
Time-indexed formulations for the Runway
Scheduling Problem

Pasquale Avella, Maurizio Boccia
DING — Dipartimento di Ingegneria — Università del Sannio, {avella,maboccia}@unisannio.it

Carlo Mannino
SINTEF ICT, Carlo.Mannino@sintef.no

Igor Vasilyev *
Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences,

vil@icc.ru

The problem of sequencing and scheduling airplanes landing and taking off on a runway is a major challenge

for air traffic management. This difficult real-time task is still carried out by human controllers, with little

help from automatic tools. Several methods have been proposed in the literature, including Mixed Integer

Programming (MIP) based approaches. However, in a recent survey (Bennell et al. (2011)) MIP is claimed

to be unattractive for real-time applications, since computation times are likely to grow too large. In this

paper we reverse this claim, by developing a MIP approach able to solve to optimality real-life instances

from congested airports in the stringent times allowed by the application. In order to achieve this it was

mandatory to identify new classes of strong valid inequalities, along with developing effective fixing and

lifting procedures.

Key words : Air Traffic Management, Runway Scheduling Problem, Single Machine Scheduling, Mixed

Integer Programming, Valid Inequalities, Fixing and Lifting Procedures.

History :

1. Introduction

In Air Traffic Management (ATM) the Tower Control is responsible for managing the immediate

airport environment from the control tower. Tower controllers organize and expedite the flow of

traffic on the ground and in the airspace adjacent to the airport. A major task of a controller is

* The research of I. Vasilyev is partially supported by the Russian Foundation for Basic Research, research project

No. 14-07-00382

1

Final version available at InformsPubsOnline: http://dx.doi.org/10.1287/trsc.2017.0750

Author: Article Short Title
2 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

to avoid conflicts in the access to airborne and airdrome resources between airplanes that are cur-

rently under his/her responsibility. For instance, the runway can be occupied only by one airplane

at a time. The controller in charge will make sure that take-offs and landings are separated in

time sufficiently to respect this constraint. The controller can (to a certain extent) push forward

or backward take-offs and landings and change the order of flights. Since separation times are

sequence dependent, clearly any decision for one or more airplanes will affect neighboring ones,

and consequently the entire sequence. It is apparent that for a human operator it is impossible

to foresee or compute all the future effects of local decisions, which may lead to unwanted and

unnecessary delays. Punctuality is one of major indicators of airline performance. Not surprisingly,

in the past years, we experienced a growing interest in developing automatic decision support tools

capable of assisting controllers in their difficult task. A number of sub-projects in the European

aviation research framework SESAR joint undertaking (SESAR (2007)) were actually involved in

such developments. Consequently, the interest of the scientific community has also grown signifi-

cantly in the past years and the literature on this topic is already very vast. Concerning ATM at

the airport, the practice and the literature typically consider three distinct problems: Departure

Management (DMAN), Arrival Management (AMAN) and Surface Management (SMAN). DMAN

(AMAN) amounts to establishing take-off times (landing times) for each departing (arriving) air-

plane, so as to minimize deviations from the official schedule, and avoid conflicts in the space

near the airport and on the runway. SMAN determines the schedule of airplane movements in the

airdrome according to (expected) landing times and requested take-off times, preventing conflicts

on taxi-ways. Although in principle the three problems are tightly connected and should be solved

jointly, already the stand-alone version of each problem is too complicated to be handled by a

single controller. In the practice the responsibilities are further fragmented, and several controllers

may be involved in the tasks associated with one problem.

In this paper we consider the integrated management of departures and arrivals on a single

runway, and we will refer to this problem as RSP (Runway Scheduling problem). In RSP one wants

to (jointly) schedule the take-offs and the landings of a set of airplanes. For each arrival flight, an

arrival window is given, and the flight must land in this time window. Similarly, for each departure

flight, a departure window is given: however the departure can be canceled (at high cost). Two

successive flights on the runway must be separated by a minimum time interval which depends

on the involved airplanes. The official timetable provides requested arrival and departure times.

However, when one or more airplanes are delayed, a new schedule must be found, so that (some

measure of) the deviation from the official timetable is minimized.

For details on the different approaches for RSP we refer the reader to a recent survey Bennell

et al. (2011). The great majority of the approaches presented in the literature are heuristic or

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 3

meta-heuristic - see for instance Beasley et al. (2001), Atkin et al. (2007) and again Bennell et al.

(2011) as well as the literature discussion in the recent papers by Lieder et al. (2015) and Furini

et al. (2015).

Most likely because of the stringent computing times allowed by the real-time nature of the

application, only a few papers on exact methods have appeared in the literature. These methods

are basically of two types: dynamic programming approaches, and Mixed Integer Programming

(MIP) based approaches.

Recently, a dynamic programming algorithm has been first proposed and then successfully imple-

mented and tested in Briskorn and Stolletz (2014) and Lieder et al. (2015), respectively. In order

to tame combinatorial explosion in their dynamic programming approach to AMAN, Balakrishnan

and Chandran (2010) and Furini et al. (2014) adopted constrained position shifting, where the

position of the airplane in the final sequence shall not deviate significantly from a given initial

position. Observe that constrained position shifting allows for drastic reductions in the number of

potential dynamic states to enumerate. However, a better sequence may exist which violates one

or more such positional constraints. In contrast, in a recent paper by De Maere and Atkin (2015),

no positional constraints are imposed; instead, a number of smart exact fixing/pre-processing ideas

are put in place to reduce computational times.

As for MIP approaches, we observe first that RSP can be interpreted as a classical single machine

scheduling problem with sequence dependent setup times and earliness/tardiness objective function

(see Nogueira et al. (2014)). The runway corresponds to the machine, flights correspond to jobs

and time separations between flights on the runway to setup times. In contrast with traditional

machine scheduling instances, runway separations do not necessarily satisfy the triangle inequality.

Two types of formulations have traditionally competed in the literature on machine scheduling

(see Queyranne and Schulz (1994), Nogueira et al. (2014)), namely big-M formulations and Time

Indexed (TI) formulations. More specifically, in big-M formulations for DMAN (AMAN), the depar-

ture (arrival) time of a flight is represented by a single continuous variable. Big-M formulations for

AMAN and DMAN are adopted in Abela et al. (1993), Beasley et al. (2000), Briskorn and Stolletz

(2014), Furini et al. (2015). In principle, MIP based approaches can provide the optimal solution

to the original problem. However, in order to meet computing time limits for instances of practical

interest, big-M MIP approaches typically need to resort to some sort of heuristic decomposition

of the problem (for instance, rolling horizon, see e.g. Furini et al. (2012) and Samà et al. (2013)),

and the overall algorithm boils down to a heuristic method.

In TI formulations, the time horizon is discretized in small time periods. The schedule of a given

flight (job) is modeled by a set of binary variables, each associated with a feasible departure or

arrival time period. Only one of such variables will be 1 in a feasible solution, i.e. the one identifying

Author: Article Short Title
4 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

the scheduled time. TI formulations return much stronger bounds than big-M formulations (see,

e.g. Sousa and Wolsey (1992), Van den Akker et al. (2000)), but at the cost of increasing computing

times due to the large number of variables and constraints. Besides providing strong lower bounds,

it has been observed (e.g. Uma and Wein (1998), Savelsbergh et al. (2005), Masin and Raviv (2014))

that the LP solutions of TI formulations can be effectively exploited in heuristic approaches to

generate feasible solutions.

We want to remark that in our approach, time step size is part of the input. Of course, given

the original “time-continuous” instances, one may adopt very different step sizes. Larger step sizes

correspond to smaller time-indexed formulations and consequently faster computations. However,

the final solution may be suboptimal (with respect to the optimal continuous time solution); or,

even worse, feasible instances may become infeasible (see, e.g., Harrod (2011)). It is not difficult to

see that, if separations are integer (time units), then a time step size of 1 time unit would ensure

that the final solution is also optimal for the original problem. However, in many practical contexts,

larger sizes can still provide satisfactory solutions, allowing for drastic reductions in computing

times. For example, in Furini et al. (2012) the step size is 60 seconds for all instances. In Heidt et al.

(2013), in the same instance the authors resort to two distinct step sizes, namely 5 seconds for (the

first) 10 airplanes and 75 seconds for the remaining ones. Remarkably the quality of the 10 seconds

step-size has been assessed during an official validation campaign (see Kjenstad et al. (2013a)) in

the context of SESAR joint undertaking (SESAR (2007)). The solutions from the time-indexed

formulation were simulated and compared against the solutions obtained by experienced controllers

on the same instances, exhibiting significant improvements for all performance indicators.

