

In Table 1, we report the results obtained by the heuristic algorithms, the bounding procedure

and the BCP method. The columns of the table report the instance name (Name), the cost of

the best solution found by the heuristics and BCP algorithms (z∗), the percentage deviation of

the upper bound computed by the constructive heuristic (%UB1), the percentage deviation of the

upper bound computed by the lagrangean heuristic (%UB2), the percentage deviation of lower

bound LB1 (%LB1), the percentage deviation of lower bound LB2 (%LB2), the total computing

time of lower bounds LB1 and LB2 that also includes the time spent for computing UB2 (tDA), the

percentage deviation of the lower bound LB computed at the root-node of the BCP algorithm and

the corresponding computing time (%LB, tLB), the cardinality of the sets F and R associated

with lower bound LB (#cuts and #cols), the total number of nodes of the exact algorithms (#N),

the percentage deviation of the best lower bound achieved by the exact method (%Opt), and the

total computing time in seconds spent by the exact method (tTOT ), that also include the time spent

for computing upper bound UB1. The percentage deviation of value x is computed as 100×x/z∗.
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Table 1 Results on real-world instances

Name z∗ #r #f #c %UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #cuts #cols #N %Opt tTOT

north-68x7-Q24 8890.3 23 6 27 106.8 102.2 97.8 97.9 51.7 95.5 38.7 99.1 2.3 18 1093 1930 100.0 565

north-68x7-Q34 9748.1 17 5 25 105.0 100.7 96.3 96.3 36.5 93.8 28.1 97.1 5.3 496 1535 4126 100.0 5426

north-103x13-Q24 14251.1 34 13 46 105.8 102.2 98.1 98.1 91.6 94.3 141.8 98.9 4.5 23 1260 9888 99.5 7466

north-103x13-Q34 15613.3 27 12 61 107.2 102.1 98.4 98.5 164.8 95.7 204.2 99.1 10.7 489 2786 6641 99.6 7497

north-142x18-Q24 17876.4 49 16 65 110.7 102.8 98.7 99.0 201.4 93.5 396.8 99.3 17.1 3 3490 3382 100.0 3172

north-142x18-Q34 19623.3 39 16 74 118.0 103.3 97.5 97.8 249.0 92.7 515.4 98.3 19.2 2 3984 1583 98.7 7765

centre-74x6-Q24 12213.8 24 6 21 106.6 100.7 99.6 99.9 47.5 95.7 53.0 99.9 2.6 494 1287 3 100.0 120

centre-74x6-Q34 12930.4 19 5 28 104.6 100.9 99.1 99.6 60.3 96.0 57.1 99.7 4.2 188 1628 92 100.0 205

centre-113x9-Q24 19612.1 38 8 41 105.4 102.0 99.2 99.3 260.9 94.8 319.5 99.5 11.3 4 2464 4954 100.0 2578

centre-113x9-Q34 21877.0 31 8 41 106.7 101.4 97.2 97.6 232.4 94.1 325.4 97.7 8.1 2 4283 1639 98.1 7595

centre-164x12-Q24 27390.2 56 12 46 108.3 102.3 99.0 99.1 656.5 93.2 915.2 99.3 41.2 11 4411 3863 99.4 8452

centre-164x12-Q34 29853.5 45 11 65 113.9 102.6 99.0 99.1 910.3 94.7 1493.3 99.4 32.9 14 6055 2087 99.5 8565

south-54x4-Q24 10987.6 19 4 16 102.1 100.1 97.7 98.2 33.2 96.4 21.5 98.8 0.8 2 678 4586 100.0 1328

south-54x4-Q34 12597.7 26 4 13 106.9 100.5 94.4 94.4 39.5 94.6 26.0 95.6 1.9 33 1200 1030 96.2 7255

south-85x7-Q24 16553.7 29 7 22 107.1 100.0 97.0 96.9 116.3 93.8 101.3 97.6 5.0 8 2220 2476 97.7 7421

south-85x7-Q34 18100.4 22 7 31 105.7 102.8 98.5 98.9 200.9 96.6 126.0 99.4 6.6 389 3013 1729 100.0 5470

south-115x9-Q24 20497.5 39 8 38 104.9 102.3 98.5 98.2 424.5 94.3 283.0 99.2 10.3 3 2726 9148 99.7 7878

south-115x9-Q34 21963.2 33 9 52 107.0 101.2 97.4 97.6 342.7 93.8 187.5 98.5 10.5 2 4685 1819 98.9 7737