TI formulations for AMAN and DMAN have recently been presented, e.g., in Heidt et al. (2013),

Kjenstad et al. (2013a,b). One major challenge when adopting TI formulations for scheduling

problems consists in limiting the number of variables and constraints. As shown in Kjenstad et al.

(2013b) and Lieder et al. (2015), in RSP the time windows associated with the flights naturally

limit the size of the resulting formulations. Note that MILP formulations — and in general all

exact approaches — can also be a tool of designing heuristics. In particular, this happens when

the enumeration search halts before the entire enumeration tree has been visited, in which case

the current best incumbent is returned. Moreover, in TI formulations, as discussed above, another

source of approximation derives from the choice of the time step size.

Let G be an undirected graph, whose nodes are in one-to-one correspondence with the binary

variables of the TI formulation and whose edges corresponds to pairs of conflicting variables (i.e.

that cannot be simultaneously at 1 in any feasible solution). The polyhedron associated with a TI

formulation is contained in the stable set polyhedron (see Wolsey and Nemhauser (2014)), that is the

polyhedron associated with the stable sets of G. The polyhedral properties of TI formulations for

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 5

the single machine scheduling problems with release dates has deeply been investigated in Waterer

et al. (2002). However, such results cannot directly be applied to runway sequencing problems

because set-up times are sequence-dependent. A standard way to tighten stable set formulations

is by including suitable clique inequalities (Wolsey and Nemhauser (2014)), namely inequalities

associated with the cliques of G. Alternative TI formulations may be obtained by considering

different cliques. Because of the limited time available for solving the Runway Scheduling Problem,

selecting a suitable formulation is a critical issue. On the one hand, one would want to include

many clique constraints, so as to obtain tighter bounds. On the other hand, the number of clique

constraints should not grow too much, so as to control the computational burden for solving the

linear relaxation of the formulation.

In this paper we present a novel technique to mediate between these two contrasting goals. This

task is carried out by identifying a TI formulation which compromises between i) the quality of

the LP bound and ii) the “compactness” of the formulation, measured as number of rows and

nonzeroes. Our TI formulation is based on a new class of valid inequalities for the single machine

scheduling problem with sequence dependent set-up times. This new family generalizes a family

recently introduced by Nogueira et al. (2014). The new generalization allowed us to significantly

improve the quality of the lower bounds and reduce the number of constraints with respect to

Nogueira et al. (2014) on our instances of RSP. The novel TI formulation is then solved by standard

column generation techniques. The combination of these factors eventually allowed us to find the

solution of difficult instances from large airports in Europe, namely Stockholm Arlanda, Hamburg

and Milano Linate, within the stringent time limits dictated by real-time requirements. Our new

approach exploits the fact that the number of different set-up times is small with respect to

the number of jobs. This feature occurs in many practical contexts in production management.

However, the approach is not effective when the number of distinct set-up times grows.

2. Problem statement and basic formulation

We denote by L and D the set of arrival and departure flights, respectively, hereafter simply

presented as arrivals and departures, and we let F =L∪D be the set of all the flights. Overall in

the paper we assume |F | ≥ 2, otherwise the problem is trivial. Arrivals and departures take place

on a single runway during the time horizon T , which we assume to be discretized in equally sized

periods, with T = {1, . . . , |T |}. Period t∈ T starts at time t and ends at time t+ 1 — so period t is

the half-open interval [t, t+ 1). When saying that a flight arrives/lands/departs/takes off at time

t we intend that this occurs at the beginning of time period t.

Each arrival (departure) or landing (take-off) may happen only within a given time window

— typically narrower for arrivals. Departures may be dropped at very high cost, while arrivals

Author: Article Short Title
6 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

must always land (within their time windows). Conventionally, we assume that the arrival time

of an arrival flight coincides with its landing time. Similarly, the departure time of a departure

flight coincides with its take-off time. For each flight i ∈D (i ∈ L), let li, ui ∈ T be, respectively,

the earliest, and the latest departure (arrival) time period; also, we let hi ∈ T be the requested

departure (arrival) time. The set of contiguous time periods Ti = {li, li + 1, . . . , ui} ⊆ T is the time

window for i∈ F .

For each ordered pair of distinct flights (i, j) ∈ F × F , a minimum separation time sij > 0 is

required, that is if i precedes j on the runway and j arrives/departs at time t, i must arrive/depart

in {0,1, . . . , t− sij}. Let F ′ ⊆ F . A (feasible) runway schedule for F ′ is a time γi ∈ Ti for each flight

i ∈ F ′ such that for each pair (i, j) of distinct flights in F ′ with γi ≤ γj, we have γj − γi ≥ sij. For

each flight i∈D (i∈L) let qit be the cost of departing (landing) i at time t∈ Ti. For each departure

i∈D, let ci be the cost of dropping i.

The Runway Sequencing Problem (RSP) for a set of flights F =D ∪L consists in finding a set of

dropped departures D̃ and a feasible schedule γ for the remaining flights F \ D̃ so that the total

cost
∑
i∈D̃

ci +
∑

i∈F\D̃
qiγi is minimized.

Time-indexed formulations. In order to formulate and solve RSP by integer programming, we

associate a binary variable xit with every i∈ F and every t∈ Ti, which is 1 if and only if γi = t, i.e. i

arrives/departs at time t. Also, with every departure i∈D we associate a binary variable yi which

is 1 if i is dropped and 0 otherwise. Since every flight is assigned (at most) one arrival/departure

time in a feasible schedule, for every i∈ F and every k, l ∈ Ti, k 6= l, we have xik +xil ≤ 1.

Consider now two distinct flights i, j ∈ F , and assume that the assignment γi = k and γj = l

violates the separation requirement between i and j, that is −sji < l− k < sij
1. Then, we have

either xik = 0 or xjl = 0 in any feasible solution. In turn, this can be expressed by the constraint

xik + xjl ≤ 1 and we say that the pair (of indices) {ik, jl} is an incompatible pair. For an instance

of RSP, we let I be the set of all incompatible pairs (of indices).

With an instance of RSP, we associate an undirected simple graph G(V,E) called conflict graph.

The nodes of G are in one-to-one correspondence to the x variables of the formulation and it has

an edge between two nodes whenever the associated variables cannot both possess the value of 1.

More formally, we let

V = {it : i∈ F, t∈ Ti}

1 The schedule γi = k and γj = l is unfeasible if i) either k < l (i precedes j on the runway) and l−k < sij ; or ii) l < k
(j precedes i on the runway) and k− l < sji. Recall that sij > 0 for all {i, j} ⊆ F .

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 7

and

E = I ∪{{ik, il} : ik, il ∈ V,k 6= l} .

From the above discussion, it follows that x represents a feasible schedule, if and only if x satisfy:

xik +xjl ≤ 1, {ik, jl} ∈E. (1)

A clique of an undirected graph is a subset of the nodes such that every two nodes in the subset

are adjacent. Incidentally, observe that any pair of adjacent nodes is also a clique (of cardinality

2). Let K be a clique of the conflict graph G(V,E), and let x satisfies (1) then it is easy to see that

x also satisfies the clique inequality:

∑
it∈K

xit ≤ 1. (2)

If K ⊆ V is a clique and u, v ∈K, then the edge (u, v) is said to be covered by K. An I-cover

is a set of cliques K1,K2, . . . , such that every edge in I is covered by at least one clique in the

set (a trivial I-cover is the one where the cliques correspond to edges in E). Let K= {K1,K2, . . .}
be a I-cover. It is not difficult to see that x satisfies (1) if and only if x satisfies the system of

inequalities:

(i)
∑
l∈Ti

xil ≤ 1, i∈ F, (3)

(ii)
∑
it∈K

xit ≤ 1, K ∈K.

Let ci and qit = |t − hi| be the cancellation cost and the coefficient measuring the earli-

ness/tardiness of the flight i with respect to its expected arrival/departure time hi, respectively.

We are finally able to write a binary linear programming formulation of RSP:

min
∑
i∈D

ciyi +
∑
i∈F

∑
t∈Ti

qitxit,

(i)
∑
t∈Ti

xit = 1, i∈L,

(ii)
∑
t∈Ti

xit + yi = 1, i∈D, (4)

(iii)
∑
it∈K

xit ≤ 1, K ∈K,

(iv) xit ∈ {0,1}, i∈ F, t∈ Ti yi ∈ {0,1}, i∈D.

where K= {K1,K2, . . .} is a I-cover and the (4.iii) define an I-cover system of inequalities.

Constraints (4.i) ensure that every arrival is assigned an arrival time from its time window,

whereas constraints (4.ii) ensure that every departure is either dropped or assigned a departure

Author: Article Short Title
8 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

time from its time window. Finally, constraints (4.iii) are the I-cover inequalities which ensure that

the schedule respects separation constraints. The objective function represents the overall cost of a

solution. Observe that constraints (3.i) are implied by (4.i) and (4.ii), whereas (3.ii) are precisely

(4.iii).

The linear relaxation of above time-indexed formulation can be exploited to generate bounds in

Branch&Bound schemes. As discussed in the introduction, such bounds are typically quite tight.

In order to keep the number of constraints at bay, it is important to carefully select the cliques

in the I-cover2. In fact, typically most of the constraints (in real-life instances) of (4) will belong

to the I-cover system of constraints (4.iii).

Building “small” clique covers. One heuristic way to obtain I-covers with “few” cliques, is to

try to cover the edges of G with large cliques3.

For single machine scheduling problems with sequence dependent setup times, one of the original

and well studied example of I-cover system of inequalities (see, e.g., Nogueira et al. (2014) and

Sousa and Wolsey (1992)) is given by the family of inequalities:

xjt +
∑

k∈Ti∩[t−sij+1,t]

xik ≤ 1, i, j ∈ F, i 6= j, t∈ Tj. (5)

A pictorial representation of a clique of the conflict graph associated with a generic constraint of

type (5) is given in Figure 1, where the nodes of the conflict graph are drawn on a grid. In particular,

node ik appears in row i and column k. The clique associated with constraint (5) involves only

one node of row j (namely node jt) and the nodes ik of row i whose columns are in the range

k ∈ {t− sij + 1, . . . , t}.

t - sij + 1 t - sij + 2 t…...

i

j

…...

…...

Figure 1 A clique associated with (5)

2 Note that while an I-cover can contain a polynomial number of cliques, the number of distinct I-covers can grow
exponentially with the number of nodes of G

3 It is important to observe that one may want to have additional cliques in order to further strengthen the formulation,
but this is a different perspective and we do not consider it here

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 9

Note that each clique inequality of system (5) can be strengthened by lifting in a trivial fashion,

giving the following system:

∑
l∈Tj∩[t−sji+1,t]

xjl +
∑

k∈Ti∩[t−sij+1,t]

xik ≤ 1, i, j ∈ F, i < j, t∈ Tj ∪Ti. (6)

Figure 2 shows a clique of type (6).

Figure 2 A clique associated with the lifted inequality (6)

Hereinafter we call Basic RSP formulation the formulation for RSP defined by (4), where the

I-cover constraints (4.iii) are of type (6). We will show in Section 5 that, even if the lifted family

provides better bounds than (5), yet it is not sufficient to solve all instances in our real-life testbed

within the stringent running times imposed by real-time.

3. Stronger families of clique inequalities

A family of clique inequalities valid for (4) has recently been introduced by Nogueira et al. (2014).

In what follows, for all S ⊆ F , |S| ≥ 2, and all i∈ S, we let si(S) = min{sij : j ∈ S \ i}.

Proposition 1 (Nogueira et al. (2014)). The following is a valid system of clique inequali-

ties for (4): ∑
i∈F

∑
l∈[t−si(F)+1,t]∩Ti

xil ≤ 1, t∈ T. (7)

We refer to the formulation (4) where the I-cover system (4.iii) is given by (6) and (7) as the

Nogueira formulation.

With the aim of defining a stronger but also more compact time-indexed formulation, we intro-

duce a new family of clique inequalities — that we call (S, t)-clique inequalities — generalizing

(7):

Author: Article Short Title
10 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Proposition 2. Let t∈ T and let S ⊆ F ,with |S| ≥ 2. The (S, t)-clique inequality:∑
i∈S

∑
l∈[t−si(S)+1,t]∩Ti

xil ≤ 1 (8)

is valid for (4).

Proof. It follows directly from Proposition 1 and from the trivial observation that any constraint,

which is valid for a subset of flights and time periods, is also valid for the larger sets.

Figure 3 shows a (S, t)-clique on the conflict graph. The clique involves the nodes in the range

[t− si(S) + 1, t] for each row i∈ S.

It is easy to see that (8) generalize (6) by letting S = {i, j} and (7) by letting S = F . Also observe

that, since for any pair i, j of distinct flights the separation sij is strictly positive, for any set of

flights S with |S| ≥ 2 and any i∈ S we have si(S)≥ 1.

Figure 3 A (S, t)-clique (8)

The following proposition shows when the (S, t)-clique inequalities (8) define an I-cover system.

Proposition 3. Let S = {S0, S1, . . . Sh, . . .} be a family of non-empty subsets of F , each of

cardinality at least 2. The inequalities∑
i∈S

∑
l∈[t−si(S)+1,t]∩Ti

xil ≤ 1, S ∈ S, t∈ T (9)

define an I-cover system (and S is an I-cover of the conflict graph G) if for each i, j ∈ F (i 6= j)

there exists S ∈ S such that i, j ∈ S and sij = si(S).

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 11

Proof. Suppose not. Then there exists an incompatible pair {fk, gr} ∈ I ⊆E such that the sum

xfk + xgr of corresponding time-indexed variables is not contained in any (S, t)-clique inequality

of (9). Observe that since {fk, gr} ∈E, then fk, gr ∈ V , which in turn implies that k ∈ Tf (i.e. k

is a feasible time period for the flight f) and r ∈ Tg (i.e. r is a feasible time period for the flight

g). We may assume with no loss of generality that r ≥ k. Then, by definition of I, {fk, gr} ∈ I

implies r − k < sfg. Let S̄ ∈ S be such that f, g ∈ S̄ and sfg = sf (S̄). Let us consider the (S̄, r)-

clique inequality of type (8), i.e. the (S, t)-clique inequality associated with S̄ and time period

t= r. Since g ∈ S̄, sg(S̄)≥ 1 and r ∈ Tg, we have that r ∈ [r− sg(S̄) + 1, r]∩Tg and the variable xgr

appears in the (S̄, r)-clique inequality. Since f ∈ S̄, sf (S̄) = sfg, k ∈ Tf , k > r− sfg we have that

k ∈ [r− sfg + 1, r]∩Tf and the variable xfk appears in the (S̄, r)-clique inequality. So both xfk and

xgr appear in the (S̄, r)-clique inequality, a contradiction.

We will refer to the I-cover system of inequalities (9) as the (S, t)-I-cover system.

The next sequential algorithm 1 constructs a (S, t)-I cover system which will represent our I-

cover system (4.iii). In what follows, we say that an (S, t)-inequality (8) covers an incompatible

pair {ik, jl} ∈ I if both variables xik and xjl appear in the inequality. The algorithm keeps at

each iteration a family S = {S0, S1, . . .} of subsets of F . Let Q(S) be the corresponding set of

(S, t)-inequalities (9). If the constraints in Q(S) cover all incompatible pairs in I, we are done.

Otherwise, let Ī(S)⊆ I be the set of the incompatible pairs not covered by any inequality in Q(S).

Then a new subset R⊆ F is identified, so that at least one uncovered pair in Ī(S) is covered by

one of the (R, t)-inequalities, for some t. Then R is included in S, and the algorithm iterates.

Algorithm 1 Greedy (S, t)-I-cover

0: Let S := {F}.

1: while Ī(S) is non-empty do

2: Find a set R⊆ F with the property that the associated (R, t) inequalities, for t ∈ T , cover

some pairs in Ī(S).

3: Let S := S ∪{R}.

4: end while

5: return The set S.

There are of course many ways to carry out Step 2. Recall that our goal is to generate as few

inequalities as possible in order to keep the overall formulation very compact. This is in general

a difficult task, so we limit ourselves to find at Step 2 a set R which maximizes the number of

freshly covered incompatible pairs. To this purpose we introduce a suitable binary linear program.

Author: Article Short Title
12 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Suppose now Ī(S) 6= ∅, and let {ik, jr} ∈ Ī(S). Without loss of generality we may assume r ≥ k.

By Proposition 3, the corresponding uncovered ordered pair of flights (i, j) ∈ F × F is such that

sij > si(S) for every S ∈ S. We will identify a set R ⊆ F such that for at least one uncovered

pair (i, j) we have sij = si(R). Let C(S) = {(i, j) ∈ F × F : (i, j) uncovered}. Next, for i ∈ F , we

introduce a binary variable zi, which is 1 if and only if i ∈ R. Also, with each ordered pair of

distinct flights (i, j) ∈ C(S) we associate a binary variable yij which is 1 only if the ordered pair

(i, j) is covered by R, namely if sij = si(R).