107.4 101.7 98.0 98.1 228.9 94.6 290.8 98.7 10.8 2358
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In order to evaluate the quality of the different lower bounds, we also computed, for each instance,

the value of the lower bound obtained by solving the LP-relaxation of formulation TI strengthened

with the different valid inequalities (using the separation strategy described in Section 5.2). In the

table, column %LBC reports the percentage deviation of the final lower bound obtained whereas

column tC displays the corresponding computing time.

For each instance, Table 1 also reports the following details about the best solution found: the

number of routes in the solution (#r), the number of facilities visited (#f) and the number of

customers assigned to a facility (#c).

For these set of instances, a time limit of 7,200 seconds was imposed to the SCIP framework.

The last row of the table reports averages computed over the different columns. The average

reported under column tTOT is computed over the instances solved to optimality within the imposed

time limit. If a value of 100.0 is reported for column %Opt, then the algorithm terminated with an

optimal solution.

Table 1 shows that 8 out of 18 instances were solved to optimality and that the final lower

bound LB is on average quite tight, being equal to 98.7%. The largest instance solved to optimality

involves 142 customers and 18 facilities. On these set of instances, lower bounds LB1 and LB2 have

the same quality and are on average superior to lower bound LBC , thus showing the effectiveness of

our q-∗route and ng-∗route relaxations. Moreover, the different valid inequalities can substantially

increases the lower bound, as shown by the improvements on instances north-68x7-Q24 and south-

54x4-Q34.

The table shows that upper bound UB2 is always better than upper bound UB1 and that the

BCP algorithm can further improve the upper bounds in almost all instances, thus producing high

quality primal solutions also whenever the algorithm terminates without proving the optimality of

the solution found.

It is worth mentioning that the time spent for computing upper bound UB1 is on average equal to

187.4 seconds and that the time spent by the procedure used to compute upper bound UB2 (called

during the computation of lower bound LB2) is on average equal to 226.8 seconds. Therefore, both

UB1 and UB2 can be computed efficiently in practice.

7.2. Results on lrp based instances

This set of instances was derived from 75 lrp instances used in Baldacci et al. (2011) and Contardo

et al. (2013) for solving the lrp and proposed by different authors. We derived two classes of test

instances (A and B) having the same topology of the underlying graph, but with different cost

structures.

We generated a total number of 150 instances, 75 instances per class. The dimensions of the

instances vary from very small instances with 12 customers and two facilities up to large instances
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Table 2 Summary results on Class A instances

%UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #Opt tTOT

Akca et al. (2009) 100.3 100.6 94.3 96.8 9.9 96.1 4.6 98.5 2.1 10/12 145.3

Prins et al. (2004) 100.2 100.4 93.7 96.0 48.6 94.0 78.6 97.8 14.7 10/24 221.9

Different authors 100.2 101.0 91.9 94.3 297.5 93.7 339.8 96.6 121.3 10/39 213.0

Table 3 Summary results on Class B instances

%UB1 %UB2 %LB1 %LB2 tDA %LBC tC %LB tLB #Opt tTOT

Akca et al. (2009) 102.6 101.3 94.6 96.9 5.2 95.6 4.1 98.1 3.7 9/12 274.2

Prins et al. (2004) 101.4 101.0 94.2 95.9 52.8 93.0 76.1 97.2 14.2 7/24 184.0

Different authors 101.1 102.5 92.4 94.2 187.6 93.4 324.1 96.1 141.2 8/39 284.3

with 150 customers and 20 facilities. The instance name is a string name<a×b>, where name

represents the instance name, a represents the number of customers and b corresponds to the

number of facilities.