So, R can be constructed by solving the following MIP:

max
∑

(i,j)∈C

yij

(i) yij ≤ zi, (i, j)∈C(S),

(ii) yij ≤ zj, (i, j)∈C(S),

(iii) yij + zk ≤ 1, (i, j)∈C(S), k ∈ F : sij > sik, (10)

(iv) zi ∈ {0,1}, i∈ F, yij ∈ {0,1}, (i, j)∈C(S).

Proposition 4. Let z̄, ȳ be a feasible solution to (10) and let R̄⊆ F be the corresponding set of

flights. Let ȳpq = 1. Then (p, q) is covered by R̄.

Proof. By contradiction, assume that (p, q) is not covered by R̄. Since ȳpq = 1 we have that z̄p =

z̄q = 1 and then (p, q) ∈ R̄. Since (p, q) is not covered we have sp(R̄)< spq. So, there exists r ∈ R̄

such that sp(R̄) = spr < spq. But then z̄r = 1 and by (10.iii) ȳpq + z̄r ≤ 1 and we have ȳpq = 0, a

contradiction.

In the following we will refer to the formulation defined (4.i), (4.ii) and the (S, t)-clique cover

system resulting from the Greedy (S, t)-I cover algorithm 1 as the (S, t)-clique formulation.

Detecting dominated cliques. For any t ∈ T , we say that a (S, t)-clique inequality dominates

a (H, t)-clique inequality if H ⊆ S. Because of the way the cover is generated by the algorithm

Greedy (S, t)-I-cover by the MIP problem (10) many dominated cliques are likely to be generated.

Removing these cliques is crucial to speed up the overall solution algorithm. The following proposi-

tion provides a sufficient condition for domination between the constraints associated with a clique

cover.

Proposition 5. Let H and S be two subsets of flights. For any t∈ T , the (H, t)-clique inequality

is dominated by the (S, t)-clique inequality if the following two conditions are satisfied:

i) H ⊆ S,

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 13

ii) si(H)≤ si(S) for each i∈Ht.

We modify Algorithm Greedy (S, t)-I-Cover by testing the conditions of Proposition 5 in Step 3

before including a new clique in the current clique cover.

Lifting. Observe that (S, t)-clique inequalities are not necessarily maximal. They can be strength-

ened by lifting each (S, t)-clique in a sequential way. This is done by the simplistic greedy algorithm

of Kopf and Ruhe (1987). Namely, given a (S, t)-clique K, first the set P ⊆ V \K of the nodes

which are adjacent to every node in K are identified. Then the node of P with maximum degree

is added to K and the process iterates until P is empty.

4. The overall algorithm

The algorithm consists of three phases: first a logical presolve attempts to reduce the size of the

formulation; then the LP-relaxation of the resulting formulation is solved with the standard column

generation, providing a lower bound on the optimal cost; finally a feasible integer solution to (4)

is computed over the subset of variables generated in the previous phase. By comparing the upper

bound and the lower bound, the optimality of this solution can be assessed.

4.1. Presolve

The presolve phase consists of three fixing procedures to reduce the size of the time windows

associated with the flights.

Fixing 1. This fixing mechanism exploits the fact that arrivals typically have quite narrow time

windows and they cannot be dropped. So, let i ∈ L be an arrival and let [li, ui] be the associated

landing window. If another flight j ∈ F precedes i on the runway, then j must clear the runway

early enough to let i land; how much earlier, in turn, depends on the minimum time separation sji,

and on the latest time ui in which i can land. A symmetric argument can be used when a flight

j occupies the runway after an arrival flight i. Observe that in the following proposition, the real

interval [a, b]⊂R+ can be empty (i.e., when a> b).

Proposition 6. Let i ∈ L be an arrival flight and let j ∈ F be any other flight. Let tj be the

time when j occupies the runway (namely, j lands or takes-off). Then tj /∈ [ui− sji + 1, li + sij − 1]

in any feasible solution. Consequently, we can fix xjt = 0, for each t∈ [ui− sji + 1, li + sij − 1].

Proof. By contradiction assume that tj ∈ [ui− sji + 1, li + sij − 1]. Let ti be the time i lands, then

ti ∈ [li, ui]. We consider two cases:

i) j occupies the runway before flight i lands. Then, since tj ≥ ui− sji + 1, we have ti ≥ tj + sji ≥

ui + 1, and i lands outside its arrival window, a contradiction.

ii) j occupies the runway after i lands. Then, since tj ≤ li + sij − 1, we have ti ≤ tj − sij ≤ li− 1

and i lands outside its arrival window, a contradiction.

Author: Article Short Title
14 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Note that the above fixing has an impact only if the interval [ui − sji + 1, li + sij − 1] is non

empty. By simple arithmetics one sees that this happens if ui− li < sij + sji− 1.

Fixing 2. Next, we also applied the tightening procedure for time windows, proposed in Ascheuer

et al. (2001) for TSPTW. To this end, let i∈ F be any flight and let L̄i = {j ∈L : uj < li + sij} be

a subset of arriving flights which must land before i. Moreover let L̂i = {j ∈ L : lj + sji > ui} be a

subset of arriving flights which must land after i. We can tighten the time window of i by setting:

li = max

{
li,min

j∈L̄i

{lj + sji}
}

(11)

ui = min

{
ui,max

j∈L̂i

{uj − sij}
}

(12)

Fixing 3. Finally, let i ∈ F , r ∈ [li, ui] and assume that ir does not appear in (any pair of) the

incompatible set I. In other words, flight i can arrive/depart at time r without affecting any other

flight. As a consequence, recalling that qir is the cost of landing/take-off at time r (for flight i), i

will not land/take-off in any time t∈ [li, ui] such that qit ≥ qir, and the corresponding variables xit

can be fixed to 0.

4.2. Computing lower and upper bounds

The presolve phase boils down to compute reduced time windows for the flights: in what follows,

V will denote the set of residual columns.

We compute a lower bound by solving to optimality the LP-relaxation of the (S, t)-clique formu-

lation (4). However, even with reduced time windows, its size is typically too large to be solved to

optimality within the stringent time limits imposed for the instances in our testbed. To overcome

this difficulty, we approach the LP-relaxation by a standard column generation scheme (see Wolsey

(1998)), where a master problem containing only a subset of the variables is solved to optimality,

and then a pricing problem is solved to detect whether some of the external (i.e. not included

into the current master problem) variables have negative reduced costs. External variables with

negative reduced costs are added to the master problem and the algorithm iterates until all the

external columns have nonnegative reduced costs. At this point, the solution to the current master

program is optimal for the LP-relaxation of the entire (S, t)-clique formulation. We now give a

generic description of the column generation method. We remark that the method can be applied

to any formulation.

The way the initial set V̄ is chosen at Step 0 depends on the class of instances and will be

discussed in Section 5. The reduced cost cv at Step 3 can be computed in the standard fashion.

In particular, let us denote by µl, for l ∈ L, the dual variables associated with constraints (4.i);

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 15

Algorithm 2 Column generation scheme

0: Choose a suitable subset of columns V̄ ⊆ V .

1: Let the current master problem be obtained from the original formulation by dropping the

columns in V \ V̄ .

2: Solve the LP-relaxation of the current master problem.

3: Pricing: compute the reduced costs c̄v for all v ∈ V \ V̄ . If all reduced costs are non-negative

STOP.

4: Include in V̄ all columns with negative reduced cost and GOTO 1.

by µd, for d ∈D, the dual variables associated with constraints (4.ii); and by δK , for K ∈ K, the

dual variables associated with constraints (4.iii). If we let v= it (for all i∈ F and all t∈ Ti), then

c̄v = qit−µi +
∑

K:v∈K
δK .

To speed up the solution process, observe that the above column generation scheme still converges

to the optimal solution of the original formulation if, at Step 3, we replace the reduced cost c̄v with

a lower bound c̃v ≤ c̄v. In particular, since δK ≥ 0 for all K ∈ K, we may take c̃v = qit − µi for all

v= it with i∈ F , t∈ Ti. So, in our column generation, Step 3 is replaced by the following

3′: Pricing: compute the approximated reduced cost c̃v for all v ∈ V \ V̄ . If all approximated

reduced costs are non-negative, STOP.

Computing a feasible solution. The column generation algorithm terminates with the (current)

master program defined by the subset V̄ of the original columns V . Let LB(V̄) be the associated

lower bound computed by solving the linear relaxation of the master program. A feasible integer

solution x̄ to (4) is then computed by solving this program to (integer) optimality by invoking a

MIP solver. In other words, x̄ is the best possible solution when only the columns in V̄ are used.

Trivially, the quantity UB(V̄) = qT x̄ provides an upper bound on the optimal solution value

to (4). If LB(V̄) =UB(V̄), then x̄ is the global optimal solution of the original RSP.

Even when LB(V̄) < UB(V̄), the global optimality of x̄ can still be proven by reduced cost

fixing (see Wolsey (1998)). The argument goes as follows. Suppose x̄ is not globally optimal, and

let x∗ be such that qTx∗ < qT x̄. Let v ∈ V \ V̄ be one of the “external” columns. Suppose that

LB(V̄) + c̃v ≥UB(V̄). Then x∗v = 0: in other words, column v cannot belong to a solution which is

better than x̄. So, if LB(V̄) + c̃v ≥UB(V̄) for all v ∈ V \ V̄ , then x̄ is globally optimal.

5. Computational results

In this section we demonstrate the quality of the (S, t)-clique formulation over a set of real-life

or realistic instances. In the first series of experiments we compare three different versions of

Author: Article Short Title
16 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

the formulation (4), corresponding to different definitions of the I-cover system (4.iii): the Basic

formulation, where we use the clique inequalities (6); the Nogueira formulation, with the clique

inequalities (7); and our (S, t)-clique formulation, defined by the (S, t)-clique inequalities (8). In

the second series we compare with another approach proposed in the literature.

For our test instances, we tested steps of different size, ranging from 1 to 10 seconds.

In our test-bed, we consider two sets of instances:

i) the set AH, which consists of six real-life or realistic instances from the airports of Arlanda

(Stockholm) and Hamburg. Stockholm Arlanda is the largest airport in Sweden. The instances

are based on historical data from the Swedish Air Navigation Service Provider (ANSP). Hamburg

instances were generated at the University of Salzburg using a realistic simulated environment of

the Hamburg airport based on the NAVSIM simulator (Graupl et al. (2012)).

For each instance the time horizon was partitioned into time slots of different size ranging from

0.5 to 10 secs. Increasing the sizes of time slots can make the instances infeasible and we only

report for the slot sizes for which the problem admits a feasible solution.

All the benchmark AH instances are available at SINTEF upon request to the authors of this

article.

ii) The sets A and C were previously considered in Furini et al. (2015). The set A consists of 12

real instances corresponding to two simulation days at Milano Linate Airport. The set C consists

of 15 larger instances generated by merging the instances of the set A. For such instances, time

slot was set to one minute, early departures/arrivals as well as cancellation of departures are not

allowed and there are no time windows for departures and arrivals. The objective function consists

in minimizing the “tardiness” with respect to the expected departure/arrival time. Set A is publicly

available at www.or.deis.unibo.it/research.html. The test instances of the set C as well as detailed

computational results for both sets A and C were kindly provided to us by the authors of Furini

(2015).

The computational experiments were carried out on a Intel Core(TM) i7-3770 CPU 3.40 GHz

workstation with 32 Gb RAM. The code was written in C++ and the Mixed-Integer Programming

solver was Cplex 12.6, used with the default settings.

5.1. Results for the AH instances

In Table 1 we detail the instance data. For each instance, columns |D|, |L| and |F | are the number

of departures, the number of landings and the total number of flights (|F |= |D|+ |L|), respectively.

Columns Min Slot and Max Slot are the smallest and the largest time discretization intervals (in

secs.) considered in the experiments. Column Horizon shows the length of the time horizon (in

secs.).

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 17

Table 1 Instance data

Name |D| |L| |F | Min Slot Max Slot Horizon
Arlanda1 21 19 40 0.5 4 1,797
Arlanda2 21 19 40 0.5 2 1,950
Arlanda3 17 16 33 0.5 2 1,784
Hamburg1 40 18 58 0.5 42 4,980
Hamburg2 50 22 72 0.5 6 3,180
Hamburg3 39 18 57 0.5 42 3,180

As pointed out in Section 1, size is a critical issue for the practical usability of TI formulations.

Table 2 compares the size (before presolve) of Basic, Nogueira and (S, t)−Clique formulations

in terms of the number of rows and nonzeroes. It clearly shows that the (S, t)-clique formulation

ensures a drastic reduction both in the number of rows and in the number of nonzeroes.

Table 3 compares for each instance lower bounds provided by the (S, t)-clique formulation with

those found with the Basic and the Nogueira formulations, respectively. Columns ∆1 and ∆2

report the percentage of the lower bound increase from Basic to Nogueira and from Nogueira to

(S, t)-clique formulation, respectively.

We observe that for all the benchmark instances, the (S, t)-clique formulation provides better

bounds than the Basic and the Nogueira formulations with percentage improvements tending to

increase as the size of the time slot decreases.

Table 4 compares the three formulations according to the time spent by the MIP solver to find

the best upper bound solution, without using any logical presolve. The results clearly show the

superiority of the (S, t)-clique formulation, both in terms of computation times and of the number

of instances solved to optimality within the time-limit of 600 seconds.

Table 5 reports on the results of the overall algorithm depicted in Section 4. Columns ncols,

nrows and nonzeroes show the number of columns, rows and nozeroes of the (S, t)-clique for-

mulation after presolving, respectively. Columns LP , UB and Time contain the value of the LP-

relaxation, the best upper bound found at the end of the algorithm, and the total computation

time, respectively. We observe that the lower bounds provided by the (S, t)-clique formulation are

very close to the optimum and LP solutions are a good driver for the MIP heuristics embedded into

MIP solvers. It follows that a key success factor is the ability to solve the TI formulation efficiently.

The computational time of the proposed approach is suitably small and matches the requirements

imposed by the real-time needs. It is remarkable that we could even solve to optimality instances

with the time slot of 1 second, which is in many practical cases smaller than necessary.

Table 6 aims at putting in evidence the impact of the several components of the algorithm

for a particular instance, namely Arlanda2 with the time slot set to 1 second. Each line in the

table shows the cumulative effect of adding a new component to the previous ones. Line Naked

Author: Article Short Title
18 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

nrows nonzeros
Instance Slot |I| ncols Basic Nogueira (S, t)− Basic Nogueira (S, t)−