For sake of presentation, the instances were grouped into the following three groups accordingly

to the original lrp source:

i) Akca et al. (2009): 12 instances involving 5 facilities, and 30 or 40 customers;

ii) Prins et al. (2004): 24 instances involving 20, 50, and 100 customers, 5 or 10 facilities;

iii) Different authors: 39 instances, involving up to 150 customers and 20 facilities.

For this set of instances, a time limit of 3,600 seconds was imposed to the SCIP framework.

Tables 2 and 3 summarize the results obtained on both classes A and B. In the tables, column

#Opt reports for each group of instances the total number of instances solved to optimality within

the imposed time limit.

The meaning of the remaining columns is the same described in the previous section, but in the

tables their values are relative to averages computed over the instances composing the three groups.

The values reported under column tTOT are computed over the instances solved to optimality

within the imposed time limit.

Tables 2 and 3 show that 30 and 24 out of 75 instances were solved to optimality within the

imposed time limit for classes A and B, respectively.

For these instances, lower bound LB2 is on average superior with respect lower bound LB1. As

the feasible solutions associated with these instances are characterized (on average) by a larger

number of customers per route, the ng-∗route relaxation performs in practice better than q-∗route

relaxation. Also for these instances, the different valid inequalities can substantially increase the

final lower bound (see column %LB). Instances of Class B are more difficult with respect to the

corresponding instances of class A. This is due to the different cost structure of class B instances

and it is testified by the worse quality of lower bounds LBC and of the final lower bound LB.

Nonetheless, lower bounds LB1 and LB2 show the same quality of class A instances.
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Table 4 Effectiveness of the dual ascent heuristics

tLBSP
tLB1

%LB1 %LB2 %LBSP (a) (b) (c) (d) (e) (f)

A Akca et al. (2009) 94.3 96.8 96.9 11.1 6.7 4.9 2.3 0.9 0.7
Prins et al. (2004) 93.7 96.0 96.1 26.3 15.6 12.1 5.3 0.5 0.3
Different authors 91.9 94.3 94.7 263.0 171.2 108.0 53.5 21.4 17.6

B Akca et al. (2009) 94.6 96.9 96.9 13.0 7.9 5.8 2.7 0.9 0.7
Prins et al. (2004) 94.2 95.9 96.0 26.4 17.4 13.2 5.8 0.5 0.4
Different authors 92.4 94.2 94.8 248.3 168.6 116.5 56.9 21.7 18.9

Real-word 98.0 98.1 98.6 18.9 5.0 8.3 4.2 0.3 0.2

93.6 95.5 95.8 129.9 85.2 57.4 28.0 10.3 8.7

(a) without lower bounds LB1 and LB2

(b) with lower bound LB1

(c) with lower bound LB2

(d) with lower bounds LB1 and LB2

(e) route set R initialized with single-customer route

(f) route set R initialized with the solution provided by the constructive heuristic

Concerning the upper bounds, the tables show that both the two upper bounding procedures can

compute good quality solutions. The average computing time of upper bound UB1 (UB2) is equal

to 70.8 and 72.9 seconds (148.0 and 89.5 seconds) for classes A and B, respectively. Therefore, the

computation of LB2 requires a higher computing time with respect to the real-world instances and

this is due to the larger vehicle capacity that characterizes most of the instances in classes A and

B.

The detailed results reported in the e-companion to this paper show that instances with up to

100 customers and 10 facilities were solved to optimality.

7.3. Effectiveness of the dual ascent heuristics and valid inequalities

Table 4 reports an analysis of the effectiveness of the dual ascent heuristics when used to initialize

the master problem of problem LSP (see Section 5.2). In order to assess the quality of lower bounds

LB1 and LB2, we solved problem LSP without adding valid inequalities, i.e., we computed the

optimal solution cost LBSP of formulation LSP and the LP-relaxation of formulation SP with

ng-∗route. In addition, the Lagrangean heuristic has been disabled during the computation of LB1

and LB2.