clique clique
Arlanda1 0.5 181,574,132 46,509 1,791,713 199,705 20,801 268,779,333 57,096,854 20,899,113
Arlanda1 1 45,383,564 23,285 894,839 99,946 10,425 67,302,910 14,320,418 5,250,740
Arlanda1 2 11,316,526 11,666 446,066 49,948 5,228 16,847,914 3,588,457 1,319,108
Arlanda1 3 5,042,048 7,791 296,562 33,343 3,497 7,537,018 1,614,261 591,894
Arlanda1 4 2,828,078 5,849 221,875 24,984 2,155 4,283,366 910,904 277,355
Arlanda2 0.5 147,522,574 41,723 1,660,800 128,293 24,812 240,888,589 38,332,381 21,470,575
Arlanda2 1 36,870,728 20,892 829,345 64,237 12,435 60,305,398 9,614,706 5,392,040
Arlanda2 2 9,199,020 10,468 412,290 32,095 6,225 15,096,076 2,410,250 1,352,576
Arlanda3 0.5 107,778,742 33,538 1,095,710 77,464 22,336 161,268,256 23,805,006 17,000,682
Arlanda3 1 26,938,448 16,794 547,160 38,798 11,197 40,371,257 5,973,258 4,270,948
Arlanda3 2 6,722,602 8,414 271,870 19,389 5,601 10,105,801 1,498,533 1,070,665
Hamburg1 1 1,156,734,169 177,218 8,101,513 2,211,176 98,138 837,674,273 383,613,181 41,153,777
Hamburg1 2 289,220,184 88,640 4,047,919 1105,515 49,083 209,488,696 95,955,004 10,328,308
Hamburg1 3 168,677,964 59,120 2,697,312 737,199 32,755 93,835,484 43,114,239 14,990,548
Hamburg1 4 94,187,596 44,353 2,021,701 105,565 24,406 52,848,486 6,400,894 8,161,328
Hamburg1 5 60,087,542 35,497 1,616,416 84,446 19,536 33,808,796 4,088,056 5,224,746
Hamburg1 6 42,484,614 29,595 1,346,538 368,899 16,420 24,002,557 11,130,042 4,118,963
Hamburg1 7 31,161,242 25,352 1,153,382 60,318 13,968 18,081,786 2,180,438 2,799,494
Hamburg1 8 23,267,216 22,197 1,007,845 52,738 12,207 13,222,262 1,610,351 2,047,943
Hamburg1 9 18,458,386 19,735 895,214 46,902 10,869 10,592,170 1,299,714 1,540,514
Hamburg1 10 14,821,140 17,784 805,747 42,239 9,797 8,466,771 1,031,572 1,316,656
Hamburg2 0.5 47,0791,498 92,762 6,754,481 520,123 66,088 1,101,699,822 175,654,238 88,604,827
Hamburg2 1 117,616,984 46,442 3,373,562 260,045 33,090 275,671,594 43,960,047 22,197,749
Hamburg2 2 29,323,510 23,262 1,681,469 130,008 16,562 68,975,911 11,009,717 5,559,176
Hamburg2 3 13,087,568 15,542 1,118,659 86,810 11,067 30,905,529 4,950,610 2,525,971
Hamburg2 4 7,303,906 11,679 836,629 17,289 8,056 17,420,789 1,007,734 1,355,677
Hamburg2 5 4,663,830 9,365 667,636 13,833 6,450 11,154,829 645,712 868,852
Hamburg2 6 3,310,804 7,815 555,420 43,610 5,563 7,906,770 1,280,973 672,180
Hamburg3 0.5 285,897,658 71,736 4,164,976 282,321 25,765 661,173,843 94,790,271 24,358,034
Hamburg3 1 71,437,438 35,916 2,080,172 141,124 12,921 165,442,795 23,724,923 6,118,140
Hamburg3 2 17,815,834 17,989 1,036,669 70,557 6,478 41,394,696 5,943,650 1,536,690
Hamburg3 3 7,950,748 12,019 689,645 47,124 4,342 18,555,362 2,675,057 698,969
Hamburg3 4 4,437,818 9,030 515,637 7,884 3,087 10,456,475 487,932 367,065
Hamburg3 5 2,830,808 7,235 411,189 6,308 2,479 6,691,399 313,067 236,257
Hamburg3 6 2,009,764 6,043 342,327 23,677 2,202 4,752,003 693,500 186,274
Hamburg3 7 1,466,580 5,168 292,413 4,529 1,791 3,570,801 168,214 128,147
Hamburg3 8 1,094,234 4,538 254,295 3,953 1,567 2,616,304 124,196 94,001
Hamburg3 9 867,286 4,038 225,256 3,519 1,400 2,093,635 100,325 74,589
Hamburg3 10 699,782 3,652 202,640 3,175 1,267 1,679,357 80,376 61,196

Table 2 LP sizes for Basic, Nogueira and (S, t)− clique formulation on Arlanda and Hamburg Instances.

(S, t)-clique demonstrates the size (number of columns and number of rows, respectively) and

the computation time required by the overall algorithm for the “naked” (S, t)-clique formulation

without performing any operation. Line TW -tightening contains the total time required by the

algorithm when also including the presolve procedures of Section 4.1. Line Non Dominated Cliques

shows the total time of the algorithm when including also the clique detection procedure of Section

3 to remove dominated cliques. Finally, row Lifting shows the effect of adding the sequential lifting

procedure to enlarge the cliques introduced in Section 3.

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 19

Instance Slot Basic Nogueira %∆1 (S, t)− %∆2

clique
Arlanda1 0.5 1,535.7 1,969.6 28.3 2,412.5 22.5
Arlanda1 1 1,537.8 1,974.9 28.4 2,429.1 23.0
Arlanda1 2 1,538.5 1,977.8 28.5 2,433.2 23.0
Arlanda1 3 1,555.2 1,993.6 28.2 2,469.0 23.8
Arlanda1 4 1,594.5 2,075.2 30.1 2,645.1 27.5
Arlanda2 0.5 1,148.5 1,495.4 30.2 1,696.1 13.4
Arlanda2 1 1,152.5 1,502.5 30.4 1,905.2 26.8
Arlanda2 2 1,152.0 1,500.8 30.3 1,903.6 26.8
Arlanda3 0.5 758.1 979.6 29.2 1,214.8 24.0
Arlanda3 1 758.6 982.8 29.6 1,219.5 24.1
Arlanda3 2 757.7 981.2 29.5 1,216.0 23.9
Hamburg1 1 3,196.0
Hamburg1 2 1,612.0 2,962.8 83.8 3,195.0 7.8
Hamburg1 3 1,627.5 3,018.1 85.4 3,262.5 8.1
Hamburg1 4 1,642.0 3,094.5 88.5 3,262.0 5.4
Hamburg1 5 1,647.5 4,014.5 143.7 4,083.3 1.7
Hamburg1 6 1,737.0 3,183.2 83.3 4,335.0 36.2
Hamburg1 7 1,837.5 5,791.3 215.2 5,852.0 1.0
Hamburg1 8 1,742.0 4,100.6 135.4 4,192.0 2.2
Hamburg1 9 1,737.0 4,089.0 135.4 4,198.5 2.7
Hamburg1 10 1,742.5 4,138.1 137.5 4,250.0 2.7
Hamburg2 0.5 43,131.4
Hamburg2 1 2,142.3 41,538.1 1,839.0 49,766.5 19.8
Hamburg2 2 2,142.5 41,872.7 1,854.4 49,766.0 18.9
Hamburg2 3 2,177.3 43,667.9 1,905.6 54,923.3 25.8
Hamburg2 4 2,159.0 47,192.8 2,085.9 54,862.7 16.3
Hamburg2 5 2,173.8 48,827.7 2,146.2 55,300.0 13.3
Hamburg2 6 2,262.3 49,419.5 2,084.5 67,473.3 36.5
Hamburg3 0.5 1,736.1 3,363.7 93.7 3,672.8 9.2
Hamburg3 1 1,742.0 3,378.2 93.9 3,958.0 17.2
Hamburg3 2 1,749.0 3,389.8 93.8 3,976.0 17.3
Hamburg3 3 1,768.5 3,475.0 96.5 4,302.0 23.8
Hamburg3 4 1,794.0 3,992.0 122.5 4,296.0 7.6
Hamburg3 5 1,837.5 4,190.0 128.0 4,320.0 3.1
Hamburg3 6 1,866.0 3,953.5 111.9 4,656.0 17.8
Hamburg3 7 1,981.0 5,040.0 154.4 5,310.7 5.4
Hamburg3 8 1,900.0 4,408.0 132.0 4,448.0 0.9
Hamburg3 9 1,872.0 4,374.0 133.7 4,509.0 3.1
Hamburg3 10 1,945.0 4,540.0 133.4 4,670.0 2.9

Table 3 Lower bounds for Basic, Nogueira and (S, t)− clique formulation on Arlanda and Hamburg Instances.

5.2. Results with the sets A and C

As pointed out before, the instances considered in Furini et al. (2015) do not present time windows

and the objective function consists in penalizing the delay with respect to the expected depar-

ture/arrival time. For such instances the master problem of the column generation algorithm from

Section 4 was initialized by introducing an artificial time window imposing a maximum delay of

300 secs. and taking all the columns falling in this interval.

Table 7 reports on computational experiments with the A and C instances. Columns 3-5 contain

the detailed results — best upper bound, best lower bound and computation time, respectively —

for the algorithm of Furini et al. (2015). Columns 6-8 present the results obtained by our algorithm.