The table reports the average percentage deviations of lower bounds LB1, LB2, and LBSP under

columns %LB1, %LB2 and %LBSP , respectively. The table then reports, under heading tLBSP
, the

average total computing times spent in computing lower bound LBSP under the following options:

(a) without computing lower bounds LB1 and LB2 (b) by computing lower bound LB1 (c) by

computing lower bound LB2, and (d) by computing both lower bounds LB1 and LB2. In case

(a), the master problem of LSP is initialized with single-customer routes whereas in case (b), the

master problem is initialized using the dual solution provided by lower bound LB1, that is used

to generate an initial set of ng-∗route. In cases (c) and (d), the master problem is initialized with
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the route set generated by procedure CG during the computation of LB2 (as described in 5.2).

Moreover, in case (c) the master problem associated with the computation of LB2, is initialized as

for LB1, i.e., using the solution provided by the constructive heuristic described in Section 6.1.

All values in the table are relative to averages computed over the instances composing the three

groups of classes A and B, and over the real-world instances. The last row of the table reports

averages computed over all instances.

The table shows that the bounding procedure based on the use of both lower bounds LB1 and

LB2 (case (d)) is about five times faster than the standard column generation method (case (a)).

Generally speaking, standard column generation methods are time-consuming as the LP-relaxation

of the master problem is usually highly degenerate and degeneracy implies alternative optimal dual

solutions. Consequently, the generation of new columns and their associated variables may not

change the value of the objective function of the master problem, the master problem may become

large, and the overall method may become slow computationally. In case (d), the computation

of lower bound LBSP starts from a near-optimal dual solution of the LP-relaxation of SP with

ng-∗route provided by lower bound LB2, as shown by the percentage deviations of lower bounds

LB2 and LBSP . This allows us to generate an initial master problem containing the routes having

a very small reduced cost that are likely to be in the optimal LSP solution.

The analysis of cases (b) and (c) shows that it is also computationally convenient to compute LB1

or LB2. In particular, computing LB1 before the computation of LB2 speedup the computation

of LB2 as procedure CG used to compute LB2 takes advantage from the master initialization

provided by the dual solution corresponding to LB1.

Table 4 also reports the computational results obtained when calculating the lower bound LB1

under the following two ways of initializing the corresponding master problem: (i) by using the

heuristic solution provided by the constructive heuristic (case (e)) (ii) by using single-customer

routes (case (f)). The table shows that on average, the difference is slightly marginal. Neverthe-

less, as in our implementation the constructive heuristic is executed before computing LB1, it is

worthwhile to initialize the master of LB1 with the solution found by the heuristic.

Table 5 analyses the impact of the valid inequalities on the column-and-cut bounding procedure

described in Section 5.2 at the root node of the BCP method.

The table reports average percentage deviations of the lower bounds obtained by the bounding

procedure under the following cases: (i) without adding valid inequalities (under column heading

“no cuts”) (ii) by adding CI, MI and RCI inequalities (“+ CI + MI + RCI”) (iii) by adding CI,

MI, RCI, RCII-a, and RCII-b inequalities (“+ RCII-a + RCII-b”), and (iv) by adding CI, MI, RCI,

RCII-a, RCII-b, RCII-c, RCII-d inequalities (“+ RCII-c + RCII-d”). The last case corresponds

to the final procedure we adopted in our computational results and, as mentioned in Section 5.2,
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Table 5 Effectiveness of the different type of inequalities on column-and-cut generation procedure

no cuts + CI + MI + RCI + RCII-a + RCII-b + RCII-c + RCII-d
%LB tLB %LB tLB #cuts %LB tLB #cuts %LB tLB #cuts

A Akca et al. (2009) 96.9 2.3 97.9 3.1 7.3 98.5 4.0 200.6 98.5 4.0 169.9
Prins et al. (2004) 96.1 5.3 97.1 10.0 8.3 97.8 17.2 521.5 97.8 18.2 539.8
Different authors 94.7 53.5 95.7 92.1 23.8 96.5 139.3 1083.2 96.6 164.4 1181.3

B Akca et al. (2009) 96.9 2.7 97.4 3.6 13.3 98.0 5.5 655.6 98.1 5.6 763.0
Prins et al. (2004) 96.0 5.8 96.3 10.7 14.6 97.1 16.2 623.8 97.2 17.7 737.0
Different authors 94.8 56.9 95.6 109.0 61.4 96.0 173.3 1385.3 96.1 184.3 1566.1

Real-word 98.6 4.2 98.7 6.6 4.1 98.7 6.9 106.0 98.7 12.9 121.1

95.8 28.0 96.5 50.8 24.9 97.1 78.8 809.2 97.2 88.1 905.2

the sequence of separation procedures was defined after conducting preliminary computational

experiments performed to identify a good separation strategy.

For each group of inequalities, the table reports the average percentage deviations of the lower

bounds obtained and the corresponding average computing times (%LB, tLB), and the average

cardinalities of the sets F associated with the lower bound computation (#cuts). As for Table 4,

the Lagrangean heuristic has been disabled during the computation of LB1 and LB2. In addition,

the time tLB also includes the time spent for computing LB1 and LB2.

As for Table 4, all values in the table are relative to averages computed over the instances

composing the three groups of classes A and B, and over the real-world instances. The last row of

the table reports averages computed over all instances.

The table shows that the average percentage gaps left by considering in turn the different three

groups of valid inequalities are equal to 3.5, 2.9 and 2.8, respectively. With respect to the “no cuts”

case, a final gap reduction of about 1.4% has been achieved. The contribution given by inequalities

RCII-c and RCII-d is on average equal to 0.1% as shown by the table. During preliminary com-

putational experiments, we observed that their addition generally results in separating additional

RCI and RCII-b inequalities, which separation procedures are heuristics.

8. Conclusions

In this paper, we considered a vehicle routing problem with transhipment facilities, called the

Vehicle Routing Problem with Transhipment Facilities (vrptf), that was motivated by a real-world

application of interest to an Italian company operating in the production and distribution of non-

perishable products. The vrptf consists of selecting transhipment facilities, allocating customers

to these facilities and designing vehicle routes emanating from a central depot to minimize the total

distribution cost. A feature of the problem is that a customer can be either served on a vehicle

route emanating from the central depot or through an intermediate facility, where the demand is

first delivered by a vehicle route, and then it is successively delivered to the final customer.

We proposed two integer programming formulations for the vrptf, a two-index formulation (TI)

and a set-partitioning based formulation (SP ). The formulations were used to derive a bounding
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method based on two dual ascent heuristics and a column-and-cut generation procedure. In par-

ticular, we proposed valid inequalities to strengthen the linear relaxations of the two formulations

and two different route relaxations, called q-∗route and ng-∗path, that have the advantage that

the pricing subproblem associated with the linear relaxation of formulation SP can be efficiently

solved (by dynamic programming).

All our findings have been used to develop branch-and-cut-and-price algorithm that has been

tested on a large family of instances, including both real-world instances and instances derived

from the literature.

The implementation solved to optimality different instances from our real-world instances involv-

ing up to 142 customers and 18 facilities. The implementation was also tested on literature-based

instances to better evaluate the limits of the algorithms, and the new approaches can find optimal

solutions on some difficult instances with up to 100 customers and 10 facilities.
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Riera-Ledesma, J., J.-J. Salazar-González. 2012. Solving school bus routing using the multiple vehicle travel-

ing purchaser problem: A branch-and-cut approach. Computers & Operations Research 39(2) 391–404.

Toth, P., D. Vigo. 2014. Vehicle Routing: Problems, Methods, and Applications . MOS-SIAM Series on

Optimization, SIAM, Philadelphia.