Author: Article Short Title
20 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Basic Nogueira (S, t)− clique
Instance Slot BUB Time BUB Time BUB Time

Arlanda1 0.5 36,679.0 600.0 16,385.5 600.0 2,416.0 490.7
Arlanda1 1 4,460.0 600.0 13,184.0 600.0 2,430.0 42.7
Arlanda1 2 2,434.0 121.9 2,434.0 103.8 2,434.0 8.9
Arlanda1 3 2,469.0 30.4 2,469.0 27.6 2,469.0 2.3
Arlanda1 4 2,660.0 8.1 2,660.0 7.2 2,660.0 1.9
Arlanda2 0.5 3,573.5 600.0 1,847.0 600.0 1,697.5 118.2
Arlanda2 1 2,032.0 600.0 2,480.0 600.0 1,918.0 43.8
Arlanda2 2 1,916.0 51.9 1,916.0 43.7 1,916.0 6.5
Arlanda3 0.5 1,256.5 600.0 1,239.0 600.0 1,218.5 83.1
Arlanda3 1 1,223.0 134.2 1,223.0 56.8 1,223.0 15.4
Arlanda3 2 1,220.0 19.7 1,220.0 10.8 1,220.0 3.2

Humburg1 1 600.0 600.0 3,201.0 73.7
Humburg1 2 390,436.0 600.0 378,836.0 600.0 3,200.0 15.3
Humburg1 3 7,731.0 600.0 3,270.0 497.6 3,270.0 7.5
Humburg1 4 3,272.0 322.8 3,272.0 37.8 3,272.0 3.4
Humburg1 5 4,115.0 139.1 4,115.0 24.9 4,115.0 2.7
Humburg1 6 4,398.0 102.1 4,398.0 89.6 4,398.0 3.0
Humburg1 7 5,852.0 71.6 5,852.0 13.5 5,852.0 1.3
Humburg1 8 4,216.0 50.7 4,216.0 11.1 4,216.0 1.3
Humburg1 9 4,221.0 36.1 4,221.0 9.0 4,221.0 1.2
Humburg1 10 4,290.0 27.1 4,290.0 9.3 4,290.0 1.0
Humburg2 0.5 600.0 600.0 49,401.5 600.0
Humburg2 1 131,411.0 600.0 147,409.0 600.0 58,596.0 197.5
Humburg2 2 58,588.0 282.6 58,588.0 140.6 58,588.0 59.1
Humburg2 3 59,093.0 98.3 59,093.0 65.6 59,093.0 28.0
Humburg2 4 59,120.0 47.0 59,120.0 4.1 59,120.0 10.3
Humburg2 5 59,335.0 24.3 59,335.0 2.2 59,335.0 4.5
Humburg2 6 77,950.0 17.4 77,950.0 8.0 77,950.0 6.3
Humburg3 0.5 5,689.0 600.0 4,147.0 600.0 3,692.0 36.8
Humburg3 1 4,433.0 600.0 3,976.0 600.0 3,974.0 26.1
Humburg3 2 3,976.0 43.9 3,976.0 25.6 3,976.0 5.5
Humburg3 3 4,302.0 14.2 4,302.0 7.4 4,302.0 2.8
Humburg3 4 4,296.0 6.2 4,296.0 1.4 4,296.0 1.5
Humburg3 5 4,320.0 3.5 4,320.0 0.8 4,320.0 1.1
Humburg3 6 4,656.0 2.4 4,656.0 1.0 4,656.0 1.7
Humburg3 7 5,334.0 1.7 5,334.0 0.4 5,334.0 0.9
Humburg3 8 4,448.0 1.2 4,448.0 0.2 4,448.0 0.7
Humburg3 9 4,509.0 1.0 4,509.0 0.2 4,509.0 0.7
Humburg3 10 4,670.0 0.8 4,670.0 0.1 4,670.0 0.6

Table 4 Computation time to solve for Basic, Nogueira and (S, t)− clique formulation on Arlanda and

Hamburg Instances.

The computational tests of Furini et al. ran on an Intel(R) Core(TM)2 Duo CPU clocked at

3.2GHz with 2Gb RAM under the Linux operating system. According to DIMACS benchmarks,

their machine is about 5 times slower than ours, so we scaled the computation time reported in

Furini et al. (2015) accordingly.

Table 7 demonstrates that all the A and C instances were solved to optimality, with computation

times significantly faster than in Furini et al. (2015), and meeting service requirements. We also

observe that imposing the artificial time windows with a maximum delay of 300 seconds made

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 21

Instance Slot |I| ncols nrows nonzeros LP UB Time
Arlanda1 0.5 145,217,002 39,081 19,019 18,541,786 2,412.5 2,416.0 388.1
Arlanda1 1 36,297,310 19,571 9,532 4,657,210 2,429.1 2,430.0 24.8
Arlanda1 2 9,058,252 9,813 4,778 1,170,258 2,433.2 2,434.0 5.6
Arlanda1 3 4,024,372 6,543 3,191 524,355 2,469.0 2,469.0 1.6
Arlanda1 4 2,228,968 4,856 1,994 249,429 2,645.1 2,660.0 1.3
Arlanda2 0.5 77,955,758 26,705 21,147 15,546,143 1,696.8 1,697.5 62.1
Arlanda2 1 19,480,604 13,380 10,594 3,902,012 1,918.0 1,918.0 10.1
Arlanda2 2 4,859,670 6,712 5,294 978,871 1,916.0 1,916.0 2.2
Arlanda3 0.5 56,802,208 23,319 18,818 12,745,258 1,212.5 1,218.5 44.0
Arlanda3 1 14,204,972 11,686 9,423 3,199,416 1,217.7 1,223.0 8.0
Arlanda3 2 3,555,596 5,871 4,706 803,058 1,214.7 1,220.0 1.7
Hamburg1 1 920,732,865 154,230 94,461 33,711,575 3,196.0 3,201.0 68.8
Hamburg1 2 305,670,900 77,114 47,091 8,458,212 3,195.0 3,200.0 13.2
Hamburg1 3 136,054,212 51,397 31,383 3,807,252 3,262.5 3,270.0 6.1
Hamburg1 4 75,652,094 38,429 23,142 2,112,399 3,262.0 3,272.0 2.9
Hamburg1 5 48,131,612 30,697 18,420 1,353,532 4,083.3 4,115.0 2.3
Hamburg1 6 34,011,280 25,583 15,575 981,995 4,335.0 4,398.0 2.5
Hamburg1 7 24,560,476 21,650 12,957 716,264 5,852.0 5,852.0 1.3
Hamburg1 8 18,541,832 19,122 11,347 532,082 4,192.0 4,216.0 1.2
Hamburg1 9 14,781,860 17,075 10,168 433,429 4,198.5 4,221.0 1.1
Hamburg1 10 11,759,082 15,266 9,007 342,410 4,250.0 4,290.0 1.0
Hamburg2 0.5 231,420,902 61,914 61,485 27,704,251 47,438.7 49,401.5 162.5
Hamburg2 1 57,796,050 31,006 30,769 14,563,167 58,596.0 58,596.0 59.4
Hamburg2 2 14,377,008 15,522 15,384 3,658,471 58,588.0 58,588.0 14.1
Hamburg2 3 6,383,480 10,343 10,268 1650,615 59,032.0 59,093.0 11.1
Hamburg2 4 3,515,204 7,723 7,495 896,821 59,061.3 59,120.0 5.6
Hamburg2 5 2,226,130 6,149 5,835 573,168 59,335.0 59,335.0 2.7
Hamburg2 6 1,558,584 5,088 5,005 427,930 77,950.0 77,950.0 4.2
Hamburg3 0.5 136,263,134 48,860 23,410 17,787,912 3,672.8 3,692.0 83.8
Hamburg3 1 34,045,348 24,468 11,714 4,458,312 3,958.0 3,974.0 14.8
Hamburg3 2 84,73,344 12,243 5,834 1,114,241 3,976.0 3,976.0 3.7
Hamburg3 3 3,759,142 8,159 3,888 500,521 4,302.0 4,302.0 2.3
Hamburg3 4 2,076,462 6,088 2,723 261,343 4,296.0 4,296.0 1.1
Hamburg3 5 1,308,452 4,840 2,168 166,502 4,320.0 4,320.0 0.9
Hamburg3 6 923,292 4,039 1,932 129,015 4,656.0 4,656.0 1.5
Hamburg3 7 638,070 3,344 1,530 85,390 5,310.7 5,334.0 0.7
Hamburg3 8 500,718 3,018 1,342 64,885 4,448.0 4,448.0 0.6
Hamburg3 9 402,780 2,720 1,219 52,772 4,509.0 4,509.0 0.5
Hamburg3 10 308,534 2,376 1,063 41,351 4,670.0 4,670.0 0.5

Table 5 Computational results (S, t)− clique formulation with TW-tightening

ncols nrows non zeros LP Time
Naked (S, t)-clique 20,892 19,316 5,720,110 2,429.1 54.8
TW-tightening 13,380 16,073 3,637,348 2,429.1 43.5
Non Dominated Cliques 13,380 10,594 2,670,983 2,429.1 28.0
Lifting 13,380 10,594 3,902,012 2,429.1 10.1

Table 6 Computational results on Arlanda2 with the slot size set to 1 second

the initial master problem already optimal for the LP-relaxation so there was no need to add new

external columns.

Author: Article Short Title
22 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Furini et al. (S, t)− clique
(max delay = 300)

name |F | UB LB Time OPT Time
FPT01 60 265 265 24.0 265 3.2
FPT02 60 293 293 24.0 293 3.2
FPT03 60 255 255 24.0 255 2.8
FPT04 60 268 268 24.0 268 3.0
FPT05 60 249 249 24.0 249 3.2
FPT06 60 167 167 24.0 167 3.0
FPT07 60 198 198 24.0 198 3.1
FPT08 60 167 167 24.0 167 3.4
FPT09 60 183 183 24.0 183 3.1
FPT10 60 211 211 24.0 211 3.1
FPT11 60 229 229 24.0 229 3.5
FPT12 60 207 207 8.0 207 3.6
FPT 0 69 70 604 261 120.0 604 4.3
FPT 50 119 120 2,272 312 120.0 1,994 4.4
FPT 100 169 170 796 338 120.0 796 4.5
FPT 0 89 90 1,332 331 120.0 1,316 10.0
FPT 40 129 130 2,885 408 120.0 2,368 8.9
FPT 80 169 170 1,800 390 120.0 1,508 8.9
FPT 0 109 109 2,131 408 120.0 2,115 20.3
FPT 30 139 139 3,935 458 120.0 3,055 18.5
FPT 60 169 170 5,019 451 120.0 3,577 20.0
FPT 0 129 130 3,167 509 120.0 2,909 29.4
FPT 20 149 150 4,846 536 120.0 3,649 27.6
FPT 40 169 170 5,159 511 120.0 3,691 26.8
FPT 0 149 150 4,467 593 120.0 3,786 42.1
FPT 10 159 160 5,808 576 120.0 4,142 38.8
FPT 20 169 170 6,434 577 120.0 4,171 40.4

Table 7 Computational results with Furini et al. (2015) instances.

6. Final remarks

We address the integrated arrival/departure management problem on a single runway by a suitably

compact time-indexed formulation defined through a special family of clique inequalities that can

be handled by MIP solvers even on standard laptops.

The computational experience on a number of real and realistic instances confirms that compu-

tational times meet the practical real-time requirements of tower controllers. Reversing the opinion

expressed in a recent survey (and generally accepted), we have shown that MIP approaches can

effectively be exploited to solve RSP in practical environments. Moreover, and in contrast with

alternative heuristic approaches to the problem, the methodology provides tight estimations on

the solution quality and the optimality could be proven for all instances in the available testbeds.

Finally, we want to remark that several objective functions can be used to penalize delays and

that the TI formulation can easily accommodate other objective functions, like those based on

convex piecewise linear costs.

Acknowledgments

We wish to thank Fabio Furini for his kind collaboration in providing instances and detailed results.

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 23

References

Abela, J., D. Abramson, M. Krishnamoorthy, A. De Silva, G. Mills. 1993. Computing optimal schedules for

landing aircraft. Proceedings of the 12th National Conference of the Australian Society for Operations

Research, Adelaide.

Ascheuer, N., M. Fischetti, M. Grötschel. 2001. Solving the asymmetric travelling salesman problem with

time windows by branch-and-cut. Mathematical Programming 90(3) 475–506.

Atkin, J.A.D., E. Burke, J. Greenwood, D. Reeson. 2007. Hybrid metaheuristics to aid runway scheduling

at london heathrow airport. Transportation Science 41(1) 90–106.

Balakrishnan, H., B.G. Chandran. 2010. Algorithms for scheduling runway operations under constrained

position shifting. Operations Research 58(6) 1650–1665.

Beasley, J.E., M. Krishnamoorthy, Y.M. Sharaiha, D. Abramson. 2000. Scheduling aircraft landings the

static case. Transportation science 34(2) 180–197.

Beasley, J.E., J. Sonander, P. Havelock. 2001. Scheduling aircraft landings at london heathrow using a

population heuristic. Journal of the operational Research Society 483–493.

Bennell, J.A., M. Mesgarpour, C.N. Potts. 2011. Airport runway scheduling. 4OR 9(2) 115–138.

Briskorn, D., R. Stolletz. 2014. Aircraft landing problems with aircraft classes. Journal of Scheduling 17(1)

31–45.

De Maere, G., J.A.D. Atkin. 2015. Pruning rules for optimal runway sequencing with airline preferences.

Lecture Notes in Management Science 7 76–82.

Furini, F. 2015. Personal communication.

Furini, F., M.P. Kidd, C.A. Persiani, P. Toth. 2014. State space reduced dynamic programming for the aircraft

sequencing problem with constrained position shifting. P. Fouilhoux, L. Gouveia, A. R. Mahjoub, V.T.

Paschos, eds., Combinatorial Optimization, Lecture Notes in Computer Science, vol. 8596. Springer

International Publishing, 267–279.

Furini, F., M.P. Kidd, C.A. Persiani, P. Toth. 2015. Improved rolling horizon approaches to the aircraft

sequencing problem. Journal of Scheduling 18(5) 435–447.

Furini, F., C.A. Persiani, P. Toth. 2012. Aircraft sequencing problems via a rolling horizon algorithm.

Combinatorial Optimization, Lecture Notes in Computer Science, vol. 7422. Springer International

Publishing, 273–284.

Graupl, T., B. Jandl, C.H. Rokitansky. 2012. Simple and efficient integration of aeronautical support tools for

human-in-the-loop evaluations. Integrated Communications, Navigation and Surveillance Conference

(ICNS), 2012 . IEEE, F4–1.

Harrod, S. 2011. Modeling network transition constraints with hypergraphs. Transportation Science 45(1)

81–97.

Author: Article Short Title
24 Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!)

Heidt, A., H. Helmke, F. Liers, A. Martin. 2013. Robust runway scheduling using a time-indexed model.

Schaefer, D. (ed) Proceedings of the SESAR Innovation Days (2014) EUROCONTROL.

Kjenstad, D., C. Mannino, P. Schittekat, T. Nordlander, M. Smedsrud. 2013a. Optimizing aman-sman-dman

at hamburg and arlanda airport. Schaefer, D. (ed) Proceedings of the SESAR Innovation Days (2013)

EUROCONTROL.

Kjenstad, D., C. Mannino, P. Schittekat, M. Smedsrud. 2013b. Integrated surface and departure management

at airports by optimization. Modeling, Simulation and Applied Optimization (ICMSAO), 2013 5th

International Conference on. IEEE.

Kopf, R., G. Ruhe. 1987. A computational study of the weighted independent set problem for general graphs.

Foundations of Control Engineering 12(4) 167–180.

Lieder, A., D. Briskorn, R. Stolletz. 2015. A dynamic programming approach for the aircraft landing problem

with aircraft classes. European Journal of Operational Research 243(1) 61 – 69.

Masin, M., T. Raviv. 2014. Linear programming-based algorithms for the minimum makespan high multi-

plicity jobshop problem. Journal of Scheduling 17(4) 321–338.

Nogueira, T. H., C.R.V. de Carvalho, M.G. Ravetti. 2014. Analysis of mixed integer programming formula-

tions for single machine scheduling problems with sequence dependent setup times and release dates.

Optimization Online .

Queyranne, M., A.S. Schulz. 1994. Polyhedral approaches to machine scheduling . Fachbereich Mathematik:

Preprint-Reihe Mathematik, TU, Fachbereich 3.

Samà, M., A. DAriano, D. Pacciarelli. 2013. Rolling horizon approach for aircraft scheduling in the terminal

control area of busy airports. Transportation Research Part E: Logistics and Transportation Review

60 140–155.

Savelsbergh, M.W.P., R.N. Uma, J. Wein. 2005. An experimental study of lp-based approximation algorithms

for scheduling problems. INFORMS Journal on Computing 17(1) 123–136.

SESAR, Joint undertaking. 2007. High performing aviation for europe, http://www.sesarju.eu/. URL http:

//www.sesarju.eu/.

Sousa, J.P., L.A. Wolsey. 1992. A time indexed formulation of non-preemptive single machine scheduling

problems. Mathematical Programming 54(1-3) 353–367.

Uma, R.N., J. Wein. 1998. On the relationship between combinatorial and lp-based approaches to np-hard

scheduling problems. Integer Programming and Combinatorial Optimization. Springer, 394–408.

Van den Akker, J.M., C.A.J. Hurkens, M.W.P. Savelsbergh. 2000. Time-indexed formulations for machine

scheduling problems: Column generation. INFORMS Journal on Computing 12(2) 111–124.

Waterer, H., E.L. Johnson, P. Nobili, M.W.P. Savelsbergh. 2002. The relation of time indexed formulations

of single machine scheduling problems to the node packing problem. Mathematical Programming 93(3)

477–494.

Author: Article Short Title
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 25

Wolsey, L.A. 1998. Integer programming , vol. 42. Wiley New York.

Wolsey, L.A., G.L. Nemhauser. 2014. Integer and combinatorial optimization. John Wiley & Sons.

